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Abstract. In this paper we look at the decimal expansion of 1
p for different primes p.

We find the set of numbers that can occur as the length of the period. We illustrate some
statistics about the density of the primes for which the period is maximal. We also explain
Artin’s heuristic argument about this density.

1. Introduction

This paper investigates some interesting properties of the decimal expansion of 1/p for
prime numbers p. For example,

1

7
= 0.142857142857142857...,

where the digits 142857 repeat, so 1/7 is periodic, and the period has length 6.
We can look at this expansion in base 10, or in any other base a. The expansion terminates

whenever p divides a, otherwise it is periodic. We are concerned here with the properties of
its period.

We begin by reducing the problem into a problem that is stated in terms of number
theoretic notions. The main result of the paper is that, given a base a 6= 2,and an integer
d 6= 2, there is a prime p such that the length of the period of the expansion 1/p is d. There
is a prime such that the expansion of 1/p has period 2 if and only if a 6= 2k − 1 for any k.
There exists no prime p for which 1/p has period 6 in base 2. For d 6= 6 there exists p such
that the period of 1/p has length d base 2.

It is not hard to show that the length of the period of the decimal expansion of 1/p is no
more than p−1. More interesting is the problem of when the length is in fact p−1, in other
words, when 1/p has maximal period. To investigate this, we present computer-generated
graphs of the density of primes with maximal period in a given base. We prove that if the
base is a square number, there are no primes with maximal period. If the base is not a
square then the graphs suggest that the density of primes that have maximal period is well
defined.

This paper is organized as follows: Section 2 deals with reducing the problem into a
number theory problem, section 3 explores the basic properties of cyclotomic polynomials
and prove the main result, and section 4 illustrates the heuristics and the graphs related to
the density of primes with maximal periods.
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2. Restatement of The Problem with Number Theoretic Notions

In this section, we prove that the decimal expansion of 1
p

is periodic in base a whenever

p - a and that the length of the period is the order of a (mod p). If p|a then the decimal
expansion of 1

p
in base a truncates.

First consider the case p|a and let q = a
p
. Then 1

p
= q

a
. So the decimal expansion of 1

p
in

base a is 0.q and truncates.
Now consider the case p - a and let d be the order of a (mod p). Then d is the smallest

integer such that ad ≡ 1 (mod p), and there is some integer x such that ad − 1 = xp. We
can rearrange the terms to achieve the following expression.

1

p
=

x

(ad − 1)

= x((
1

ad
) + (

1

ad
)2 + (

1

ad
)3...)

= (
1

ad
)x + (

1

ad
)2x + (

1

ad
)3x...

So the decimal expansion of 1
p

in base a is x(0.0...010...010...01...), thus 1
p

is periodic with a

period of length d.

3. Background and Proof of the Main Result

The main result of this paper is as follows:

Theorem 3.1. Given a base a and integer d 6= 2 we can find a prime p such that a has
order d in F∗p unless a = 2 and d = 6. If d = 2 we can find such a prime if and only if a + 1
is a not a power of 2.

Together with our discussion in section 2, this theorem addresses the question, ”What are
the possible lengths of the repeating string of digits in the decimal expansion of 1/p?”

We use a|b and a - b to mean a divides b and a does not divide b respectively. ordpa
denotes the order of a modulo the prime number p. pk||a means pk|a but pk+1 - a. Z denotes
the ring of integers, Z+ positive integers, Fp the field with p elements, and Z[x] denotes ring
of the polynomials in x with integer coefficients. Φn denotes the nth cyclotomic polynomial
defined as follows:

Definition 3.2. The cyclotomic polynomials Φn, n = 1, 2, 3, . . . are the unique irreducible
polynomials that satisfy the following formula:

Φn(x) =
∏

0<k<n
gcd(k,n)=1

(x− e
2iπk

n )

Using the below theorems, it can be shown that the order of a in F∗p is the minimum
positive integer d such that p divides Φd(a). This observation leads us to investigate the
properties of cyclotomic polynomials. The next three theorems are the main theorems that
will help us prove our main theorem. Their proofs will follow later in the section.

