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Abstract. Stepwise refinement is a well-studied technique for developing a pro-
gram from an abstract description to a concrete implementation. This paper de-
scribes a system with automated tool support for refinement, powered by a state-
of-the-art verification engine that uses an SMT solver. Unlike previous refinement
systems, users of the presented system interact only via declarations in the pro-
gramming language. Another novel aspect of the system is that it accounts for
dynamically allocated objects in the heap, so that data representations in an ab-
stract program can be refined into ones that use more objects. Finally, the system
uses a language with familiar object-oriented features, including sequential com-
position, loops, and recursive calls, offers a syntax with skeletons for describing
program changes between refinements, and provides a mechanism for providing
witnesses when using angelic non-determinism.

0 Introduction

The prevalent style of programming today uses low-level programming languages (like
C or Java) into which programmers encode the high-level design or informal specifi-
cations they have in mind. From a historical perspective, it makes sense that this style
would have come from the view that what the programming language provides is a de-
scription of the data structures and code that the executing program will use. However,
upon reflection, the style seems far from ideal, for several reasons. First, the gap be-
tween informal specifications to executable code is unnecessarily large, leaving much
room for errors. Second, errors in the informal specifications may best be discovered
by execution, simulation, or property discovery, but such processes cannot be applied
until a machine readable description—here, the low-level code—is in place. Third, pro-
grammers often understand algorithms in terms of pseudo-code, which abstracts over
many nitty-gritty details, but such pseudo-code is confined to whiteboards or the heads
of programmers, rather than being recorded as part of the program text. Fourth, inter-
esting software goes through considerable evolution, which includes the introduction of
various optimizations; these usually take the place of the old code, making them harder
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to understand both when they are being developed (“is this really doing what the un-
optimized code did?”) and when the code is later examined for human understanding.
Fifth, another important fact of program evolution is that it involves multiple develop-
ers, whose introduction to the code immediately takes them into the gory depths of all
the low-level decisions that have been made.

An alternative style of programming uses stepwise refinement, starting from a higher-
level description of what the program is intended to do and then gives various levels of
pseudo-code until the low-level code is in place. This is an old idea due to Dijkstra [20]
and Wirth [44] and given mathematical rigor by Back [5]. It underwent much theoreti-
cal development during the 1980’s and 1990’s (e.g., [8, 39, 40, 24, 27, 0]). The technique
has been successfully applied in practice where program correctness has been critical
(e.g., [2, 16, 36]). Some tool sets, like Rodin [4] and Atelier B [16], support the refine-
ment process.

To reap the benefits of the refinement process, the intermediate stages of program
development (that is, the various levels of pseudo-code) must be recorded and preserved
in a format that is appropriate for consumption by human engineers as well as analysis
tools. In computer science, we usually refer to such a format as a programming language
(or modeling language, or specification language). As they work with it, the language
and its associated tool set become the engineers’ primary thinking aid.

In this paper, we take refinement closer to important facilities of present-day pro-
gramming and verification.

On the programming side, we use an object-oriented language, which means that the
various stages of refinement look more like the code programmers are used to writing.
The implementation of a class is often built on other (tailor-made or library-provided)
classes. More precisely, the data of an object is represented by the object’s fields and by
other dynamically created objects accessible from those fields. While this is taken for
granted by programmers, we are not aware of any previous treatment of refinement that
allows abstract fields to be refined into new objects of instantiable classes.

On the verification side, we integrate automatic verification support, like that found
in leading-edge program verifiers (e.g., [17, 12, 9, 10, 29]), based on a satisfiability-
modulo-theories (SMT)-solver foundation. This means that programmers can focus
more on the program under development with fewer distractions of having to manu-
ally guide a separate proof assistant.

More specifically, our contributions in this paper are:

0. a foundation, based on a model of memory permissions, that works for heap-
manipulating code and allows refinement steps to introduce new object instances in
data representations

1. a checking algorithm that encodes refinement proof obligations (as input to an au-
tomatic verification engine) to harness the power and automation provided by an
SMT solver

2. facilities in the language for describing a refinement in terms of the differences
from the previous refinement and for supplying an abstract witness when coupling
relations are non-deterministic

3. a prototype implementation as an extension of the language and verifier Chal-
ice [31, 32], which uses the Boogie verification engine [34] and the Z3 SMT solver [19].
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In Sec. 1, we review refinement, using an example in our refinement system. We
then describe a problem that arises when trying to introduce instances of a reusable
class as part of the data representation of another object. In Sec. 2, we review the model
of memory permissions in Chalice and then present how we use that model to provide
a sound solution to the data-refinement problem. We describe our checking algorithm
in Sec. 3 and our syntactic skeletons facility in Sec. 4.

