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Abstract
We survey results related to the data structures for dynamic graphs which can maintain

global edge connectivity. We explain the major techniques used in these data structures and
explore in detail the algorithm by Thorup for polylogarithmic edge-connectivity.

1 Introduction

In this paper, we study data structures that maintain the edge connectivity λ of a graph, i.e. the
minimal number of edges whose removal disconnects the graph. We use G = (V,E), n = #V ,
m = #E to denote a dynamic graph that supports edge deletions and insertions. A min-cut of
a graph is a partition of the vertices into two sets with the minimal number of edges connecting
them. The number of edges in any min-cut is the edge connectivity λ. The edge connectivity is
the global measure of sensitivity of the graph to edge removals. This draws the distinction between
edge connectivity data structures and O(1)-edge connectivity queries for pairs of vertices. These
data structures find their application in the design of computer networks resilient to multiple link
failures.

A
√

2-approximate data structure by Thorup and Karger [5] answers the edge connectivity
query in polylogarithmic amortized time. Another data structure by Thorup [4] can give the exact
value of λ at the cost of O(

√
n) worst case time per graph update for polylogarithmic λ. In fact, no

sublinear time algorithm is known for edge connectivity higher than 3, and the data structure by
Thorup matches this bound. Both of these solutions share a number of effective techniques which
we explain in this paper.

We introduce greedy tree packings in section 2. Section 3 explains the minimal spanning forests
data structures used for tree packings. Sections 4 and 5 explain the data structure by Thorup
[4] in detail. We conclude with the technique by Karger [5] to extend the polylogarithmic edge
connectivity data structures to arbitrary large values in section 6.

2 Tree Packings

An important combinatorial object that is essential to global edge connectivity data structures is
a tree packing. A tree packing of a graph G is a set of spanning trees of G with possible multiple
occurrences. Given a tree packing T , each edge e is then loaded with the number of trees containing
it. We define a relative load `T (e) to be the proportion of the load of an edge to the size of the tree
packing:

`T (e) =
#{T | e ∈ T, T ∈ T }

#T
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The value of a tree packing is defined as follows:

value(T ) =
1

maxe∈E(G) `T (e)

Throughout the paper, we use τ to denote the maximal value of a tree packing.
There is a surprising connection between the values of tree packings and the edge connectivity

of a graph. To illustrate this connection we need a concept of a cut value. Given a partition P of
the vertices V (G), the cut value of P is:

cut-value(P) =
#{e ∈ E(G) | e crosses partitions in P}

#P − 1

Notice that the cut value of a min-cut is λ as it partitions the vertices of a graph into two sets.

Theorem 1 (Nash-Williams). The minimum cut value of a partition equals τ , the maximal value
of a tree packing.

Corollary 2 (Karger [5]). λ/2 < τ ≤ λ

Proof. The right hand inequality follows from our observation that a min-cut defines a partition
with cut value λ. To show the left hand side we choose a partition P with cut value τ . Then by
definition:

τ >
#{e ∈ E(G) | e crosses partitions in P}

#P
For each set in the partition P, the number of graph edges connecting the vertices in the set to
the rest of the graph is at least λ. If we sum these numbers over all sets, we get 2#{e ∈ E(G) |
e crosses partitions in P} ≥ λ#P, since each edge crossing partitions is counted twice, from which
inequality follows directly. �

Now we turn to the algorithmic side of the construction and maintenance of a tree packing for
our graph. A greedy approach appears to be sufficient to approximate the maximal value τ of a
tree packing. We call a tree packing T = {T1, T2, . . . , Tk} greedy, if each subsequent tree Ti is the
minimal spanning tree with respect to the loads `i−1(e) of previous trees where the load of edge e
is:

`i(e) = #{Tj | e ∈ Tj , j ≤ i}

Theorem 3 (Young). Any greedy packing T with at least 3λ lnm/ε2 trees has value

value(T) ≥ (1− ε)τ

Although the greedy tree packing approximates the minimal cut value of a graph up to a factor√
2, it does not give us the exact value of the edge connectivity λ. As pointed out in [4], minimal

spanning trees of a graph may cross a min-cut multiple times, so there is no direct correlation
between tree packings and edge connectivity. However, a deeper study of the greedy technique led
to discovery of the following purely combinatorial result:

Theorem 4 (Thorup [4]). Any greedy packing T with ω(λ7 log3 m) trees contains a tree crossing
some min-cut exactly once.
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Both data structures in [5] and [4] maintain a greedy tree packing using a dynamic minimal
spanning tree data structure for each tree. Each edge update can change the weights `i for i < k, and
hence update the minimal spanning trees at each level i. The following lemma gives as estimate on
the total number of changes in trees required per a graph update. Here we assume some assignment
of priorities to the edges of the graph so that the minimal spanning tree is always unique for each
i.