Theorem 3.3. Let p be a prime and d be a divisor of p− 1. Then the order of a in F∗p is d
if and only if p divides Φd(a).
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Theorem 3.4. Let m, n ∈ Z+, m < n.

ΦmZ[x] + ΦnZ[x] =

{
qZ[x] if n

m
= qα where q is a prime

Z[x] otherwise

Theorem 3.5. Let p be an odd prime and p|d. If p|Φd(a) then p||Φd(a).

Following identity about the cyclotomic polynomials is going to be useful for the rest of
the theorems and lemmata.

Lemma 3.6. The following identity holds for all n:

xn − 1 =
∏
d|n

Φd(x)

Proof. The roots of xn−1 are the roots of unity: e
2πik

n for k = 0, . . . , n−1. So xn−1 factors
as

xn − 1 =
∏

0≤k<n

(x− e
2iπk

n ).

Then the set of fractions {2iπk
n
|0 ≤ k < n} is exactly⋃

d′|n

{2iπkd′

n
d′

d′
| gcd(k,

n

d′
) = 1}

and written in reduced form is simply⋃
d|n

{2iπk

d
| gcd(k, d) = 1}

Hence we can group the terms (x − e
2iπk

n ) by denominator of the exponent and see the
equivalence

xn − 1 =
∏

0≤k<n

(x− e
2iπk

n ) =
∏
d|n

Φd(x)

�

Lemma 3.7.
xp−1 − 1 ≡

∏
1≤i≤p−1

(x− i) (mod p)

Proof. The set S = {a ∈ Z|0 < a < p} is a group under the operation of multiplication in
Fp. Hence the order, ordpa, of each element of S divides the order, p− 1, of the group. This
means that for every 0 < a < p, we have ap−1 ≡ 1(mod p). In other words, each integer
0 < a < p is a root of the polynomial xp−1 − 1 modulo p. From this, we conclude that
(x−a)|(xp−1−1)(mod p) for every 0 < a < p. Hence (x−1) . . . (x−(p−1))|xp−1−1(mod p).
Since the degree of (x− 1) . . . (x− (p− 1)) is p− 1, and the coefficients of the leading terms
agree, it must be true that xp−1 − 1 ≡ (x− 1) . . . (x− (p− 1))(mod p). �

The idea behind the proof of the main result is to choose a prime factor p of Φd(a) and
combine Theorems 3.3 and 3.4 above to relate the ordpa and d. Finally, we use Theorem
3.5 to show that if d 6= ordpa, then p = Φd(a) and a size argument shows that p = Φd(a) is
almost always impossible; hence, d = ordpa except for a = 2, d = 6 and p = 3.
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We begin by proving the first step, Theorem 3.3.
Proof of 3.3: Let d be the order of a (mod p). Then ad ≡ 1(mod p), so p|(ad − 1). By

definition,

ad − 1 =
∏
m|d

Φm(a),

p|Φm(a) for some m|d.
Assume that m < d. Then p|Φm(a) and Φm(a)|(am−1) so by transitivity, p|(am−1). The

statement p|(am−1) is equivalent to am ≡ 1(mod p), which contradicts the initial assumption
that d is the order of a(mod p). Hence m = d and p|Φd(a).

To prove the other direction, let p|Φd(a). By definition, p|(ad−1), so ordpa|d. Furthermore,
p|Φd(a) implies that a is a root of Φd(x) in Fp, so (x− a)|Φd(x) in Fp.