1 Introductory Examples

Intuitively, to say that a program A is refined by a program B is to say that for any
context where A’s behavior is acceptable, substituting B for A would also make for
acceptable behavior. B’s behavior is acceptable wherever A’s behavior is. We take the
behavior of a program to be what can be observed by relating its possible pre- and post-
states. In our setting, a class is refined by another if all its methods are refined by the
corresponding methods of the other class. Consequently, the compiler or user can freely
choose to replace a class by one of its refinements, while maintaining the correctness of
the program.

In Sec. 1.0, we review refinement by walking through an example development of
a program in our system. The refinement steps will be familiar to anyone acquainted
with stepwise refinement; the example gives us the opportunity to showcase how one
works with our system. The example is also available in video form as an episode
of Verification Corner0. In Sec. 1.1, we describe a problem with data refinement and
objects.

1.0 Algorithmic Refinement

Top-Level Description Let us write a procedure that computes whether or not a given
sequence has any duplicated elements. We introduce the procedure as a method in a
class, as one would in an object-oriented language.

The initial description of the behavior of this method can be given as a pre- and post-
condition specification à la Eiffel [37], the precondition describing when the method is
defined and the postcondition describing its effect. However, there are cases where it is
more straightforward to describe the effect using a method body. In Fig. 0, we use the
latter option (with a trivial, and hence omitted, precondition true).

A sequence in our language is a mathematical value, just like booleans and integers.
A sequence subscripted by a single index returns that element of the sequence; sub-
scripted by an interval, it returns the subsequence consisting of the specified elements.
Sequence indices start with 0, the length of a sequence s is denoted |s|, and s[i := s]
(used later) denotes a sequence like s except that element i has the value e. Every in-
terval [a..b] is half-open, that is, it denotes the integers x that satisfy a 6 x < b. The
existential quantifier in the specification statement in Fig. 0 can be read as “there exists
an index i in the range from 0 to less than the length of s, such that element i of s also
occurs among the first i elements of s”. In other words, the existential evaluates to true
iff s has a duplicate element.

0 http://research.microsoft.com/verificationcorner
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class Duplicates0 {

method Find(s: seq<int>) returns (b: bool)
{

b := exists i in [0..|s|] :: s[i] in s[0..i];

}

}

Fig. 0: An initial description of a method that checks for duplicate elements in given
sequence. The method Find has an in-parameter s and an out-parameter b.

class Duplicates1 refines Duplicates0 {

refines Find(s: seq<int>) returns (b: bool)
{

var n := 0;

b := false;
while (n < |s|)

invariant 0 6 n ∧ n 6 |s|;

invariant b <==> exists i in [0..n] :: s[i] in s[0..i];

{

var c := s[n] in s[0..n];

b := b ∨ c;

n := n + 1;

}

}

}

Fig. 1: A refined Find method, where the specification statement in Fig. 0 has been
replaced by code that uses a loop.

Because this is the initial description of our method, there is nothing to verify, other
than the well-definedness of the operations used. In particular, there is no check that
this actually describes the program we have in mind. However, since this description is
clearer than, say, an optimized program with loops, a human may stand a better chance
of proof reading this description.

In summary, the thing to notice about our program’s initial description in Fig. 0 is
the emphasis on what is to be computed, not how it is computed.

Introducing a Loop A compiler may or may not be able to compile the existential
quantifier we used in the body of Find, and it is unlikely to compile it efficiently. So,
let’s help it along. Figure 1 introduces a class whose Find method refines the one in
Fig. 0. To reason about the loop, we supply a loop invariant; our system checks the
invariant to hold on entry to the loop and to be maintained by the loop body. The loop
invariant and the negation of the loop guard imply that b will end with the same value
as in Fig. 0, hence establishing the correctness of the refinement.
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The transformation from Fig. 0 to Fig. 1 offers two key benefits to programmers.
First, both versions of the program remain part of the program text. This means that
someone trying to understand the program can start by studying the more abstract de-
scription in Fig. 0 and then move to the more concrete description in Fig. 1. Second, our
system verifies the correctness of the transformation (in less than 0.05 seconds). This
checks the refinement step to be correct; furthermore, it ensures that future changes to
either Fig. 0 or Fig. 1 will keep the two in synch. The proof does not come entirely for
free, since loop invariants have to be supplied by the user, but in contrast to previous
refinement tools, the interaction stays at the level of the program and the user never
issues any commands to the underlying theorem prover.

Adding an Efficient Data Structure The method in Fig. 1 still contains a point of in-
efficiency, namely the assignment to c. Let’s do another refinement, this time adding (in
the jargon, superimposing) a sequence of booleans that keeps track of which numbers
have been encountered so far.

