
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 1

Real-time Cloth Rendering with Fiber-level Detail
Kui Wu and Cem Yuksel

Abstract—Modeling cloth with fiber-level geometry can produce highly realistic details. However, rendering fiber-level cloth models not
only has a high memory cost but it also has a high computation cost even for offline rendering applications. In this paper we present a
real-time fiber-level cloth rendering method for current GPUs. Our method procedurally generates fiber-level geometric details
on-the-fly using yarn-level control points for minimizing the data transfer to the GPU. We also reduce the rasterization operations by
collectively representing the fibers near the center of each ply that form the yarn structure. Moreover, we employ a level-of-detail
strategy to minimize or completely eliminate the generation of fiber-level geometry that would have little or no impact on the final
rendered image. Furthermore, we introduce a simple self-shadow computation method that allows lighting with self-shadows using
relatively low-resolution shadow maps. We also provide a simple distance-based ambient occlusion approximation as well as an
ambient illumination precomputation approach, both of which account for fiber-level self-occlusion of yarn. Finally, we discuss how to
use a physical-based shading model with our fiber-level cloth rendering method and how to handle cloth animations with temporal
coherency. We demonstrate the effectiveness of our approach by comparing our simplified fiber geometry to procedurally generated
references and display knitwear containing more than a hundred million individual fiber curves at real-time frame rates with shadows
and ambient occlusion.

Index Terms—Cloth rendering, procedural geometry, real-time rendering

F

1 INTRODUCTION

In computer graphics cloth is typically represented as
an infinitely thin (polygonal) surface. However, cloth is
actually made up of a multitude of yarn pieces interlocked
together, often knitted or woven. Yarn itself is also made
up of a few plies, each of which can contain hundreds of
fibers. Recently, researchers have shown that this yarn-level
structure of cloth is important for simulation of cloth motion
and deformation as well as realistic cloth rendering [1], [2],
[3], [4], [5], [6], [7]. Nonetheless, yarn-level representation of
cloth not only consumes a considerable amount of memory
for storage but it also involves handling a vast amount of
geometry data for rendering, which makes it considerably
expensive even for offline applications.

In this paper we present a real-time cloth rendering
method with fiber-level details. Utilizing a procedural yarn
model, our method is capable of rasterizing full garment
models containing more than a hundred million individual
fiber curves at real-time frame rates on current GPUs. We
achieve this by generating simplified fiber-level geometry
on the GPU using yarn-level control points and we provide
an extra performance boost via a level-of-detail approach.
We also introduce a yarn-level self-shadow computation
method and two methods for approximating ambient oc-
clusion for high-quality lighting with limited resources.

We compare our simplified fiber-level models with
reference models generated by a recent procedural yarn
model [7] using parameters acquired via fitting CT-scan
data. Our comparisons show that we can qualitatively re-
produce the fiber-level geometric appearance of yarn. We
also provide examples of full garment models rendered
using our method (Figure 1). Since our method does not rely
on any precomputation of the yarn-level control points, it is

• Kui Wu is with University of Utah. E-mail: kwu@cs.utah.edu.
• Cem Yuksel is with University of Utah. E-mail: cem@cemyuksel.com.

suitable for yarn-level cloth animation. For rendering ani-
mated yarn-level cloth models, we only need to update the
yarn-level shadow map and the rest of our precomputations
can be used without the need for any update due to cloth
animation. Furthermore, our approach allows interactively
changing the parameters of the procedural yarn model,
thereby providing a new visualization mechanism for yarn-
level cloth modeling and appearance editing.

This paper describes methods for efficiently handling
the vast amount of geometric data of fiber-level cloth
models with self-shadows and ambient occlusion at real-
time frame rates on current GPUs. We extend our prior
work on this topic [8] that only uses a simple shading
model by describing how a physically-based shading model
can be incorporated with our fiber-level cloth rendering
approach. Moreover, this extension provides a new fiber-
level ambient occlusion computation and compares it to
the simple approximation used in our prior work [8]. In
addition, we describe how animated yarn-level cloth models
can be rendered with temporal coherency. Nonetheless, our
underlying rendering approach is targeted for current GPUs
and it is designed for rasterization only, so it does not
provide a trivial mechanism for integrating it with ray
tracing. Computing multiple scattering of light or global
illumination is beyond the scope of this paper. Therefore,
the methods we describe in this paper cover only a portion
of a full cloth appearance modeling process with fiber-level
details.

2 BACKGROUND

Fabric appearance has been an active research area in
computer graphics. The geometric complexity combined
with the optical complexity of light interaction make fabric
appearance difficult to predict. Fabrics are constructed by
interlocking multiple yarns pieces and they are often gen-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 2

Fig. 1. Examples of rendering fiber-level cloth at real-time frame rates: A sweater model that consists of 356K yarn curve control points and
over 20M fiber curves, rendered using different yarn types with different fiber-level geometry. Notice the difference in appearance.

erated using knitting or weaving. A yarn itself also has a
complex structure shown in Figure 2, formed by twisting
a few sub-strands that are called plies. Each ply has a
similar construction, formed by twisting tens to hundreds of
individual fibers. The variations and imperfections in fiber
geometry impact the overall appearance of the fabric.

2.1 Related Work
Most work on fabric appearance treat cloth as thin sheets
with textures and use a specialized Bidirectional Reflectance
Distribution Function (BRDF). Far-field BRDF models were
introduced for approximating fabric appearance without an
explicit yarn-level model [9], [10], [11]. For woven fabrics
procedural patterns [12], [13] were used for approximating
fabric appearance with limited yarn-level detail, and the far-
field appearance was improved using mip-maps [14]. Fitting
measured data to a detailed procedural model was used
for capturing the anisotropic specular reflections for woven
fabric [15]. Recently, Schröder et al. [16] proposed a pipeline
for estimating the structure of a woven fabric from a single
image. While most of these methods can produce realistic
fabric appearance from a distance and some of them can
even be used for real-time rendering [12], [13], [14], [17],
they can only handle woven cloth and cannot reproduce
fiber-level details.

