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Abstract. We present a case-study in which vote-tallying software is
analyzed using a bounded verification technique, whereby all executions
of a procedure are exhaustively examined within a finite space given by
a bound on the size of the heap and the number of loop unrollings. The
technique involves an encoding of the procedure in an intermediate rela-
tional programming language, a translation of that language to relational
logic, and an analysis of the logic that exploits recent advances in finite
model-finding. Our technique yields concrete counterexamples – traces
of the procedure that violate the specification.

The vote-tallying software, used for public elections in the Netherlands,
had previously been annotated with specifications in the Java Modeling
Language and analyzed with ESC/Java2. Our analysis found counterex-
amples to the JML contracts, indicating bugs in the code and errors in
the specifications that evaded prior analysis.

1 Introduction

First deployed for public elections in the Netherlands in 2004, the KOA Remote
Voting System is an open-source, internet voting application written in Java.
Intended to be used primarily by expatriots, KOA stands for the Dutch phrase
“Kiezen op Afstand”, which literally means “Remote Voting”.

The KOA application contains a small vote-tallying subsystem that processes
the ballot data and counts the votes. The vote-tallying module was developed
independently of the rest of the application by the Security of Systems (SoS)
research group at the University of Nijmegen, the developers of ESC/Java2 [1].
In building the module, SoS annotated their Java source code with specifications
in the Java Modeling Language (JML) [2] and used their own ESC/Java2 tool
to check the code against those specifications [3–6]. The code was also tested
with the unit-testing tool jmlunit [7].

For our case-study, we used our own program analysis tool Forge [8] to check
the vote-tallying code against the provided JML specifications. Our analysis
found counterexamples to the JML contracts that evaded both the unit tests
and ESC/Java2. Each counterexample is reported by Forge as a trace of the
procedure under analysis, and each could indicate a bug in the code or an error



in the specification. The purpose of the study was to explore the benefits and
limitations of our approach, compare it to existing techniques like ESC and
testing, and look for opportunities for synergy.

Our work is part of a larger, ongoing effort to develop a new technique for
automatically checking object-oriented code against functional specifications.
The basic idea, originating with Vaziri [9] and furthered by Taghdiri [10], involves
translating a procedure in object-oriented code into a formula in the relational,
first-order logic of Alloy [11] and invoking a finite model-finder to search for
solutions to the formula. The model finder translates the relational formula to a
boolean satisfiability (SAT) problem and hands it to a SAT solver. If the solver
finds a solution, the model finder translates it to an instance of the relational
formula, which is then converted into a trace of the procedure.

The approach, one of a larger class of analyses we refer to as bounded ver-
ification, examines all executions of a procedure up to some finite bound on
the size of the heap and number of loop unrollings and reports counterexamples
as actual procedure traces. It finds a counterexample if one exists within the
provided bounds without issuing false alarms (given provisos described in Sec-
tion 2.2); however, it will always miss bugs that require larger bounds for their
detection. The effectiveness of the technique rests on the “small-scope hypothe-
sis,” the claim that many defects have small counterexamples, an idea consistent
with our own experience and empirical evaluation [12, 13].

Our prior work [13] introduced a more efficient translation of code to rela-
tional logic that exploited advances in the Kodkod model finder [14], the en-
gine behind the latest version of the Alloy Analyzer. A proof-of-concept tool
was demonstrated that worked for a small subset of Java and JML. This was
a promising first step, but, as a tool applicable to non-trivial programs like
KOA, it fell short. It was unable to handle common program features, including
inheritance and arrays. Its more fundamental limitation, however, was a lack
of support for fully modular analysis and datatype abstraction. Consequently,
called procedures could not be summarized by specifications, and their code had
to be inlined, causing the analysis to scale poorly.

To achieve full modularity, we turned our proof-of-concept into a more mature
framework for bounded verification, a new component of which is an intermediate
representation of code called the Forge Intermediate Representation (FIR). FIR
is a simple relational programming language, capable of expressing imperative
statements, declarative specifications, and relational abstractions, within a single
small grammar. Our new approach is to translate both Java and JML into FIR
and then apply our existing bounded verification technique to the resulting FIR
program. The new framework is what made this case study practically feasible.