Let a have order k < d. Then ak ≡ 1(mod p), so a is a root of xk − 1 in Fp. This means
that (x− a)|(xk − 1) in Fp, or equivalently

(x− a)|
∏
m|k

Φm(x) in Fp

Then (x − a)|Φm(x) in Fp for some m|(p − 1) and m < d. Recall that (x − a)|Φd(x) in Fp.
Lemma 3.7 states that xp−1 − 1 ≡ (x− 1) . . . (x− (p− 1)) (mod p), or equivalently,∏

w|n

Φw(x) ≡ (x− 1) . . . (x− (p− 1)) mod p

Since (x − a0) is irreducible for all a0, each term (x − a0) divides exactly one of the cyclo-
tomic polynomials on the left hand side. Since m|(p − 1) and d|(p − 1), it is not possible
that (x− a)|Φm(x) and (x− a)|Φd(x). This is a contradiction, so it must be true that k = d
and ordpa = d. �

Theorem 3.4, which is the next step toward the main result, relies on several lemmata
providing further results concerning cyclotomic polynomials.

Lemma 3.8. Let m, n ∈ Z+. Then

(xm − 1)Z[x] + (xn − 1)Z[x] = (xgcd(m,n) − 1)Z[x]

Proof. Let h(x) ∈ Z[x] be the polynomial of the smallest degree such that

h(x) = (xn − 1)f(x) + (xm − 1)g(x)

for some f(x), g(x) ∈ Z[x]. Equivalently, we can write h(x) = gcd((xn−1), (xm−1)). Notice
that

gcd((xn − 1), (xm − 1)) = gcd((xm − 1), (xn − 1)− xn−m(xm − 1))

= gcd((xm − 1), (xn−m − 1))

We can apply the Euclidean Algorithm on n and m by subtracting m from n repeatedly until
the remainder r is less than m, then subtracting r from m repeatedly and so on, concluding
with

h(x) = gcd((xn − 1), (xm − 1)) = (xgcd(m,n) − 1).

Hence (xgcd(m,n) − 1) ⊂ (xm − 1)Z[x] + (xn − 1)Z[x].
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Since h(x) is the polynomial of the smallest degree in (xm−1)Z[x]+(xn−1)Z[x] and Z[x]
is a principal ideal domain, h(x) must generate (xm − 1)Z[x] + (xn − 1)Z[x]. So

(xm − 1)Z[x] + (xn − 1)Z[x] = (xgcd(m,n) − 1)Z[x].

�

Lemma 3.9. Let m, n ∈ Z+ and n
m

= pα where p is a prime. We have the following equalities
modulo p.

Φn(x) ≡ Φm(x)pα

(mod p) if p|m

Φn(x) ≡ Φm(x)pα−pα−1

(mod p) if p - m

Proof. It follows from the definition 3.2 of cyclotomic polynomials that

Φn(x) = Φm(xpα

) if p|m

Φn(x) =
Φm(xpα

)

Φm(xpα−1)
if p - m

Looking at this in Fp gives

Φn(x) ≡ Φm(x)pα

(mod p) if p|m

Φn(x) ≡ Φm(x)pα−pα−1

(mod p) if p - m

�

We are now ready to present the proof of Theorem 3.4. Recall that the statement of
Theorem 3.4 is that for m, n ∈ Z+, m < n.

ΦmZ[x] + ΦnZ[x] =

{
qZ[x] if n

m
= qα where q is a prime

Z[x] otherwise

Proof of 3.4 We divide the proof onto three cases.

Case 1: Let m, n ∈ Z and m - n.
From Lemma 3.8, there exist polynomials f(x), g(x) ∈ Z[x] such that

(xn − 1)f(x) + (xm − 1)g(x) = (xgcd(m,n) − 1)

Equivalently, ∏
w|n

Φw(x)f(x) +
∏
u|m

Φu(x)g(x) =
∏

v|gcd(m,n)

Φv(x)

Clearly, if v|gcd(m, n) then v|n and v|m so

Φv(x)|
∏
w|n

Φw(x) and Φv(x)|
∏
u|m

Φu(x).

for all v|gcd(m, n). Furthermore, since m doesn’t divide n, v|gcd(m, n) ⇒ v < m < n so

Φn(x)|
∏

w|n Φw(x)∏
v|gcd(m,n) Φv(x)

and Φm(x)|
∏

u|m Φu(x)∏
v|gcd(m,n) Φv(x)

.

