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Abstract

Let Dk be the set of permutations in Sn with k descents and Ak be
the set of permutations with k ascents. For permutations of type A,
which are the usual symmetric group elements, bijections σ : Dk → Ak

satisfying σ(w) ≥ w in the weak Bruhat ordering are constructed for
k = 1 and k = 2. Such a bijection is also described explicitly for
k = 1 for permutations of type B. We discuss how this bijection can
be applied to solve a conjecture concerning linear extensions of a poset.

1 Introduction

A linear extension of a partially ordered set P is a permutation of the
elements of P such that whenever ρ <P ρ′, the numerical label of ρ appears
to the left of the label of ρ′. The set of all linear extensions of a poset P is
denoted by L(P ). A poset is called naturally labeled if 123 . . . n is a linear
extension. For every linear extension π ∈ L(P ) let d(π) be the number of
descents of π. Let Hk be the set of linear extensions with k descents, and
hk = #Hk.

The weak Bruhat ordering on the symmetric group is defined as follows:
Given w = w1w2 . . . wn and v = v1v2 . . . vn, we say that w ≤ v if and only if
v can be successively obtained from w by transposing adjacent elements wi
and wi+1 such that wi < wi+1.

Theorem 1.1 (Stanley, 1981). Let P be a finite naturally labeled poset. Let
M = max{d(π) | π ∈ L(P )}. Then the following are equivalent:

• hk = hM−k for 0 ≤ k ≤M .

• P is ranked.

A combinatorial proof of this problem was given in the paper by Farley
[Fa1]. However, it is not clear what happens if the poset is not ranked.
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Conjecture 1.2 (Hibi, 1991). For a finite naturally labeled poset P , hk ≤
hM−k and h0 ≤ h1 ≤ . . . ≤ h[M

2 ] (0 ≤ k ≤M).

Conjecture 1.3. Let P a naturally labeled poset P on n elements. Then

hk ≥ hn−1−k (0 ≤ k ≤ n− 1
2

)

An ideal of a partial order P on the set S is a subset of S such that if
a ∈ S and b <P a, then b ∈ S. For a naturally labeled poset, L(P ) forms an
ideal in weak Bruhat ordering. Indeed, assume we have a permutation w ∈
L(P ), and let vlw in the weak Bruhat order, i.e. v = ws for a transposition
s = (i i + 1) and `(w) > `(v). We need to show that v ∈ L(P ). Indeed, s
permutes two consecutive elements wi and wi+1 in one line presentation of
w and wi > wi+1. Hence, wi 6≥P wi+1, since the greater one appears to the
left than the smaller one. Thus, v is a linear extension.

Conjecture 1.3 would be implied by the following conjecture, which was
communicated by Farley [Fa2]:

Conjecture 1.4. Let n ≥ 2k+ 1, k ≥ 1. Let Dk be the set of permutations
of Sn with k descents. Let Ak be the set of permutations with k ascents.
There is a bijection σ : Dk → Ak which satisfies σ(x) ≥ x in weak Bruhat
ordering.

σ−1 maps every element of Hn−1−k to Dk. Since σ−1(w) ≤ w in weak
order for any w and L(P ) is an ideal, σ−1(w) ∈ Hk. Thus, σ−1 is an injection
from Hn−1−k to Hk, hn−1−k ≤ hk

As far as we know, there is no known combinatorial proof of Conjec-
ture 1.4. In Section 2, we introduce basic definitions and theorems. In
Section 3 we prove Conjecture 1.4 for case k = 1. In Section 4 we prove
it for the case k = 2. In Section 5 we prove generalized Conjecture 1.4 for
k = 1 and permutations of type Bn.

2 Preliminaries

Let W be a finite reflection group acting on the euclidean space V with
associated root system Φ. For every root we consider the reflection across
the hyperplane orthogonal to the root. These reflections generate the group
W. It is well-known that a root system has a base or a simple system ∆
such that ∆ ⊆ Φ is a vector space basis for the R-span of Φ and every root is
linear combination of simple roots with all coefficients of the same sign (all
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non-negative or all non-positive.) According to the sign of coefficients we
call root w positive or negative and write w � 0 or w ≺ 0, respectively. Let
Φ+ be the set of all positive roots and Φ− be the set of all negative roots.
Let S be the set of simple generators {sα | α ∈ ∆}. Let T be the set of all
reflections T = {tα | α ∈ Φ}.