In the course of developing the bounded verification tool and technique, some
questions were repeatedly raised, by ourselves and others. How useful is the
technique? Is the “small-scope hypothesis” empirically justified? How does our
technique compare to existing techniques? What are the key areas of future work
on this project? The paper uses the results of the case study to help answer these
questions.



2 Approach

Our early work introduced a new encoding of Java code in relational logic [13].
With the introduction of the new Forge Intermediate Representation, a full anal-
ysis of Java with Forge now involves a three-stage translation: from Java to FIR
(Section 2.1); from FIR to relational logic (Section 2.2); and lastly, from rela-
tional logic to a boolean satisfiability problem (via the existing Kodkod tool).

2.1 From Java to FIR

The Forge Intermediate Representation (FIR), is an imperative, relational pro-
gramming representation, capable of expressing both programs and their specifi-
cations. FIR is not a textual syntax; rather it consists of data structures assem-
bled through an API. Like most intermediate representations, FIR was designed
to be simple and uniform so as to be amenable to automatic analysis.

When we say FIR is “relational,” we mean that every expression in the
language evaluates to a relation, i.e. a set of tuples, where each tuple is a sequence
of atoms. The arity of a relation (the length of its tuples) can be any positive
integer. A set of atoms can be represented by a unary relation (a relation of arity
1), and a scalar by a singleton set.

The translation of object-oriented programs to FIR is based on a relational
view of the heap [15], in which program data values are interpreted as relations.
Specifically, types are viewed as sets; fields as functional relations; and local
variables as singleton sets. To illustrate, we will refer to the Java example in
Figure 1 and its resulting FIR translation in Figure 2. For simplicity, the example
translation ignores complexities arising from exception handling (which our tool
does support).

For each concrete class in the code, the translation creates a corresponding
FIR domain to represent the set of objects whose runtime type is that class. For
the code in Figure 1, our translation declares three domains: Birthday, Month,
and Object (Figure 2, Line 00). Two domains – Boolean and Integer – are built-in.

The translation maps each Java static type to a FIR type, either a domain or
some combination obtained by the union or cross product of domains. The static
types Birthday and Month are mapped to the FIR domains Birthday and Month
respectively. Because every Java class is a subclass of Object, the translation
maps the static type Object to the FIR union type Birthday ∪ Month ∪ Object.

The translation encodes each Java field as a global variable that maps mem-
bers of the enclosing class to members of the field’s type. For example, the Java
field month is encoded as a FIR global month whose type is Birthday → Month
(Line 01). Similarly, the translation creates global variables day: Birthday → In-
teger and maxDay: Month → Integer (Lines 02-03). The translation adds side
constraints (not shown) that these binary relations are functions.

For each Java parameter and local variable in the method under analysis, the
translation declares a local variable of the corresponding type, whose value is
constrained to be a scalar. For the setDay method, the translation creates four



class Birthday {

/*@ non_null */ Month month;

int day;

//@ requires this.month.checkDay(d);

//@ ensures this.day == d;

void setDay(int d) {

Month m = this.month;

boolean dayOk = m.checkDay(d);

if (dayOk) this.day = d;

}

}

class Month {

int maxDay;

//@ ensures \result <==> (d > 0 && d <= maxDay);

/*@ pure */ boolean checkDay(int d) { . . . }

}

Fig. 1. Birthday Example in Java with JML

00 domain Birthday, domain Month, domain Object
01 global month: Birthday → Month
02 global day: Birthday → Integer
03 global maxDay: Month → Integer
04 local this: Birthday, local d: Integer
05 local m: Month, local dayOk: Boolean
06

07 proc setDay (this, d) : ()
08 m = this.month;
09 dayOk = spec (dayOk ⇔ (d > 0 ∧ d ≤ m.maxDay));
10 if dayOk then day = day ⊕ (this → d) else exit;

Fig. 2. Translation of Birthday.setDay into FIR

FIR local variables: this of type Birthday, d of type Integer, m of type Month, and
dayOk of type Boolean (Lines 04-05).

