Collections, Cardinalities, and Relations

Kuat Yessenov

Ruzica Piskac Viktor Kuncak

Verification Conditions

Example

Abstract model of a Map:

data : $\mathcal{U} \to \mathcal{U}$ keys $\subseteq \mathcal{U}$, values $\subseteq \mathcal{U}$

Operation — adding a new pair to the map: values = data[keys] \land values' = data[keys'] keys' = keys $\cup k \land k \not\subseteq$ keys $|k| = 1 \land |data[k]| = 1$

Property — at most one more new value: $|values'| \le |values| + 1$

Example (2)

Binary tree with items:

 $\mathsf{data}, lt, rt: \mathcal{U} \to \mathcal{U}, |x| = \mathbf{1}, |\mathsf{null}| = \mathbf{1}$

Operation — update left child:

data[lt[x]] = null

Property — right subtree unaffected:

 $\mathsf{null} \not\subseteq \mathsf{data}[r2]$

Regional logic [Banerjee et al'08]

$$\begin{aligned} x \neq \mathsf{null} \wedge lt[x] \in r1 \wedge rt[x] \in r2\\ r1 \cap r2 = \emptyset \wedge \mathsf{null} \not\subseteq \mathsf{data}[r2]\\ lt[r1] \subseteq r1 \wedge rt[r1] \subseteq r1\\ lt[r2] \subseteq r2 \wedge rt[r2] \subseteq r2 \end{aligned}$$

Logic of Sets, Cardinalities, and Relations

Boolean algebra of sets:

 $B ::= x \mid \emptyset \mid \mathcal{U} \mid B_1 \cup B_2 \mid B^c$

✓ ... function and relation images and inverse images: $B ::= \dots | f[B] | f^{-1}[B] | r[B] | r^{-1}[B]$

... and higher arity relation images: $B ::= \dots | r[B_1, \dots, B_{i-1}, *, B_{i+1}, \dots, B_k]$ $r^{-1}[B] = r[*, B]$

r[B] = r[B, *]

Linear arithmetic and set cardinality: $T ::= k | \mathbb{Z} | T_1 + T_2 | |B|$

Propositional logic $F ::= B_1 \subseteq B_2 \mid T_1 < T_2 \mid F_1 \lor F_2 \mid \neg F$

Logics of Sets, Cardinalities, and Relations

 $B ::= x | \emptyset | \mathcal{U} | B_1 \cup B_2 | B^c | f[B] | f^{-1}[B] | r[B] | r^{-1}[B] |$

Questions:

- ✓ Is this logic (or its fragments) *decidable*?
- ✓ What is the *complexity*?

Decision Procedure

Main approach:

Reduction to *quantifier-free Boolean Algebra with Presburger Arithmetic* (QFBAPA) [Kuncak, Rinard'07]

Eliminating total function symbol:

$$f[x] = y$$

Functional consistency axiom:

 $|y| \le |x| \land (|x| = 0 \Leftrightarrow |y| = 0)$

Decision Procedure (2)

Partition domains into disjoint Venn regions:

Introduce set variables for function images of Venn regions:

$$f[x \cap y] = a_{00}, f[x \cap y^c] = a_{01}$$

$$f[x^c \cap y] = a_{10}, f[x^c \cap y^c] = a_{11}$$

Replace function image terms with union of fresh variables: $f[x] = a_{00} \cup a_{01}, f[y] = a_{00} \cup a_{10}$

Eliminating Binary Relations

Restrict relation to pairs of Venn regions:

Relational consistency axiom:

$$a \subseteq x \land b \subseteq y \land (|a| = 0 \Leftrightarrow |b| = 0)$$

Complexity Bounds

NEXPTIME algorithm by EXPTIME reduction to QFBAPA **NEXPTIME** lower bound via Lewis clauses [Lewis'80]: $\exists z.F_1 \land \forall y \exists x.F_2 \land \forall y_1 \forall y_2.F_3$ $\exists z.P(z) \lor Q(z) \mid P \cup Q \neq \emptyset$ $\forall x \exists y . P(x) \lor Q(y) \mid f[P^c] \subseteq Q$ $\forall y_1 \forall y_2. P(y_1) \lor Q(y_2) \mid P = \mathcal{U} \lor Q = \mathcal{U}$

