
Data-Driven Synthesis for Object-Oriented Frameworks

Kuat Yessenov Zhilei Xu Armando Solar-Lezama ∗

Massachusetts Institute of Technology
{kuat,timxu,asolar}@csail.mit.edu

Abstract
Software construction today often involves the use
of large frameworks. The challenge in this type of
programming is that object-oriented frameworks tend
to grow exceedingly intricate; they spread functionality
among numerous classes, and any use of the framework
requires knowledge of many interacting components.
We present a system named MatchMaker that from
a simple query synthesizes code that interacts with the
framework. The query consists of names of two frame-
work classes, and our system produces code enabling
interaction between them. MatchMaker relies on a
database of dynamic program traces called DeLight
that uses novel abstraction-based indexing techniques to
answer queries about the evolution of heap connectivity
in a matter of seconds.
The paper evaluates the performance and effectiveness
of MatchMaker on a number of benchmarks from the
Eclipse framework. The paper also presents the results
of a user study that showed a 49% average productivity
improvement from the use of our tool.

Categories and Subject Descriptors D.2.2 [Design
Tools and Techniques]: Computer-aided software engi-
neering; I.2.2 [Automatic Programming]: Program syn-
thesis

General Terms Human Factors

Keywords Program Synthesis, Dynamic Instrumenta-
tion, Thin Slicing, Software Engineering

1. Introduction
Modern programming relies heavily on extensible frame-
works that pack large amounts of functionality. These
∗ All authors are primary authors, listed in reverse alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

frameworks make it possible to write rich applications
by piecing together pre-existing components, but the
productivity benefits come at a price: a significant learn-
ing curve as programmers master a complex framework
with thousands of components. Synthesis [14, 16, 18] can
alleviate this problem by leveraging the novice program-
mer’s limited understanding of the system to generate
code that uses the framework. Specifically, this paper
demonstrates the potential impact of synthesis through a
new tool, MatchMaker, that addresses a concrete pro-
gramming challenge: establishing an interaction between
two framework classes.

The problem arises from the way object-oriented frame-
works factor functionality into a multitude of compo-
nents. This factoring makes the framework flexible, but
it also implies that interactions that look simple at a
high level require collaboration of a number of auxil-
iary objects. As a consequence, the user must write glue
code whose sole purpose is to coordinate these auxiliary
objects.

To illustrate the problem, consider the following run-
ning example: extending an Eclipse [3] editor with
syntax highlighting. This is done by defining a sub-
class of RuleBasedScanner with the code to identify and
color tokens in a file. However, the editor does not
use the scanner directly. Instead, the interaction is
mediated by five additional classes. First, the editor in-
teracts with a component called SourceViewer (see Fig. 1),
which manages its add-ons. SourceViewer in turn uses
PresentationReconciler to maintain a representation of the
document in the presence of changes. PresentationReconciler
uses an IPresentationDamager to identify changes to a doc-
ument, and an IPresentationRepairer to incrementally scan
those changes, and it is these two classes that interact
directly with the scanner. To glue these classes together,
the programmer must extend SourceViewerConfiguration
and override the getPresentationReconciler method to

return an instance of the PresentationReconciler class.
This instance must have its IPresentationDamager and
IPresentationRepairer reference the new scanner. Finally,
the new SourceViewerConfiguration must be registered with
the editor by calling setSourceViewerConfiguration in the
constructor of the editor (see Fig. 2).

class AbstractTextEditor {
SourceViewerConfiguration fConfiguration;
ISourceViewer fSourceViewer;
createPartControl() {
fSourceViewer = createSourceViewer();
fSourceViewer.configure(fConfiguration);

}
setSourceViewerConfiguration(config) {
fConfiguration = config;

}
}

class SourceViewer {
IPresentationReconciler fPresentationReconciler;
configure(SourceViewerConfiguration config) {
fPresentationReconciler = config.getPresentationReconciler();

}
}

Figure 1. Eclipse code in AbstractTextEditor (2950 LOC)
and SourceViewer (537 LOC) relevant to interaction with
a scanner.

class UserConfiguration extends SourceViewerConfiguration {
IPresentationReconciler getPresentationReconciler() {
PresentationReconciler reconciler =

new PresentationReconciler();
RuleBasedScanner userScanner = new UserScanner();
DefaultDamagerRepairer dr =

new DefaultDamagerRepairer(userScanner);
reconciler.setRepairer(dr, DEFAULT_CONTENT_TYPE);
reconciler.setDamager(dr, DEFAULT_CONTENT_TYPE);
return reconciler;

}
}

class UserEditor extends AbstractTextEditor {
UserEditor() {
userConfiguration = new UserConfiguration();
setSourceViewerConfiguration(userConfiguration);

}
}

class UserScanner extends RuleBasedScanner {...}

Figure 2. User code required to let an editor use a
scanner. MatchMaker automatically synthesizes the
text in black.

MatchMaker automatically synthesizes the glue code
in Fig. 2 from a simple query of the form: “How do I
get AbstractTextEditor and RuleBasedScanner to interact with
each other?”. More generally, given two types A and B,
MatchMaker identifies what the user of the framework
has to write in order for two objects of these types to
work together. In order for MatchMaker to do this,
the first problem that has to be addressed is to give
semantic meaning to the query; i.e. what does it mean
for two objects to “interact with each other”? We assign
semantic meaning by exploiting a new hypothesis about
the design of object-oriented frameworks.

MatchMaker hypothesis: In order for two objects
to interact with each other, there must be a chain of
references linking them together. Therefore, the set of
actions that led to the creation of the chain is the set of
actions that need to take place to enable the interaction.
The MatchMaker hypothesis does not always hold;
sometimes, for example, two objects can interact with
each other by modifying the state of some globally
shared object, without having necessarily a chain of
references that connects them. Nevertheless, we have
experimental evidence to suggest that the hypothesis is
true for a number of pairs of classes in Eclipse (see the
generality evaluation in Sec. 6.3) and that a tool based
on this hypothesis can have a real impact on programmer
productivity (see the user study in Sec. 6.4).
The hypothesis is useful because it suggests a relatively
simple algorithm to answer the programmer’s query. In
the case of the running example, the algorithm works
like this:
• Take a set of editors written on top of Eclipse that
implement syntax highlighting.

• Identify code in the implementation of these editors
that contributes to the creation of a chain of references
from an editor to a scanner.

• Generalize this code to remove arbitrariness specific
to individual implementations.

This is the basic algorithm behind our synthesis tool;
the rest of the section will elaborate more on the specific
challenges that arise for each of the high-level steps
outlined above.

1.1 Finding Critical Chains with DeLight

The biggest challenge presented by the algorithm is that
it requires reasoning about the evolution of the heap with
a level of precision that is hard to achieve by static analy-
sis given the scale of the frameworks and their aggressive
use of dynamic dispatch and reflection. Rather than an-
alyzing the program statically, we collect its execution
traces and organize them off-line for efficient processing
of queries about the exercised program behavior.
The algorithm outlined above requires us to identify
code in the implementation of existing editors that leads
to the creation of a chain of references from one object,
call it the source, to another object we call the target.
The first step in this process is to find events in each
concrete execution trace where the source and target
objects become linked by a chain of references. In the
specific case of the editor and the scanner, we are looking
for events in the execution such that before this event,
the scanner cannot be reached from the editor, but after
the event it can. We call the reference created by this
event the critical link between the editor and the scanner,

Figure 3. Event o3.f ← t establishes the critical link
between s and t and creates two critical chains.

and any chain of references from the source to the target
object that was created as a consequence of adding the
critical link is called a critical chain. Note that while the
critical link is unique, there can be many critical chains
as illustrated in Fig. 3.
Conceptually, we can find a critical link by performing
a depth first search from the source object after every
memory write operation. Unfortunately, this naïve strat-
egy is as inefficient as it sounds; the cost of running
search over the entire heap after every memory update is
prohibitive for all but the shortest of traces. Instead, our
data management engine DeLight uses abstraction to
organize and index execution data in a way that makes
critical chain computations efficient.
The first insight exploited by DeLight is that it is
possible to represent the sequence of heaps generated
by the program after each memory update with a single
graph we call a heap series graph, where nodes correspond
to objects, and every edge corresponds to a reference
from one object to the other, labeled with the time
interval when this reference existed. Given a path in
this graph, we can find the set of time steps where this
path was present by taking the intersection of the time
intervals for every edge in the path.
The heap series graph provides a concise representation
of the overall evolution of the heap, but it is too big
to explore efficiently. This leads to the second insight
exploited by DeLight: the heap series graph can be
abstracted into a coarser graph where each node or edge
represents a set of objects or references. The abstraction
is conservative; any path in the original heap series graph
has a corresponding path in the abstract graph, but the
abstract graph also contains spurious paths. Thus, if a
critical chain is found in the abstraction, then it needs
to be checked against the complete graph to ensure that
this critical chain is real. Sec. 4 describes this algorithm
in full detail. Thanks to the use of abstraction, our
algorithm answers the critical chain query in under five
seconds for 100 GB of trace data (see Sec. 6.2).