The FIR expression language is essentially the same as that offered by the
Alloy modelling language [11]. Expressions can be built from any of the following:
set operators (union, intersection, difference); relational operators (join, cross
product, override, transitive closure); boolean, arithmetic, bitwise operators; set
comprehension; and universal and existential quantification.

The result of translating the setDay Java method is the FIR setDay pro-
cedure, which has two inputs – this and d – and no outputs (Line 07). The
procedure begins by assigning the FIR expression this.month to the local vari-
able m (Line 08). Although the FIR statement looks nearly identical to its Java
counterpart, the dot (.) operator in FIR stands for relational join, not field deref-



erence. When representing Java fields as functional relations and Java locals as
singleton sets, field dereference can be encoded as relational join, because the
join of a singleton set and a function will always yield a singleton.

The call to checkDay in the Java code has been encoded in FIR as a specifi-
cation statement (Line 09) that embeds a declarative specification in imperative
code [16, 17]. FIR uses specification statements to facilitate modular analysis:
once a procedure is found to meet a specification, calls to that procedure can be
replaced with instantiations of its specification.

The specification statement in setDay is a FIR encoding of the JML contract
for the checkDay method. Any variables on the left-hand side of the specification
statement, in our example only dayOk, may be modified by the statement. On
the right-hand side is a condition that the analysis establishes with demonic non-
determinism [18]; that is, the analysis will check the procedure for all executions
that satisfy the condition.

An assignment to a field in Java is encoded using a relational override (⊕)
expression in FIR. The value of the FIR expression day ⊕ (this → d) is the
relation containing the tuple (this → d) and any tuples in day that do not begin
with this. Thus, the assignment day = day⊕ (this→ d) (Line 10) encodes the Java
statement this.day = d. Note that the FIR assignment statement updates the
entire value of the day relation (so that the symbolic execution mentioned below
can compute a simple expression – not involving quantifiers or comprehensions
– for the value of day at the end of the statement).

Datatype Abstractions. The translation from Java to FIR employs some use-
ful datatype abstractions for common library collections, including sets, maps,
and lists. Using abstractions of these collections in place of their concrete repre-
sentations reduces the complexity of the resulting FIR program to be analyzed,
thereby improving the performance of the analysis.

Sets are modelled abstractly by a binary relation whose domain is the Java
Set objects and whose range is the elements in the set. A map is abstracted with
a ternary relation that contains (Map → key → value) tuples. Lists and arrays
are abstracted by ternary relations containing (List → index → value) tuples.

2.2 From FIR to Relational Logic

From a FIR procedure, the tool automatically obtains a formula P(s, s’) in
relational logic that constrains the relationship between a pre-state s and a
post-state s’ that holds whenever an execution exists from s that terminates in
s’. A second formula S(s, s’) is obtained from a user-provided specification, and
its negation is conjoined to the first to obtain:

P(s, s’) ∧ ¬S(s, s’)

which is true exactly for those executions that are possible but that violate the
specification.



The translation of procedural code to relational logic uses a symbolic ex-
ecution technique that traverses each branch in the code, building a symbolic
relational expression for each variable at each program point. Although our ear-
lier work [13] presented the technique in the context of Java code, applying it to
FIR is straightforward (in fact, much simpler due to FIR’s relational structure).

In addition to the procedure and its specification, a client of Forge must
provide a bound on the analysis consisting of:

– the number of times to unroll loops;
– the bitwidth limiting the range of FIR integers; and
– one scope for each domain, i.e. a limit on the number of its instances that

may exist in any heap reached during execution.

Each of these limits results in under-approximation, eliminating possible be-
haviors but never adding behaviors. Thus, any counterexample generated will be
valid – either demonstrating a defect in the code or a flaw in the specification.
If a counterexample exists within the bound, one will be found, though defects
that require a larger bound will be missed.

The chosen bound and the relational formula are handed to the Kodkod
model finder. Kodkod translates the formula and the bound into a boolean sat-
isfiability (SAT) problem, which it passes to an off-the-shelf SAT solver. If the
solver finds a solution, Kodkod maps it to an instance of the relational logic
formula, which Forge then maps to a counterexample trace of the original FIR
procedure.