Exact complexity bound

Extension: Multisets

content, nodes : $\mathcal{U} \to \mathbb{N}$, data : $\mathcal{U} \to \mathcal{U}$ content = data[nodes] content(e) = $|\{x \mid x \in \text{nodes} \land \text{data}(x) = e\}|$

Extension: Multisets

Property: after inserting an element into a list, size of a list increases *exactly* by one nodes' = nodes \cup n \land |n| = 1 \land n \cap nodes = $\emptyset \land$ content' = data[nodes'] \land content = data[nodes] \Rightarrow |content'| = |content| + 1

Extension: *n*-ary Functions

Functional consistency axiom for binary function: necessary condition $|f[p,q]| \leq |p| \cdot |q|$

Reduction to non-linear integer constraints: $x \leq y_1 \dots y_n$ pre-quadratic constraints [Givan et al'02] NEXPTIME satisfiability algorithm, conjectured in NP

2-NEXPTIME

Another extension: relation cardinality

$$|\mathsf{data}| \leq |x| \cdot |y|$$

Undecidable Extensions

- Quantification: $\forall e, \exists e$
- ✓ Injective binary functions: f[p,q]
- ✓ Relation cardinality with Cartesian product: $|p \times q|$

Undecidable Extensions (proof)

Quantification: $\forall e$

NP-complete Two-Sorted Fragment $x \subseteq y \Rightarrow r[x] \subseteq r[y]$ $\mathcal{F}_{\mathcal{A}} \xrightarrow{(x,y)} \mathcal{F}_{\mathcal{C}} \xrightarrow{r[x] r[y]} \mathcal{F}_{\mathcal{B}}$

Theorem: If a formula has a model, then it has a *completed model* α (i.e. $\alpha(r)$ is a union of products of Venn regions)

Theorem: If a formula has a model, then it has a *sparse model* (in which only polynomially many Venn regions are non-empty)

Sparsification technique

VMCAI 2010

Summary of Our Results

Class of formulas	Expressive power	Lower bound	Upper bound
$ert k ert = 1 \wedge ert$ data[k] $ert = 1$	Sets, unary total functions, n-ary relations, set cardinality	NEXPTIME	NEXPTIME
$\begin{array}{l} x \subseteq y \Rightarrow \\ f[x, \mathcal{U}] \subseteq f[y, \mathcal{U}] \end{array}$	Sets, n-ary total functions, n-ary relations, set cardinality	NEXPTIME	2-NEXPTIME
$ r \geq r[\mathcal{U},*] $	Sets, unary total functions, n-ary relations, relation cardinalities	NEXPTIME	2-NEXPTIME
f[x] = x	Multisets, unary total functions, collection cardinality	NEXPTIME	NEXPTIME
$\begin{array}{l} x \subseteq y \Rightarrow \\ r[x] \subseteq r[y] \end{array}$	Sorted sets, set cardinality, binary relations acyclic over sorts	NP	NP
Sets, unary functions	s, set quantification	undecidable	
Sets, injective binary functions		undecidable	
Sets, relation cardinality, Cartesian product		undecidable	

Related Work

- NP-completeness of *quantifier free Boolean algebra with Presburger arithmetic (QFBAPA)* [Kuncak, Rinard'07]
- NP-completeness of multi-sets with cardinality constraints [Piskac, Kuncak'08]
- Tarskian set constraints [Givan et al'02]
 - Tarskian interpretation of function symbols, subsumptions
 - no symbolic cardinality
- certain Description logics: set ≡ concept, relation ≡ role
 - ALC, bridging functions [Ohlbach, Koehler'99]
 - no symbolic cardinality
- two-variable logic with counting [Pacholski et al'00]
 - images of n-ary relations are inexpressible

Conclusion

- Proof techniques for QFBAPA are effective in dealing with functions and relations
- Achieved optimal complexity and gave "natural" reduction algorithms
- BAPA reduction allows combination with other BAPA-reducible logics (WS2S, C_2)

- See Viktor Kuncak's tutorial tomorrow!