Lemma 5 (Karger [5]). Assuming the graph remains connected, each insertion or deletion of an
edge changes at most i edge loads `i for each i.

Proof. Without loss of generality it suffices to consider the deletion of an edge e. We claim that
for each i the loads of edges distinct from e do not decrease. Notice `i(e) ≤ i by definition and the
load of e drops to 0 after deletion. Since we assume that the graph remains connected, the total
sum of loads of edges is invariant. Therefore, the operation can only affect at most i edge loads.

Let us denote `new
i (e) the edges loads after the deletion. We prove by induction on i that

`new
i (e) ≥ `i(e). Notice that it suffices to consider the case of an edge e belonging to the old

spanning tree Ti but not to the updated one, since otherwise the edge load `i(e) does not decrease
by induction hypothesis. In this case, since the loads `i−1 have not decreased, and e is not in
the update minimal spanning tree Ti, we must have strict inequality `new

i−1 (e) > `i−1(e). Then
`new
i (e) ≥ `new

i−1 (e) ≥ `i−1(e) + 1 ≥ `i(e). �

It follows from the lemma that each update requires at most 1+2+. . .+(k−1) ≤ k2 load changes.
Notice that we can limit our discussion to the case of dynamic graphs remaining connected. Both
of our minimum spanning trees data structures in the next section, are suitable for finding spanning
forests as well. The effect of insertion or deletion of any edge between two connected components
is that the bridge edge is either added or deleted from all the spanning trees of the components.
Since we in general maintain polylogarithmic number of them, this has the same cost as in usual
edge update. Finally, the edge connectivity of a disconnected graph is always zero; so if we have a
spanning forest consisting of multiple trees we report zero in our algorithms. Thus, our goal is to
maintain a list of k = O(polylog(n)) dynamic forests of the greedy packing. Since the total number
of load changes is at most k2, we can make it fully dynamic by choosing an appropriate dynamic
minimum spanning tree structure that then could be maintained independently over the trees in
the packing.

3 Dynamic Minimum Spanning Forests

The paper by Thorup and Karger [5] describes a data structure that can approximate polylogarith-
mic edge connectivity within a multiplicative factor

√
2 and perform updates in polylogarithmic

amortized time. This is achieved by using a minimum spanning forest structure by Holm et al
described in [3] for each of the trees in the greedy packing of size k and reporting an approxima-
tion of τ obtained from the maximal relative load `k(e). The inequality in lemma 2 then confirms
that τ is

√
2-approximation of λ. The minimum spanning forest in [3] performs each edge update

in O(log4 n) time per update, and is partly based on the top trees which we present next. The
key observation is that lemma 3 requires a polylogarithmic packing size k and we can set the
approximation factor ε sufficiently small to be ignored by picking the closest integer.
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Theorem 6 ([5]). For graphs with edge connectivity at most λmax we can maintain (1 − ε)-
approximate greedy tree packing of size 3λmax lnm/ε2 in O(λ2

maxpolylog(n)/ε4) amortized time per
update. The algorithm announces if the edge connectivity exceeds λmax.

Proof. The updates to the minimal spanning trees of the graph can be amortized over load changes.
Since a graph update requires at most k2 load changes, and each MST update takes polylogarithmic
amortized time, the result follows from lemma 3. Clearly, if the value of the packing exceeds λmax,
then the edge connectivity also exceeds λmax. �

Another approach, which is undertaken in [4], attempts to answer queries for the exact value of
λ. Instead of using MST data structure from [3], it uses another minimum spanning forest structure
by Frederickson and Eppstein et al [2] that performs updates in O(

√
n) worst case time. However,

we would like to use a combination of lemmas 3 and 4. Again we assume only queries for edge
connectivity bounded by polylogarithmic λmax. Thus, we obtain the following theorem:

Theorem 7 ([4]). For graphs with edge connectivity at most λmax we can maintain a greedy tree
packing of polylogarithmic size for a fully-dynamic graph in Õ(

√
n) worst case time per edge up-

date such that at least one tree in the packing crosses some min-cut exactly once. The algorithm
announces if the edge connectivity exceeds λmax.