The importance of using a yarn-level representation for
cloth was demonstrated in recent work on modeling [3] and
simulation of knitted [1], [2], [5] and woven [4] cloth. Ren-
dering such yarn-level models, however, has been a chal-

Yarn
(3 plies)

Ply

Fig. 2. Yarn structure: Yarn typically consists of multiple plies, each
of which is made up of tens to hundreds of micron-diameter fibers,
depending on the yarn type.

lenge. Though it is possible to explicitly render each fiber
forming the yarn structure, the geometric complexity of this
approach lead to volumetric approximations that convert
the entire cloth model into volume data [18], [19]. The vol-
ume data is generated by sweeping an image representing a
cross-sectional distribution of yarn fibers along each yarn
curve. Obviously, this creates a vast amount of volume
data to be rendered. Lopez-Moreno et al. [20] employed
a similar approach for generating sparse volume data on
the GPU, which allows rendering relatively small models
interactively, but with limited fiber-level detail. Jakob et
al. [21] proposed a framework for volumetric modeling
and rendering of materials with anisotropic micro-structure.
Micro CT imaging was used for repeated fabric patterns for
volumetric fabric modeling [22] and explicitly modeling the
interaction of light with micro-geometry [23]. For reducing
the extensive storage requirements of volumetric fabric ren-
dering, Zhao et al. [24] used the SGGX microflake distribu-
tion [25] to represent volumetric yarn data and approximate
the distant appearance by a down-sampling approach. Even
though these methods can provide a remarkable level of
realism, they are highly expensive in both storage and
computation.

2.2 Procedural Yarn Model
Recently, Zhao et al. [7] described a procedural represen-
tation of fiber geometry forming the yarn structure, and
provided the parameters of their method for real world yarn
samples captured using micro CT imaging. The procedural
fiber generation method we describe in this paper is based
on this work, though we use a slightly different notation.
The fiber geometry is defined in the ply-space, where the
ply is aligned with the z-axis. The center of the ith fiber ci is
defined parametrically using

ci(θ) = [R cos(θi + θ), R sin(θi + θ), α θ/2π]
T , (1)

where θ is the polar angle that parameterizes the fiber helix,
θi is initial polar angle for the fiber, R is the distance from

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 3

cyarn

ci

cply
j

B̂yarn

N̂yarn

N̂ply
j

B̂ply
j

∆cply
j

∆ci

Fig. 3. Placing fibers around the yarn: The computation of fiber
positions takes place on the cross-section plane perpendicular to the
yarn curve.

the ply center, and α is a constant determining the twist of
the fiber. The centers of plies cply twisting around the yarn
are represented similarly in yarn-space, where the yarn is
aligned with the z-axis.

Fibers can be classified into three types: migration, loop,
and hair. Migration fibers are the most common fibers
that twist around the ply regularly. Their distances to the
ply center R, however, change continuously between two
parameters Rmin and Rmax using

R(θ) =
Ri
2

(Rmax+Rmin+(Rmax−Rmin) cos(θi+sθ)) , (2)

where Ri is the distance of the ith fiber to the ply center line,
and s is a parameter that controls the length of the rotation.
Loop fibers do not strictly follow this regular structure.
They represent fibers that have been (accidentally) pulled
out during the manufacturing process. They are handled
by simply replacing Rmax in Equation 2 with a larger value
R

loop
max . Finally, hair fibers are fibers that have open endpoints

sticking outside of the their plies. They significantly con-
tribute to the fuzzy appearance of yarn.

3 FIBER-LEVEL GEOMETRY

In our real-time fiber-level cloth rendering method we ex-
plicitly render fiber curves, as opposed to using a volumetric
representation. Since a full garment model can easily have
more than a hundred million fiber curves, we employ a
number of simplifications to minimize the data stored and
sent to the GPU and fiber segments actually drawn on the
screen.

3.1 Fiber Generation
We use a procedural fiber generation method based on the
model of Zhao et al. [7]. For minimizing the data storage and
the data transfer to the GPU, we generate the fiber curves
on the GPU using control points that define the center of
the yarn curves and a small number of parameters used by
the procedural model. Thus, the cloth model we render is
composed of a number of curves (cubic Bézier or Catmull-
Rom), each of which is represented by four control points.
For generating the individual fiber curves from the yarn
curve we must compute the displacements from the yarn to
each ply and then from each ply to its fibers.

We compute the displacement vector ∆c
ply
j from the

yarn center cyarn to the center of the jth ply c
ply
j at any given

point along the curve (determined by θ) on the cross-section
plane perpendicular to the yarn curve, as shown in Figure 3.

R

Rloop
max

Rmax

Rmin

z

loop fiber

migration
fiber

hair fiber

hair fiber

Fig. 4. Fiber types: Black curves are migration fibers with R values
changing between Rmin and Rmax. The green curve is a loop fiber and
the red curves are hair fibers.

Let T̂yarn be the unit tangent vector at a point along the
yarn curve and N̂yarn be a perpendicular unit normal vector
defining the orientation of the yarn. The displacement is
calculated using

∆c
ply
j (θ) = c

ply
j − cyarn

=
1

2
Rply

(
cos(θ

ply
j +θ) N̂yarn + sin(θ

ply
j +θ) B̂yarn

)
,

where Rply is the radius parameter of the ply,
B̂yarn = T̂yarn × N̂yarn is a perpendicular direction (form-
ing an orthonormal basis with T̂yarn and N̂yarn), and
θ

ply
j = 2πj/nply is the initial polar angle of the jth ply, and
nply is the number of plies.

We compute the displacement vector ∆ci from the ply
center c

ply
j to center of the ith fiber ci similarly. However,

unlike yarn, the cross-section of a ply is not a circle, but it is
elongated in the perpendicular direction to its displacement
∆c

ply
j forming an ellipse. Let T̂ply

j be the unit tangent vector
of the ply curve computed using the derivative ∂cply

j /∂θ.
The displacement vector is given by

∆ci(θ) = ci − c
ply
j

= R
(

cos(θi + θ) N̂
ply
j eN + sin(θi + θ) B̂

ply
j eB

)
,

where N̂
ply
j = ∆c

ply
j /||∆c

ply
j ||, B̂

ply
j = T̂yarn × N̂

ply
j , and eN

and eB are the scaling factors for the ellipse.
Finally, ci = cyarn + ∆c

ply
j + ∆ci is computed using the

two displacements and the yarn center. This way, given the
control points of the yarn curve, we can compute any point
on any fiber curve.