To simplify matters, we will add a restriction to our original program, limiting the
elements of s to be among the first 100 natural numbers, as expressed by the following
precondition:

requires forall i in s :: i in [0..100]; (0)

This going back to and changing the original description is common in practice, be-
cause all necessary restrictions may not be evident at the onset of the program develop-
ment [2].

Figure 2 shows the new refinement. It uses the keyword transforms for method
Find, which allows us to transform the method body at the level of its statements. (The
keyword refines we used in Fig. 1 is a special case of transforms that says the entire
method body is being replaced.) The body of Find in Fig. 2 uses a skeleton syntax
that we will describe in Sec. 4. Essentially, a skeleton keeps the structure of if and
while statements (but does not syntactically repeat guards or invariants), has the option
of replacing (keyword replaces) various update statements, can add (superimpose)
new statements, and uses “_” as a wildcard denoting other statement sequences of the
method body being transformed.

Our refinement introduces bitset as a sequence of 100 booleans, all initially false
(i.e., initially, true is not in the sequence, which we conveniently express here using a
specification statement [39]). The loop body sets element s[i] of bitset to true, thus
maintaining the properties that are recorded as loop invariants: the length of bitset
remains 100, any element s[i] encountered so far has been recorded in bitset, and
anything recorded in bitset has been encountered in s.

With these properties of bitset, we are able to replace the assignment of c with
a simpler assignment statement. When the refinement in Fig. 2 is verified, the loop
invariants in Fig. 1 do not need to be re-verified and neither does the postcondition that
was verified in Fig. 1. In this way, refinement localizes proof obligations.

Summarizing the Example This concludes our introductory example. One can imag-
ine further refinements, such as changing bitset from being a sequence to being an
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class Duplicates2 refines Duplicates1 {

transforms Find(s: seq<int>) returns (b: bool)
{

_;

var bitset: seq<bool> [|bitset| == 100 ∧ true !in bitset];

while
invariant |bitset| == 100;

invariant forall j in [0..100] :: bitset[j] <==> j in s[0..n];

{

replaces c by {

var c := bitset[ s[n] ];

}

bitset := bitset[s[n] := true];
_;

}

}

}

Fig. 2: A further refinement of Find, introducing a sequence of booleans that keep track
of which numbers have been encountered so far by the loop. The correctness of the code
relies on including precondition (0) in the original description of Find in Fig. 0.

array (to avoid the costly sequence-update operation in the loop in Fig. 2, or terminat-
ing the loop as soon as b is set to true, or avoiding the loop altogether if the length of
s exceeds 100.

Given Figs. 0, 1, and 2 and the precondition (0), our system performs the verification
automatically in about 1 second.

1.1 Data Refinement

The previous example did not involve the heap. Our next example does. We review the
idea of data refinement and demonstrate an important problem that has been insuffi-
ciently addressed in the literature.

Our motivating example comes in three pieces: a class, a client of the class, and
a refinement of the class. If a sound refinement system verifies these pieces, then one
can replace the client’s use of the class by the refined class. In our example, such a
replacement would lead to a run-time error, which tells us that soundness requires the
refinement system to report some error. The question is then where the error is to be
detected and reported during verification.

The class we consider is a simple counter, see Fig. 3. Method Get() returns the
current value of the counter and Inc() increments it. The somewhat mysterious method
M() is described as returning any Cell object, where Cell is another class shown in the
figure. The specification statement in the body of M() says to set r to any value satisfying
the condition in brackets. It seems reasonable that a verification system would consider
classes Counter and Cell to be correct.
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class Counter {

var n: int;
method Get() returns (r: int) { r := n; }

method Inc() { n := n + 1; }

method M() returns (r: Cell) { spec r [true]; }

}

class Cell {

var x: int;
}

Fig. 3: A simple class that provides the functionality of a counter, as well as (a rather
unmotivated) method that returns a cell object.

In Fig. 4, we show a client of the Counter class. It allocates a Counter. Then, it calls
Get() twice and checks, with an assert statement, that the counter was unchanged.
Between the two calls to Get(), it obtains a Cell via the M() method and sets the cell’s
x field to the arbitrary value 12.1 Here is one way one might argue for the correctness
of the client: the description of M() says that the only effect of M() is to set its out-
parameter, updating cell.x has no effect on cnt.n (after all, x and n are different fields
and cell and cnt are not aliased since they point to objects of different types), and
therefore the correctness of the assert follows from the description of Get().

class Client {

method Main() {

var cnt := new Counter;

call a := cnt.Get();

call cell := cnt.M();

cell.x := 12;

call b := cnt.Get();

assert a == b;

}

}

Fig. 4: An example client of the code in Fig. 3. This code is correct only if the asserted
condition will always evaluates to true.

