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1 Introduction

Euler-Maclaurin summation formula is an important tool of numerical analysis. Simply put, it gives
us an estimation of the sum

∑n
i=0 f(i) through the integral

∫ n
0 f(t)dt with an error term given by

an integral which involves Bernoulli numbers. In the most general form, it can be written as

b∑
n=a

f(n) =
∫ b

a
f(t)dt +

1
2
(f(b) + f(a)) + (1)

+
k∑

i=2

bi

i!
(f (i−1)(b)− f (i−1)(a))−

−
∫ b

a

Bk({1− t})
k!

f (k)(t)dt

where a and b are arbitrary real numbers with difference b − a being a positive integer number,
Bn and bn are Bernoulli polynomials and numbers, respectively, and k is any positive integer. The
condition we impose on the real function f is that it should have continuous k-th derivative. The
symbol {x} for a real number x denotes the fractional part of x. Proof of this theorem using
h−calculus is given in the book [Ka] by Victor Kač. In this paper we would like to discuss several
applications of this formula.

This formula was discovered independently and almost simultaneously by Euler and Maclaurin in
the first half of the XV III-th century. However, neither of them obtained the remainder term

Rk =
∫ b

a

Bk({1− t})
k!

f (k)(t)dt (2)

which is the most essential

Both used iterative method of obtaining Bernoulli’s numbers bi, but Maclaurin’s approach was
mainly based on geometric structure while Euler used purely analytic ideas. The remainder term
was introduced later by S.D. Poisson. Further historical notes about this formula can be found in
[Mi].

If f(x) and all its derivatives tend to 0 as x →∞, the formula (1) can be simplified:

∞∑
n=a

f(n) =
∫ ∞

a
f(t)dt +

1
2
f(a)−

k∑
i=2

bi

i!
f (i−1)(a)−

∫ ∞

a

Bk({1− t})
k!

f (k)(t)dt (3)

by letting b →∞ in the identity.
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2 Preliminaries

The Bernoulli numbers bn occur in a number of theorems of number theory and analysis. They can
be defined by the following power series:

x

ex − 1
=

∞∑
n=0

bnxn

n!

or bn = dn

dxn ( x
ex−1) |x=0. The first several Bernoulli numbers are the following (listed starting from

b0):

b0 = 1, b1 = −1
2
, b2 =

1
6
, b3 = 0, b4 = − 1

30
, b5 = 0, b6 =

1
42

, b7 = 0,

b8 = − 1
30

, b9 = 0, b10 =
5
66

, b11 = 0, b12 = − 691
2730

, b13 = 0, b14 =
7
6

The odd terms in the sequence are all 0 except the first one b1 = −1
2 and they are all rational. This

fact can be proved by considering the Taylor expansion of ex. This implies that we can drop the
odd terms in the summations in the formulas (1) and (3). As you see, there is no simple pattern
in the distribution of the first few of these numbers. However, we know an asymptotic expansion
of the Bernoulli numbers bn when n is very large

b2n ∼ (−1)n−14
√

πn(
n

πe
)2n (4)

Bernoulli polynomials Bn(x) are defined in a similar way for nonnegative integers n:

zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
(5)

Differentiating with respect to x, we get a relation:

B′
n(x) = nBn−1(x)

Putting x = 0 into (5), gives us Bn(0) = bn.

It is useful to define for a positive integer n, the periodic Bernoullian function B̄n(x) = Bn({x}),
where {x} denotes the fractional part of x. Clearly, B̄n is periodic with period 1 and continuous
on [0, 1). It is not hard to show that B̄n satisfies the two properties above, i.e.

(i) B̄n(0) = bn; in addition, B̄0(x) = 1 for any x;

(ii) B̄′
n(x) = nB̄n−1(x), or equivalently, B̄n(x) = n

∫ x
0 B̄n−1(t)dt + bn for a positive integer n and

x ∈ [0, 1).

These two properties actually uniquely determine the function B̄n(x) by inductive definition.