Soundness and Incompleteness. The only imprecision introduced by the
translation from FIR to relational logic are the under-approximations given ex-
plicitly in the user-provided bound, so an analysis of FIR is sound in general and
complete within the bounds. However, the translation from Java to FIR does not
handle all of Java and also employs some optimizations, which introduces impre-
cision that may lead to spurious counterexamples and missed counterexamples.

One potential source of false alarms is the bounding of integers to a bitwidth
less than that of Java integers. Consider an analysis in a bitwidth of 5 that
produces a counterexample due to integer overflow. Because Java integers have
a larger bitwidth, this counterexample does not represent an actual trace of the
code. However, an overflow error in a small bitwidth, in our experience, usually
indicate the presence of an analogous counterexample in a larger bitwidth. That
is, if the code can overflow at a bit width of 5, it can probably overflow at 32.

Upon a method call, our analysis requires only the invariants of the receiver
object hold. ESC/Java, in contrast, requires the invariants hold for every argu-
ment of a call. Exactly which invariants hold should upon method calls is an
open area of research for modular analysis techniques generally.

The other sources of imprecision in the Java and JML translations are:
lack of support for real number arithmetic, I/O, static initialization, reflection,
ArrayStoreExceptions; incomplete support for String parsing; treatment of ex-
ceptions as singletons; unsound treatment of object equality; and unrolling of
recursive specifications.



3 Analysis of KOA

At the time of the initial release of KOA in 2004, 47% of the core (non I/O)
methods had been verified with ESC/Java2. The rest did not verify due to either
non-termination of ESC’s Simplify theorem prover, incompleteness in ESC, or
unspecified “invariant issues.” The code was also tested using jmlunit, which
generated nearly 8,000 unit tests, all of which passed. Since that time, the code
has been improved and further analyzed with ESC/Java2 [4].

Our analysis of the KOA vote-tallying software centered on eight classes,
listed in Table 1, that form the core of its functionality. The AuditLog class
logs the progress of the vote-tallying; Candidate records the tally of an in-
dividual candidate; CandidateList pairs a list of candidates in an election
with a CandidateListMetadata that stores additional properties of the election;
District, KiesKring, and KiesLijst are kinds of political district boundaries;
and VoteSet records the cumulative tally for all candidates in the election. The
methods column in Table 1 lists the number of methods analyzed in each class.

When Forge is applied to the methods of a class, the performance of the
analysis depends not only upon the complexity of the code in the class but also
upon the complexity of its specification, as well as the specifications of classes
upon which that class depends. The sloc column in Table 1 gives the number of
source lines of code in each class; slocc includes code and comment lines. Because
JML is written inside Java comments, the slocc measures, albeit indirectly, the
complexity of the class’ code and specification. The dslocc is the slocc plus the
number of lines of comment in classes upon which the class directly depends. The
dslocc/method approximates the complexity of a modular analysis of a method
within the class.

As shown in the table, we applied Forge to a total of 169 methods of varying
complexity across the eight classes. The violations column lists the number of
methods that were found to violate their specification. A total of 19 specification
violations were found. The experiments were run on a Mac Pro with two 3GHz
Dual-Core Intel Xeon processors and 4.5GB RAM running Mac OS X 10.4.11.
(Forge is single-threaded and so it did not take advantage of the multiple cores.)
The code on which these analyses were conducted is, as of the time of this
writing, the latest version available in its Subversion repository.

We initially analyzed each method in a scope of 5 instances of each type,
an integer bitwidth of 4 (integers -8 to 7), and 3 loop unrollings. Most analyses
completed quickly, but a few of the more complex methods exceeded our timeout
of four hours. For those that timed-out, we progressively lowered the scope until
the analysis completed within the time limit. The mean scope column in the table
lists the average maximum scope in which the analysis successfully completed,
and mean time (sec) is the mean time in seconds for a successful analysis. Note
that these means are calculated over the analyses of the methods within a class,
not over successive analyses of the same class. As shown in the table, the average
analysis time is roughly correlated with the dslocc/method measure.
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AuditLog 90 286 1237 1617 18.0 1 5.0 2.3
CandidateListMetadata 10 72 246 643 64.3 1 5.0 33.6