1.2 Synthesizing Code from Critical Chains

The critical chain computation produces a set of events
that creates a chain of references from the source to
the target object, but these events may belong to the

framework code and cannot be invoked directly by the
user. What the synthesizer is looking for is the set
of actions — including API calls, field updates, class
instantiations, etc. — that the user code needs to effect
in order for those events inside the framework to take
place.

Our algorithm is described in Sec. 5.1 and is based on
a dynamic form of thin slicing [15]. The slice is the set
of events relevant to the creation of the critical chain.
By separating events that took place in the user code
from those that took place inside the framework, the
algorithm identifies the subset of the events in the slice at
the boundary between them: relevant framework events
from the point of view of the user, and methods in the
user code that are called by the framework.

The slices that result from each trace contain informa-
tion about how the interaction was established in that
particular trace. Some of the information in the slices,
however, may be too specific to a particular use. Our
system copes with this by projecting the slices to remove
extraneous details about the structure of the different
user implementations. This exposes a large degree of sim-
ilarity between them, and allows us to identify distinct
patterns of interaction.

We explain the formal model of the program trace data
in Sec. 2 and its implementation in Sec. 3. The critical
chain and synthesis algorithms are described in Sec. 4
and Sec. 5. We conclude the paper with an experimental
evaluation in Sec. 6.

2. DeLight Data Model
DeLight relies on three complementary views of execu-
tion data. The first is the call tree presentation, which
directly models the sequence of instructions executed by
each thread and the nesting of method calls (Sec. 2.1).
While it provides detailed information focused around
any particular point in the execution, it makes it difficult
to answer global queries without looking at the entire
trace.

To support heap connectivity queries, DeLight provides
a complementary graph-based presentation that provides
a global view of the evolution of the heap. We call
this presentation a heap series (Sec. 2.2). The two
presentations are connected via time stamps that are
assigned to every program instruction.

In order to make queries on the heap series graph more
tractable, we introduce heap abstractions that capture
the essential domain information and approximate the
heap series to reduce its size (Sec. 2.3).

2.1 Call Tree Presentation
This presentation is essentially a sequence of events.
An event is triggered for every state update and every
transition across method boundaries:
Type Description
a← b.f Read of value a from field f of object b.
a← f Read from a static field f .
a← b[i] Read of value a from array b.
b.f ← a Write of value a into field f of object b.
f ← a Write to a static field f .
b[i]← a Write of value a into array b.
call m(p) Method enter.
return a Normal exit of a method.
throw e Exceptional exit of a method.

The sequence p in method enter events is the sequence
of parameters to the method call, starting with this for
non-static methods. Values V in our model consist of
object instances, the special value null, and primitive
values (integer, void, etc.) type(a) denotes Java type of
value a. Each event is assigned a unique timestamp (or
as we call it later, its time), which among other things
allows us to assign a total order to events executed by
different threads. Conceptually, method enter and exit
events for a single thread form a call tree where the leaf
nodes are the state reads and writes. This presentation
provides a pre-order traversal of the call tree, allowing
us to query information in the dynamic call scope of any
given event as used, for example, in computing slices.

2.2 Heap Series Presentation
The call tree presentation is useful for analyzing call
patterns, but when reasoning about the evolution of
heap connectivity, a graph-based view is more desirable.
A heap H in our model is a directed multi-graph on the
set of values V and edges labeled by fields F . An edge
a

f−→ b denotes the fact that the value of non-static field
f of an object instance a is b. We use set algebra on the
set of edges to describe updates to a multi-graph.
The effect of an event on the heap is the addition and
removal of edges. Starting from the empty heap H0, we
build a sequence of heaps {Ht} by applying t-th event
to Ht−1. The rule for the field write event is:

[[b.f ← a]]H =
(
H \ (b f−→ V)

)
∪ (b f−→ a)

(all f edges coming out from b are removed and an f
edge from b to a is added.) We do not store static field
writes in the heap model, and the remaining events have
no heap side-effects.
The sequence of heaps {Ht} is compacted into a heap
series presentation Ĥ, which is a directed multi-graph
on the set of values V and edges labelled by pairs of
fields F and non-empty time intervals: F × 2Z. Here

an edge records all indexes t for which Ht has an edge
labelled by f between the nodes:

a
(f,T)−−−→ b ∈ Ĥ

whenever there was an edge in one of the heaps:

T = {t | a f−→ b ∈ Ht} ∧ |T | > 0

The heap series model and the call tree model are
connected by the times of the events. This allows us
to quickly jump from a time on some edge in Ĥ to the
call stack for the corresponding event and vice versa.
Time intervals are represented either as decision trees
or as unions of disjoint segments. The motivation for
using time intervals instead of multiple heaps and the
real gain in compacting heap series come from a simple
observation: most fields are not updated frequently.

Abstract fields Containers are pervasive in Java code,
and their simple interfaces encapsulate complex heap
representations. DeLight approximates the internal be-
havior of container objects via abstract fields. For exam-
ple, we model lists with the binary relation content ∈ F ,
where a

content−−−−→ b if a is an instance of java.util.ArrayList
and b is an element of the list a. Similarly, the abstract
field values ∈ F matches a map to its values: a

values−−−→ b
if a is an instance of java.util.HashMap and b is a value for
some key in the map a. Finally, the abstract field array
relates an array object to its elements.
Figure 4 describes how DeLight computes heap series
Ĥ by observing only the method enter and exit events
for collection classes. For example, List.remove takes a
position as an input and returns the removed list element
at that position, allowing us to deduce the effect on
the heap without knowing the list content ahead of
time. Note that unlike concrete fields, abstract fields
may have multiple edges between two instances (e.g.
if a list contains duplicates) or many outgoing edges
from an instance (since containers usually have many
elements.) Using only method events does not let us
build an absolutely precise model; DeLight does not,
for example, handle element position in a list, removal
via an iterator, or null value in a map.

2.3 Heap Abstractions

The heap series graph Ĥ is quite large: the number
of nodes and edges easily reaches millions. To support
efficient computation on Ĥ, DeLight provides several
heap abstractions aimed to further reduce the size of the
graph using semantic domain knowledge while preserving
properties of interest. We use heap abstractions to derive
approximate answers to queries which we then refine
by selectively querying Ĥ. The critical property is the

[[call List.add(l, o)]]H = H ∪ (l content−−−−→ o)
[[call List.add(l, i, o)]]H = H ∪ (l content−−−−→ o) where i ∈ Z
[[call List.clear(l)]]H = H \ (l content−−−−→ V)
[[call List.remove(l, o)]]H = H \ (l content−−−−→ o)
[[call List.remove(l, i); return o]]H =

= H \ (l content−−−−→ o) where i ∈ Z
[[call Map.put(m, k, v); return o]]H =

=
(
H \ (m values−−−→ o)

)
∪ (m values−−−→ v)

[[call Map.clear(m)]]H = H \ (m values−−−→ V)
[[call Map.remove(m, k); return o]]H = H \ (m values−−−→ o)

Figure 4. A selection of the heap update rules for
abstract fields: here l is an instance of java.util.ArrayList;
k, v, and o are arbitrary values; m is an instance of
java.util.HashMap.

heap connectivity: if two values are connected by a path
in Ht for some t, then they are connected in the heap
abstraction A(Ĥ) of Ĥ.

In the heap series Ĥ, we call a simple path

a0
(f1,T1)−−−−→ . . .