The length `(w) of w is the smallest k for which w can be written as a
product of k simple reflections. This expression is called reduced. A descent
of w is a simple generator s such that `(ws) < `(w). An ascent of w is a
simple generator s such that `(ws) > `(w). The longest element of W is
denoted by w0.

For the group W, define Ak to be the set of all elements with k ascents.
Similarly, we define Dk to be the set of elements with k descents.

The weak Bruhat order onW is defined as follows. The covering relation
v m w holds iff `(v) = `(w) + 1 and v = ws for a simple reflection. Equiva-
lently, wsm w if a simple generator s is an ascent of w; and w m ws, if s is
a descent of w. Throughout the paper, we mean the weak Bruhat order for
inequality signs with elements of the Weyl group.

An inversion of w is a positive root α which is sent to a negative one by
w. The set of all inversions is denoted by I(w). Define the set Inv(w) =
{β = wα | α ∈ I(w)} to be the set of images of inversions. As a fact,
`(w) = #Inv(w) = #I(w).

Lemma 2.1. If α ∈ ∆, then sα permutes Φ+ \ {α}.

Proof. Let β ∈ Φ+, β 6= α. Write β =
∑

γ∈∆ kγγ, with nonnegative integer
coefficients kγ . Then by definition, sαβ = β − 〈β, α〉α. Since β is not equal
to α, at least one of the coefficients kγ is positive for some γ 6= α. Hence,
sαβ has a positive coefficient kγ , which means it is a positive root, not equal
to α. Since sα permutes all the roots, we are done.

One of the conclusions of this lemma is that sα is a descent of w iff wα ≺ 0
for α ∈ ∆. Since every simple generator is a descent of w0, w0∆ ⊆ Φ−.
Hence, I(w0) = Φ+.

Proposition 2.2. v ≤ w is equivalent to Inv(v) ⊆ Inv(w).

Proof. Consider the case when v = wsα for a descent sα of w. Then wα ≺ 0.
By the above lemma, Inv(w) = Inv(wsα)∪{wα}. In general, v ≤ w if there
is an ascending chain of elements

v l v1 l . . .l vk = w

and the claim holds.
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On the other hand, assume Inv(v) ⊆ Inv(w). We proceed by induction
on the difference of lengths. Assume v 6= w. If for some ascent sα of
v Inv(vsα) = Inv(v) ∪ {−vα} ⊆ Inv(w) then the induction step holds.
Otherwise, for any ascent sα of v, −vα = wβ for some negative root β ∈ Φ−.
If u = w−1v, then uα ∈ Φ+. For a descent sα of v, vα ∈ Inv(v), hence,
vα ∈ Inv(w), uα ∈ Φ+.

Thus, we have u∆ ⊆ Φ+. This means that u has no descents, which is
only possible if the reduced word of u is 1W , and v = w, which leads to a
contradiction, as desired.

Corollary 2.3. v ≤ w iff I(v−1) ⊆ I(w−1).

Proof. Note that β ∈ Inv(v) iff β = wα ≺ 0 for some α � 0, or w−1(−β) =
−α ≺ 0, i.e. −β ∈ I(w−1).

We will consider in detail two types of root systems.
Type An. Define Φ to be the set of vectors ei − ej (1 ≤ i 6= j ≤ n+ 1),

where vectors ei are the standard basis of Rn+1. For the base ∆ take α1 =
e1− e2, . . . , αn = en− en+1. W is the symmetric group Sn+1 which acts by
permuting the basis vectors.

Type Bn. Let V = Rn. Φ consists of 2n vectors ±ei and roots ±ei ± ej
(i < j). For ∆ take α1 = e1 − e2, . . . , αn−1 = en−1 − en, and αn = en. The
group W is a semidirect product of Sn (permuting ei) and (Z/2Z)n (acting
by sign changes of ei.)

Let A be an alphabet. If w = σ1σ2 . . . σk is a word (k ≥ 0, σ1, . . . , σk ∈
A), then its length is k. A subword of w is a word σi1σi2 . . . σil (l ≤ k,
1 ≤ i1 < . . . < il ≤ n.) We call w a shuffle of words w1, w2, . . .wk if
there is some partition of [n] =

⋃k
i=1Ai into disjoint sets such that for each

1 ≤ i ≤ k, Ai = {i1, i2, . . . , ij}, i1 < i2 < . . . < ij and wi = σi1 . . . σij (by [n]
we mean the set {1, 2, . . . , n}.)