Candidate 12 103 363 1013 84.4 1 5.0 59.3
KiesKring 15 119 482 1272 84.8 5 5.0 249.7

District 6 53 163 543 90.5 0 5.0 18.5
KiesLijst 12 111 367 1432 119.3 4 5.0 104.6

CandidateList 13 130 493 1746 134.3 3 4.5 1416.8
VoteSet 11 113 400 2688 244.4 4 3.7 1783.9

Sum or Mean 169 987 3751 10954 64.8 19 4.9 262.7

Table 1. Summary analysis statistics of each class. The means are calculated over the
analyses of the methods within a class, not over successive analyses of the same class.

3.1 Specification Violations

Table 2 gives statistics on the 19 specification violations detected. The methods
named init in the table are constructors. We inspected every violation and
determined that none were false alarms (although theoretically possible, as noted
at the end of Section 2.2). To evaluate the “small-scope hypothesis”, for each
violation found we progressively lowered the bound on the analysis (scope of
each type, bitwidth of integers, number of loop unrollings) until the analysis
no longer detected the counterexample. The minimum bound under which each
counterexample is found is given in the last column of Table 2.

Every specification violation can be attributed to one of two causes: a bug
in the code or an error in the specification. As outside observers, we can make
educated guesses as to the cause, but classifying the violation with complete
certainty requires knowing the programmer’s intention. Does the specification
accurately reflect the programmer’s intention, in which case the violation indi-
cates a bug in the code; or did the programmer err in transcribing his or her
intention into the specification?

Specification errors themselves can be divided into two subcategories: over-
specification and underspecification. A case of overspecification occurs when the
specification of the method under analysis requires too much from the implemen-
tation – either its pre-condition is too weak or its post-condition is too strong. A
case of underspecification occurs when the method under analysis calls a method
whose specification provides too little to the caller – either the pre-condition of
the called method is too strong or its post-condition is too weak. (Recall that
our analysis, being fully modular, assumes that the specifications, not the im-
plementations, of called methods define their behavior.)

Specification errors, while not “bugs” per se, are still important to address.
For example, there may be methods whose correctness depends on the overspeci-



class method error min bound

CandidateListMetadata init under 1 / 3 / 1
KiesKring addDistrict bug 1 / 3 / 1

VoteSet addVote(String) over 1 / 3 / 1
KiesLijst clear over 1 / 3 / 3
AuditLog getCurrentTimeStamp over 2 / 1 / 1

Candidate init under 2 / 3 / 1
CandidateList addDistrict under 2 / 3 / 1
CandidateList addKiesLijst over 2 / 3 / 1
CandidateList init over 2 / 3 / 1

KiesKring addKiesLijst bug 2 / 3 / 1
KiesKring init under 2 / 3 / 1
KiesKring make under 2 / 3 / 1
KiesLijst addCandidate over 2 / 3 / 1
KiesLijst compareTo bug 2 / 3 / 1
KiesLijst make over 2 / 3 / 1
VoteSet addVote(int) over 2 / 3 / 1
VoteSet validateKiesKringNumber over 2 / 3 / 1
VoteSet validateRedundantInfo over 2 / 3 / 1

KiesKring clear over 2 / 3 / 3

Table 2. Specification violations: error classification and minimum bound
(scope/bitwidth/unrollings) necessary for the error’s detection.

fication of a called method. Fixing the overspecification may, therefore, reveal la-
tent bugs in dependent methods. In contrast, a case of underspecification doesn’t
pose an immediate problem, but it could allow a bug to be introduced in the
future. That is, the underspecified method’s implementation could be changed
at a later date in a way that still satisfies its contract, but causes dependent
methods to fail.

As shown in Table 2, of the 19 violations found by Forge, we believe 3 to be
due to buggy code, 11 due to overspecification, and 5 due to underspecification.
From our follow-up “smallest scope” analyses of each violating method, we found
that every violation would have also been found in a scope of 2, a bitwidth of 3,
and 3 loop unrollings.