In this model, the radius of a fiberR changes periodically
(using Equation 2) along the z-axis of the ply with a period
of α (see Equation 1). We consider each full period of
R separately and assign a fiber type. Figure 4 shows an
example that includes four periods and their fiber types.
The migration fibers simply follow Equation 2 and loop
fibers merely use a different maximum radius Rloop

max with
the same equation, similar to the method of Zhao et al. [7].
These two fiber types span their entire periods. The hair
fibers, however, are handled differently in our method for
minimizing the number of fibers we generate. Instead of
generating separate hair fibers, we effectively break parts
of migration fibers and convert them into hair fibers. If
a period is chosen to be a hair fiber, only a portion of
the period is used for generating the hair fiber and the
remaining portion is used as a migration fiber. Our hair

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 4

Surface height channel

Surface normal channel

Surface direction channel

Fig. 5. Different channels of an example core fiber texture, packed into
two textures in our implementation.

fibers either start from a random radius Rhair
max and linearly

decrease toRmin or they extend in the opposite direction. We
also use a different twist parameter αhair for hair fibers, so
that their rotations of a hair fiber around the ply is distinctly
different from other fiber types. The similarities in the way
that these three fiber types are handled allow generating
these fibers on the GPU with minimal conditional branching
in execution.

3.2 Core Fibers
While we can generate each individual fiber by computing
its displacement from the yarn curve as explained above,
considering that a ply can have hundreds of fibers, this
can quickly lead to a large number of fiber curves to be
rasterized. Reducing the number of fibers generated per
yarn would not only reduce the geometry count, but it can
also minimize the number of draw calls, since the current
tessellation shaders can generate up to 64 curves (isolines)
from a single curve. Fortunately, a portion of these fibers
that are closer to the ply center are often occluded by other
fibers closer to the surface of the ply. However, since these
fibers near the center of the ply are not completely invisible,
eliminating them altogether changes the appearance of the
ply. Instead, we can use a lower-resolution representation
for these fibers. We achieve this by collectively representing
all fibers near the center of the ply using a single thick fiber
that we call the core fiber. Thus, in our method each ply has a
single core fiber that represents all fibers near the ply center.
The number of fibers a core fiber represents depends on the
parameters of the procedural model and it can consist of a
significant portion of the fibers forming the ply.

The thickness of a core fiber is determined by the max-
imum distance of all fibers it represents to the ply center
(i.e. the distance of the farthest fiber). Therefore, depending
on the parameters of the procedural model, a core fiber
can be considerably thicker than regular fibers. To make
the core fiber appear like a collection of fibers, we use
a precomputed texture on the core fiber. This texture is
generated by rendering all fibers that correspond to the core
fiber going through one full twist, as shown in Figure 5, and
it is updated only when the parameters of the procedural
model are modified. In order to reproduce the appearance
of all fibers represented by the core fiber, we store a height-
map and 2D surface normals. We also need an alpha channel
that indicates the visible holes in the core fiber and marks
its outline. However, instead of storing a separate alpha
channel, in our implementation we use the height-map to
determine these holes, where the height values are zero.
We also store 3D surface direction of the fibers in the core

fiber, computed by taking the u-direction of the texture
as the ply direction. This surface direction component is
used for computing the specular component of the core
fiber BRDF (bidirectional reflection distribution function)
during shading. In our implementation we store the surface
direction as a secondary texture (Figure 5) and transform
the texture-space directions to camera space during shading.
However, these fibers only represent migration fibers and
we use s = 1 for them, so that their radius period is the
same as one full twist around the ply, thus the texture for
one full twist tiles seamlessly. The loop and hair fibers are
represented by other fibers that are explicitly generated.

When using this texture, the v (vertical) coordinate of
this texture corresponds to the position along the thickness
of the core fiber. The u (horizontal) coordinate, however,
depends on both ply and fiber rotations, as well as the view
direction, such that

u =
1

2π

(
θ (αply)2 α

αply − α
+
ψview

2

)
, (3)

where ψview is the angle between the view direction and
N̂yarn.

3.3 Level-of-detail
Since we are generating the fibers on the GPU, we can
employ a level-of-detail (LoD) strategy to minimize the
number of fibers to be generated when the cloth model is
viewed from afar. We use the width of a fiber in screen
space to determine the number of fibers and subdivisions
along the curve segments.

As the view point moves away from cloth and the width
of a fiber gets smaller in screen space, its contribution to
the final image gets smaller as well. In fact, as the fiber
gets thin, its probability of intersecting with any of the
shading sample points decreases. Thus, the expected visual
contribution of a fiber is proportional to its screen-space
area.

Therefore, in our method we adjust the number of fibers
generated for a ply based on the screen-space width of a
fiber ωfiber placed at the center of the yarn curve. If the
fiber width is smaller than a user-defined threshold ωLoD

(typically smaller than a pixel), we simply generate fewer
fibers. To maintain a similar overall appearance for the
plies, we in turn increase the width of the core fiber to
compensate. We reach the maximum LoD level when the
width of a ply ωply placed at the yarn center is smaller than
the same threshold ωLoD, in which case only core fibers are
generated for the plies. Note that ωply/ωfiber is a constant
determined by the parameters of the procedural yarn model.
We compute our LoD scale factor λ2 once for each yarn
curve segment using

λ =

1, if ωLoD ≤ ωfiber

0, if ωply ≤ ωLoD

ωfiber

ωLoD

(
ωply−ωLoD

ωply−ωfiber

)
, otherwise,

(4)

where nfiber
max is the maximum number of fibers to be gener-

ated. The thickness of the core fiber is scaled between its
original thickness and the thickness of the ply using the
same scaling factor λ2. This scaling factor λ2 is also used

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 5

Fig. 6. Precomputed self-shadows: (Top row) density slices for dif-
ferent orientations of yarn, and (bottom row) their corresponding self-
shadow densities with light coming from the left sides of the images.

for adjusting the number of subdivisions along each fiber
curve.

We can also check if a yarn piece is in the view frustum
using the control points of the yarn curve. If we detect that
the yarn piece is outside of the view frustum, we simply
discard the yarn piece without generating any fibers.

4 ILLUMINATION AND SHADING

Fabric appearance is a combination of both the fiber-level
fabric geometry and the shading model that defines the
light interaction with the fibers. In this section we discuss
efficient methods for handling self-shadows of the fabric
geometry and ambient occlusion of a piece of yarn. We
also discuss shading models for the fiber-level geometry,
including physically-based shading.