Then there are polynomials f̃(x), g̃(x) ∈ Z[x] such that

Φn(x)f̃(x) + Φm(x)g̃(x) = 1
5



so ΦmZ[x] + ΦnZ[x] = Z[x].

Case 2: Let m, n ∈ Z, m|n, and p, q| n
m

where p and q are distinct primes.
Because Φp(x) ∈ Q[x], there exists a polynomial f(x) such that

Φp(x)− Φp(a) = f(x)(x− a)

Reducing the above expression and evaluating at a = 1 yields

xp − 1

x− 1
− f(x)(x− 1) = p.

Substituting x = y
n
p , we have

yn − 1

y
n
p − 1

− f(y
n
p )(y

n
p − 1) = p.

Notice that Φn(y)|yn− 1 and Φn(y) - y
n
p − 1. Similarly, Φm(y)|y

n
p − 1. So we can rewrite the

above expression as

g(y)Φn(y) + h(y)Φm(y) = p

for some g(y), h(y) ∈ Q[y]. We can make the same argument for q, so we can find g̃(y), h̃(y) ∈
Q[y] such that

g̃(y)Φn(y) + h̃(y)Φm(y) = q.

But p and q are distinct primes, so gcd(p, q) = 1 and there exist integers a and b such that
ap + bq = 1. So

(ag(y) + bg̃(y))Φn(y) + (ah(y) + bh̃(y))Φm(y) = 1.

so ΦmZ[x] + ΦnZ[x] = Z[x].

Case 3: Let m, n ∈ Z, m|n, and n
m

= pα for some prime p .
Applying the argument of Case 2, it is clear that we can find polynomials g(y), h(y) ∈ Q[y]

so that

g(y)Φn(y) + h(y)Φm(y) = p.

Then pZ[x] ⊂ ΦmZ[x] +ΦnZ[x]. In order to show the opposite inclusion, recall from Lemma
3.9 that

Φn(x) ≡ Φm(x)pα

(mod p) if p|m

Φn(x) ≡ Φm(x)pα−pα−1

(mod p) if p - m.

Hence, Φm(x)|Φn(x) (mod p). If there were an element c ∈ Z and polynomials A(x), B(x) ∈
Z[x] such that A(x)Φn(x) + B(x)Φm(x) = c then A(x)Φn(x) + B(x)Φm(x) = c (mod p).
Since Φm(x) divides the left side of the equation, it must divide c (mod p). But c ∈ Z so
Φm(x)|c (mod p) if and only if c ≡ 0 (mod p). Hence, p|c and pZ[x] ⊃ ΦmZ[x] + ΦnZ[x].�
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The third and last step toward the main result follows directly from two Lemmas. Recall
the statement of Theorem 3.5, which says that for p an odd prime such that p|d and p|Φd(a),
we have p||Φd(a).

Lemma 3.10. Let p be an odd prime and a an integer such that p|a − 1. If pα||a − 1 and
pβ||n, then pα+β||an − 1

Proof. The proof is based on induction on β. For β = 0 the proof is obvious. Assume that
the hypothesis holds for β. Let an − 1 = pα+βk, p - k. The induction step is as follows:

anp − 1 = ((an − 1) + 1)p − 1

= (pα+βk + 1)p − 1

=

(
p

p

)
(pα+βk)p +

(
p

p− 1

)
(pα+βk)p−1 + · · ·+

(
p

1

)
pα+βk

In the above sum all the terms are divisible by pα+β+2 except for the last term, which is
divisible by pα+β+1. Therefore, the whole sum is exactly divisible by pα+β+1. �

Lemma 3.11. If p divides Φm(a) and not m, then m is the order of a mod p.

Proof. Assume that d is the order of a mod p. Then p|Φd(a) by 3.3. We also know that
p|Φm(a). Therefore, ΦmZ[x] + ΦdZ[x] can not be Z[x]. If m 6= d then by 3.4 either d/m or
m/d must be a power of p. Since both of the cases are impossible, we deduce that m = ordpa.
�

Lemma 3.12. Let p be an odd prime, m an integer such that p - m, α, β ≥ 1 and pα||Φm(a).If
d = pβm, then p||Φd(a).