(fk,Tk)−−−−−→ ak

viable if the edge intervals share a common time. The
lifetime of the path is the intersection ∩iTi of these time
intervals. Viable paths have non-empty lifetimes.
Our abstraction techniques are all based on the idea
of summarizing groups of objects and groups of field
connections akin to type-based field-aware static anal-
ysis [2]. The research question is what makes a good
group of objects and how to merge edges in Ĥ. We at-
tempted to answer this question by empirically analyzing
heap series graphs while keeping the end-to-end perspec-
tive of how DeLight is used by MatchMaker. Our
requirement for the abstraction is somewhat different
from static analysis since our goal is to optimize queries
rather than prove properties. We use terminology of
graph homomorphisms to describe our technique.
Graph homomorphisms are natural graph transforma-
tions that preserve connectedness, and they are charac-
terized by two functions: cluster that maps nodes of Ĥ to
nodes of A(Ĥ) and relabel that maps edge labels of Ĥ to
edge labels of A(Ĥ). The soundness of these abstractions
rests on the following property: for any viable path ai

in Ĥ there exists a viable path bi in A(Ĥ) such that
both paths have the same length and bi = cluster(ai).
The reverse is not always true: there are false candidate
abstract paths that have no concrete counterparts. We
call this process of taking a candidate viable path in
the abstraction and attempting to find a concrete path
concretization.

Since viability of paths is determined by the time
intervals on the edges, relabel must respect these intervals.
A simple way to ensure that is to only allow over
approximation where a time interval is mapped to a
larger set of times. If a group of edges is mapped to the
same edge in the abstraction, then the abstract edge
time interval must at the very least include the union of
the concrete time intervals.
Our graph homomorphisms are composed in the order
they are described. The composition respects the prop-
erty as long as each individual transformation does. The
quality of abstraction is the measure of how many false
candidate paths are introduced. We found the follow-
ing techniques effective in reducing the size of the heap
abstraction, our main goal, but having high quality of
abstraction.

Type-based abstraction Type-based clustering is ap-
pealing since a typical heap connectivity query is con-
cerned with the types of the end-points rather than
concrete instances. Intuitively, objects of the same type
play the same role in the way they interact with the rest
of the heap.
This abstraction introduces many false paths for contain-
ers, for which the type carries very little information. For
example, if all maps are deemed equivalent, any object
pointing to a map reaches any value of any map. There-
fore, we parametrize our abstraction by exception types,
for which instances are not merged. Collection types are
the only exception types in our implementation.
To summarize, type-based abstraction is defined as:

cluster(o) =
{

o for exception types
type(o) otherwise

Field abstraction Edge labels in the heap series are
pairs of a time interval and a field. Field abstraction
strips the field from the pair, leaving only the time
interval:

relabel((f, T)) = T

The effect is that viable paths remain viable but they lack
information about fields between every two consecutive
clusters. The job of the concretizer is to select fields that
would connect objects belonging to the clusters of the
candidate path. Multiple such fields are possible if the
fields are declared in the same class and have the same
value type.

Time abstraction The edges in the resulting abstrac-
tion are labelled with just time intervals. Conceptually,
this abstraction graph is now simple since the time inter-
vals can be merged together with the set union operation.
Time abstraction amounts to expanding the merged time
intervals to larger sets: relabel(T) = T ′, where T ⊆ T ′.

47600

47700

47800

47900

48000

48100

48200

1 4 16 64 256 1024N =
47600

47700

47800

47900

48000

48100

48200

1 4 16 64 256 1024N =

Original graph

Abstraction

Figure 5. Effect of the time abstraction: Y -axis is the
number of edges with N or less contiguous ranges in
their time intervals.

This operation increases lifetimes of all paths, and so it
preserves viable paths.
The gain comes from the smaller representation of the
time intervals. We represent them with a list of disjoint
half-open ranges like [l, h). A frequently updated field
has an irregular time interval with many such ranges.
Determining viability of a path requires taking set inter-
section of edge time intervals along the path. When a
complex time interval occurs on the path, it adversely
affects the computation time. Moreover, since we are
dealing with large data structures, memory representa-
tion becomes important. Complex time intervals cannot
be simply represented in memory and so require more
space. Time abstraction applies a simple expansion to
every range [l, h) in the interval:

[⌊
l
r

⌋
· r,
⌈

h
r

⌉
· r
)
(where

r is a tunable parameter). When the distance between
two consecutive ranges is smaller than r, they collapse
into a single range.
Figure 5 (red) shows the number of such ranges in time
intervals in a real heap series built from trace e_3_25
(see Sec. 6.1). After expanding edges with more than 10
ranges with r = 128∗1024, the edges with irregular time
intervals disappear from the abstraction (blue).

3. DeLight Collection and Storage
The basic architecture of DeLight system is shown
in Fig. 6. The components of our system are: the
trace collector that extracts traces from executions of
programs, the query engine that organizes traces and
exposes the high-level interface, and the lower-level

Figure 6. System architecture

Figure 7. Collection agent

storage databases. MatchMaker is the target client of
DeLight.
The work flow of building a database of program behav-
iors consists of four steps:

1. Executing the subject Java program with a dynami-
cally instrumenting Java agent (Sec. 3.1).

2. Interacting with the program while the agent records
the raw log.

3. Off-line processing of the raw log and storing the data
in databases (Sec. 3.2).

4. Registering the new trace with the query engine under
a single query interface (Sec. 3.3).

3.1 Instrumentation
Instrumentation is performed dynamically using ASM
bytecode instrumentation framework [1]. Every applica-
tion class is modified upon loading to record its events
in a raw log file. Once all the desired functionality of
the program is exercised, the collection agent processes
the log file and bulk inserts the data into a relational
database (see Fig. 7).

Filtering events Significant portion of events are
safely ignored without degrading the quality of the syn-
thesized code. Statements are instrumented selectively
emphasizing object interactions in the application code
as opposed to internals of the language library.
First, the trace collector does not distinguish between
primitive values and treats them all as a single abstract

value. In a high-level language like Java, much of the
program logic is encoded in the interaction between
objects rather than in the manipulation of primitive
values.
Second, the recording framework ignores most of the
events related to classes in the Java standard library. It
does not record any field reads or writes to instances
of java.∗ and javax.∗ classes. Among JDK classes, it only
records public method boundary events for commonly
used collection classes such as java.util.ArrayList and java
.util.HashMap. The rest of the program (e.g. application
packages such as org.eclipse.∗) is fully recorded. Since the
collector instruments the methods themselves, callbacks
from the standard library to the application are still
recorded.

Concurrency DeLight handles concurrent programs
by serializing events from multiple threads with a lock
to the single raw log. Thus, MatchMaker produces
code that may potentially be executed concurrently since
it uses events from DeLight database. Currently, De-
Light does not log synchronization statements. We have
not yet found it to be problematic since frameworks like
Eclipse manage thread coordination themselves, reliev-
ing user code from manual concurrency control. With-
out thread synchronization information in the database,
MatchMaker cannot generate correct synchronization
statements in the cases where user thread coordination
is required.

3.2 Data Representation

The two data model presentations call for different kinds
of representations. Call tree view closely matches the
relational table form. All events are stored in a single
nested-set table that has columns for the timestamp,
thread, stack depth, successor (matching method exit
event), and event-specific details. Parameters to method
calls and object to type mapping are stored in separate
tables. The underlying RDBMS engine is MySQL 5.1.
The tables are augmented with specialized database
indexes to optimize slicing queries.
For graph-based heap series, we use the graph database
Neo4J 1.2 [12]. This database is optimized for graph
traversals which is the main use-case in DeLight. The
heap series is built by replaying the entire event sequence.
Heap abstractions are represented using in-memory
graph data structures and are built from the heap series.

3.3 Benefits of the Data-Driven Approach

The advantage of a data-driven engine is that it scales
well by partitioning the trace data and running the
queries on each partition in parallel. In addition to
trace-level parallelism, each individual trace can be split
into several smaller traces in order to balance the lengths

of traces across partitions. The more traces are put into
DeLight, the more queries it can potentially answer
since more of the program behavior is exercised.