In fact, all but two of the violations required only 1 loop unrolling, the ex-
ceptions being KiesKring.clear and KiesLijst.clear. Both clear methods
contain loops with if-statements in the body of the loop, and 3 unrollings were
necessary to cover all paths. Additionally, four violations needed only the mini-
mal scope of 1 and one violation was found in the minimal bitwidth of 1.

A minimal bitwidth of 3 (integers from -4 to 3) was needed for nearly every
analysis, because some static array fields in the code were required to be of at
least length 2. Lowering the bitwidth to 2 would allow a maximum integer of
only 1. These arrays were not required to be fully populated, however – they
could contain null elements – so their minimal length requirements did not in
turn affect the minimal scope necessary to detect violations.



3.2 Example Violations

In this section, we present and discuss a sample of four specification violations
detected by our analysis, two of which we’ve classified as bugs, one overspecifi-
cation, and one underspecification. For brevity, some of the code excerpts and
JML specifications shown below have been simplified.

(a) KiesLijst.compareTo [bug] The code for the method is a correct im-
plementation of the compareTo method in KiesKring , not KiesLijst . This is
likely a copy-and-paste error:

class KiesLijst {
public int compareTo(final Object an_object) {

if (!(an_object instanceof KiesKring)) {
throw new ClassCastException();

}
final KiesKring k = (KiesKring) an_object;
return number() - k.number();

}
}

The instanceof check and the initialization of local variable k should refer
to KiesLijst, not KiesKring.

(b) KiesKring.addDistrict [bug] The KiesKring class stores an array of
districts in the my districts field and a count of the number of districts in the
my district count field. The specification for KiesKring includes an invariant
that the count is equal to the number of non-null entries in the array:

private final /*@ non_null @*/ District[] my_districts
private byte my_district_count;
//@ invariant my_district_count == (\sum int i; 0 <= i && i < my_districts.length;
//@ (my_districts[i] != null) ? 1 : 0);

boolean addDistrict(final /*@ non_null @*/ District a_district) {
if (hasDistrict(a_district)) {

return false;
}
my_districts[a_district.number()] = a_district;
my_district_count++;
return true;

}

Each district has a number that is used as its index in the array. The
hasDistrict method returns true when the my districts array contains a dis-
trict with the same number and name as its argument. Thus, if the a district
argument has the same number but a different name than a district already
in the array, the method will overwrite an existing district and increment the
district count in violation of the invariant. The district count should only be
updated only if there is no existing district at that index.

This violation might be classified as a specification error if the programmer
forgot an invariant prohibiting two districts from having the same number but
different names. The rest of the code does not appear to rely on such an invariant,
however. Indeed, the District.equals method checks for equality by comparing
not only the number but also the name.



(c) VoteSet.addVote [overspecification] This method suffers from overspec-
ification in the form of a missing precondition. Note that it invokes the method
Candidate.incrementVoteCount:

class VoteSet {

final void addVote(final int a_candidate_code) throws IllegalArgumentException {
if (!(my_vote_has_been_initialized && !my_vote_has_been_finalized)) {

throw new IllegalArgumentException();
}
final Candidate candidate = my_candidate_list.getCandidate(a_candidate_code);
candidate.incrementVoteCount();
candidate.kiesLijst().incrementVoteCount();

}
}

class Candidate {

//@ requires my_vote_count < AuditLog.getDecryptNrOfVotes();
//@ modifies my_vote_count;
//@ ensures my_vote_count == \old(my_vote_count + 1); final
int incrementVoteCount() { . . . }

}

As shown, incrementVoteCount has a precondition that the number of votes
for the candidate be less than a preset number, but addVote does not ensure
this condition. We believe the programmer erred in not including the inequality
constraint in the precondition of addVote. It is also possible that the programmer
intended addVote to be robust when the inequality is false, in which case we
would re-classify this violation as a bug.