In Fig. 5, we show a refinement of class Counter. It superimposes a field c into
which it dynamically allocates a new Cell object and maintains the coupling invariant
n == c.x. This kind of data refinement, where one data representation is replaced by
another, has been studied extensively (e.g., [26, 39, 24]), but—surprisingly–not in the

1 If the direct access of field x in class Client bothers you, you may consider our same but with
a SetX method in Cell.
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presence of pointers and dynamic storage! In our example, which uses pointers and
dynamic storage, one might argue that CCounter is a correct refinement of Counter
as follows (for now, we ignore some issues, like initialization): Whatever Get() and
Inc() did with n in Counter, they now do with c.x in CCounter; moreover, Counter
says nothing about what Cell is returned by M(), giving CCounter total freedom in what
it returns.

class CCounter refines Counter {

var c := new Cell;

refines Get() returns (r: int) { r := c.x; }

refines Inc() { c.x := c.x + 1; }

refines M() returns (r: Cell) { r := c; }

}

Fig. 5: A sketch of a class to refine the behavior of Counter in Fig. 3. Class CCounter
implements n in Counter by c.x.

2 Heap Refinement

The memory model that underlies our heap-aware refinements uses permissions [13]
and implicit dynamic frames [42]. The model forms a core of the language and verifier
Chalice [31, 32], into which we have incorporated our refinement system. Chalice and
our extensions are available as open source2 and can be run either from the command
line or from within the Microsoft Visual Studio IDE.

2.0 Permissions

A heap location is identified by an object-field pair. Heap locations have associated
access permissions, which can be transferred between activation records (i.e., method-
invocation instances and loop iterations) in a running program. Every heap-location
access (i.e., read or write) requires the current activation record to have sufficient per-
missions for the access. Permissions are ghost entities: they can be mentioned in spec-
ifications and are used by the verifier, but they need not be present at run-time in a
verified program.

For example, the Inc method in Fig. 3 reads and writes the field n. As shown in
the figure, the Chalice verifier will report an error of insufficient permissions for these
accesses, because activation records of Inc() have no permissions. To equip Inc() with
permission to access n, one declares a precondition requires acc(n);. The evaluation
of this precondition checks that the caller does indeed have access to n and then transfers
that permission to the callee. In this example, it is also desirable to return the permission
to the caller, which is achieved by declaring a postcondition ensures acc(n);.

2 http://boogie.codeplex.com
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Specifications can mention several access predicates, which are evaluated in order.
For example, suppose a method declares the precondition acc(x) ∧ acc(y). The caller
will then be checked for permission to x, then that permission will be transferred to the
callee, then the permission to y will be checked and transferred.

Permissions can be divided among activation records. Write access requires full per-
mission (100%), whereas any non-zero fraction of the full permission suffices for read
access. Syntactically, a fractional permission is indicated by supplying a second argu-
ment to acc, specifying a percentage of the full permission; for example, acc(x,50)
indicates half of the permission to x.

If, after evaluating the precondition, a caller still has some permission to a heap lo-
cation, then the caller can be sure the callee will not modify the heap location because
the callee will not be able to obtain the full permission. Because of the evaluation order
of predicates, acc(x,50) ∧ acc(x,50) is equivalent to acc(x), since the two fractions
add up to the full permission; and the condition acc(x,80) ∧ acc(x,30) is never sat-
isfiable, since 110% is more than 100%.

Note that all proper fractions grant the same permission to read; 1% and 20% and
99% are all the same in this respect. The reason for keeping track of specific fractions
is so that one can determine if various fractions add up to 100%, which would imply
write permission.

When an activation records allocates a new object, it receives full permission to all
fields of the object. It is possible for a program to squander permissions: any permission
remaining in an activation record after the postcondition has been evaluated is forever
lost, in effect rendering the corresponding heap locations readonly.

Access predicates can only be mentioned in positive positions (e.g., not as an-
tecedents of implications). For more details about permissions in Chalice, see [31].

Consider the Counter example in Sec. 1.1. One way to make it verify is to declare
acc(n) as a pre- and postcondition of Inc() and Get(). (Alternatively, Get() could use
a fractional permission, since it only reads n.) This would also verify the client in Fig. 4,
if it were not for the update of cell.x, for which the client has no permissions. As it
stands, method M() says nothing about the Cell being returned. We can change M() to
say that it will also return full permission to the x field of the returned object:

method M() returns (r: Cell)
ensures acc(r.x);

{ spec r [acc(r.x)]; }

Now, both Counter and Client verify.