4. Critical Chain Algorithm
MatchMaker algorithm performs three different kinds
of analysis on the data in order to generate code. First, it
finds critical chains connecting objects of the two given
types as we describe in this section. Then it computes
a slice based on the events in each critical chain, and
finally, it synthesizes the code from the slices (Sec. 5).
A chain is a simple path in the heap connecting objects
via directed edges labeled with concrete or abstract fields.
As the heap evolves over time, chains form and disappear,
but with the entire sequence of heaps at hand, we are
able to determine the earliest moment when the two
given objects get connected by a chain.
We call the event corresponding to this moment the
critical event, and any chain between the two objects
created by the critical event is called a critical chain
(recall from Fig. 3 that there can be more than one).
Formally, a critical event occurs at the minimal time t
for which there is a chain in heap Ht connecting the two
objects of interest. Any chain in Ht connecting the two
objects will be a critical chain.
We formulate the critical event query as a data flow
equation on Ĥ. Let us denote the time interval during
which objects a and b are connected via some viable chain
as viable(a, b). It is the union of lifetimes of all viable
paths between a and b, as described by the following
inductive definition:

viable(a, b) =
⋃

c
(f,T)−−−→b∈Ĥ

(viable(a, c) ∩ T)

(union is taken over incoming edges of b).
The right hand side is monotonic in viable(a, ·) and,
thus, could be used for the least fixed point computation
with initial values viable(a, b) = ⊥ for a 6= b and
viable(a, a) = >. The minimal time in viable(a, b) is
the critical time for a and b. However, applying the
equation directly to Ĥ is intractable due to the size of
the graph (millions of objects), the required number of
iterations (long paths in the heap), and complex time
intervals (millions of field writes).
Thus, we have developed an algorithm for computing
critical chains that makes use of heap abstraction A(Ĥ)
to drive an exhaustive graph search on heap series
Ĥ. By framing the problem as graph search, we can
also do more than just finding the very first critical
chain. We give the user the ability to search for the
subsequent chains, providing an iterator-like interface to

Input: chain {b0, . . . , bk} in A(Ĥ), graph view G of Ĥ
for i = 0 to k do

choose ai such that cluster(ai) = bi and
{a0, . . . , ai} is a simple, viable chain in G

return {ai} or the shortest unsatisfiable prefix of {bi}

Figure 8. Algorithm Concretize.

Input: clusters s, t ∈ A(Ĥ), graph view G of Ĥ
AG ← restriction of A(Ĥ) to duration time interval of G and

subgraph of nodes reachable from s and to t
Q← 〈{s}〉
while Q is non-empty do

b = {b0, . . . , bk} ← Q
if bk = t then

match Concretize(b, G):
case a in G ⇒ return a
case prefix c v b ⇒ remove all p ∈ Q such that c v p

else
for all bk → o ∈ AG do

if b’ = {b0, . . . , bk, o} is simple and viable then
Q← Q ∪ b’

Figure 9. Algorithm Search

query chains between two objects. The algorithm consists
of two parts: Search that performs a traversal of A(Ĥ)
to find candidate paths and Concretize that checks
whether the candidate paths have concrete counterparts
in Ĥ.

4.1 Concretization
Algorithm Concretize (Fig. 8) is the necessary valida-
tion routine that takes a candidate chain in A(Ĥ) and
attempts to find a corresponding chain in Ĥ. In addition
to a candidate chain, it takes as input a graph view of Ĥ
that (1) excludes certain set of edges, (2) restricts edge
time intervals to a certain duration time interval. The
algorithm iteratively expands nodes in Ĥ that are in the
view and match the candidate chain in A(Ĥ). If it fails
to find the full concrete chain, it reports the shortest
unsatisfiable prefix of the candidate chain.

4.2 Graph Search
Algorithm Search (Fig. 9) is an all-paths breadth-first
search algorithm on A(Ĥ). It takes source and target
clusters in the abstraction graph, and the graph view
of Ĥ. It builds a queue of candidate chains in A(Ĥ) in
a breadth-first fashion, calling Concretize when the
end node of the chain matches the target cluster. If
concretization succeeds, the algorithm stops; otherwise,
it eliminates all chains in the queue that start from the
same unsatisfiable prefix.

4.3 Query Interface
Combination of graph search and concretization allows
us to define the following arsenal of high-level queries
for enumerating meaningful chains in program traces.

Find a chain between two types The first time the
user tries to search for a critical chain, he/she may only
have the types of the end points in mind. Type-based
clustering in the heap abstraction is particularly suitable
to this kind of query. To answer such query, we simply
execute Search on Ĥ with the two input types.
Find a critical chain between two objects Once
we have one chain between two objects, we can minimize
the critical event time by iterative execution of Search
on a graph view of Ĥ with the time duration [0, t), where
t is the critical time of the previous chain. The view also
restricts the source and end objects of the chain to the
ones in the previous chain. The algorithm converges
when no new chain is found.
Find the next chain Sometimes, the first chain might
not be the one that is desirable. Therefore, one may need
to find a subsequent chain by specifying an edge to drop
from the current chain in Ĥ. This is done by passing a
graph view to Search that skips certain edges in Ĥ and
restricts time intervals to [t,∞), where t is the critical
event time of the first chain.

4.4 Benefits of the Heap Abstraction
Apart from significantly reducing the size of the graphs,
heap abstractions improve the search algorithm. First,
the queue of abstract paths is a more compact repre-
sentation than a queue of concrete paths: they share
prefixes, have simpler time intervals, and do not have
fields. Second, concretization limits expansion to only a
subset of concrete nodes improving performance of the
graph database (since heap series can only be partially
loaded into memory, it must reside on disk). Finally,
non-viable abstract paths are eagerly eliminated during
search. For example, the query used in the user study
(Sec. 6.4) eliminates around 10% of abstract paths each
accounting for all concrete paths having it as a prefix.

5. MatchMaker Synthesis Algorithm
The goal of the synthesis algorithm is to produce user
code that when called by the framework causes a critical
chain to form. Its starting point are the critical chains
computed in Sec. 4. Each critical chain identifies the set
of events that created each of its links, but these events
are usually deep inside the framework and invisible to the
user. In order to derive user code from these events, the
algorithm follows a two-step process: (1) first, it identifies
for each critical chain the actions of the user code that
led to its creation, and (2) then it generalizes from those
specific instances to produce the essential code needed
to create the chain. The first step is achieved through a
form of slicing, while the second step is achieved through
a new projection algorithm that eliminates trace-specific
details from the slice. The sections that follow elaborate
on each of these steps.

5.1 Dynamic Thin Slicing

The synthesis algorithm relies on a dynamic form of
thin slicing, an approach to slicing pioneered by Srid-
haran et al. that has been shown to be very effective
when computing slices for the purpose of program un-
derstanding [15, 19]. The basic observation behind thin
slicing is that traditional slices contain too much in-
formation; for example, a slice for an operation that
retrieves an element from a data-structure will contain
not only the event that inserted the element into the
data-structure but also many other events that modi-
fied the data-structure, including many that added and
removed other unrelated elements.
Thin slicing avoids many of these irrelevant events by
ignoring value flows to base pointers of heap accesses;
for example, for a field write b.f ← a, thin slicing only
follows value flows to a, whereas a traditional slicing
algorithm would also follow value flows to b. Thin slicing
also does not follow control dependencies. In some cases,
this may lose important information, so in the original
application of thin slicing, the programmer was given
the ability to explore some of these value flows to base
pointers or follow some of the control dependence to get
a better understanding of the program behavior (they
call these expansions of thin slicing). In our case, the
algorithm cannot rely on the programmer to decide when
it might be useful to follow value flows to base pointers,
so instead it applies a set of simple heuristics to do
automatic expansion based on the observation that the
synthesis algorithm cares primarily about user code and
not so much about what happens in framework code:

• When slicing on value a the assignments b.f ← a
or a ← b.f causes the algorithm to follow the base
pointer b if and only if: (a) the statement is within
a framework method, but the value of b is of a
user-defined class, or (b) the statement is within a
user method, and the producer statement and the
consumer statement of the value are not in the same
method.

• When examining a statement e in user code, walk
through the call stack of e and find the nearest call
o′.f() where f is defined in user code and the caller is
part of the framework. Add the dependency between
the call event and e through object o′ to the slice.
The rationale for including this dependency in the
slice is that object o′ must be correctly set in order
for the framework to call the right method f , so e
has a control dependency on o′ to the call event.