3 Case k = 1 for type An−1

In this section, we focus on the root systems of type An−1, i.e. on permu-
tations of Sn. We prove the conjecture 1.4 for the case k = 1.

By definition, for w = w1 . . . wn ∈ Sn, I(w) = {ei − ej | 1 ≤ i < j ≤
n,wi > wj}.

Consider the set of words in alphabet {a1, . . . , ak} of length n with the
following property — for each i in [k−1] it has a subword ai+1ai. Call the set
of such words Tk. Define the inversion set for a word v = v1v2 . . . vm ∈ Tk to
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be the set I(v) = {ei− ej | 1 ≤ i < j ≤ m, vi > vj assuming a1 < a2 < . . . <
am}. This definition is similar to the definition of inversions given before
for reflection groups. We may say that a pair (i, j), i < j is an inversion of
a word an element or a permutation, which is synonymous to saying that
ei − ej is in the inversion set.

Assume we have a permutation w = w1w2 . . . wn in Sn with k descents
(wi = w[i]):

w1 < w2 < . . . < wt1 > wt1+1 < wt1+2 < . . . < wtk > wtk+1 < . . . < wn

The inverse permutation w−1 written in one line presentation is a shuffle of
words σi = (ti−1+1)(ti−1+2) . . . ti of alphabet [n], where i ∈ {1, 2, . . . , k+1},
and t0 = 0, tk+1 = n. Consider a word v in alphabet {a1, . . . , ak+1} obtained
from w−1 by substituting all letters of σi in w by letter ai. Since wti+1 <
wti , the letter ai+1 corresponding to wti+1 appears to the left of letter ai
corresponding to wti in v for all i in [k]. Therefore, every such word is in
Tk+1.

Proposition 3.1. Let 1 ≤ k ≤ n − 1. This map Φk : Dk → Tk+1 is a
bijection with the property

I(Φk(w)) = I(w−1)

There exists a bijection Ψk : Ak → Tk+1 such that

I(Ψk(w)) = Φ+ \ I(w−1)

Proof. The letters in every σi are sorted in increasing order. If 1 ≤ i <
j ≤ k + 1 all letters of σi are less than any letter of σj . Hence, for every
inversion pair (i, j) of w−1, i belongs to some permutation σk with higher
index than that of j, i.e. it is substituted by the letter ak with higher index.
This agrees with the definition of inversion set for Tk+1.

It is clear how to reconstruct w ∈ Dk from a word in Tk+1. The condition
imposed on Tk+1 ensures that there are exactly k descents.

Consider the following bijection f : w 7→ v, v[i] = w[n+ 1− i], v = ww0

(w0 = n . . . 1 is the longest element) from Ak to Dk. Since w0 is an involution
and w0 sends every positive root a negative one and vice versa,

I(f(w)−1) = I(w0w
−1) = Φ+ \ I(w−1)

Define Ψk = Φkf . Then

I(Ψk(w)) = I(Φkf(w)) = I(f(w)−1) = Φ+ \ I(w−1)

and we are done.
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According to the criterion, v ≤ w if and only if I(v−1) ⊆ I(w−1). Hence,
for v ∈ Dk and w ∈ Ak, v ≤ w if and only if I(Φk(v)) ∩ I(Ψk(w)) = ∅.

Proposition 3.2. Let n ≥ 2k + 1 and k ≥ 1. If there exists a bijection
τ : Tk+1 → Tk+1 such that I(x) and I(τ(x)) are disjoint for any x ∈ Tk+1,
then there is a bijection σ : Dk → Ak such that σ(w) ≥ w.

Proof. The combined bijection σ = Ψ−1
k τΦk, Dk

Φk→ Tk+1
τ→ Tk+1

Ψ−1
k→ Ak,

works.

Consider the case of permutations with one descent. The set T2 is a
set of words in alphabet {a, b} with a < b containing subword ba. Pick the
following subset T ∗ in T2:

{bab . . . b, bbab . . . b, · · · , b . . . bab, b . . . ba}

These words have pairwise disjoint inversion sets.
Let us group words in T2 \ T ∗ into pairs in the following way. Pick any

word u in T2 \T ∗ and find the last occurrence of a starting from the left end
of the word:

u = . . . abb . . . b = vabb . . . b where v is some word.