2.1 Coupling Invariants for the Heap

Coupling invariants (or abstraction functions and relations) are critical in establishing
data refinement. Traditionally, they are logical formulas that relate concrete variables
to abstract variables. In Chalice, coupling invariants relate abstract heap locations to
superimposed concrete heap locations. For class CCounter (Fig. 5), one would want to
relate field n of Counter and field c of CCounter via the following declaration:

replaces n by acc(c) ∧ acc(c.x) ∧ n == c.x (1)
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While the latter part of the formula is the familiar logical formula, the former
part is unique to Chalice’s permission system. Intuitively, this coupling invariant gives
CCounter a license to trade permissions to access n for permissions to access c and c.x,
appropriately scaled. Given such a license, the body of method Inc may write the field
c.x, since it has full access to n that by virute of the coupling invariants warrants full
access to c.x.

The general form of the coupling invariant declaration permits simultaneous re-
placement of several abstracted heap locations:

replaces f1, . . . , fk by I

The access predicates in the coupling invariant I are then split evenly between fi. This
rule eliminates a possibility that a write to concrete representation occurs while another
activation record holds read access to abstract representation {fi}.

Going back to the CCounter example, refinement M fails to verify since assignment
x := c has insufficient permissions to read c. Now imagine that we add precondition
acc(n) to CCounter.M. We should also add postcondition acc(n) or, otherwise, the
client is not able to inspect n after making a call to M. But even now, method M fails
to verify. The reason is that at the end of its execution, both acc(n) and acc(c.x)
imply full access to c.x. Therefore, the postcondition is never satisfiable and refinement
CCounter fails to verify.

3 Checking Algorithm

We want to leverage the power of an automatic reasoning engine, like the collection
of first-order decision procedures available in modern satisfiability-modulo-theories
(SMT) solvers (e.g., [19]). How to produce input for such a reasoning engine is well
known (see, e.g., [10]): essentially, one produces a formula of the form

P ⇒ wp[[B,Q]] (2)

where P and Q are the declared pre- and postconditions of a procedure, B is the body of
that procedure, and wp[[B,Q]] is the weakest precondition of B with respect to Q [21].
If expressions are first-order terms and loops and calls are handled via specifications
(as usual), then (2) will be a first-order formula. However, to verify that a program B
refines a program A, one needs to check that B can be substituted for A in any context,
which is expressed in terms of weakest preconditions as

(∀Q • wp[[A,Q]] ⇒ wp[[B,Q]] ) (3)

where the quantification of Q ranges over any predicates [5]. Since this is a second-
order formula, it is not directly suitable as input to an SMT solver.

To express formula (3) in a first-order setting, we apply two techniques. First, mono-
tonicity of the refinement relation with respect to the sequential composition permits
us to prove it locally for isolated statements and blocks of code. A block in the ab-
stract program is matched against its refinement block in the concrete program. Second,
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non-deterministic abstract statements are refined separately by refinement blocks that
produce witnesses to such statements.

Refinement condition (3) can be expressed in a different form that avoids predicate
quantification using coupling invariant I [23]:

wp[[A,>]] ∧ I ⇒ wp[[B,¬wp[[A,¬I]]]] (4)

In other words, for any execution of B (starting from an initial state satisfying I
and on which A is defined), there is a possible angelic execution of A such that I is
reestablished in the final states of B and A. If A is deterministic, then any execution is
angelic and we can cancel double negation in the formula (4), and simplify it down to:

wp[[A,>]] ⇒ wp[[assume I;B;A; assert I,>]] (5)

Here A and B operate in disjoint state spaces but their initial and final states are
paired using I . We have already mentioned how I can be declared for superimposed
heap locations using replaces keyword. Local variables of A are bound to local vari-
ables of B by simple equality. Superimposed local variables in program B are left
unconstrained by I .

If program A is non-deterministic then formula (5) is a sound but not a complete
characterization of refinement. Chalice provides two ways to introduce non-determinism
into a program: specification statements and call statements. Both are specified using
declarative pre- and postconditions. Verifying refinement of a single non-deterministic
statement A by a program B then amounts to extracting witnesses from B that satisfy
the postcondition of A.

In Chalice, programs are structured into classes and methods. To verify that method
m in class A is refined by method m in class B, we check that:

0. B.m has the same pre-condition but possibly stronger post-condition.
1. B.m accepts same inputs as A.m and returns as many outputs plus possibly more.
2. The body of B.m is a refinement of the body of A.m.

The surface syntax (see Sec. 4) allows us to identify correspondence between ab-
stract statements of A.m and concrete statements of B.m. Once we localize code sub-
stitutions to disjoint refinement blocks R[P,Q] and loop refinements L[I, P ], we can
generate a Boogie program C that encodes the refinement condition [34]. Here P is a
block of code within the body of A.m, Q is the replacement block of code in the re-
finement B.m, and I are new loop invariants in B.m. Boogie program C is constructed
from a Boogie translation of A.m as follows:

Declaring superimposed state: Program C takes same inputs as A.m and produces
same outputs as B.m. The super-imposed local variables and fields of B are also de-
clared in C.