Remark that by substituting x = 1 into (5), one can obtain Bn(0) = Bn(1) for n > 1. Therefore,
the function B̄n(x) is continuous on the whole real line for n > 1.

Consider the polynomial Pk(x) = 1
k!B̄k(x). This polynomial appears in the error term Rk in the

formula (2), i.e. we can write it as

Rk =
∫ b

a
Pk(1− t)f (k)(t)dt (6)
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Lemma 1. For any nonnegative integer k and x ∈ [0, 1],

P2k(x) = (−1)k−1
∞∑

n=1

2 cos (2nπx)
(2nπ)2k

(7)

P2k+1(x) = (−1)k−1
∞∑

n=1

2 sin (2nπx)
(2nπ)2k+1

(8)

Since P0(x) may not converge by (7), we assume P0(x) = 1.

Proof. Recall that the series
∑∞

n=1
1

nm converges for any m > 1. Then the series on the right
hand sides of the equations above converge by the comparison test, since absolute values of sine
and cosine functions are bounded by 1. Consider the function P ∗

n(x) defined by these series. It is
periodic with period 1. Let us differentiate P ∗

n(x):

d

dx
P ∗

2k+1(x) = (−1)k−1
∞∑

n=1

4nπ cos (2nπx)
(2nπ)2k+1

= P ∗
2k(x)

d

dx
P ∗

2k(x) = (−1)k−2
∞∑

n=1

4nπ sin (2nπx)
(2nπ)2k

= P ∗
2k−1(x)

Thus, n!P ∗
n do satisfy the property (ii) of B̄n. Let us check the values of P ∗

n(x) at x = 0.

P ∗
2k(0) = (−1)k−1

∞∑
n=1

2
(2nπ)2k

P ∗
2k+1(0) = 0

Lemma 2 (Euler). For a positive integer k, the zeta function ζ(x) =
∑∞

n=1
1

nx satisfies

ζ(2k) =
(−1)k−1(2π)2kb2k

2(2k)!
(9)

Euler proved this identity by comparing two different power series expansions of x cot x. A more
elementary proof is given in Papadimitriou’s paper, and is described in a very accessible way in the
article by T. Apostol [Ap].

This lemma gives us that P ∗
2k(0) = 2(−1)k−1

(2π)2k ζ(2k) = b2k
(2k)! . Therefore, for a positive integer n, we

have
P ∗

n(0) =
bn

n!

Since P ∗
1 (x) = −

∑∞
n=1

sin(2nπx)
nπ = x− 1

2 , so P ∗
1 (x) = P1(x) for x ∈ [0, 1) by the Fourier expansion

of the polynomial.

Therefore, both defining properties (i) and (ii) of Pn(x) = 1
n!B̄n(x) are satisfied. Thus, P ∗

n(x) =
Pn(x).
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Corollary 1. For a nonnegative integer k,

P2k(1− x) = P2k(x)

P2k+1(1− x) = −P2k+1(x)

Proof. It follows right away from the series given in the lemma.

Finally, we can rewrite our original Euler-Maclaurin formula as follows:

b∑
n=a

f(n) =
∫ b

a
f(t)dt +

1
2
(f(b) + f(a)) +

k∑
i=1

b2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a)) + (10)

+
∫ b

a
P2k+1(t)f (2k+1)(t)dt

where k is a nonnegative integer.

The level of approximation in the Euler-Maclaurin formula largely depends on the asymptotic
behavior of the remainder term Rk. It may happen that Rk goes to zero while k goes to infinity.
In this case, we would get

b∑
n=a

f(n) =
∫ b

a
f(t)dt +

1
2
(f(b) + f(a)) +

∞∑
i=1

b2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a))

This formula gives a nice expression of the integral of the function of f in terms of a series of its
values. Unfortunately, this happens quite rarely. Indeed, by (4), Bernoulli numbers b2i increase
very rapidly, so rapidly that the sequence b2i

(2i)! still grows fast. But the sequence b2i
(2i)!(f

(2i−1)(b)−
f (2i−1)(a)) should converge to 0 as terms of a converging series. Therefore, (2i − 1)-th derivative
of f has to attain very small values to counterbalance growth of the Bernoulli numbers. In fact,
most functions occurring in practical applications do not have this property as justified in [Kn].
Consequently, valuable results of practical importance can be obtained by letting b go to infinity,
but keeping k in (10) fixed.