Construct a word u∗ by reverting all b’s to a’s and all a’s to b’s in v. We
obtain a word which belongs to T2 \ T ∗ as well (since v must contain at
least one a and at least one b by construction.) Notice that if we apply the
same operation to u∗ we will get the initial word u, so this operation is an
involution on T2 \ T ∗. A pair (i, j) is an inversion iff ith letter is b and jth
letter is a. Hence, u and u∗ have no common inversions.

Thus, we can define a bijection τ2 : T2 → T2 satisfying I(v)∩ I(τ2(v)) = ∅
for any v ∈ T2:

• enumerate elements of T ∗ and set τ2 sending kth element to the (k +
1)th and the last to the first (we can do this for n ≥ 3 since #T ∗ =
n− 1 ≥ 2);

• put τ2(u) = u∗, τ2(u∗) = u for every pair as above.

For example, when n = 3, we have:

baa 7→ aba, bba 7→ bab, bab 7→ bba, aba 7→ baa.

Proposition 3.3. For n ≥ 3 there is a bijection σ : D1 → A1 with the
property σ(w) ≥ w.

Proof. Follows from Proposition 3.2.
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4 Case k = 2 for type An−1

The method we used above can be successfully applied to the case k = 2.
It turns out that we can describe the bijection on T3 for most of its words
using the bijection τ2 above.

Proposition 4.1. Let n ≥ 5. Then there is a bijection σ : D2 → A2

satisfying the property σ(w) ≥ w.

Proof. When n = 5 then D2 = A2 and σ = id works. Assume from now on
that n ≥ 6.

It suffices to find a bijection τ3 : T3 → T3 such that I(x) and I(τ3(x))
are disjoint. The rest will follow from Proposition 3.2. Assume the letters
of the alphabet of T3 are a, b,c, and they are ordered as a < b < c.

We introduce the notation T (k, L,W ) to be the set of words in alphabet
L of length k containing every word from W as a subword. We denote by
TR(k, L,W ) all such words which contain every letter of the alphabet L.
For example, T3 = T (n, {a, b, c}, {ba, cb}). For clarity, we sometimes leave
out braces and commas when listing sets.

Let the sum of two sets of words X + Y be the set of words obtained
by concatenation of words x ∈ X and y ∈ Y in this order (we may take a
single word as X or Y .)

The words of T3 fall into the following classes according to the last letter:

• TR(n− 1; a, b, c; ba) + b;

• T (n−1; a, b, c; cb)+a = (TR(n−1; a, b, c; cb)+a)∪(T (n−1; b, c; cb)+a);

• T (n− 1; a, b, c; ba, cb) + c.

Our strategy is to subdivide words into sets (Ci for i = 1, 2, . . . , 7) and
establish bijections within them.

Bijection on the set C1

Let Lk, k ≥ 4 be the set of words in TR(k; a, b, c; ba) containing at
least three letters different from c. Similarly, let Mk be the set of words
TR(n−1; a, b, c; cb) which contain at least three letters different from a. Let

C1 =
n−1⋃
k=4

(Lk + b c . . . c︸ ︷︷ ︸
n−1−k

) ∪ (Mk + a c . . . c︸ ︷︷ ︸
n−1−k

)

We define bijections ρk : Lk + b c . . . c︸ ︷︷ ︸
n−1−k

→Mk + a c . . . c︸ ︷︷ ︸
n−1−k

for 4 ≤ k ≤ n− 1

as follows. Fix k and consider a word w in the first set. The subword w′ of
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w consisting of all letters a and b except the last b has length at least three.
Apply bijection τ2 used in the proof of Proposition 3.3 to w′. Substitute all
letters of w′ in w with τ2(w′) to obtain v. Finally change the first k letters
in v as b→ c, a→ b, and c→ a and k + 1th letter to a. For example,

cbccaaccc bcc 7→ caccbaccc bcc 7→ abaacbaaa acc

By construction, the resulting word is in the second set. Since all steps
in construction can be reversed, this map is a bijection. One can check that
I(x) ∩ I(ρk(x)) = ∅. Hence, ρk gives a bijection on the set (Lk + b c . . . c︸ ︷︷ ︸

n−1−k

) ∪

(Mk + a c . . . c︸ ︷︷ ︸
n−1−k

) such that every word has no common inversions with its

image (define it on the second set by sending x to ρ−1
k (x).) The set of these

bijections gives the required bijection on C1.
Denote (x) = x . . . x, where the number of letters x can attain any

nonnegative value. From now on we use notation like {(b)c(c)b(b)a} to
denote the set of words of length n of the form inside the braces, which is
(b)c(c)b(b)a.