Since the contribution coming from applying same operations to each tree is only a polyloga-
rithmic multiplicative factor, we can consider each tree independently. Therefore, the result follows
the lower bounds in lemmas 3 and 4. In the next sections, we show the representation of trees in
the packing so that we can query the size of the min-cut crossed exactly once by each tree. It is
based on the top trees data structure, which we explain next.

4 Top Trees

We describe a dynamic tree data structure called top trees which was invented by Alstrup et al in
1997 [1]. The hallmark of this structure comparing to others such as ET-trees due to Henzinger
and King which are simpler to implement, is that it supports path-oriented updates and queries
and is well-suitable for divide-and-conquer algorithms. A variant of the top trees is used in minimal
spanning forest algorithm by Holm et al [3]. The following version follows [4] and can be used after
certain augmentation to maintain the min-cut. We define the top tree for a dynamic subtree of the
graph G, and we call the edges of G that do not belong to it non-tree edges.

The key notions of the top trees are that of boundary nodes and clusters. We start from a tree
T and at most two selected nodes of T which form the set ∂T of the external boundary nodes. For
any connected subtree C of T , we call any node in C which either belongs to ∂T or is an endpoint
of an edge that leaves C a boundary point. We denote the set of boundary points of C as ∂(T,∂T )C.
Given the pair (C, ∂(T,∂T )C), we notice that the boundary nodes of any subtree A of C are the same
as the boundary nodes of A considered as a subtree of T . Therefore, we can simplify our notation
of the boundary points of C to ∂C and eliminate the context of T . We call any subtree of T with
at most two boundary points a cluster. Hence, T itself is a cluster. If two clusters share exactly
one node, we refer to them as neighbors. For a cluster C with two boundary nodes, the tree path
π(C) connecting these nodes is called a cluster path.

Given the pair (T, ∂T ), the clusters are organized into a hierarchic structure of a binary tree
with the root being the tree T itself as shown in Figure 1. Each node in the binary tree is a cluster
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Figure 1: The binary tree structure of the top tree. The nodes marked with • are external boundaries.

of the form (T, ∂T ). For every internal node C with children A and B we require that clusters A
and B are neighbors and C is the union of A and B as explained in Figure 2. Finally, we require
that the number of vertices and incident non-tree edges of any leaf cluster to be at most

√
m. For

the non-tree edges that have an end-point in a boundary node of a leaf cluster, we designate only
one leaf cluster as the owner of the edge. This is an essential constraint for our variant of the top
tree that differentiates it from the original top trees which had single edges at the leaves. Our
variant is in a sense a prunned version of the cluster hierarchy which allows to assign additional
information to the pairs of clusters as there only a few of them in this case.

Figure 2: Various cases of arrangement of two neighbor clusters A and B and the parent node C in the top
tree. The boundary nodes of the parent are marked with • while the rest of boundary nodes of children are
marked with ◦. The cluster path of C is shown.

The interface to the top trees over underlying forest consists of the following update operations:

Link(v, w) adds the edge (v, w) to the dynamic forest assuming v and w are in different trees
and sets the resulting boundary set ∂T = ∅;
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Cut(v, w) removes the edge (v, w) and sets ∂T = ∅;

Expose(v, w) for v and w in the same tree, sets them to be the boundary nodes and returns
the root cluster after the update; similar operation works for a single nodes or no nodes passed
as arguments. One effect of this operation is that it modifies cluster paths.

The data structure translates each of above operations into a sequence of the primitive opera-
tions:

Create(L) where L is a cluster satisfying the last condition for leaves above creates a new
top tree consisting of a single cluster L;

Destroy(L) eliminates the top tree consisting of a single cluster L;

Merge(A,B) where A and B are neighbors and the root clusters of two top trees, creates a
new cluster C = A∪B, makes it the common root of the single new top tree, and returns the
new root cluster C;

Split(C) where C is the root cluster of a top tree, with two children A and B. It performs
the inverse of the previous operation by removing C and producing two top trees rooted at
A and B.