Proof. We prove the statement for β = 1. Let d = mp. By 3.9 Φmp(x) ≡ Φm(x)p−1(mod p).
Since p|Φm(a) we get p|Φd(a). Since p - m and p|Φm(a) by 3.11 it must be that m = ordpa.
Therefore pα||am−1 (because among the cyclotomic factors of am−1 only Φm(a) is divisible

by p). It follows from 3.10 that pα+1||ad − 1 . Since p|Φd(a)| ad−1
Φm(a)

we get p||Φd(a). The

induction step β → β + 1 is very similar and left to the reader. �

Proof of 3.5. Let d = pβm, p - m. Since Φd(x) ≡ Φm(x)pβ−pβ−1
(mod p) from Lemma 3.9

it follows that p|Φm(a). It follows from 3.12 that p||Φd(a).�
Notice that Theorem 3.5 only covers the cases in which p is odd. The following lemma

proves the equivalent result for p = 2.

Lemma 3.13. Let d > 2 and a an integer. Then Φd(a) is either odd or 2||Φd(a).

Proof. If a is even then Φd(a) is odd b/c Φd(0) = 1. If a is odd then Φd(a) ≡ Φd(1)(mod 2)
and we know that Φd(1) is 1 unless d = pk in which case Φd(1) = p. Therefore we just

need to consider d = 2k, k ≥ 2, in which case Φ2k(x) = x2k−1
+ 1. It’s easy to show that

Φ2k(a) = 2(mod 4) if a is odd. Therefore Φd(a) is odd unless a is odd and d = 2k, in which
case 2||Φd(a). �
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We are finally prepared to prove the main result for a, d > 2.
Proof of 3.1 We show that there is a prime divisor p of Φd(a) for which ordpa = d. Let

p be a prime divisor of Φd(a) and m = ordpa and assume that d 6= m. It follows from 3.3
that p|Φm(a). Consider the ideal U = ΦmZ[x] + ΦdZ[x]. We know that U 6= Z[x] because
p|Φm(a) and p|Φd(a). From 3.4 it follows that either m

d
or d

m
is a power of p. The former is

impossible because m ≤ p − 1. In the case of the latter, m|p − 1 so p is the greatest prime
divisor of d.

If Φd(a) has a divisor q, q 6= p, then let m′ = ordqa we can apply the same argument to
show that d 6= m′ ⇒ q is the greatest prime divisor of d. As p and q cannot both be greatest
prime divisors, either d = m or d = m′. Hence there is only one prime divisor p0 of Φd(a),
whether p or q, for which ordp0a = d.

If Φd(a) does not have a divisor q, q 6= p, then Φd(a) = pα. Let d > 2. By theorem 3.5
and 3.13, we must have Φd(a) = p. As concluded above, p is the greatest prime divisor of d.
Recall the definition of Φd(a),

Φn(x) =
∏

0<k<n
gcd(j,n)=1

(a− e
2iπk

n )

Examining each term as an element of C, we have

|Φn(x)| =
∏

0<k<n
gcd(j,n)=1

|a− e
2iπk

n |

Assume that a > 2 then |a− e
2iπk

n | > 2 so |Φn(x)| > 2φ(d) where φ(d) represents the number
of integers m < d such that gcd(m, d) = 1. Since p|d, we have p− 1|φ(d), so |Φn(x)| > 2p−1.
But |Φn(x)| = |p| = p so p > 2p−1. But p ≤ 2p−1 for all p, so this is impossible. Hence we
must have m = d.