The words of T3 \ C1 are the following:

1. T (k; b, c; cb) + a c . . . c︸ ︷︷ ︸
n−1−k

(3 ≤ k ≤ n− 1);

2. {(c)b(c)a(c)b(c)} (except babc . . . since it is not in T3);

3. {(a)c(a)ba(a)(c)}.

Bijection on the set C2

C2 =
n−2⋃
k=3

(T (k; b, c; cb) + c b . . . b︸ ︷︷ ︸
n−2−k

a) ∪ (T (k; b, c; cb) + a c . . . c︸ ︷︷ ︸
n−1−k

)

C2 is from the first group of words above.
Define bijection π1 on this set by sending a word w + c(b)a where w ∈

T (k; b, c; bc) to the word τ2(w)+a(c) and vice versa. Then π1 is well-defined
since τ2 is a bijection on T (k; b, c; bc). Notice that for any x ∈ C2, I(π1(x))∩
I(x) = ∅.

The rest of words of the first set are cbac(c), cbc(b)a, and words of
the form (b)c(c)b(b)a. Assume now that n ≥ 7. The case n = 6 will be
considered separately.
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Bijection on the set C3

C3 = {(c)b(c)a(c)b(c)} ∪
⋃

k=0,3,...,n−5

{(a)c(a)ba(a) c . . . c︸ ︷︷ ︸
k

}

Every word in the second set has exactly three letters different from c.
So two words have no common inversions as long as they do not have any
of these letters in the same position. Similarly, two words from the third set
do not have common inversions if they have different positions of the first
two letters different from a.

The following lemma will give bijections on the set {(c)b(c)a(c)b(c)} and
each of the sets {(a)c(a)ba(a)(c)} with the same number of c’s at the end
(which is not equal to 1 or 2 and less than n− 4.) Thus, we define bijection
π2 on C3 by combining all these bijections.

Lemma 4.2. For n ≥ 4 there is a bijection ψ on {{i, j} | 1 ≤ i < j ≤ n}
such that ψ(S) ∩ S = ∅. For n ≥ 7 there is a bijection φ on {{i, j, k} | 1 ≤
i < j < k ≤ n} \ {1, 2, 3} with the property that φ(S) ∩ S = ∅.

Proof. Place numbers [n] on a circle in the clockwise order. We represent
subsets of [n] by marking the respective numbers on the circle. Two sets are
disjoint, if no number is marked for both of them.

To describe bijection ψ we consider two cases:

• Marked numbers are not neighbors on the circle. Define the bijec-
tion on the corresponding set by shifting both marked numbers by one
position clockwise. The inverse map is shifting one position counter-
clockwise, so this is a bijection.

• Marked numbers are consecutive. Shift marked numbers by two posi-
tions clockwise. For n ≥ 4, the sets corresponding to these markings
of the numbers in the circle are disjoint, and we define ψ by analogy.

To describe bijection φ we consider four cases:

• There is at least one unmarked number between any two marked num-
bers (from both sides). Then φ acts on these sets by shifting one
position clockwise. The inverse map is obvious.

• Two marked numbers are consecutive while there are at least two
unmarked numbers between any of them and the third one. φ shifts
it by two position clockwise.
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• Two marked numbers are consecutive while the third number is one
unmarked number apart. For example, 124. φ sends {x, x+ 1, x+ 3}
to {x+ 2, x+ 4, x+ 5} and vice versa (numbers are modulo n). Then
φ(124) = 356.

• All three numbers are consecutive. For example, 123 and n12. We
start shifting numbers by three positions clockwise beginning from
123. When n is divisible by 3 then by shifting we will get three groups
of sets, in which any two are non-intersecting. Define the bijection
on each group in any way, sending cyclically, for instance. If n is not
divisible by three, then we will go through every such set by repeated
shifting. If n > 9, we have

. . . 7→ (n− 2)(n− 1)n 7→ 123 7→ 456 7→ . . .