Since we concentrate on augmentation and are going to use top trees as essentially a black box,
we summarize the update algorithm of the dynamic forest in the following statement:

Lemma 8 (Alstrup et al [1]). We can maintain top trees of height O(log n) and with O(
√

m)
cluster nodes supporting Link, Cut, and Expose above with a sequence of O(log n) Merge and Split
and O(1) Create and Destroy operations per update. The sequence itself is computed in O(log n)
time.

5 Augmenting Top Trees

Recall that our goal is to extract the min-cut crossed exactly once from a top-tree. For any edge
in the tree e we say that a non-tree edge covers e if the path in the tree between its endpoints
contains e. We denote by c(e) the number of edges covering e. Notice that the partition induced
by removing e from the tree has cut value c(e) + 1. Therefore, if a tree crosses some min-cut only
once, the minimum of c(e) + 1 over all edges in the tree is exactly the edge connectivity of the
graph.

Another black box we rely on in the following description is the sparsification technique by
Eppstein et al [2]. Essentially, it allows a reduction of the problem to the case with m = O(n)
by using an hierarchy of sparse graphs preserving the properties of the given graph. Thus, we can
assume from now on that m = Õ(n) for our particular type of the problem with polylogarithmic
edge connectivity.

Given a top tree T we would like to support the following query:

Min-cut returns mine∈T (c̃(e) + 1) where c̃(e) = c(e) for c(e) ≤
√

m or c(e) ≥ c̃(e) ≥
√

m,
otherwise.
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This query returns the correct value of the cover if it does not exceed
√

m but may return smaller
value, otherwise. This is a reasonable assumption for our data structure since our minimal covering
is up to polylogarithmic size. Remark that it is easy to support the minimum covering and answer
the query once we know how to update every value c̃(e) for each graph update operation. Also, for
operations involving tree edges, we can use the above algorithm to produce a sequence of logarithmic
number of primitive operations. Therefore, it suffices to show how we can maintain all values c̃(e)
for each of Create, Destroy, Merge, and Split operations and non-tree edge updates in Õ(

√
m) time.

We introduce the following augmentation to the top trees:

• For each pair of clusters A and B we maintain the number of non-tree edges between A and B.
We use notation E(A,B) to denote the set of these edge such that every edge (v, w) ∈ E(A,B)
has v ∈ A and w ∈ B. For each pair of leaf clusters we maintain E(A,B) directly.

• For a cluster C, we maintain c̃(e) for edges e ∈ C not on the cluster path π(C). In addition,
for edges e on the cluster path we keep the covering of e up to c̃(e) by edges with both
end-points in C.

Notice that for any pair of clusters, not necessarily leaf clusters, we can obtain the set of edges
between them by following the counters of the clusters down the top tree to the leaves and output
them in O(log n) time per edge according to lemma 8. A reasoning behind distinction between leaf
and internal nodes is economy of space the sets E(A,B) occupy since we can afford additional log n
factor for edge enumeration. For each of the primitive operation we describe the necessary update
required to support the counters and sets E(A,B):

Create(L), Destroy(L) : Since leaf clusters have at most
√

m vertices and incident edges,
and each edge in it belongs to at most O(log n) clusters, we need to update O(

√
m log n)

counters and sets by adding or removing each of these edges.

Merge(A,B): For each cluster C among O(
√

m) clusters in the top tree, we simply set

#E(A ∪B,C) = #E(A,C) + #E(B,C)

Split(C): There is nothing to update in this case.

Thus, the first augmentation is supported in Õ(
√

m) time per update. The second augmentation
allows us to retrieve the values c̃(e) for each edge in the tree by looking at the root cluster since all
edges must connect nodes within it. Observe that all edges in any cluster outside the cluster path
can only be covered by edges incident to the cluster, but that is not true for edges in the cluster
path. This is the primary reason why we differentiate between these two types of edges. We make
the following changes to the primitive operations:

Create(L): This is straightforward from the above observation.

Destroy(L): No changes required.

Merge(A,B): To handle this operation, we need to consider various cases of two neighbors
forming a cluster as in Figure 2. If a cluster A does not have a cluster path π(A) then merging
it with any other cluster does not affect coverings within A. Therefore, we consider only the
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cases of A having a cluster path, i.e. the shaded clusters in the figure. Now the resulting
cluster C might also have a cluster path, so we consider these two cases separately:

C has a cluster path.
We need to increment covering of edges in π(A) by cross-cluster edges E(A,B). Since we
know the counter #E(A,B), we can compare #E(A,B) to

√
m.