3 Euler Constant

One of the most interesting applications is obtained when we consider the summation formula for
the function f(x) = 1

x . For a positive integer n, set a = 1, b = n, and k = 1. Substituting these
values into our formula (10), we get

n∑
i=1

1
i

= log n +
1
2n

+
1
2

+
∫ n

1

P1(t)
t2

dt

Let us collect all error terms into R(n) to obtain the following formula:

n∑
i=1

1
i
− log n = R(n)
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R(n) =
1
2n

+
1
2

+
∫ n

1

P1(t)
t2

dt

Recall P1(x) = B̄1(x) = {x}− 1
2 , so its absolute value is bounded by 1

2 . Hence, the error term R(n)
converges when n →∞, because

∫∞
1

1
t2

= 1. Let us denote by γ the limit limn→∞R(n).

An alternative way of proving existence of this constant involves usage of the following theorem,
found in [Mw]:

Theorem 1 (Maclaurin-Cauchy). If f(x) is positive, continuous, and tends monotonically to 0,
then an Euler constant γf , which is defined below, exists

γf = lim
n→∞

(
n∑

i=1

f(i)−
∫ n

1
f(x)dx)

Proof. Continuity of f guarantees existence of the integral In =
∫ n
1 f(x)dx for any positive integer

n. Since f is decreasing, we know maximum and minimum values of f over any closed interval:

inf{f(x) | x ∈ [k, k + 1], k ∈ Z+} = f(k + 1) (11)
sup{f(x) | x ∈ [k, k + 1], k ∈ Z+} = f(k) (12)

Hence, we have the following inequalities:

f(k + 1) ≤
∫ k+1

k
f(x)dx ≤ f(k)

Summing these inequalities from k = 1 to k = n− 1, we get

n∑
i=2

f(i) ≤ In ≤
n−1∑
i=1

f(i)

Hence, the difference an =
∑n

i=1 f(i)− In satisfies 0 ≤ f(n) ≤ an ≤ f(1), and

an+1 − an = f(n + 1)−
∫ n+1

n
f(x)dx ≤ 0

So the sequence an is monotonically decreasing and is bounded below, so it converges to some
number γf .

Corollary 2. The constant γ, representing the limit of difference between partial harmonic series
sum and logarithm, is just γ 1

x
.

Due to its importance, this constant γ bears the name of Euler-Mascheroni. With high precision
it is equal to

γ = 0.5772156649015328606065120900 . . .

according to [Mw]. It was discovered by Euler, and it was computed by him up to its first 16
decimal digits. Later, Mascheroni improved his result by computing 32 decimal digits (although
only first 19 were correct.) Euler-Mascheroni constant occurs in variety of areas of number theory
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and analysis; for example, it is conjectured that the number of Mersenne primes Mp not greater
than x is about

eγ

log 2
log log x

However, the question whether γ is rational or not is still an open problem despite the centuries
passed! It is believed to be irrational and even transcendental by many mathematicians but there
is no proof known up to date.

Let consider a more general type of functions, and instead of f(x) = 1
x , we substitute f(x) = 1

xs

for s > 1 into (3) with odd k = 2m + 1. We can do that since all derivatives of f as well as f itself
tend to 0. We obtain:

∞∑
i=1

1
is

=
1

s− 1
+

1
2
−

m∑
i=1

b2i

(2i)!
f (2i−1)(1)−

∫ ∞

1
P2m+1(1− t)f (2m+1)(t)dt

Note that f (i)(x) = (−1)i s(s+1)...(s+i−1)
xs+i = (−1)ii!