Sequential refinement block R[P,Q]: A sequence of statements P in A.m that is a
part of a refinement block is transformed into the following sequence of instructions in
Boogie intermediate language:



12

0. Create a duplicate state. The state consists of the heap, the permission mask, and
local variables.

1. Permissions to access superimposed fields are derived from permissions of the ab-
stract heap locations using the coupling invariant. These permissions are inhaled
into the secondary copy along with the coupling invariant. Permissions to access
replaced fields are exhaled from the secondary copy.

2. Execute P from A using the primary copy of the state. Execute Q from B using the
secondary copy of the state.

3. Assert coupling invariant between the two copies of the state. For local variables,
it amounts to simple equality. Superimposed variables and their permissions are
carried over to the primary state. For every replaced field, its coupling invariant
is asserted. We also check that the secondary copy holds enough permissions to
superimposed variables replacing the field.

Loop refinement L[I, P ]: We add assertions to establish the new loop invariant I at the
entrance of the loop and to show that the body P maintains it. The body of the loop
itself might contain refinement blocks and loop refinements.

Refinement of a non-deterministic statement R[P,Q]: If P is a single non-deterministic
statement, then we replace P with

Q; assert post[P ]

where post[P ] is the post-condition of P .

Assume correctness of the abstract program: Correctness of the abstract program is
a strong hypothesis that allows us to eliminate pre-existing assertions of A in C. We
change every assertion that was present in A (including loop invariants) into an as-
sumption. Refinement of B is conditional on refinement conditions of A and its previ-
ous refinement steps as well as the correctness guarantees of the top-level abstraction.

Example Figure 6 shows two programs for computing a sum of cubes. Our system
translates the abstract program into an intermediate language Boogie ([34]) and applies
the transformation. A snippet of the resulting Boogie program is shown in Fig. 6c. The
final Boogie program is then fed to an automated theorem prover Z3 [19].

4 Surface Syntax

In this section, we present our extensions to the syntax of Chalice [32].

4.0 Class refinement

We extended the syntax of Chalice with a declaration for class refinement:

class B refines A { . . . }
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method compute(n)
requires n > 0;

{
var i := 0;
var s := 0;
while (i < n)
invariant i 6 n;

{
i := i + 1;
s := s + i*i*i;

}
}

(a)
∑n

i=0 i
3

method compute(n)
requires n > 0;

{
var i := 0;
var s := 0;

var t := 0;

while (i < n)
invariant i 6 n;

invariant s == t*t;

invariant 2*t == i*(i+1);

{
i := i + 1;
s := s + i*i*i;

t := t + i;

}
}

(b)
(∑n

i=0 i
)2

i := 0; s := 0;
// refinement block
t := 0; . . . // frame
// while
assume i ≤ n; // assert
assert s = (t * t);
assert (2 * t) = (i * (i + 1));
havoc t; havoc s; havoc i;
if (*) {
. . . // check definedness
assume false;

} else {
if (*) {

assume i ≤ n;
assume s = (t * t);
assume (2 * t) = (i * (i + 1));
assume i < n; // loop condition
i := i + 1;
s := s + ((i * i) * i);
// refinement block
t := t + i; . . .
assume i ≤ n; // assert
assert s = (t * t);
assert (2 * t) = (i * (i + 1));
assume false;

} else {
. . . // assume invariants
assume ¬(i < n); // loop condition

}
}

}

(c) Refinement condition expressed as
a Boogie program

Fig. 6: Refinement of a program for computing sum of cubes and its simplified encoding
into Boogie. The highlighted lines show the new code in the concrete program.

This declaration introduces class B as a refinement of class A. We refer to B as a
concrete class and to A as an abstract class. For B to be a valid refinement of A, it must
satisfy the following three conditions:

0. Every declared member of A is present in B. B may refine a subset of methods
of A but the rest are carried over to B. Similarly, fields of A are also fields of B
(however, some fields may turn ghost via data refinement.) B may declare new
methods and fields. We call the latter superimposed fields.

1. B may declare a method m to be a refinement of a method m in A using either
refines or transforms keywords instead of method declaration. We describe the
difference between these two types of declarations in the next paragraph.

2. B may declare a global coupling invariant using the following declaration:

replaces x by acc(y) ∧ acc(z) ∧ x == y - z

In this example, field x of A is bound to superimposed fields y and z of B by means
of an abstraction relation x == y - z.