We use the symbol S to refer to the dependency relation
computed by the slicing algorithm. A tuple e

o−→ e′

belongs to S whenever the event e is a producer of
the object o which is then directly consumed by the

class WidgetViewer { // Framework class
void main() {
init(); // e1
initViews(); // e6

}
void init(...) {
Widget u = ... // e2
u.init(); // e3

}
void initViews(...) {
Widget u = ... // e7
u.regViews(); // e8

}
static void addView(View x) { ... }

}
class MyWidget extends Widget { // User class

private MyView f;
@Override void init() {
MyView x = new MyView(); // e4
this.f = x; // e5

}
@Override void regViews() {
MyView x = getView(); // e9
WidgetViewer.addView(x); // e12

}
private MyView getView() {
MyView x = this.f; // e10
return x; // e11

}
}

Figure 10. Example code.

event e′.1 Figure 11 shows a fragment of the slice for
the statement WidgetViewer.addView(x) in Fig. 10. In this
simple example, we assume that MyWidget and MyView
are user classes while WidgetViewer, Widget, and View are
framework classes.
The approach defined above raises an important ques-
tion: how does the system know where to draw the
boundary between user and framework code? Match-
Maker draws the boundary by relying on the Java
package mechanism. In Eclipse, each plug-in corresponds
to a bundle of packages. For example, the Eclipse Java
Development Tools plug-in corresponds to a bundle con-
taining all packages with the name org.eclipse.jdt.∗, and
the TeXlipse plug-in corresponds to a bundle containing
all packages with the name org.texlipse.∗. For each plug-in
in the DeLight program behavior database, we man-
ually specify its corresponding bundle. The classes in
the bundles are potential user classes, and classes not
in any bundle are considered framework classes. When
MatchMaker finds a critical chain from object A to
object B, if the class of A is in some bundle X, then
MatchMaker treats all classes in X as user classes.

1 We use the notation from dependence analysis of drawing arrows
from a producer to a consumer, rather than the arguably less
intuitive convention, sometimes used in the slicing literature, of
drawing arrows backwards.

Widget u=... // e2

u.init() // e3

u

this.f=x // e5

this

MyView x=new MyView() // e4

x

MyView x=this.f // e10

x

Widget u=... // e7

u.regViews() // e8

u

MyView x=getView() // e9

this

this

return x // e11

x

WidgetViewer.addView(x) // e12

x

u u

Figure 11. Thin slice for the event WidgetViewer.addView
(x) in Fig. 10. Shaded events are framework events.

MatchMaker does the same thing to B, and all other
classes are treated as framework class. By this means,
MatchMaker gets the framework-user separation and
uses it to guide slicing and projection.

5.2 Projection to User Code

The slice created by MatchMaker contains all the
statements that were necessary to create the critical
chain in a particular heap. However, a lot of the code in
the slice belongs to the framework, and is therefore of
no interest to the user. Additionally, the slice contains
many details that are too specific to a particular example,
such as transitive copies of objects through internal
fields, or calls to functions internal to the user code.
MatchMaker addresses this problem by computing
a projected slice that eliminates framework code as
well as superfluous details from the original slice. The
projection process also has the effect of normalizing
the slices, making it easier to compare the results from
many different traces. Specifically, projection causes
many slices to become identical, and those that remain
different usually correspond to different ways of using
the framework.
The essence of the interaction between user and frame-
work code is captured by calls that cross the framework-
user boundary. Calls from the framework to the user are
called fu-calls, and calls from the user code to the frame-
work are called uf-calls. In the example from Fig. 10, e3
and e8 are fu-calls, while e12 is a uf-call; the rest of the
calls, like e9 are termed l-calls, because they stay local
to either the framework or the user code (see Fig. 12).
fu-calls and uf-calls describe the interaction between
framework and user: fu-calls tell us which classes to
extend and which method to override, while uf-calls
tell us which APIs to call. The projected slice must

Figure 12. User code and framework interaction.

preserve information about fu-calls and uf-calls as well
as relevant user code, but simplify away the complexity
and arbitrariness of the specific sample code from which
the database was built. For the running example, the
projected slice will indicate that init() must write to f
and regViews() must pass the value of f to addView(), but
the fact that this involves a call to getView() is only a
detail of this particular example and not relevant in the
projected slice.
We first introduce several definitions to talk about the
dynamic structure of calls. For any user event e, the
cover of e is the latest enclosing fu-call of e. In other
words, all calls on the stack from cover(e) to e are user
l-calls except for cover(e) itself which must reside in the
framework code but invoke a user method. For example,
in the sample program e3 = cover(e5) and e8 = cover(e10).
Dually, we define the cover of a framework event to be
its latest enclosing uf-call. We say that an event e is
a framework event (written as F(e)) if it is generated
by a statement in the framework code; otherwise, the
event is a user event (or U(e)). The local producer of
a user event e and an object o, consumed by e, is the
earliest event that produced object o and has the same
cover as e. The local producer is always a user event.
For example, the local producer of the object x in e12 is
e10 since they have the same cover e8.
The projection algorithm takes the set of events E
establishing the critical chain as a starting point. It
uses the slicing relation S and the function cover, both
provided by DeLight, to compute the projected slice
Ê consisting only of user events. The algorithm consists
of two steps: the base step computes the initial set Ê
from E and the iteration step expands Ê to reach the
least fixed point.

Base step First, every user event from E is included:
{e | e ∈ E ∧ U(e)}. Next, from the set E∗ = S∗(E) of all
events in the thin slice, the algorithm adds the following
groups of user events:

• covers of the framework events:

{cover(e) | e ∈ E∗ ∧ F(e)}

• return events of the covers of the user events:

{return event of the call cover(e) | e ∈ E∗ ∧ U(e)}

• user events that produce data consumed by the
framework events:

{e′ | e ∈ E∗ ∧ F(e) ∧ U(e′) ∧
(
∃o : e′

o−→ e ∈ S
)
}

Iteration At every step, the algorithm picks an event
e ∈ Ê and an object o that it consumes. If there is no
local producer, the producer e′ (i.e. e′

o−→ e ∈ S) must lie
outside of the call cover(e). In that case, the algorithm
adds e′ to Ê only if e′ is a user event. If there is a local
producer for e and o, then the algorithm adds it only if
that local producer got the value from the heap or from
a constructor. In the example, this is relevant when the
algorithm picks event e10 and object this; in that case,
the local producer of this is event e9, but e9 gets the value
from the parameter list of the call e8, so e9 is not added
to Ê.
Using the above rules, MatchMaker computes the
least fixed point of Ê. It is easy to synthesize code
from the projected slice Ê: the covers tell us which
methods to override and the events in Ê tell us what
instructions to put in these overridden method, while the
dependency relation S glues the instructions together
by data dependency and gives a partial order on the
instructions. In this sense, the projected slice is as
expressive as user source code, but it elides low-level
details such as reordering of independent instructions.
Just before synthesizing the code, MatchMaker havs
two more things to do. First, MatchMaker finds for
each user class A the most generic framework class to
extend from. For each fu-call method A.f, let A_f indicate
the original declaring class of f, then A must be a subclass
of A_f; for each uf-call g(x0, x1, ..., xk) where x0 is the
receiver and the rest xi’s are actual parameters, if the
original type of the j-th formal parameter (including
0-th, the receiver) is A_j and xj is an instance of A, then
A must be a subclass of A_j. MatchMaker extracts
from fu-calls and uf-calls all these subclass constraints,
and computes the join of these constraint to get a lower
bound of class A, which is the most generic framework
class for A to extend from. In fact, a similar process is
employed to determine for each used framework class B,
the most generic class to use in place of B.
Finally, MatchMaker gives each user class A a pretty
name: if A is determined to extend from C, then A is called
MyC. MatchMaker names each variable of type X by
making the first letter of X lower case and appending a

unique number suffix. MatchMaker also renames each
field X.f of type Y to X.fY (again add numbers to avoid
conflict field names). Unresolved variables are named ??,
the holes in the code returned to the user.

6. Evaluation
We have implemented MatchMaker and performed a
user study (see Sec. 6.4) that demonstrates the positive
effect of our tool on developer productivity on a challenge
problem inspired by our motivating example. To assess
the extent of validity of MatchMaker assumption,
we have also performed a generality case study (see
Sec. 6.3). In the case study, we analyzed the quality of
the code synthesized by the projection algorithm for a
number of pairs of classes from Eclipse.
We open this section with a description of the experi-
mental setup: the amount of trace data we collected and
DeLight collection performance. Sec. 6.2 focuses on the
critical chain algorithm performance and demonstrates
that DeLight finds chains in just a few seconds on
100 GB of trace data, implying that DeLight can be a
foundation for an interactive tool like MatchMaker.

6.1 Experimental Setup

We have collected around 100 GB of data from nine
executions of Eclipse 3.6.1 with several plug-ins installed
(see Fig. 13). All executions except one took less than 5
minutes. We performed the following actions in Eclipse:

1. clicking on items in the toolbar and menu;
2. editing Java and .properties files;
3. editing BibTEX and TEX files using TeXlipse;
4. editing a Python file using PyDev;
5. editing a grammar using ANTLR IDE;
6. invoking a shortcut (e.g. to save a document);
7. navigating using outline viewer;
8. using a spell checker to correct a word;
9. invoking auto completion while typing in an editor;

10. browsing a CVS repository and its commit history;
11. running a sample RCP application;
12. running a sample Eclipse editor plug-in application.