Now assume that a = 2, p|n, Φn(2) = p. Let ω = e2iπ/n. We have:

Φn(2) =
∏

gcd(l,n)=1, l<n/2

(2− ωl)(2− ω−l)

=
∏

gcd(l,n)=1, l<n/2

(5− 2 cos(
2πl

n
))

≥ 3Φ(n)/2 ≥ 3
p−1
2

We find that if Φn(2) = p and p|n then 3
p−1
2 ≤ p. This only holds if p = 2 or p = 3. It also

follows from above that if p = 2 then Φ(n) < 2 so n has to be 2. We see that Φ2(2) = 3
so this is not a solution. If p = 3 then Φ(n) ≤ 2. This leads us to the following possible
solutions (n, p, a) : (6, 3, 2), (4, 3, 2), (3, 3, 2). Trial and error shows that the only
solution is n = 6, p = 3 and a = 2 (Φ6(2) = 3). Indeed there is no prime p for which 2 has
order 6 in Fp. �
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4. Distribution of Prime Numbers for which a is a Primitive Root

Although the values of the order of the base a modulo prime numbers can attain arbitrary
values, it is an interesting question to study the distribution of primes such that a has some
special order modulo these primes. One such approach could be to look for all prime numbers
p such that a has order k modulo p for some fixed positive integer k. However, all such primes
must be divisors of nk − 1, so there are finitely many of them.

A more interesting question arises if we look at the primes which give the maximal order
of a. As we know, the maximal order is p− 1 for prime number p, and a has order p− 1 if
and only if it is a primitive root modulo p. Let us denote the set of all prime numbers for
which a is a primitive root as S(a). We would like to study the density of this set within
the set of all prime numbers. The density can be defined in a natural way as follows:

D(n, N) =
#{n ∈ S(a) | n ≤ N}

#{n ∈ P | n ≤ N}

D(n) = lim
N→∞

D(n,N)

If the sequence under the limit converges, then the density is well-defined, and it tells us
the “probability” that for a randomly chosen prime number, a is a primitive root. Note,
it is not even immediate whether S(a) is finite or not. In fact, one might easily notice the
following fact:

Proposition 4.1. If a is a perfect square, then S(a) is empty.

Proof: Assuming a = b2, we obtain a
p−1
2 ≡ bp−1 ≡ 1 (mod p) from Fermat’s theorem. �

Using computational software (see section 6 for the code), we can plot the sequence ele-
ments under the limit, and observe that the sequence appears to stabilize. Moreover, after
calculating the final probabilities for various values of n we also notice that this density
value is the same for the majority of the numbers. This observation led us to the following
conjecture, first discovered by Artin in 1927 [1]:

Conjecture 4.2 (Artin). For any positive integer a which is not a perfect square, the set
S(a) is infinite. Moreover, if a is a squarefree number, then the density of S(a) in prime
numbers is independent of a.

The constant mentioned in the conjecture carries the name Artin’s constant and it is equal
to

CA =
∞∏

k=1

(
1− 1

pk(pk − 1)

)
= 0.3739558136 . . . ,

where pk is the k-th prime number.
There have been numerous attempts to prove this conjecture, and it is commonly believed

to be true. However, apart from the conditional results relying on the Generalized Riemann
Hypothesis, it is not known whether the qualitative form holds, i.e. given any positive integer
a whether the set S(a) is infinite [2]. An interesting non-constructive result by Heath-Brown
states that there could be at most three squarefree numbers a with finite set S(a), but
unfortunately, the proof does not show what these exceptions might be.
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Figure 1. The plot of intermediate values of D(10, pi) for prime numbers pi ≤
10000. The horizontal axis shows the index i of the prime number.

It is important to understand the reasoning that led Artin to his conjecture as it might
give us some insight into why the conjecture might hold. In particular, it can provide a
“heuristic” explanation of the Artin’s constant. His argument relies on certain probabilistic
assumptions and employs notions of algebraic number theory. We would like to explain the
details of his argument below.

Proposition 4.3. For any positive integer a and a prime number p the following statements
are equivalent:

(i) a is a primitive root modulo p;

(ii) for any prime divisor q of p− 1, a
p−1

q 6≡ 1 (mod p);
(iii) for any prime divisor q of p− 1, xq − a is irreducible modulo p.