(d) KiesKring.init [underspecification] The post-condition of the KiesKring
constructor invokes an underspecified KiesKring.name method:

//@ requires a_kieskring_name.length() <= KIESKRING_NAME_MAX_LENGTH;
//@ ensures number() == a_kieskring_number;
//@ ensures name().equals(a_kieskring_name);
private /*@ pure @*/ KiesKring(final byte a_kieskring_number,

final /*@ non_null @*/ String a_kieskring_name) {
my_number = a_kieskring_number;
my_name = a_kieskring_name;

}

//@ ensures \result.length() <= KIESKRING_NAME_MAX_LENGTH;
/*@ pure non_null @*/ String name() { return my_name; }

The specification of the constructor claims that calling name() in the post-
state yields a string equal to the a kieskring name argument, and the con-
structor does indeed assign the argument to the my name field. However, even
though the implementation of name returns the my name field, its specification
says merely that it returns some string whose length is less than a fixed con-
stant. Thus, the post-condition of name does not induce a strong enough axiom
to establish the post-condition of init. Indeed, an implementation of name that
always returns the empty string would satisfy its weak specification, but would
clearly cause init to violate its own specification.



4 Discussion

Did bounded verification prove to be a useful technique? Prior to our case study,
the KOA software had been the subject of rigorous development. The code, writ-
ten according to a “verification-centric methodology” [5], had been checked with
ESC/Java2 and unit-testing. Despite these prior efforts, our technique found
that 19 of the 169 methods analyzed violate their specification.

The effort in conducting the study did not prove particularly burdensome.
The KOA developers had already written the JML specifications, which was
presumably a time-consuming task, but if full functional correctness is required,
it seems unlikely that writing a full specification can be avoided. The remaining
effort was choosing a bound on each analysis and inspecting the counterexample
traces detected, both of which we found to be straightforward.

For most methods, we were pleased with the runtime and scalability of the
analysis. For others, we were disappointed that their analysis in a scope of 5
did not complete within a reasonable amount of time. The poor performance of
these methods demonstrates clear room for improvement in our technique and
helps direct our future work on this project, as discussed below.

Does the case study lend support to the “small scope hypothesis”? That we found
several errors in a small scope lends some support to the hypothesis that in
practice many errors have small counterexamples. But it tells us nothing about
proportions; it is possible that the software analyzed is riddled with bugs beyond
the bounds we checked. Ideally, one would increase the scope step by step until
all errors are revealed, and then determine their distribution. This is infeasible,
but we were able to do this in miniature by increasing the scope until the analysis
became intractable, and by noting (Table 3.1) the smallest scope in which a given
error is revealed. That increasing the scope from 2 to 5 reveals no additional
errors suggests that at least within that range the small scope hypothesis holds.

For many violations, detection required fields (array fields in particular)
to be pre-populated. To detect the violation of KiesKring.addDistrict (Sec-
tion 3.2b), for example, the array of districts needed to store a district that was
distinct from the district given as an argument. Thus, finding the error requires
a scope of at least 2 (in this case 2 districts).

We were somewhat surprised that the minimal bitwidth stayed as high as
3. After all, some methods didn’t even use integers. As explained at the end of
Section 3.1, the minimal bitwidth of 3 was due to length requirements on some
array fields in the code. Even though a lower bound may not violate the pre-
condition of the method under analysis, it still may prevent the existence of a
valid pre-state heap configuration.

How does our technique compare to unit testing? On one level, it may seem sur-
prising that our bounded verification technique revealed specification violations
missed by unit testing. After all, bounded verification is conceptually a form
of testing, in which all tests up to some small size are executed. However, two
properties of our technique distinguish it from unit testing in key ways. One



important difference is that our technique is modular and, therefore, can detect
problems due to underspecification of called methods, while unit testing cannot.

The major difference, however, is one of coverage. The voting code was sub-
ject to nearly 8,000 unit tests, which on its face sounds like a large number of
tests to generate and run. Our technique, however, by leveraging SAT-solving
technology, is capable of analyzing thousands, if not millions, of scenarios of
every method individually.

Despite these differences, it still came as a surprise that unit testing did not
detect the buggy KiesLijst.compareTo method discussed in Section 3.2a. Per-
haps the static type of the compareTo parameter being Object (not KiesLijst)
caused the testing tool to only feed the method arguments of runtime type
Object. In these cases, the buggy version of the method would behave correctly
by raising a ClassCastException.