4.1 Self-Shadows
Self-shadows are extremely important for realistic fabric
appearance. On the other hand, it is expensive to compute
the fiber-level shadows of a yarn model. In particular,
using shadow maps for individual fiber shadows would
require an extremely high-resolution shadow map, since
individual fibers are typically orders of magnitude thinner
than the size of the cloth model. Therefore, we separate the
fiber-level self-shadows within the yarn and the shadows
between yarn pieces. The former is approximated using a
precomputed self-shadow texture and the latter is handled
via shadow mapping.

To simplify the self-shadow precomputation and sub-
stantially reduce its dimensionality, we do not consider
individual fibers for the self-shadow computation. Instead,
we rely on the density function that we use for placing the
fibers around a ply (the same density function as Zhao et
al. [7]). Since the density function is circularly symmetric,
we do not need to consider the twist of fibers around the ply
center. We must, however, consider the twist of plies around
the yarn direction, since the cumulative density function for
the yarn is not circularly symmetric.

For further simplification we precompute self-shadows
on the 2D cross-section plane of the yarn. Thus, for the
purposes of self-shadow computation, the light direction
is assumed to be perpendicular to the yarn direction. This
allows parameterizing self-shadows using the relative ori-
entation of the perpendicular light direction and the yarn
twist.

Our precomputed self-shadow texture contains multiple
slices of 2D self-shadow textures, each of which correspond

to a different relative angle between the light direction and
the yarn twist. In our implementation the light direction
for all slices is aligned with the texture-space u-coordinate
and each slice uses a different rotation of the yarn cross-
section, as shown in Figure 6. Using the rotational symmetry
of the yarn density, we only need to sample relative angles
in the range [0, 2π/nply]. The shadow computation begins
with computing the cumulative density function for each
slice (Figure 6 top row). Then, for each pixel of each slice,
we accumulate the total density on the left side of the pixel
(in the opposite direction to the light direction). This value
determines the total expected fiber density the light would
have to go through to reach the pixel position (Figure 6
bottom row).

We store the entire collection of these slices in a 3D
texture, so that we can use trilinear filtering to lookup the
total expected fiber density that light must go through to
reach any point on the yarn cross-section for a given relative
orientation of the yarn twist and the light direction. This
total density value can be used with an exponential decay
function to estimate the light reaching any point within the
yarn volume during shading.

While computing the shadow map for handling the
shadows between yarn pieces, we simply render each yarn
curve as a thick tube, completely disregarding the fiber-level
structure of yarn. Nonetheless, since the shadow map is
not used for computing the self-shadows within the yarn,
this provides an acceptable and computationally efficient
approximation of yarn geometry for shadow map genera-
tion.

4.2 Ambient Occlusion
Fibers that form a piece of yarn occlude each other in all
directions. Therefore it is important to consider the ambient
occlusion within the yarn. We describe two approaches for
efficiently handling the ambient occlusion within the yarn.
Yet, it is important to note that neither one of these ap-
proaches consider the ambient occlusion caused by different
yarn pieces that are in close proximity or other scene geom-
etry close to the rendered fabric. Such relatively large-scale
ambient occlusion factors can be computed using existing
techniques [26], [27], [28] . The approaches described here
can be used in combination with existing techniques for
efficiently incorporating the small-scale ambient occlusion
that takes place within the yarn due to fibers occluding each
other.

The first approach we consider is an extremely simple
ambient occlusion factor that merely uses the distance of
a fiber from the center of the yarn curve. One could also
consider the distance of a fiber from the ply center for
approximating ambient occlusion; however, that would not
account for the occlusion of separate plies that form the
yarn structure. By using the distance to the yarn center we
approximate the ambient occlusion as a circularly symmet-
ric function around the yarn center, which, according to
our experiments, provides a reasonable approximation of
ambient occlusion within yarn.

Even though this simple distance-based ambient occlusion
approximation does not correspond to a traditional ambient
occlusion formulation, it can provide the necessary visual

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 6

Distance-based ambient occlusion approximation

Precomputed ambient illumination
Fig. 7. An example straight yarn model rendered with ambient occlusion
computed using two different methods.

queues for visualizing yarn with fiber-level detail. An ex-
ample is shown in Figure 7 top. Notice that our distance-
based ambient occlusion approximation is effective in ac-
centuating the spaces between plies as well as individual
fibers, providing an acceptable approximation for ambient
occlusion.

Our alternative approach is precomputing ambient oc-
clusion into a 2D texture that represents the ambient oc-
clusion value anywhere within a cross-section of the yarn.
For computing this ambient occlusion texture we again
directly sample the fiber density function that is used for
placing the fibers of each ply (as in fiber-level self-shadow
computation), instead of using a set of example fibers.
This provides an efficient method for precomputing the
ambient occlusion texture and the resulting texture does not
correspond to a particular set of fibers generated using the
density function and their orientations along the yarn. Using
a density function, we also inherently ignore the ambient
occlusion contributions of hair fibers. Nonetheless, this is
a reasonable approximation, since hair fibers are typically
sparse, as compared to other fibers.

For simplifying the precomputation of the ambient oc-
clusion texture further, we assume that the yarn has no
twist and that the plies are perfectly parallel to the yarn
direction. This also is a reasonable assumption, especially
when the ambient occlusion radius is much smaller than α.
Yet, this simplification ignores the (typically) subtle impact
of the yarn twist on ambient occlusion. On the other hand,
it allows computing ambient occlusion entirely in 2D.

The ambient occlusion texture represents the amount
of ambient light within a cross-section of the yarn for an
arbitrary orientation of the yarn twist. The same texture is
used for any orientation of the yarn twists by rotating the
texture coordinate accordingly. We precompute this texture
using Monte Carlo sampling. We begin with generating a
temporary 2D texture for the fiber density function (Fig-
ure 8a). For each texel of the ambient occlusion texture (Fig-
ure 8b), we pick a number of random 2D directions and trace
rays starting from the texel location through the 2D density
texture. The accumulated density along a ray indicates the
visibility in the ray direction. For faster convergence we use
stratified sampling of all possible 2D directions. Note that
this is equivalent to computing the visibility in 3D with
infinite radius when the yarn is straight and has no twist.

Figure 8 also compares the precomputed ambient occlu-
sion texture to our simple distance-based ambient occlusion.
For this comparison, we compute the radial average of the
precomputed ambient occlusion texture and fit a cubic poly-
nomial that we use as the distance-based ambient occlusion
function. While the differences on the texture space is minor

(a)
Fiber

Density

(b)
Ambient Occ.