More often that not, individual methods of a concrete class require only a small
number of changes to select statements of the corresponding method of the abstract



14

class. The programmer’s insight to deriving such a concrete, refined implementation can
often be expressed as a set of transformation rules that introduce new statements and
substitute parts of the abstract program. Example 6 demonstrates one such scenario: the
real insight behind this refinement is the mathematical identify

∑n
i=0 i

3 = (
∑n

i=0 i)
2

that lets one compute a sum of cubes with just one multiplication. To implement this
optimization, a programmer needs to introduce a new local variable t and establish
coupling with variable s using a loop invariant. This transformation can be succinctly
expressed in Chalice as a skeleton:

transforms compute(n)

{

_

var t := 0;

while
invariant s == t*t;

invariant 2*t == i*(i+1);

{

_;

t := t + 1;

}

}

Fig. 7: An example of a skeleton for the program in Fig. 6

Skeleton methods such as the one in Fig. 6 are declared using keyword transforms.
Fig. 1 shows another way to declare a refined method. refines keyword is used to
mark a method that substitutes the entire code in the abstract method by concrete code
supplied by the declaration.

4.1 Skeletons

Skeletons are transformation rules that are composed of code navigation and rewrite
operations. Given an abstract program, skeleton serves as a template that is filled in by
statements taken from the abstract program. It does so by pattern matching control flow
of the abstract program against a set of pre-defined primitive substitutions.

Abstractly, skeleton is a partial function from an abstract syntax tree (AST) of an
abstract program to an AST of the concrete program. Since skeleton maintains the orig-
inal control flow structure, it helps us to think of the resulting program as consisting of
normal statements, refinement blocks, where each such block is a pair R[A,B] of an ab-
stract statement sequence A and concrete statement sequence B, and loop refinements
L[I, P ], which add loop invariant I to an existing loop and replace its body by P . In a
well formed refinement block R[A,B], B declares all the local variables declared in A.
Our checking algorithm takes full advantage of the fine structural mapping between the
abstract and concrete code embodied in these refinement blocks and loop refinements.
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A skeleton S is defined inductively from a set of primitive wild card skeletons and
sequential composition:

– Skeleton _ is a block pattern that matches any sequence of non-conditional deter-
ministic statements and acts as identity.

– Skeleton * matches any sequence of statements and acts as identity.
– Skeleton replaces * by { B } matches any sequence of statements A and pro-

duces R[A,B].
– Skeleton if { S1 } matches a single if statement and produces an if statement

with S1 applied to its branch; skeleton if {S1 } else { S2 } is analogous.
– Skeleton while invariant I { S1 } matches a single while loop and produces

a while loop with an additional loop invariant I and the body P that is obtained by
applying skeleton S1 to the body of the original loop. We use notation L[I, P ] for
such loop refinements.

– Skeleton replaces v by { B } matches any statement A that effects variables in
list v. The resulting refinement block is R[A,B]. This pattern is used to provide
witnesses to non-deterministic specifications or call statements and also rewrite
assignment statements. Our checking algorithm resolves angelic non-determinism
as described in Sec. 3.

– Skeleton B consisting of Chalice statements matches only the empty program and
produces R[∅, B].

– Sequential skeleton S1; S2 matches S1 greedily (i.e. consuming as many state-
ments as possible) and then matches S2 to the rest of the program. It produces a
sequential composition of the programs produced by skeletons S1 and S2.

Skeletons are partial functions and a change in the abstract program could poten-
tially make them inapplicable. In this sense, they are fragile. However, they save the
programmer the work of copying code and offer a very effective mechanism of doc-
umenting critical design decisions in code. Even though our matching mechanism is
deterministic, Chalice also lets the programmer inspect the final concrete code after
applying all the skeletons.

Skeletons are by no means the only way to communicate structural similarity be-
tween concrete and abstract code to our verification algorithm. One could imagine us-
ing statement labels to explicitly map statements or basic support from an integrated
development environment (IDE) that would permit writing refinement blocks visually
as nested code blocks.

5 Related Work

As we mentioned in the introduction, refinement has a rich literature and can be de-
scribed in a beautiful lattice-theoretic framework [8]. The idea of reasoning about data
structures abstractly and hiding their concrete manifestations was used extensively in,
for example, SIMULA [18] and CLU [35]. Hoare [26] suggested the use of a coupling
invariant (aka representation invariant) to describe the connection between the abstract
and concrete views. Hoare’s treatment and, as far as we know, all subsequent treatment
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of data refinement (e.g., [27, 39]) do not consider refinements into new objects of pre-
viously defined classes. For example, Mikhajlova et al. [38, 6] consider data refinement
in an object-oriented language, but their coupling invariants only relate the fields in a
class and a subclass, not any other objects in the heap accessible via those fields.