These actions were selected as a representative sample
of what a user may do in Eclipse, not as a sample of
MatchMaker queries we expected to run. We did
strive for completeness, however, in that we tried to
exercise similar functionality (such as auto-complete) in
all editors.
The effect of instrumentation on the subject application
is noticeable in the early phase of instrumentation when
a large number of classes are loaded, instrumented, and
verified by the class loader. Once dynamic instrumen-
tation completes, the application runs slower but still
at an interactive speed, allowing us to use features like

Database # of Execution Processing SQL DB Heap series Heap abstrac- Build Graph DB
events time time size graph size tion size time size

e_2_28 68 M <5 min 61 min 6.9 GB 0.887 M / 1.675 M 50 K / 75 K 199 s 334 MB
e_3_3 573 M 60 min 1076 min 57.3 GB 4.143 M / 9.098 M 225 K / 292 K 35 m 1.7 GB
e_3_25 37 M <5 min 28 min 3.6 GB 0.495 M / 1.206 M 30 K / 48 K 159 s 223 MB
e_3_26 81 M <5 min 76 min 7.9 GB 1.333 M / 2.747 M 67 K / 93 K 6 m 531 MB
e_3_27 52 M <5 min 47 min 5.1 GB 0.599 M / 1.403 M 36 K / 57 K 200 s 262 MB
c_3_28 24 M <5 min 19 min 2.3 GB 0.365 M / 0.840 M 22 K / 35 K 98 s 158 MB
e_3_31 35 M <5 min 30 min 3.6 GB 0.686 M / 1.272 M 39 K / 56 K 181 s 255 MB
t_4_3 29 M <5 min 24 min 2.9 GB 0.416 M / 1.004 M 26 K / 41 K 121 s 186 MB
h_4_4 3 M <5 min 3 min 395 MB 0.100 M / 0.230 M 4 K / 7 K 12 s 44 MB

Figure 13. Collected execution data. For graph sizes, n/e means a graph with n nodes and e edges. Execution time
is the running time of the subject application. Processing time is the time to process and store a trace in MySQL.
Heap build time is the aggregate time to construct heap series and abstraction and store graphs Neo4J.

auto-completion without causing internal Eclipse time-
outs. The numbers in Fig. 13 suggest that 1 minute of
execution produces roughly 1 GB of data and requires
10 to 20 minutes for off-line processing.

We used a quad-core machine with 7 GB RAM for
DeLight collection and MatchMaker queries. Both
tools are implemented in Scala. We have allocated
5 GB to Java HotSpot 64-bit JVM 1.6.0. We ran
Neo4J 1.2 graph database in the same JVM instance
and MySQL 5.1 on the same machine.

6.2 DeLight Query Performance

To evaluate performance of DeLight critical chain
queries, we took a sample of pairs of types (see Fig. 14).
For every such pair, we asked DeLight to find a chain for
every pair of subtypes on every database (nine of them)
in succession. We report the total number of chains found
and the average time per chain. If the chain was not
found, it could be because of two reasons: Search ran
out of the imposed execution time bound, or the chain
was genuinely missing from the collected data. We report
the total number of time-outs (and also as a percentage
of all failed queries). For the remaining missing chains,
we indicate the average time. We manually inspected
the pairs that time-out and concluded that the chains,
indeed, are unlikely to be present (often, since the two
end types belong to two distinct plug-ins.)

For every chain, we executed the critical chain query. We
show the number of queries that time-out in Search and
the average time for the remaining successful queries.
Note that a timed-out critical chain query does not
necessarily result in a wrong answer. It simply indicates
that Search was unable to prove non-existence of a
path in a graph view. Even if the answer is not exact, the
current candidate chain returned by the critical chain
algorithm is likely to be good enough for MatchMaker.

6.3 MatchMaker Generality Case Study
We have performed the following experiment to evaluate
the generality of MatchMaker in the context of
Eclipse. During the process of developing MatchMaker
we have learned four class pairs for which the tool
generates adequate source code: Editor to Scanner, Editor to
ICompletionProposal (an auto-completion choice in Eclipse),
Menu to Action, and Toolbar to Action. The synthesized code
is close to the code that would be written by a human
expert, except for two kinds of imperfections:
• Some method call parameters may not resolve and
are shown as ?? (holes). The human needs to consult
the documentation and tutorials to find out the exact
values for these holes.

• Some statements cannot be captured by the critical
chain, such as the call to reconciler.setDamager() in the
Editor-Scanner example (see Fig. 2). The critical chain
chosen by MatchMaker passes through the link
from the reconciler to the repairer, but not through
the damager, so MatchMaker is unable to find the
call to setDamager. The human needs to manually add
the missing statements.

We think that the additional job is relatively easy for
the human, because she now has the knowledge of all
the necessary classes and majority of the API calls, and
by using them as keywords to search the tutorials and
documents, she can soon learn about the missing calls
and fill in the holes. In Figure 15, we show for each class
pair the extra changes the human needs to make.
In addition to the above mentioned four class pairs,
we tried a dozen more pairs from Eclipse. We selected
these pairs as follows: we took eclipse.jdt.internal.ui plug-
in, treated everything in eclipse.jdt.∗ as the user code,
and extracted all framework classes that are extended
and used inside this plug-in. There are more than two
hundred of these classes. We examined these classes
manually and picked pairs of classes that seemed relevant
to each other judging from their names. We were able

Source type Target type Find a chain Find a critical chain
(# of subtypes) (# of subtypes) found not found t.o. avg

avg (max) time t.o. (%) avg time time
AbstractTextEditor (17) RuleBasedScanner (40) 46 1.3 s (4.6 s) 14 (0.2 %) 1 ms 10 1.6 s
AbstractTextEditor (17) ICompletionProposal (44) 37 2.8 s (11.6 s) 20 (0.3 %) 1 ms 20 0.9 s
WorkbenchWindow (1) PartEventAction (14) 74 1.4 s (20.6 s) 6 (11.5 %) 1 ms 66 147 ms

Figure 14. Critical chain computation performance. Search execution was bounded by 30 seconds (“t.o.” indicates
the number of queries in which the algorithm ran out of time.)

Source type Target type # #
holes miss

Editor Scanner 1 1
Editor ICompletionProposal 1 0
Menu Action 1 0
Toolbar Action 1 0
ITextEditor IContentOutlinePage 0 1
MonoReconciler IReconcilingStrategy 1 0
ITextEditor QuickAssistAssistant 0 1
QuickAssistAssistant IQuickAssistProcessor 0 0
ITextEditor ITextHover 0 0
ISpellCheckEngine ISpellChecker 1 1
ITextEditor SelectionHistory 0 0
ITextEditor SemanticHighlighting 1 1
IContentAssist- ContentAssist-
-Processor -InvocationContext 1 0
ITextEditor IAutoEditStrategy 0 0
ITextEditor ContextBased-

-FormattingStrategy 1 2
ITextEditor TextFile-

-DocumentProvider 0 0

Figure 15. Generality evaluation. First column shows
the names of the class pairs. "# holes" and "# miss"
list the number of holes and missing statements in the
generated code.

to pick 16 pairs of classes that we thought related with
each other. Then we ran MatchMaker on each of
these pairs, and examined the generated code to see
whether it is acceptable glue code to establish interaction
between the pair of classes, and measure how far it is from
the functionally correct version. For 12 out of these 16
pairs MatchMaker generates reasonable code; and for
the remaining 4 pairs MatchMaker generates empty
code, but we have yet to find whether it is because of
incompleteness of our program behavior database or
because of limitations of MatchMaker hypothesis.
From Figure 15 we can see that for the pairs for which
MatchMaker generates solutions, the resulting code
is quite close to the correct answer. This suggests that
the MatchMaker approach can be generally applied
to a wider range and is not restricted to the elaborated
example.