(
s+i−1

i

)
1

xs+i . Therefore,

∞∑
i=1

1
is

=
1

s− 1
+

1
2

+
m∑

i=1

(
s + 2i− 2

2i− 1

)
b2i

2i
+ (2m + 1)!

(
s + 2m

2m + 1

) ∫ ∞

1

P2m+1(1− t)
ts+2m+1

dt

The expression on the left hand side is an important Riemann zeta function. Thus, we proved the
following remarkable formula:

Theorem 2. For any positive integer m and a real number s > 1,

ζ(s) =
1

s− 1
+

1
2

+
m∑

i=1

(
s + 2i− 2

2i− 1

)
b2i

2i
− (2m + 1)!

(
s + 2m

2m + 1

) ∫ ∞

1

P2m+1(t)
ts+2m+1

dt

4 Stirling’s formula

Another interesting application of the formula (10) is the Stirling’s approximation formula. Let us
take f(x) = log x, k = 0, a = 1, and b = n, where n is any positive integer:

n∑
i=1

log i = (n log n− n + 1) +
log n

2
+

∫ n

1

P1(t)
t

dt

Simplifying and extracting the error term R(n), we get

log n! = (n +
1
2
) log n− (n− 1) +

∫ n

1

P1(t)
t

dt (13)

R(n) = log n!− (n +
1
2
) log n + n =

∫ n

1

P1(t)
t

dt + 1 (14)

Integration by parts gives us ∫ n

1

P1(t)
t

dt =
P2(t)

t

∣∣∣n
1

+
∫ n

1

P2(t)
t2

dt
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But P2(x) =
∑∞

i=1
2 cos (2iπx)

(2iπ)2
, so using that the absolute value of cosine function is at most 1 and

the series
∑∞

i=1
1
i2

converges, we see that absolute value of P2(x) is bounded. Then the integral
above converges when n →∞:

C = lim
n→∞

R(n)

We can obtain the exact value of C in the following way. We have

2 log(2 · 4 · · · 2n) = 2n log 2 + 2 log n! (15)
= 2n log 2 + (2n + 1) log n− 2n + 2R(n)
= (2n + 1) log 2n− 2n− log 2 + 2R(n)

On the other hand,

log(2n + 1)! = (2n +
3
2
) log(2n + 1)− (2n + 1) + R(2n + 1) (16)

Subtracting the second expression from the first,

log
2 · 4 · · · 2n

1 · 3 · · · (2n + 1)
= (2n + 1) log

2n

2n + 1
− 1

2
log(2n + 1) + 1− log 2 + 2R(n)−R(2n + 1)

= − log(1 +
1
2n

)2n+1 − 1
2

log(2n + 1) + 1− log 2 + 2R(n)−R(2n + 1)

We are to use the Wallis’ product formula,

Lemma 3 (Wallis).

lim
n→∞

2 · 4 · · · 2n

1 · 3 · · · (2n + 1)
1√
n

=
√

π

One way to derive this identity is to use the following well-known infinite product expansion of
sinπx for x = 1

2 :

sinπx = πx
∞∏
i=1

(1− x2

i2
)

Detailed proof using this outline can be found in [Kn].

Letting n →∞ in the formula above and using continuity of logarithmic function, we obtain

lim
n→∞

log
2 · 4 · · · 2n

1 · 3 · · · (2n− 1)
1√

2n + 1
= − lim

n→∞
log(1 +

1
2n

)2n+1 + 1− log 2 + lim
n→∞

(2R(n)−R(2n + 1))

Rewrite this as follows:

log
1√
2

lim
n→∞

2 · 4 · · · 2n

1 · 3 · · · (2n + 1)
1√
n

= C − log 2

Thus, we have C = log
√

2π. Substituting back to formula (14), we conclude with the Stirling’s
approximation formula

Theorem 3 (Stirling).
n! = C(n)