Texture

(c)
Distance-based
Ambient Occ.

(d)
Difference
Image ×4

Fig. 8. Ambient Occlusion Texture: (a) The density texture used for
ambient occlusion texture computation, (b) the final precomputed ambi-
ent occlusion texture, (c) the simple distance-based ambient occlusion
converted to a texture, and (d) four times the difference between the
precomputed ambient occlusion texture and the simple distance-based
ambient occlusion.

(Figure 8d), some slight differences can be observed in the
rendered images, as seen in Figure 7. Nonetheless, these
comparisons show that our simple distance-based ambient
occlusion approximation can provide a good approximation
of ambient occlusion. Therefore, the results in this paper
use the distance-based ambient occlusion method, unless
specified otherwise.

4.3 Shading
We have tested our method using two different shading
methods. The first one is a simple shading model with
a diffuse and a specular component. The second shading
model uses a physically-based BSDF (bidirectional scatter-
ing distribution function) model.

The diffuse component of the simple shading model is
based on the surface normal of a fiber, obtained from the
fiber texture. For the specular component fspecular we use
a far-field approximation of surface reflectance for tubular
shapes, similar to the hair shading model of Sadeghi et
al. [29], computed as

fspecular = kspecular cos(φ/2) exp(−θ2
h/2β

2), (5)

where kspecular is the specular color, φ is the azimuthal angle
and θh is the longitudinal half angle between the light and
view directions, and β is the longitudinal width of the
specular lobe.

For demonstrating that our method can also be used
with a physical-based fiber shading model, we follow the
BSDF model of Khungurn et al. [23]. This model includes
two specular illumination components: R and TT for han-
dling reflection and transmission respectively. The R com-
ponent is isotropic in azimuthal directions and the TT com-
ponent includes a single forward scattering lobe. Following
model of Khungurn et al. [23], we omit the TRT component,
which would account for the internally reflected light from
fibers, since this component was determined to be unimpor-
tant for textile fibers [23]. The BSDF is written as a product
of azimuthal (N) and longitudinal (M) components

fs(ωi, ωo) = MR(θi, θo)NR(φi, φo)

+MTT (θi, θo)NTT (φi, φo), (6)

where the direction ωi,o is represented in spherical coordi-
nates by a longitudinal angle θi,o and an azimuthal angle φi,o
for the incoming and outgoing direction respectively (note

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 7

that in this section we use θi with a different meaning than
the same symbol used in other sections).

Since we do not consider indirect illumination or multi-
ple scattering but we only incorporate ambient occlusion for
ambient illumination Lamb, for a scene with n light sources,
we can write the scattered radiance from a fiber as

Lo(ωo) =

n∑
i

Li fs(ωi, ωo) + Lamb

∫
Ω

fs(ωi, ωo) dωi , (7)

where Li is incoming radiance from the light (including
shadows) and Ω represents all directions over a sphere.
Note that we treat ambient illumination Lamb as constant
illumination coming from all directions, so it is placed out-
side of the integral and the integral evaluates to a constant
term. The integral for the ambient illumination term can
be written as the sum of R and TT components, both of
which are split into products of azimuthal and longitudinal
components, resulting∫

Ω

fs(ωi, ωo) dωi =

∫ π/2

−π/2
MR(θi, θo) cos2 θi dθi

∫ 2π

0

NR(φi, φo) dφi

+

∫ π/2

−π/2
MTT(θi, θo) cos2 θi dθi

∫ 2π

0

NTT(φi, φo) dφi

(8)

Following Khungurn et al. [23], NR is defined as a constant
term and NTT is taken the von Mises distribution f , and the
integrals of the azimuthal terms evaluate to constant values,
such that ∫ 2π

0

NR(φi, φo) dφi =

∫ 2π

0

1

2π
dφi = 1 (9)∫ 2π

0

NTT(φi, φo) dφi =
γ−2

TT

I0(γ−2
TT)

I0(1), (10)

where γTT is the azimuthal width of the TT component and
I0(x) is the modified Bessel function of order 0 [23].

On the other hand, the longitudinal functions MR and
MTT are more complicated, making it difficult to find closed-
form solutions to their integrals in Equation 8. Therefore, we
compute those integrals numerically and store the results
in 1D tables for a number of θo values within the range
[−π/2, π/2]. Since the resulting values change slowly with
changing θo values, a low-resolution 1D texture can be used
for these values during rendering.

In our implementation we also add the diffuse compo-
nent of the simple shading model to this BSDF.

5 IMPLEMENTATION DETAILS

The input for our system are the parameters of the pro-
cedural yarn model and a set of curve control points for
the yarn center. The fiber-level geometry is generated on
the GPU using tessellation shaders, which also handle LoD
and discard curve segments outside of the view frustum.
Each fiber is generated as a collection of line segments (i.e.
isolines), which are converted to camera-facing strips in the
geometry shader.

We use a 1D texture for storing the fiber coordinates Ri
and θi, accessed using fiber index i. These coordinates are
ordered based on their distances to the ply center Ri, so

that when LoD is used for reducing the number of fibers
generated during rendering, the fibers that are skipped first
are the ones closer to the ply center.

One important limitation of current GPUs for fiber-level
cloth rendering with our method is that the tessellation
shaders can only generate up to 64 isolines. This means
that when using a typical yarn model that contains 3 plies,
we can only have up to 21 fibers per ply, which is highly
limited for yarn types that contain hundreds of fibers in
each ply. Yet, this limitation is remedied by our core fibers,
each of which can represent all fibers near the center of a
ply using only a single isoline. This way, we can devote the
remaining 20 isolines per ply to loop and hair fibers, as well
as migration fibers near the surface of the ply for providing
high-quality geometric detail.

Because we must generate different types of fibers (core,
migration, loop, and hair) within the same tessellation
shader, branching is unavoidable. Yet, the similarities be-
tween the fiber types help minimize branching in the tes-
sellation shader. Moreover, we can completely eliminate the
need for branching in the geometry and fragment shaders
for handling different fiber types. Since the geometry shader
merely converts lines to strips, sending it the fiber thickness
alone makes it indifferent to the fiber type (i.e. core fiber or
regular fiber). The fragment shader, on the other hand, must
use a texture on the core fibers to account for the missing
geometric detail. To unify the fragment shader operations
for all fiber types, we use a different part of the same texture
for regular (migration, loop, and hair) fibers as well. Thus,
the only difference between a regular fiber and a core fiber
in the fragment shader is their texture coordinates, which
are computed in the tessellation shader.