6.4 User Study
We have conducted a user study to measure the effect
of MatchMaker on programmer productivity. The
results of the user study show that for the programming

task we tested, MatchMaker improved programmer
productivity by 49 percent on average, and the improve-
ment is statistically significant.
Task Description For our user study, subjects were
asked to implement Syntax Highlighting in an editor for
a new language—the Sketch language developed by our
group. Specifically, the subjects were asked to implement
syntax highlighting for two keywords in the language:
implements and the operator ??. As a starting point, we
provided them with an incomplete class that extends
and overrides RuleBasedScanner. The class implemented
highlighting only for the keyword implements, but they
had to complete it and connect it to the editor by writing
glue code like the one in Fig. 2.
As can be seen from Sec. 6.3, the code generated by
MatchMaker might not be perfect: it may contain
holes or miss statements. To observe how users deal with
imperfect synthesized code, we intentionally chose a task
for which MatchMaker generates code with a hole
and a missing statement, so the MatchMaker user
had to look up the documentation and tutorials on the
web to fill the hole and add the missing statement. We
observed that adding the missing statement is the most
time-consuming work item for MatchMaker users. We
could have chosen another task like matching Toolbar
and Action, for which MatchMaker synthesizes nearly
perfect code, and the MatchMaker users just need to
copy and paste the generated code and do simple editing,
and might perform even better, but that would not give
us a comprehensive example of using MatchMaker.
Methodology We recruited participants through mass
advertising around the campuses of MIT and Harvard
with the promise of two free movie tickets for any
participant who attends the study. When participants
arrived, they were randomly assigned to one of two
groups: those in the control group were simply given
a description of the task and were told they could
use any information available on the Internet to help
them complete the study; those in the experimental
group were given an additional 10 minutes to review a
tutorial on MatchMaker. The tutorial showed how to
use MatchMaker on an unrelated matching problem.
The subjects in the experimental group were advised
to consult both MatchMaker and the tutorials and

documentation on the web because the result given by
MatchMaker may contain holes or miss important
statements. Subjects in the control group did not know
they were in the control group, or even of the existence
of MatchMaker; they were led to believe that the
purpose of the study is simply to analyze programmer’s
use of the Eclipse framework.

The work environment was a virtual machine created
with VirtualBox. The virtual machine was set up with
Eclipse IDE, Google Chrome browser, and other fre-
quently used applications to allow users to read various
documentation formats. The virtual machine was set
up to do screen-captures at 1 frame per second; this,
together with the “local history” feature of Eclipse IDE
and the subject’s browsing history gave us a very com-
plete picture of the programmer’s actions during the
user study.

Subjects A total of nine subjects completed the user
study. Four of them were randomly assigned to the
experimental group (we will call them MatchMaker
users M1, M2, M3, and M4), four others (we will call
them C1, C2, C3, and C4) were assigned to the control
group, and the other one was an expert (E0) in the
Eclipse framework.

All subjects in both experimental and control groups had
competent Java programming experience, but none of
them had ever written any plug-in for Eclipse or similar
object-oriented frameworks. On the other hand, E0 had
five years of experience writing Eclipse plug-ins – it is
safe to say that he knows significantly more about the
Eclipse framework than we do. He was firstly assigned
to the experimental group and given the MatchMaker
tool, but he never used it because he was extremely
comfortable writing Eclipse code without the aid of
the tool. After he finished the task he told us in the
questionnaire that he was an expert. Therefore we put
him into a separate category.

Aside from the nine subjects who finished the task, there
were another three subjects (X1, X2, X3) who did only
part of the task and were excluded from the result: X1
was assigned to the control group. He spent around 40
minutes but still did not finish the glue code, and then he
was distracted by a phone call and had to quit the study.
X2 was assigned to the experimental group. He spent
about 20 minutes and successfully established partial
connection (see Phase 2 of Sec. 6.4.2) between editor
and scanner, and then he also quit because of a phone
call. X3 was assigned to the control group. He spent
around half an hour but did not finish the glue code,
and complained to us that he was totally clueless and
felt that he “would never finish the task”, and then he
quit.

6.4.1 Result

Figure 16 shows time spent on the task by each subject;
the total time consumption is split into four work items:
Glue Coding is the time spent writing and debugging
glue code to match the Editor class with the Scanner
class. By glue code we mean the source code that pieces
components in the framework together, such as the code
shown in Fig. 2.
Web Browsing for Glue Code is the time spent
browsing the web (including searching and reading the
documentation, tutorials, etc.) to find out how to write
glue code.
Task Coding is the time spent writing task code to
complete the Scanner. Task code is the source code in
the subclass of RuleBasedScanner that identifies the two
keywords.
Web Browsing for Task Code is the time spent
browsing the web to find out how to write task code.

It is hard to completely separate the web pages that
are related to glue code from those related to task code,
so we use a simple criterion: we can easily tell whether
the programmer was writing glue code or task code, so
any web browsing immediately before writing glue code
is considered Web Browsing for Glue Code, and any
web browsing immediately before writing task code is
considered Web Browsing for Task Code.

Figure 16 also shows two aggregate results: Match-
Maker Users Average and Control Subjects Average,
which were computed by taking arithmetic average of
the experimental group and the control group, respec-
tively. Web Browsing for Glue Code and Glue Coding
together form the time spent on the matching problem
(connecting two classes, Editor and Scanner, together).
From the figure we can see that MatchMaker improves
productivity by reducing the time spent on the match-
ing problem. On average, control subjects spent 82.25
minutes writing the glue code to match Editor with
Scanner and 98 minutes to finish the whole task, while
MatchMaker reduces these times to 35.75 minutes
(56% improvement) and 50.25 minutes (49% improve-
ment), respectively.

The Wilcoxon Rank-Sum test shows that the difference
between the times spent on the whole task by the
control group and the experimental group is statistically
significant (p-value=0.03), and the difference between
the times spent on the matching problem by the control
group and the experimental group is also statistically
significant (p-value=0.03). Even if we add 10 minutes on
reviewing the MatchMaker tutorial to the total time
spent by each MatchMaker user, the experimental
group still performs faster than the control group, and
the p-value of the Wilcoxon Rank-Sum test remains 0.03,

Figure 16. Time spent on the task (in minutes), split
to four work items.

indicating a statistically significant difference between
the two groups.

6.4.2 Observations

We pick a representative MatchMaker user M3 to
describe in detail the process of using MatchMaker
to solve the task. The process is naturally split into four
phases:

Phase 1 M3 started by entering a query “TextEditor
– RuleBasedScanner” into MatchMaker, and got the
synthesized code after less than one minute. Then he
copied and pasted the code into his project, and split it
into several class files. At this point he had to fill the
hole in the statement reconciler.setRepairer(dr, ??), and he
did not know that there is a missing statement reconciler.
setDamager.

Phase 2 M3 then spent around five minutes browsing
the web to find out the value for the hole, and then he
was able to connect the editor with the scanner and
make the program run. Because setDamager was missing,
this was only a partial connection: with only repairer but
no damager set, the editor implements a static form of
syntax highlighting; that is, it will highlight the keywords
when it loads the document, but it will not change their
color when you edit the document.

Phase 3 M3 quickly realized that his editor can only
do static syntax highlighting when he was testing his
program, and he spent a little more than 25 minutes
browsing the web to find out why. After he found that
this was because of the missing setDamager, he fixed it
immediately and got the correct glue code.

Phase 4 M3 spent another 23 minutes developing the
task code, including browsing the web and writing and
debugging the code.

This is a very typical usage of MatchMaker. The other
three users all showed a similar pattern.

The control subjects, on the other hand, struggled with
glue coding. For example, C1 and C2 both browsed the
web for more than 25 minutes before writing the first
line of glue code, and both spent a total of one hour to
produce correct glue code. The other two control subjects
C3 and C4 spent more than 80 minutes browsing the
web to find the answer to the matching problem, and
more than 100 minutes to solve it.

It is worth pointing out that there are a number of tuto-
rials on the web that describe exactly how to implement
syntax highlighting, several of which were visited by all
four control subjects. However, these tutorials are either
poorly written or contain too much information, so it
took them a significant amount of time to extract the rel-
evant facts from these tutorials. As an example, Subject
C3 came to a tutorial with all the details of implement-
ing syntax highlighting within his first three searches,
but this tutorial is very verbose and contains informa-
tion about many components related to text editors in
Eclipse and long descriptions explaining the internal re-
lationship among those components, so C3 spent about 7
minutes reading the tutorial without extracting anything
essential. Instead, he turned to the official API reference
of Eclipse, a JavaDoc style document with little informa-
tion about interactions among classes. After spending
a lot of time on the API reference, C3 discovered an-
other tutorial on the official Eclipse web site, which is
the most authoritative tutorial on this topic. Although
this tutorial is more concise than the previous one, it
is still verbose and hard to read, so C3 quickly closed
it and turned to the API reference again. During Web
Browsing for Glue Code, C3 visited the tutorial on the
Eclipse web site a total of four times, but for the first
three times only read it for less than 2 minutes. At last
he realized that it had the information he needed, read
it carefully for 5 minutes, and got the answer, but he
had already spent more than an hour on web browsing.
The other control subjects faced similar difficulties in de-
ciding which documents were valuable and in extracting
useful information from the long tutorials.