We define φ by sending sets cyclically as above except (n− 2)(n− 1)n
goes to 456. The cases n = 7 and n = 8 can be described explicitly:
n = 7 : 234↔ 567, 345↔ 671, 456↔ 712
n = 8 : 456 7→ 781 7→ 234 7→ 567 7→ 812 7→ 456, 345↔ 678.

Bijection on the set C4

C4 = {(b)bc(c)bb(b)a} ∪ {(a)ca(a)ba(a)c}

The two forms inside the braces describe the ’pattern’ of the words. Define
bijection π3 on the set C4 by substituting letters according to this ’pattern’
— A word belonging to one of the subset of C4 is sent to the word in which
each letter is substituted by the respective letter of the form of the other
subset. One can check that there are no common inversions between a word
and its image. For example, π3 sends bbccccbba to acaaaabac and vice
versa.

Finally, we list the words, which do not fall into any of the described
bijections:

1. cbc(b)a, {c(c)(b)ba}, {b(b)(c)cba} which are left from the first set above;

2. {(a)cb(a)ac}, {(a)cb(a)acc}, cba(c), cbaa(c), caba(c), acba(c);

3. {(a)ca(a)b(a)acc}.
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Bijection on the set C5

C5 = {(a)ca(a)b(a)acc} \ c(a)bacc

The bijection π4 on this set was already described as one of the cases in
the proof of the Lemma 4.2.

Bijection on the set C6

C6 = ({c(c)bb(b)bba} ∪ {a(a)cb(a)aac}) ∪ ({(b)bc(c)cba} ∪ {(a)cb(a)acc})

We define the bijection π5 on C6 in the same say as we did with π3 — For
each word we identify its pattern and then substitute the letters according
to the pattern. We grouped two pairs of sets above so that in each group
any element has no common inversions with its corresponding one in the
other set.

Bijection on the set C7 We define the bijection π6 on the remaining
words C7 of T3 explicitly:

cbc(b)a↔ (a)cbac, (c)bbba↔ cba(c), (c)bba↔ caba(c)

(c)ba↔ cbaa(c), acba(c)↔ c(a)bacc, (b)cba↔ cba(a)c

To sum up, we define the required bijection τ3 on the union of all sets
Ci by acting as one of the respective πi−1 or ρj :

1. C1 =
⋃n−1
k=4(Lk + b c . . . c︸ ︷︷ ︸

n−1−k

) ∪ (Mk + a c . . . c︸ ︷︷ ︸
n−1−k

) with bijections ρk;

2. C2 =
⋃n−2
k=3(T (k; b, c; cb) + c b . . . b︸ ︷︷ ︸

n−2−k

a) ∪ (T (k; b, c; cb) + a c . . . c︸ ︷︷ ︸
n−1−k

) with

bijection π1;

3. C3 = {(c)b(c)a(c)b(c)} ∪
⋃
k=0,3,...,n−5{(a)c(a)ba(a) c . . . c︸ ︷︷ ︸

k

} with bijec-

tion π2;

4. C4 = {(b)bc(c)bb(b)a} ∪ {(a)ca(a)ba(a)c} with bijection π3;

5. C5 = {(a)ca(a)b(a)acc} \ c(a)bacc with bijection π4;

6. C6 = ({c(c)bb(b)bba}∪{a(a)cb(a)aac})∪({(b)bc(c)cba}∪{(a)cb(a)acc})
with bijection π5;

7. C7 = {cbc(b)a, (a)cbac, (c)bbba, cba(c), (c)bba, caba(c), (c)ba, cbaa(c),
acba(c), c(a)bacc, (b)cba, cba(a)c} with bijection π6.
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We go back to the case n = 6. Among the bijections above, set of
bijections ρk, π1, π3, and π5 remain valid. We are left with elements of
C3 and C7 (C5 is empty.) If we group elements of {(c)b(c)a(c)b(c)} into
pairs such that the sets of indexes of b’s and a of a pair complement each
other, we obtain a simple bijection which satisfies our requirement. Applying
Lemma 4.2 to the rest of C3 we are left with cccbab and the following elements
of C7:

{cbcbba, aacbac, cbaaac, bbbcba, ccbbba, cccbba, ccccba, cbaccc, cabacc}

The following list of pairs describes the bijection explicitly:
aacbac ↔ ccbbba, cbaccc ↔ cccbab, cabacc ↔ ccccba, cbcbba ↔ cccbab,
bbbcba↔ cbaaac.