Figure 3: The ordering of the leaves in a neighbor cluster across its marked cluster path. We are indifferent
between leaves with the same assigned number.

If #E(A,B) >
√

m, we want to pick only a subset of edges Ẽ(A,B) which maximizes the
number of covered edges in the path π(A). We can do that by traversing the leave clusters of
the top subtree rooted at A in the order shown in Figure 3. Notice that for any leaf cluster
L in A, each edge in E(L,B) covers same number of path edges in π(A). We visit the leaf
clusters in the decreasing order of these numbers, where we choose leaf clusters with the same
number arbitrarily. We construct the set Ẽ(A,B) by adding all edges E(L,B) every time we
visit a leaf, until the size Ẽ(A,B) exceeds

√
m. Therefore, since we can output any edge in

E(L,B) in O(log n) time, the selection procedure takes Õ(
√

m). Since each leaf has less than√
m incident non-tree edges, we end up with a set Ẽ(A,B) such that:

√
m ≤ #Ẽ(A,B) < 2

√
m

If #E(A,B) ≤
√

m then we can simply set Ẽ(A,B) = E(A,B). We can justify our reduction
of E(A,B) by the fact that each contribution of an edge in E(A,B) \ Ẽ(A,B) is made to
an edge of the path π(A) which is already covered by every edge in Ẽ(A,B). Therefore, for
#Ẽ(A,B) ≥

√
m, our value c̃(e) is allowed to be less than actual covering c(e) since it is at

least #Ẽ(A,B).

According to [4], using either link-cut trees by Sleator and Tarjan or extending our top tree
structure we can for any path in the tree add a value to all its edges in O(log n) time. For
every edge (v, w) in Ẽ(A,B) we need to increment the values of the cluster path edges:

π(A) ∩ (v → w)

where v → w denotes a path from v to w within the tree. If we denote the common boundary
node of A and B as c, this can be done by incrementing each edge in the path v → w by
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1/2 and decrementing edges in the path c → w. Repeating this procedure for every edge in
Ẽ(A,B), we complete Merge procedure in Õ(

√
m) time.

C does not have a cluster path.
In this case, we perform the above procedure to increment the covering of path edges in π(A)
by edges within the cluster C. After that, we repeat the same procedure but now with the
neighbor cluster being the complement V \C. There is no difficulty in doing that since the set
counters are #E(L, V \ C) can be calculated for any cluster in C by negating the #E(L,C)
from m, and all edges can be listed at the cost O(log n) per edge.

Split(C): This operation essentially reverses our procedure above. To do that efficiently, we
can story the set Ẽ(A,B) at every internal node A∪B after each Merge operation, and then
use it to undo all the updates to the edge values c̃(e).

Returning to the question of non-tree edge updates, we observe that each such edge affects the
values in O(log n) clusters to which its end-points belong, and for a single cluster we can perform
the update in O(

√
m) time. Thus, we are able to maintain c̃(e) for each edge under all graph

updates.

6 Randomized Sparsification

A general method that allows us to extend a global edge connectivity data structure from poly-
logarithmic λ to larger values is presented in paper [5]. The technique uses a sequence of random
subgraphs G(p) in which each edge of G appears independently with probability p. We maintain
of sequence of such sparse subgraphs for p = 1, 1

2 , 1
4 , . . .. For each of these subgraphs, we maintain

a data structure which supports edge connectivity up to log2 n. The edge updates are performed
on each of these subgraphs. A result by Karger then correlates the value of any cut in G(p) to its
expected value. Precisely, for pλ ≥ 6 ln n/ε2 the values differ by multiplicative factor (1 + ε) with
probability O(1/n). Therefore, with high probability the approximate edge probability of G is the
edge probability of G(pmax) divides by pmax, where pmax is the highest value for which the edge
connectivity query does not announce that it is too large.

Using this technique, both results can be extended to arbitrary values of λ. However, the
exact solution by Thorup can only output (1± ε)-approximate value of the edge connectivity due
to randomization we introduce. It is left as an open question in [4] whether there exists a data
structure that can give an exact value of λ in general case.
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