In addition to the 1D texture that stores fiber coordinates
Ri and θi mentioned above, the only geometry data we
send to the GPU are the 3D control points of the yarn-
level curves and a 1D length coordinate for each one of these
control points, which determines the position of the control
point along the total length of the yarn. Thus, each cubic
yarn curve piece not only knows its length but also knows
the total length of the yarn preceding it, so that both yarn
and ply twists can be computed consistently for neighboring
cubic curves without discontinuity.

Our method is suitable of rendering yarn-level cloth
animations at real-time frame rates. At each frame, we
only update yarn-level control points and the shadow map,
which only has a minor cost, since the shadow map is
rendered using only the yarn curves (without generating
fiber-level details). It is important that the length coordi-
nate is not updated for each frame and it is kept constant
throughout the animation. Otherwise, minor changes in the
length of each cubic yarn curve piece lead to noticeable
erratic changes in yarn and ply twists, perceived as temporal
incoherence.

6 RESULTS

We show the components of our fiber model in Figure 9.
Notice that yarn with only core fibers looks too regular, as
compared to the reference [7]. Our regular fibers (migration,
loop, and hair fibers) provide the necessary irregularity, but
the yarn model generated using only 60 regular fibers looks

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 8

core fibers

regular fibers

regular & core fibers

reference

Fig. 9. An example yarn model with our core fibers and regular fibers,
and the comparison of our full model to a reference model generated
using the method of Zhao et al. [7].

ours

reference

ours

reference
ours

reference

Fig. 10. Comparison of our fiber generation method to reference models
generated using the method of Zhao et al. [7].

too sparse. Unfortunately, the tessellation limits of current
GPUs prevent generating more fibers without additional
draw calls. Our combined model including both regular and
core fibers, however, can qualitatively match the appearance
of the reference model. Other example comparisons using
different yarn parameters are included in Figure 10. Note
that our model cannot produce an exact match for the
reference mainly because we handle hair fibers differently.

Figure 11 shows a knitted cable pattern rendered with
and without LoD. Since our LoD approach eliminates fibers
that are less likely to intersect with any screen samples,
the visual impact of our LoD is minimal, as long as it is
not used aggressively (by setting a threshold value larger
than one pixel size). Even with a high LoD threshold our
core fibers produce high-quality results. However, since core
fibers cannot represent hair fibers, a high LoD threshold is
not advisable for rendering models with a high density of
long hair fibers, such as the model on the right in Figure 1.

Fig. 11. Level-of-detail: (Left) disabling LoD generates 63 fibers ev-
erywhere, (right) enabling LoD generates varying numbers of fibers be-
tween 3 and 63 based on the fiber thickness in screen space, displayed
with color coding.

We display the contributions of different shadow compo-
nents on an example glove model in Figure 12. In the case of
rendering without any shadows (Figure 12a), diffuse shad-
ing and specular highlights provide some hint of the fiber-
level geometry. The shadows between different yarn pieces
introduced by the shadow map (Figure 12b) accentuate the
knitted structure formed by the yarn curves, but they lack
fiber-level details, which are introduced by the self-shadows
(Figure 12c). The ambient occlusion component (Figure 12d)
enhances the fiber-level details and also provides some hint
of the fiber-level geometric details on fully shadowed areas,
as opposed to a constant ambient component.

Figures 1 and 13 show two different sweater models ren-
dered with different yarn types, generated using different
procedural yarn parameters. In both figures, examples with
different yarn types use the same yarn curve control points
as input. The only difference is the fiber-level geometry
generated on the GPU, but it is somewhat difficult to see
the individual fiber details in these examples because of
the distance of the yarn curves to the camera. Nonetheless,
even though examples with different yarn types use the
same shading parameters, the underlying fiber geometry
still impacts the overall appearance.

The components of the physically-based shading model
are shown in Figure 14 along with the simple shading
model for two different materials using the same fiber-
level cloth geometry. Notice that the specular components
of the physically-based shading model produces natural
looking highlights, but the rest of the cloth appears dark
without the diffuse component. The ambient illumination
with our ambient occlusion factor reveals the material color.
The diffuse component also adds the color of the material
and it is particularly important for exposing the small-scale
tubular shape of the fibers in close-up views as shown in
Figure 16. The final result is generated using all components
of the physically-based shading model, which produces nat-
ural cloth appearance. In comparison to the simple shading
model using the same diffuse color but different specular

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 9

(a) No Shadow (b) + Shadow Map (c) + Self-shadows (d) + Ambient Occlusion

(e) Full Shadow (f) Shadow Map (g) Self-shadows (h) Ambient Occlusion

Fig. 12. Shadow components: A glove model showing the three shadow components: shadow map, self-shadows, and ambient occlusion.

Fig. 13. Different yarn geometry: A sweater model with 681K yarn curve control points and 1.5G fiber segments using different procedural yarn
parameters, rendered using the same yarn-level control points, the same simple shading parameters, and the same lighting.

and ambient formulations, the physically-based shading
model produces (arguably) more realistic results due to
improved specular highlights.

Example dress models with different yarn-level struc-
tures are shown in Figure 15, rendered using both
physically-based shading model and simple shading model.
Each of them contains over a hundred million fiber curves.
However, since our method generates the fibers on the GPU,
we only store about two million yarn curve control points
that define the yarn-level geometry. Furthermore, using our
core fibers and our level-of-detail strategy, we generate and
rasterize only a fraction of the total number of fiber curves.