Proof: Let us first show the equivalence of (i) and (ii). If a has order d which is less than
p− 1, then we can pick a prime divisor q of p−1

d
as d divides p− 1 by Fermat’s theorem. In

that case, a
p−1

q is a power of ad and it is 1 (mod p). On the other hand, a is a primitive root
if and only if p− 1 is the minimal power of a which is congruent to 1 modulo p.

Now we would like to prove the rest by showing that the negatives of (ii) and (iii) are

equivalent. If xq − a has a root modulo p, then a is a q-th power and so a
p−1

q ≡ 1 (mod p).

For the other side, note that if a
p−1

q ≡ 1 (mod p) then if we write a = gd for the primitive
10



Figure 2. The composite plot of intermediate values of D(a, pi) for a range of
values of a up to 200 and pi ≤ 10000. The color indicates relative order of a with
red being the highest one.

root g modulo p, the power d must be divisible by q, and so g
d
q is a root of the polynomial. �

Given a prime number p, we are interested in the factorization of the prime ideal generated
by p in certain algebraic number fields. The following theorem [3] gives us an easy way to
factor ideals in extensions:

Theorem 4.4 (Kummer). Suppose R is a Dedekind ring with quotient field K, and R′ is its
integral closure in a finite dimensional extension L of K. Let p be a nonzero prime ideal of
R. Suppose there is an element α ∈ L such that the integral closure of Rp in L is Rp[α]. Let
f(x) be the minimal polynomial of α over Rp. Suppose f(x) factors modulo p after reduction
of its coefficients as f(x) ≡

∏
gi(x)ei where gi(x) are irreducible polynomials. Then:

pR =
∏

(p, gi(α))ei

where the ideals (p, gi(α)) in the factorization are prime and distinct.

Here we use the notation Rp to denote a localization of the ring R at the multiplicative set
R− p. An interesting implication of using localization is that if L = K[θ] for some element
θ ∈ R′ and the ideal p does not contain the discriminant ∆(θ), then we have R′

p = Rp[θ] and
we can apply the theorem. A reader may refer to [3] for the proof of this fact.
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Proposition 4.5. Given a positive integer a and prime numbers p and q such that p does
not divide a, the following statements are equivalent:

(i) p ≡ 1 (mod q) and a
p−1

q ≡ 1 (mod p);
(ii) principal ideal generated by p splits completely in Kq = Q( q

√
1, q
√

a).

Proof: (i) => (ii). By the previous proposition, the polynomial xq − a has a root modulo
p. We can easily obtain all the other roots through multiplication by a nontrivial root of
xq − 1 modulo p as there exists one for q being a divisor of p − 1. Hence, xq − a splits
completely modulo p. The discriminant of q

√
a can be calculated by the following well-known

formula:

∆( q
√

a) = (−1)
q(q−1)

2 N(
d

dx
(xq − a) |x= q√a) = (−1)

(q+2)(q−1)
2 qqaq−1

Since it is not divisible by p, we can use Theorem 4.4 to deduce that p splits completely
in the ring of integers of F = Q( q

√
a). Finally, for any prime ideal p in the factorization, we

can repeat the same reasoning for the polynomial xq − 1 and the field extension Kq over F .
After combining the two factorizations, we deduce that p splits completely in Kq.

(ii) => (i). Given that p splits completely in Kq, it must also split completely in the

subfields Q( q
√

1) and Q( q
√

a). By Theorem 4.4 and unique factorization of ideals, the poly-
nomials xq − a and xq − 1 must both split completely modulo p. The conditions of (i) follow
directly in the same way as above. �

As a direct consequence of the above propositions, we have:

Proposition 4.6. a is a primitive root modulo p if and only if p does not split completely
in Kq = Q( q

√
1, q
√

a) for any prime q.

Now we note an implication of the Chebotarev theorem [3] on the splitting behavior of
primes in field extensions. The notion of density for a subset of prime numbers is the same
used before.

Theorem 4.7 (Chebotarev). The density of primes p which split completely in a Galois
extension K of Q is 1

[K:Q]
.