To catch the bug in hasDistrict, discussed in Section 3.2b, a unit-test would
need to first populate the pre-state with a non-empty array of districts, and then
pair the pre-state with a district argument with the same number but a different
name from an existing district in the array. Revealing such a bug requires a
higher level of coverage than can be expected from traditional unit-testing.

How does our technique compare to ESC/Java2? It is difficult for us to deter-
mine why ESC/Java2 failed to detect the specification violations found in our
study, and, unfortunately, the authors of the ESC study were unable to provide
additional information in this regard. We know that 53% of the KOA methods
did not verify successfully with ESC/Java2, so perhaps all 19 violations fell into
this category. Or perhaps some of the 19 did verify but, due to unsoundness in
ESC, were actually faulty. Kiniry, Morgan, and Denby [19] detail the sources of
unsoundness and incompleteness in ESC/Java2.

Two examples where the unsoundness of ESC may have played a role are the
analysis of KOA methods KiesKring.clear and KiesLijst.clear. ESC/Java2
examines only one unrolling of each loop, but our case study found that at least
three unrollings were necessary to detect the overspecification of those methods.

What areas for future work appear worthwhile? There are a number of changes
that we plan to make to Forge to improve its performance. One area for improve-
ment highlighted by this study is the need to exploit generics in the Java source
code. The presence of a Java Map in the code introduces a ternary relation whose
second and third columns range over the universe of all objects, an expensive
relation to encode in SAT. Generics were not used in KOA, but when provided,
an improved translation to FIR could exploit the type arguments for the keys
and values of a Map, significantly reducing the state space needed to represent
the ternary relation and dramatically improving the scalability of the analysis.

Beyond technical enhancements, we see further opportunities for hybrid tech-
niques that combine bounded verification and theorem proving in a way that
leverages the advantages of each. For example, a tool could perform a bounded
verification analysis in a progressively higher bound until some timeout is reached
and then apply an automated prover like ESC. Or perhaps an automated prover



could use bounded verification to dispose of only the less tractable portions of
the verification conditions, such as those involving alternating quantifiers.

Lastly, we will continue to support developers building translations from
other high-level languages to FIR, to make them amenable to our analysis. An
automatic translation from C is already in development by the System Engi-
neering Lab at Toshiba, and we would greatly welcome similar efforts.

5 Related Work

In addition to the three tools discussed in this paper – ESC/Java2, jmlunit,
and Forge – there are a number of other tools for checking Java code against
JML specifications. Some, such as the KeY System [20], exploit theorem proving
technology. Another promising tool is Kiasan [21], a new symbolic execution and
test-case generation framework for Java and JML. It would be of great value to
see these tools applied to the KOA code, learn what errors the find or fail to
find, and understand the effort required to apply them.

This work extends our prior work [13], which itself builds on the work of
Vaziri [9], whose Jalloy tool analyzed Java code via a translation to the Alloy
modeling language. Dolby and Vaziri have since offered some optimizations to
their technique [22] that might offer benefits to our own analysis.

The Forge Intermediate Representation is similar to other available program-
ming languages and representations, first and foremost being the Alloy modeling
language [11] and the subset of its logic that is accepted by the Kodkod model
finder [14]. In a sense, one could view FIR as an “imperative Alloy.”

DynAlloy [23] is an extension to Alloy which allows one to specify and check
dynamic properties of relational models. Unlike FIR, Dynalloy is still a declara-
tive representation, not an imperative programming language and offers a differ-
ent approach to encoding Java in relational logic that Frias, et al, are pursuing.

FIR is not the first programming notation based on sets and relations. An
early example is SETL [24], a high-level programming language founded on set
theory and set operations. Another example is the Crocopat relational manip-
ulation language [25]. Unlike these, FIR supports declarative constraints via
specification statements in the code. Also, FIR supports object instantiation,
whereas Crocopat presumes a finite, predefined universe of objects.

Less similar in semantics but more similar in purpose to FIR is BoogiePL [26],
the intermediate programming language accepted by Boogie, a static verifier for
Spec#. Like FIR, it offers a full specification language including quantifiers,
but does not use relations as its fundamental datatype, so it would not be a
convenient representation to encode in relational logic.
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