We provide the performance results with different mod-
els in Table 1. The corresponding frames using both the
simple shading model and the physically-based shading
model are shown in Figure 18. Note that when the camera
is far enough that models are fully visible, we generate
fewer fibers using our level-of-detail strategy and achieve
high performance (the “Full View” column of Table 1 and
Figure 18). Close-ups achieve high performance as well,

since we avoid rendering the yarn curves that are outside
of the view frustum (the “Close View” column of Table 1
and Figure 18). Therefore, our worst-case performance ap-
pears at the medium distance, where the camera is close
enough to the model to trigger the generation of most fiber
curves but not close enough to cull a significant portion
of the model. The “Worst Case” columns of Table 1 and
Figure 18 show the worst performance we encountered by
manually adjusting the camera distance. We also provide the
performance graphs for all models in the paper in Figure 17.
The fluctuations in this graph are due to different parts of
the models entering the view frustum as the camera moves
away. Notice that our method achieves high performance at
extreme close-ups and the performance begins to improve
beyond a certain distance. The far distances in these graphs
(around 1) and Table 1 are the closest camera distances
that contain the entire model in the view frustum. As
hinted by the tail end of these graphs, the performance
continues improving as the camera distance increases. As
expected, the performance results show that the physically-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 10

Physically-based Shading Model Simple Shading︷ ︸︸ ︷ Model
Specular Only Specular+Diffuse Specular+Ambient All Components All Components

Specular Only Specular+Diffuse Specular+Ambient All Components Simple Shading

Fig. 14. Components of the physically-based shading model: Silk (top row) and cotton (bottom row) material parameters on the same fiber-
level sweater model, showing the components of the physically-based shading model along with the simple shading model using the same diffuse
component, but different specular and ambient components.

based shading model is more expensive. Consequently, the
worst case performances for the simple shading model
and the physically-based shading model do not necessarily
appear at the same camera distances, since the performance
depends on both the amount of geometry processed and the
pixel fragments shaded. As the model moves away from
the camera, the performance difference between the two
shading models become less significant.

7 CONCLUSION

We have presented a real-time fiber-level cloth rendering
framework. Our method generates fiber-level geometry on
the GPU during rendering. We have described a modified
procedural fiber generation method for hair fibers, and we
have introduced core fibers for greatly reducing the number
of fibers that are generated on the GPU and allowing current
GPUs with limited tessellation capabilities to render fiber-
level yarn models using only yarn curve control points as

input. Moreover, we have described a LoD approach for
extra performance boost in distant views and close-ups.
Furthermore, we have introduced an efficient self-shadow
precomputation method for yarn. We have also provided
a simple ambient occlusion approximation and an ambient
occlusion precomputation approach using the the 2D cross-
section of the yarn. In addition, we have demonstrated how
our technique can be used with a physical-based fiber shad-
ing model. Our results show that our modified procedural
model can produce qualitatively similar results to a state-
of-the-art procedural fiber generation technique and we can
render full size garment models with fiber-level detail at
real-time frame rates.

ACKNOWLEDGMENTS

We thank Charles Hansen, Yang Song, and Konstantin
Shkurko for valuable discussions and suggestions. This
work was supported in part by NSF grant #1538593.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 11

Physically-based Shading Model Simple Shading Model
Fig. 15. Two dress models with about 2M yarn curve control points and over 100M fiber curves, rendered using the same yarn type and lighting
conditions with both physically-based shading and simple shading models. The only differences between the two models are the control points of
the yarn curves. The two shading models share the same diffuse component, but they use different specular and ambient components.

TABLE 1
Performance Results for Different Camera Distances

Simple Shading Physically-based Shading
of Control # of Fiber Close Worst Full Close Worst Full

Model Points Segments View Case View View Case View
Glove (Fig.12) 148K 8.3M 9 ms 19 ms 9 ms 13 ms 37 ms 14 ms
Sweater (Fig.1) 356K 20M 11 ms 23 ms 13 ms 18 ms 50 ms 20 ms
Cables (Fig.11) 362K 20M 2 ms 23 ms 14 ms 2 ms 56 ms 26 ms
Sweater (Fig.13) 681K 38M 11 ms 28 ms 15 ms 21 ms 59 ms 21 ms
Dress (Fig.15-left) 1.89M 100M 9 ms 23 ms 20 ms 24 ms 53 ms 17 ms
Dress (Fig.15-right) 1.99M 112M 11 ms 25 ms 21 ms 28 ms 56 ms 18 ms

All performance results are obtained on an NVIDIA GeForce GTX 1080 GPU, rendering to an OpenGL viewport of size 1280× 960.

Physically-based Simple
Shading Model Shading Model

Sp
ec

ul
ar

O
nl

y
Sp

ec
ul

ar
+

A
m

bi
en

t
A

ll
C

om
po

ne
nt

s

Fig. 16. Close-up view showing the fiber-level details with physically-
based shading model and the simple shading model.

REFERENCES

[1] J. M. Kaldor, D. L. James, and S. Marschner, “Simulating knitted
cloth at the yarn level,” ACM Transactions on Graphics, vol. 27, no. 3,
pp. 65:1–65:9, 2008.

[2] ——, “Efficient yarn-based cloth with adaptive contact lineariza-
tion,” ACM Transactions on Graphics, vol. 29, no. 4, pp. 105:1–105:10,
2010.

[3] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner, “Stitch
meshes for modeling knitted clothing with yarn-level detail,”
ACM Transactions on Graphics, vol. 31, no. 3, pp. 37:1–37:12, 2012.

[4] G. Cirio, J. Lopez-Moreno, D. Miraut, and M. A. Otaduy, “Yarn-
level simulation of woven cloth,” ACM Transactions on Graphics,
vol. 33, no. 6, pp. 207:1–207:11, 2014.

[5] G. Cirio, J. Lopez-Moreno, and M. A. Otaduy, “Efficient simulation
of knitted cloth using persistent contacts,” in Proceedings of SCA,
2015, pp. 55–61.

[6] G. Cirio, J. Lopez-Moreno, and M. Otaduy, “Yarn-level cloth
simulation with sliding persistent contacts,” IEEE Transactions on
Visualization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2016.

[7] S. Zhao, F. Luan, and K. Bala, “Fitting procedural yarn models for
realistic cloth rendering,” ACM Transactions on Graphics, vol. 35,
no. 4, pp. 51:1–51:11, 2016.

[8] K. Wu and C. Yuksel, “Real-time fiber-level cloth rendering,” in
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(I3D 2017), 2017.

[9] M. Ashikmin, S. Premože, and P. Shirley, “A microfacet-based brdf
generator,” in Proceedings of ACM SIGGRAPH, 2000, pp. 65–74.

[10] J. Wang, S. Zhao, X. Tong, J. Snyder, and B. Guo, “Modeling
anisotropic surface reflectance with example-based microfacet
synthesis,” ACM Trans. Graph., vol. 27, no. 3, pp. 41:1–41:9, 2008.