Several tools are available for refinement. The Rodin tool set [4] includes an im-
pressive assortment of development and testing facilities. At its core is the Event-B
formalism [3], which in turn draws from action systems [7]. The executable part of an
Event-B program consists of a set of guarded multi-assignment statements. This makes
refinement checking much simpler than if the events had a more complex structure. De-
signed to handle concurrency, sequential control flow has to be encoded manually by
introducing state variables. In contrast, our language uses common programming con-
structs like sequential composition, if and while statements, and method calls. While
pointers and fields can be encoded in Event-B (e.g., [1]), it does not facilitate refine-
ments that introduce new objects of previously defined classes. Rodin provides a slick
IDE in Eclipse. Its proof are mostly automatic, but frequently require some manual
interaction with the proof assistant.

Atelier B [16] is a refinement tool set that supports both the Event-B and B for-
malisms [0]. In B, programs are sequential and hierarchically structured, like in Ada.
Indeed, once programs have been refined into sufficient detail, the system can produce
executable Ada or C code. Atelier B and its support tools have been put to impressive
use [2]. As in Rodin, it does not facilitate refinements that introduce new objects of
previously defined classes, and conducting proofs requires manual interaction with the
proof assistant.

Perfect Developer is a refinement-based language and IDE for developing object-
oriented programs [22]. Its strength lies in inlining objects (i.e., treating classes as
records), where the well-studied rules for data refinement apply. One can also use a
mode where objects are instead accessed via pointers (as usual in object-oriented pro-
grams), but then its custom-built prover, which is automatic and does not permit manual
intervention, can easily get stuck [14]. In this mode, the support or soundness of refine-
ment into new objects is not clear to us.

While research on refinement has not focused on how object references are intro-
duced and used, a lot of verification research, especially in the last decade, has. The
central problem occurs when two objects are abstractly aliased [33], meaning that one
is used as part of the internal representation of the other. In such cases, a modification
of one object can affect the other, and a verification system must be able to detect or
prevent such possibilities.

For this purpose, there are specification and verification techniques like owner-
ship (e.g., [15]), dynamic frames [28], separation logic [41], and implicit dynamic
frames [42]; for a comparison of these techniques, see [25]. The condition that de-
scribes the consistent states of an object’s data representation is called an object in-
variant. In verification, it becomes necessary to keep track of whether or not object
invariants hold, which, due to the possibility of reentrancy, is not necessarily just the
boundaries of public methods (see [11]). The frame of a method describes which parts
of the program state the method may modify. In verification, it is also necessary to know
the frames of methods, because the frame of an object is not necessarily entirely hid-
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den from clients. Object invariants and framing complicate the specifications one has to
write to do verification.

For refinement, there is hope that these specifications can be made simpler. The
reason is that in the abstract view of a program, the representation of an object is not
yet conceived, and therefore there is no abstract aliasing, object invariants do not relate
the fields of multiple objects, and frames are just subsets of the abstract variables.

In recent work, Tafat et al. [43] consider data refinement in an object-oriented lan-
guage. Building on a specification methodology that uses ownership, they treat the ab-
stract state as model fields [30] and propose a syntax for specifying abstract witnesses
when a non-deterministic coupling invariant is used. They limit refinements to one step,
between an abstract level given as a pre- and postcondition specification and a concrete
level given as code. The up-side of this limitation is that it makes it easier to generate
first-order verification conditions, since a formula like P ⇒ wp[[S,Q]] can be used. In
their setting, it is necessary to include preconditions that say whether or not object in-
variants hold, so the hope that specifications may become simpler than for verification
is not fully realized. They do not provide an extensive treatment of framing.

6 Conclusions

We have presented a refinement system that allows objects to be refined into aggre-
gate objects and whose reasoning engine is built on a powerful SMT solver. Addi-
tionally, the language uses features common in object-oriented languages, coupling in-
variants can mention multiple objects, it is possible to supply abstract witnesses for
non-deterministic coupling invariants, and refinement steps can be prescribed using a
duplication-saving syntax of code skeletons.

We have implemented a prototype checker by incorporating the refinement features
in Chalice. In the future, we would like to gain more experience with this prototype.

Our work also suggests some other research to be done. It would be interesting
to explore the possibility of including language features like instantiable classes in a
well-developed refinement tool like Rodin. Given the analogous features of Chalice
and separation logic, our refinement framework could perhaps be adapted for use in
separation logic. The language and specifications in Chalice were designed to support
concurrency, so we imagine that it would be interesting to combined those features with
refinement. Finally, we expressed a hope that refinement specifications could work out
to be simpler than the specifications one needs for more traditional verification; we
would love to see that issue resolved in the future.

Acknowledgments We are grateful to Peter Müller who suggested we might try to base
our refinements on the permissions in Chalice rather than on the dynamic frames of
Dafny [29], where we had started.
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