5 Case k = 1 for type Bn
From now on we are working with the reflection groupW of type Bn. When
we deal with signed permutations, it is important to choose the one line
presentation. We use barring of letters of a permutation in Sn. We write w =
w1w2 . . . wn (w1 . . . wn is a permutation in Sn with some elements barred,
for instance 1432) for w ∈W which sends ei to ewi if wi is not barred, or to
−ewi if wi is barred (1 ≤ i ≤ n.) If we drop bars from presentation of w we
obtain a permutation in Sn, and we call this underlying permutation.

Proposition 5.1. For permutations of type Bn, n ≥ 3, there exists a bijec-
tion ρ : D1 → A1 such that w ≤ ρ(w) in weak Bruhat ordering.

For α = ei − ei+1 sα is a descent of w in the following cases:

• wi = x,wi+1 = y for some x < y in [n];

• wi = x > y = wi+1 for some x, y ∈ [n];

• wi is barred and wi+1 is not.

sen is a descent iff wn is barred.
The set of permutations of type Bn having one descent consists of the

following permutations:

1. B1 : permutations with no bars: wi > 0 (1 ≤ i ≤ n) and for some k

w1 < w2 < . . . < wk > wk+1 < wk+2 < . . . < wn
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2. B2 : permutations with some barred elements. Then the descent is at
the rightmost barred element (0 ≤ k < l ≤ n):

w1 < w2 < . . . < wk

wk+1 > . . . > wl and they are barred

wl+1 < . . . wn

Note that the longest element w0 = 12 . . . n is an involution which sends
every positive root to a negative one, and turns every descent into an ascent
and vice versa. It commutes with every element w ∈ W w0w = ww0. This
means I(w−1) and I((w0w)−1) are disjoint and complement each other to
Φ+.

Hence, in order to find a bijection ρ : D1 → A1 such that w ≤ ρ(w), it
suffices to find a bijection τ : D1 → D1 such that I(w−1)∩ I((ρ(w))−1) = ∅.

For any permutation w from the group B1 above I(w−1) ⊆ {ei−ej | 1 ≤
i < j ≤ n}. Hence, we can set τ to act as the bijection we already have for
the permutations of type An−1 (see Proposition 3.3.)

For any permutation w from the group B2 above, presentation of w−1 is
a shuffle of x = 12 . . . k, y = l(l − 1) . . . k + 1, and z = (l+1) . . . n. Construct
a word of the alphabet {a, b, c} from w−1 by substituting every letter of x
by a, of y by b, and of z by c.

Lemma 5.2. This gives a bijection π : B2 → T (n; a, b, c; b).

Proof. It is clear how to reconstruct a permutation from such a word (sub-
words corresponding to the same letter are ordered.) We require that there
should be at least one letter b in the image word as in the definition of
B2.

In terms of the word v = π(w), I(w−1) is a set consisting of:

• ei if ith letter of v is b;

• ei + ej if ith and jth letter of v are both b or one of them is b and
another one is c;

• ei − ej (i < j) if ith letter is b and jth letter is not b, or if ith letter is
c and jth letter is a.

T (n; a, b, c; b) = T1∪T2∪T3∪T4 for T1 = TR(n; a, b, c), T2 = TR(n; a, b),
T3 = TR(n; b, c), and T4 = {b . . . b}.

We construct bijection τ on the permutations corresponding to T1∪T2∪
T3 using π as follows:
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• define a bijection on T1 which changes letters as b→ a, a→ b, c toc;

• define a bijection T2 → T3 which changes letters as a→ b, b→ c;

• define a bijection T3 → T2 which changes letters as b→ a, c→ b.

Check that τ satisfies the property that I(τ(x)) and I(x) are disjoint.
The word w of T4 is nn− 1 . . . 1 For any v ∈ B1, w ≤ w0v, since

I(w−1) = {ei | 1 ≤ i ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}

and I((w0v)−1) contains all these roots. Similarly, w0w ≥ v for any v ∈ B1.
Since we already have a bijection ρ defined on B1, pick any x ∈ B1 which is
sent to y ∈ w0B1 and set ρ to send the word x to w0w and w → y. Summing
up, we proved Proposition 5.1.
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