[11] I. Sadeghi, O. Bisker, J. De Deken, and H. W. Jensen, “A practi-
cal microcylinder appearance model for cloth rendering,” ACM
Transactions on Graphics, vol. 32, no. 2, pp. 14:1–14:12, 2013.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017 12

Simple Shading

0

5

10

15

20

25

30

Camera Distance (normalized)

Glove (Fig.12)
Sweater (Fig.1)
Cables (Fig.11)
Sweater (Fig.13)
Dress (Fig.15-left)
Dress (Fig.15-right)

ms

0 1

Physically-based Shading

0

10

20

30

40

50

60

Camera Distance (normalized)

Glove (Fig.12)
Sweater (Fig.1)
Cables (Fig.11)
Sweater (Fig.13)
Dress (Fig.15-left)
Dress (Fig.15-right)

ms

0 1

Fig. 17. Performance Graphs: The dependence of the frames per
second performance values on camera distance for all examples in the
paper using both the simple shading model and the physically-based
shading model. The camera distances are normalized such that the
models are fully visible and cover the screen at their maximum distances
(full view in Figure 18), shown at the camera distance value of 1.

[12] N. Adabala, N. Magnenat-Thalmann, and G. Fei, “Real-time ren-
dering of woven clothes,” in Proceedings of ACM Virtual Reality
Software and Technology, 2003, pp. 41–47.

[13] Y.-M. Kang, “Realtime rendering of realistic fabric with alternation
of deformed anisotropy,” in Proceedings of Motion in Games, 2010,
pp. 301–312.

[14] W. Yuen, B. Wünsche, and N. Holmberg, “An applied approach for
real-time levelof-detail woven fabric rendering,” Journal of WSCG,
vol. 20, no. 2, pp. 117–126, 2012.

[15] P. Irawan and S. Marschner, “Specular reflection from woven
cloth,” ACM Trans. Graph., vol. 31, no. 1, pp. 11:1–11:20, 2012.

[16] K. Schröder, A. Zinke, and R. Klein, “Image-based reverse engi-
neering and visual prototyping of woven cloth,” IEEE Trans. on
Vis. and Computer Graphics, vol. 21, no. 2, pp. 188–200, 2015.

[17] Z. Velinov and M. B. Hullin, “An interactive appearance model for
microscopic fiber surfaces,” in Proceedings of Vision, Modeling, and
Visualization 2016, Oct. 2016.

[18] E. Groller, R. T. Rau, and W. Strasser, “Modeling and visualiza-
tion of knitwear,” IEEE Transactions on Visualization and Computer
Graphics, vol. 1, no. 4, pp. 302–310, 1995.

[19] Y.-Q. Xu, Y. Chen, S. Lin, H. Zhong, E. Wu, B. Guo, and H.-Y.
Shum, “Photorealistic rendering of knitwear using the lumislice,”
in Proceedings of ACM SIGGRAPH, 2001, pp. 391–398.

[20] J. Lopez-Moreno, D. Miraut, G. Cirio, and M. A. Otaduy, “Sparse
GPU voxelization of yarn-level cloth,” Computer Graphics Forum,
pp. 1–13, 2015.

[21] W. Jakob, A. Arbree, J. T. Moon, K. Bala, and S. Marschner,
“A radiative transfer framework for rendering materials with
anisotropic structure,” ACM Transactions on Graphics, vol. 29, no. 4,
pp. 53:1–53:13, 2010.

Simple Shading Physically-based Shading︷ ︸︸ ︷ ︷ ︸︸ ︷
Close View Worst Case Full View Close View Worst Case Full View

G
lo

ve
(F

ig
.1

2)
Sw

ea
te

r
(F

g.
1)

C
ab

le
s

(F
ig

.1
1)

Sw
ea

te
r

(F
.1

3)
D

re
ss

(F
ig

.1
5)

D
re

ss
(F

ig
.1

5)

Fig. 18. Frames selected for performance results shown in Table 1.
All images are rendered with 1280 × 960 resolution using the simple
shading model and the physically-based shading model.

[22] S. Zhao, W. Jakob, S. Marschner, and K. Bala, “Building volumet-
ric appearance models of fabric using micro ct imaging,” ACM
Transactions on Graphics, vol. 30, no. 4, pp. 44:1–44:10, 2011.

[23] P. Khungurn, D. Schroeder, S. Zhao, K. Bala, and S. Marschner,
“Matching real fabrics with micro-appearance models,” ACM
Transactions on Graphics, vol. 35, no. 1, pp. 1:1–1:26, 2015.

[24] S. Zhao, L. Wu, F. Durand, and R. Ramamoorthi, “Downsampling
scattering parameters for rendering anisotropic media,” ACM
Transactions on Graphics, vol. 35, no. 6, 2016.

[25] E. Heitz, J. Dupuy, C. Crassin, and C. Dachsbacher, “The SGGX
microflake distribution,” ACM Transactions on Graphics, vol. 34,
no. 4, pp. 48:1–48:11, Jul. 2015.

[26] L. Bavoil and M. Sainz, “Multi-layer dual-resolution screen-space
ambient occlusion,” in SIGGRAPH 2009: Talks, 2009, pp. 45:1–45:1.

[27] M. McGuire, B. Osman, M. Bukowski, and P. Hennessy, “The
alchemy screen-space ambient obscurance algorithm,” in Pro-
ceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, ser. HPG ’11. ACM, 2011, pp. 25–32.

[28] V. Timonen, “Screen-space far-field ambient obscurance,” in Pro-
ceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, ser. HPG ’13. ACM, 2013, pp. 33–43.

[29] I. Sadeghi, H. Pritchett, H. W. Jensen, and R. Tamstorf, “An
artist friendly hair shading system,” ACM Transactions on Graphics,
vol. 29, no. 4, pp. 56:1–56:10, 2010.

Kui Wu is currently a Ph.D. student in the School
of Computing at the University of Utah. His re-
search mainly focuses on yarn-level rendering,
modeling, simulation and other related prob-
lems.

Cem Yuksel is a faculty member in the School
of Computing at the University of Utah. Previ-
ously, he was a postdoctoral fellow at Cornell
University, after receiving his PhD in Computer
Science from Texas A&M University in 2010. His
research interests are in computer graphics and
related fields, including physically-based simula-
tions, rendering techniques, global illumination,
sampling, GPU algorithms, graphics hardware,
knitted structures, and hair modeling, animation,
and rendering.