The MatchMaker users also browsed the web for
help, but they did it in a different way. They had
specific goals when browsing: to fill the holes in the
statements generated by MatchMaker, or to find
out the missing statement. In both cases they used
the class names or the method names as keywords to
quickly skim the tutorial or even search around the
tutorial, so they were more efficient in deciding which
tutorials were valuable and locating the essential code
snippet. MatchMaker helped them by improving
their effectiveness in using the online resources. This is

supported by the data: MatchMaker users spent 24.25
minutes on Web Browsing for Glue Code, compared
to 64.5 minutes on average of control subjects. The
Wilcoxon test shows that the difference is statistically
significant (with p-value=0.04).
The framework expert was different from subjects in
both control and experimental groups: he knew exactly
what he was looking for on the web and found it very
quickly, so he could finish glue code in 16 minutes.
Overall, our observations from the subjects allow us to
draw some preliminary conclusions.
• The matching problem is indeed a significant problem
when writing code on top of complex frameworks.
This is particularly true for people who are new to
the framework, and less so for experts.

• Tutorials and documentation available online are not
enough to close the gap between novices and experts.
The class-by-class documentation available through
JavaDoc is particularly unhelpful because it fails to
describe multi-object interactions. Tutorials, in turn,
can be unreliable because of errors and omissions,
but the most important problem is the sheer amount
of data that a novice has to read before beginning to
understand the framework.

• MatchMaker has a statistically significant impact
on programmer productivity by showing programmers
the object interactions that are necessary to achieve
a task. This is true even when the tool fails to give a
complete solution to the task in question.

7. Related work
The idea of using large corpus of data for program
understanding has seen many incarnations in the past
few years. Prospector [9], XSnippet [13], MAPO [20],
PARSEWeb [17], and Strathcona [7] mine source code
repositories and assist programmers in common tasks:
finding call sequences to derive an object of one type
from an object of another type, complex initialization
patterns, and frequent API usage patterns. They do so
by computing relevant code snippets as determined by
the static program context and then applying heuristics
to rank them. Since they primarily utilize static analysis,
the context lacks heap connectivity information. These
tools are geared towards code assistance and do not
produce full templates of the program that may span
multiple classes.
Whyline [8] combines source code analysis with dynamic
analysis to assist debugging by tracing input/output
events together with the program, and suggesting ques-
tions that relate external observations to internal method
calls. DeLight could potentially serve as a common
framework for tools like Whyline and MatchMaker

that need to query program executions. MatchMaker
does not use external observations (GUI or input events)
to locate points of interest in the trace, instead it uses
internal heap configuration to identify important events
in the trace.
PQL [10] proposes a query language for analyzing pro-
gram execution statically or dynamically. It is aimed at
finding design defects in the code and as such requires
detailed knowledge of the code. It is not suitable for
program understanding tasks. PTQL [4] uses its own
relational query language to instrument a program and
dynamically query live executions. FUDA [6] is closely
related in its goal of producing program templates from
example traces. Like our system, this tool also lever-
ages the distinction between user and framework code
to project slices. However, the API trace slicing used in
FUDA only uses shared objects in argument lists of calls
to detect dependencies in the heap. FUDA does not keep
track of the heap updates. All of the above tools rely
on light-weight dynamic analysis and as such, require
manual effort in formulating queries in a specialized lan-
guage or instrumenting programs specifically for these
queries. MatchMaker attempts to reuse databases for
answering all queries, while keeping the query language
very simple.
BugNet [11] and similar tools record the full program
trace for deterministic replay debugging. MatchMaker
does not collect entire execution data. It uses just enough
information from the trace to be able to answer program
synthesis-related queries effectively.
Program synthesis systems such as SKETCH [14] can
produce program text from a slower version of the
same program or its specification via a combinatorial
search over ASTs. The level of deep static reasoning
about program that is needed by SKETCH has not
been achieved for the large scale software like Eclipse.
Moreover, the dynamic features that are prevalent in
Eclipse and its scale make it very hard to employ any
static reasoning except for the very light-weight.
The projection algorithm in Sec. 5.2 is an instance of
dynamic amorphous program slicing [5]. Like traditional
program slicing, amorphous slicing simplifies a program
while preserving a projection of its semantics. Unlike
traditional program slicing that only allows picking a
subset of the program, amorphous slicing may use any
simplifying transformation. The projection algorithm
used by MatchMaker is amorphous because it links
consumer events directly to their local producers.

8. Conclusion
We have presented a new approach to synthesis based
on the analysis of very large amounts of program ex-
ecution data. The approach is made possible by the

DeLight system, which allows for the efficient collec-
tion, management and analysis of this data. DeLight
uses abstraction to support detailed queries about how
the heap evolves as the program executes, which are
necessary to support our synthesis algorithm.
Our synthesis algorithm focuses on the problem of
generating the glue code necessary for two classes to
interact with each other. This glue code often involves
instantiating new classes, making API calls, and even
overriding methods in specific classes, and our tool
MatchMaker can support all of these actions.
Our empirical evaluation shows that writing this glue
code is especially time consuming for novice program-
mers, and that MatchMaker can significantly improve
their productivity. It also shows that MatchMaker is
general enough to handle many interesting queries, and
produces code that can be used by programmers with
very few changes.

Acknowledgement We would like to give special
thanks to Professor Greg Morrisett for helping us con-
duct part of the user study at Harvard University. We
would also like to thank the participants in our user study.
This research was supported by the National Science
Foundation grant CCF-1049406 and by MIT’s Computer
Science and Artificial Intelligence Lab (CSAIL).

References
[1] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a
code manipulation tool to implement adaptable systems.
Adaptable and extensible component systems, 2002.

[2] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based
alias analysis. PLDI ’98, pages 106–117, New York, NY,
USA, 1998. ACM.

[3] Eclipse. Helios release notes, 2010.
[4] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. OOPSLA ’05, pages 385–402,
New York, NY, USA, 2005. ACM.

[5] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. J. Syst. Softw., 68:45–64, October 2003.

[6] A. Heydarnoori, K. Czarnecki, and T. T. Bartolomei.
Supporting framework use via automatically extracted
concept-implementation templates. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, Genoa, pages 344–368, Berlin,
Heidelberg, 2009. Springer-Verlag.

[7] R. Holmes and G. C. Murphy. Using structural context
to recommend source code examples. ICSE ’05, pages
117–125, New York, NY, USA, 2005. ACM.

[8] A. J. Ko and B. A. Myers. Debugging reinvented: asking
and answering why and why not questions about program
behavior. ICSE ’08, pages 301–310, New York, NY, USA,
2008. ACM.

[9] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. PLDI ’05,
pages 48–61, New York, NY, USA, 2005. ACM.

[10] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using pql: a program
query language. OOPSLA ’05, pages 365–383, New York,
NY, USA, 2005. ACM.

[11] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for determinis-
tic replay debugging. ISCA ’05, pages 284–295,Washington,
DC, USA, 2005. IEEE Computer Society.

[12] Neo4J. Home page, 2011.
[13] N. Sahavechaphan and K. Claypool. Xsnippet: mining
for sample code. OOPSLA ’06, pages 413–430, New York,
NY, USA, 2006. ACM.

[14] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs.
ASPLOS-XII, pages 404–415, New York, NY, USA, 2006.
ACM.

[15] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing.
PLDI ’07, pages 112–122, New York, NY, USA, 2007.
ACM.

[16] S. Srivastava, S. Gulwani, and J. S. Foster. From
program verification to program synthesis. POPL ’10,
pages 313–326, New York, NY, USA, 2010. ACM.

[17] S. Thummalapenta and T. Xie. Parseweb: a programmer
assistant for reusing open source code on the web. ASE
’07, pages 204–213, New York, NY, USA, 2007. ACM.

[18] M. Vechev and E. Yahav. Deriving linearizable fine-
grained concurrent objects. PLDI ’08, pages 125–135, New
York, NY, USA, 2008. ACM.

[19] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg,
and G. Sevitsky. Finding low-utility data structures. PLDI
’10, pages 174–186, New York, NY, USA, 2010. ACM.

[20] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. ECOOP
2009–Object-Oriented Programming, pages 318–343, 2009.