√
n(

n

e
)n

where limn→∞C(n) =
√

2π.
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By the same approach as in the previous section, we would like to study a somewhat more general
function f(x) = log(x + y) for y > 0. Set a = 0, b = n, where n is a positive integer, in the
Euler-Maclaurin summation formula (10),

n∑
i=0

log(i + y) = ((n + y) log(n + y)− n− y log y) +
1
2
(log(n + y) + log y)) +

∫ n

0

P1(t)
t + y

dt

We showed earlier that

log n! + log ny = (n +
1
2
) log n− n + log ny + R(n)

(we simply added log ny to the both sides of the formula (14).) Taking the difference of these two
expressions, we obtain

log
n!ny

y(y + 1) · · · (y + n)
= (y − 1

2
) log y − (n + y +

1
2
) log

n + y

n
+ R(n)−

∫ n

0

P1(t)
t + y

dt

Note that the limit of the left hand side as n → ∞ is logarithm of the gamma function Γ(y).
Therefore, we discovered the following interesting relation:

Theorem 4.

log Γ(y) = (y − 1
2
) log y − y + log

√
2π −

∫ ∞

0

P1(t)
t + y

dt

Proof. This follows almost immediately. It suffices to say that the expression (n + y + 1
2) log n+y

n =
(y + 1

2) log n+y
n + y log(1 + y

n)
n
y tends to y whenever n →∞, and limn→∞R(n) = log

√
2π.

5 Generalizations of the Euler-Maclaurin Formula

We have two opposite ways to interpret the Euler-Maclaurin formula (10). In the way it is stated,
it gives an estimation of the sum of values of the function f in terms of its integral. On the other
hand, one can expresses the integral in terms of the sum as follows:∫ b

a
f(t)dt =

b∑
n=a

f(n)− 1
2
(f(b) + f(a))−

k∑
i=1

b2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a))− (17)

−
∫ b

a
P2k+1(t)f (2k+1)(t)dt

By the Mean value theorem,
∫ b
a P2k+1(t)f (2k+1)(t)dt = (b−a)P2k+1(α)f (2k+1)(α) for some α ∈ [a, b].

Hence, ∫ b

a
f(t)dt =

b−1∑
n=a

1
2
(f(n) + f(n + 1))−

k∑
i=1

b2i

(2i)!
(f (2i−1)(b)− f (2i−1)(a))− (18)

−(b− a)P2k+1(α)f (2k+1)(α)
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This formula formula exhibits the connection of the Euler-Maclaurin formula with the well-known
trapezoid rule, which states that∫ a+h

a
f(t)dt ≈ h

2
(f(a) + f(a + h))

From the geometric point of view, it shows that the area underneath the graph of a function on the
interval [a, a+h] is approximately the area of the trapezoid with sides (a, f(a)) and (a+h, f(a+h)).

In the article [Sa], several interesting generalized formulas extending the formula (18) are justified.
As an example, we state on these identities:

Theorem 5 (Sarafyan, Derr, Outlaw). Assume b−a
2 ∈ Z>0 and k ∈ Z>1, then there exists α ∈ (a, b)

such that∫ b

a
f(t)dt =

1
3
(f(a) + 4f(a + 1) + 2f(a + 2) + . . . + 2f(b− 2) + 4f(b− 1) + f(b)) +

+
k−1∑
i=1

(22i − 4)b2i

3(2i)!
(f (2i−1)(b)− f (2i−1)(a)) +

+
(b− a)(22k − 4)b2k

3(2k)!
f2k(α)

We shall not discuss the proof of this theorem in the paper. The basic idea is to use the Euler-
Maclaurin identity twice with different step size, and then estimate the new remainder term using
Mean value theorem. For details, we refer the reader to [Sa].

6 Conclusion

Euler-Maclaurin provides an important tool in estimating sums or integrals of functions. By means
of it, one can derive many important identities in analysis relating important functions such as
Riemann zeta function, gamma function, or Euler constant.
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