By this theorem, the probability that a given prime p does not split completely in Kq for
some prime q is:

1− 1

[Kq : Q]

Therefore, one would expect that the density of primes for which a is a primitive root is
a product of such probabilities over all fields Kq for prime integers q:∏

q∈P

(1− 1

[Kq : Q]
)

The latter expression can be used to calculate the constant CA. Indeed, in a generic case
the degree of Kq over Q is q(q−1) since both polynomials xq−1 +xq−2 + . . .+1 and xq−a are
irreducible (here a is not a q-th power.) If a has a square divisor, then some of the fields Kq

have a lower degree, so that the constant needs a rational correction factor to cover integers
a which are not squarefree. Looking at the statistical data we collected, one can notice on

12



the plots that the density for some of these integers a is lower than CA and in fact, it is a
rational multiple of CA.

In conclusion, the last step of the argument given above is rather questionable as it relies
on the independence of the infinite number of probabilities over fields Kq, and that prevents
the above reasoning to become a valid proof.

5. Group Work

We decided to break our work as follows. Introduction and section 2 were written by
Shelly, outlines of the theorems are written by Nizam. In section 3, first half of the proofs
were written by Shelly and the second half of the proofs were written by Nizam. Kuat wrote
section 4 including the plots and the code to generate them.

6. Program Code

The following source code is written for SAGE open source math software, which is well-
suitable for number theoretical computations.

The software package can be obtained at:
http://modular.math.washington.edu/sage/.

The complete source code can be obtained at:
http://mit.edu/kuat/www/18821.

""" Excerpt from utility methods to study the Artin’s conjecture"""

def g e t o rd e r (n , p) :

"""Return the order of $n$ in the group $ZZ/pZZ$"""

F = GF(p)

k = F(n) . mu l t i p l i c a t i v e o r d e r ( )

return k

def g e t o r d e r s (n , max) :

"""Returns the list of orders of $n$ for primes up to $max$"""

L = [ ]

for p in prime range (max) :

i f not ZZ(p) . d i v i d e s (n) :

L . append ( g e t o rd e r (n , p) )

return L

def o r d e r p r ob ab i l i t y (n , max) :

"""Returns a line showing the asymptotic probability that a prime has maximal order

for given $n$"""

count = 0

max count = 0

L = [ [ 0 , 0 ] ]

for p in prime range (max) :

count = count + 1

i f not ZZ(p) . d i v i d e s (n) :

k = ge t o rd e r (n , p)

i f k == (p − 1) :

max count = max count + 1

L . append ( [ count , max count / count ] )

print "Last proportion: " , max count / count

return L

def p l o t p r o b a b i l i t y (n , max) :

13



return l i n e ( o r d e r p r ob ab i l i t y (n , max) , r gbco l o r =(1/4 , 1/8 , 3/4) )

def g e t s o r t e d o r d e r s (n , max) :

"""Outputs the set of values which the order $n$ can take with respect to primes up

to $max$"""

L = l i s t ( s e t ( g e t o r d e r s (n , max) ) )

L . s o r t ( )

return L

def po s s i b l e o r d e r (n , max) :

"""Checks if every number up to $max$ is an order of $n$ for some prime; outputs all

invalid samples"""

R = [ ]

for k in range (2 , max) :

print "Checking order " , k

L = (nˆk − 1) . f a c t o r ( )

check = f a l s e

for t in L :

p = t [ 0 ]

i f k == ge t o rd e r (n , p) :

check = true

print "Found prime factor: " , p

break

i f not check :

R. append (k )

return R

def get pr imes (n , d) :

"""Returns a list of primes for which $n$ has order $d$ modulo that prime"""

primes = map(lambda x : x [ 0 ] , cyc lo tomic po lynomia l (d) (n) . f a c t o r ( ) )

d i v i s o r s = map(lambda x : x [ 0 ] , I n t eg e r (d) . f a c t o r ( ) )

s = s e t ( primes ) . d i f f e r e n c e ( s e t ( d i v i s o r s ) )

return l i s t ( s )
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