
An Empirical Evaluation of Work Stealing with Parallelism Feedback

Kunal Agrawal Yuxiong He Charles E. Leiserson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

A-STEAL is a provably good adaptive work-stealing
thread scheduler that provides parallelism feedback to a
multiprocessor job scheduler. A-STEAL uses a simple
multiplicative-increase, multiplicative-decrease algorithm
to provide continual parallelism feedback to the job sched-
uler in the form of processor requests. Although jobs sched-
uled by A-STEAL can be shown theoretically to complete in
near-optimal time asymptotically while utilizing at least a
constant fraction of the allotted processors, the constants in
the analysis leave it open on whether A-STEAL works well
in practice. This paper confirms with simulation studies that
A-STEAL performs well when scheduling adaptively paral-
lel work-stealing jobs on large-scale multiprocessors.

Our studies monitored the behavior of A-STEAL on a
simulated multiprocessor system using synthetic workloads.
We measured the completion time and waste of A-STEAL

on over 2300 job runs using a variety of processor avail-
ability profiles. Linear-regression analysis indicates that A-
STEAL provides almost perfect linear speedup. In addition,
A-STEAL typically wasted less than 20% of the processor
cycles allotted to the job. We compared A-STEAL with the
ABP algorithm, an adaptive work-stealing thread sched-
uler developed by Arora, Blumofe, and Plaxton which does
not employ parallelism feedback. On moderately to heavily
loaded large machines with predetermined availability pro-
files, A-STEAL typically completed jobs more than twice
as quickly, despite being allotted the same or fewer pro-
cessors on every step, while wasting only 10% of the pro-
cessor cycles wasted by ABP. We compared the utilization
of A-STEAL and ABP when many jobs with varying char-
acteristics are using the same multiprocessor. These experi-
ments provide evidence that A-STEAL consistently provides
higher utilization than ABP for a variety of job mixes.

This research was supported in part by the Singapore-MIT Alliance
and NSF Grants ACI-0324974 and CNS-0305606. Yuxiong He is a Visit-
ing Scholar at MIT CSAIL and a Ph.D. candidate at the National University
of Singapore.

1. Introduction

The large expense of high-end multiprocessors makes
it attractive for them to run multiprogrammed workloads,
where many parallel applications share the same machine.
As Feitelson describes in his excellent survey [31], sched-
ulers for these machines can be implemented using two
levels: a kernel-level job scheduler to allot processors to
jobs, and a user-level thread scheduler to schedule the
threads belonging to a given job onto the allotted proces-
sors. The job schedulers may implement either space-
sharing, where jobs occupy disjoint processor resources,
or time-sharing, where different jobs may share the same
processor resources at different times. Moreover, both the
thread scheduler and the job scheduler may be adaptive
(called “dynamic” in [18]), where the number of proces-
sors allotted to a job may change while the job is running,
or nonadaptive (called “static” in [18]), where a job runs on
a fixed number of processors for its lifetime.

The two-level scheduling model assumes that time is
broken into a sequence of equal-size scheduling quanta
1, 2, . . ., each consisting of L time steps. The quantum
length L is a system configuration parameter chosen to be
long enough to amortize the time to reallocate processors
among the various jobs and to perform various other book-
keeping for scheduling, including communication between
the thread scheduler and the job scheduler, which typically
involves a system call. Between quanta q − 1 and q, the
thread scheduler determines its job’s desire dq , which is the
number of processors the job wants for quantum q. Then, it
provides the desire dq to the job scheduler as its parallelism
feedback. The job scheduler assesses the various jobs run-
ning in the system and based on some administrative policy,
determines the processor availability pq , or the number of
processors the job is entitled to receive for the quantum q.
The number of processors the job receives for quantum q is
the job’s allotment aq = min {dq, pq}, which is the smaller
of its desire dq and the processor availability pq . Once a job
is allotted its processors, the allotment does not change dur-
ing the quantum. Consequently, the thread scheduler must
do a good job before a quantum of estimating how many
processors it will need for all L time steps of the quantum,
as well as do a good job of scheduling the ready threads on

the allotted processors.
In this paper, we study thread schedulers that employ

work stealing [1,4,8,10,13,14,17,32,33,37,38,42,47,52]
to schedule the job’s threads onto the allotted processors.
Each processor maintains a work queue containing threads
that are ready to execute. Whenever a processor runs out of
work, it becomes a thief and attempts to steal a thread from
another processor. If this victim processor has no available
work in its work queue, the steal is unsuccessful, and the
thief processor makes new attempts to steal elsewhere until
it is successful and finds work. We say that the processor
cycles spent stealing are wasted, because they do not con-
tribute directly to the forward progress of completing the
job’s work.

Work-stealing schedulers can be analyzed in terms of
two key measures of a job. The work T1 of the job corre-
sponds to the total number of unit-time instructions that the
job executes, or equivalently its running time on 1 proces-
sor. The critical-path length T∞ corresponds to the length
of the longest chain of dependencies, or equivalently its run-
ning time on an infinite number of processors, assuming no
overheads. Blumofe and Leiserson [10] showed that on a
fixed number P of processors, a randomized work-stealing
scheduler completes a job in O(T1/P +T∞) expected time.
They also show that the number of processor cycles wasted
is O(PT∞).

Arora, Blumofe, and Plaxton extended this basic work-
stealing algorithm to an adaptive setting, but notably with-
out parallelism feedback. ABP always maintains P work
queues, where P is the total number of processors in the
machine. When the job scheduler allots aq = pq proces-
sors in quantum q, ABP selects aq queues uniformly at ran-
dom from the P queues, and the allotted processors work on
them. Arora et al. prove that the ABP algorithm completes
a job in expected time

T = O(T1/P + PT∞/P) , (1)

where P is the mean processor availability as determined by
the job scheduler. Although Arora et al. provide no bounds
on waste, one can prove that ABP may waste Ω(T1 +PT∞)
processor cycles in an adversarial setting.

In previous work [3], we introduced a provably good
adaptive thread scheduler, called A-STEAL, which is the
focus of this paper. A-STEAL employs a provably good
desire-estimation heuristic, which we shall review in Sec-
tion 2, to provide parallelism feedback. A-STEAL adapts to
changes in processor allotment by making two simple mod-
ifications to the basic work-stealing algorithm:

Allotment gain: When the allotment increases from
quantum q − 1 to q, the job obtains aq − aq−1 additional
processors. The newly added processors immediately start
stealing to obtain work from the other processors.

Allotment loss: When the allotment decreases from
quantum q − 1 to q, the job loses aq−1 − aq processors.
To reallocate the work of these processors, A-STEAL uses

the concept of “mugging” [11]. When a processor runs out
of work, instead of stealing immediately, it looks for a mug-
gable work queue: one that has no associated processor
working on it and mugs the queue by taking over the en-
tire work queue as its own. If there are no muggable work
queues, the thief reverts to stealing normally. Data struc-
tures can be set up between quanta so that a successful steal
or mug can be accomplished in O(1) time [53].

At all time steps during the execution of an A-STEAL-
scheduled job, every processor is either working, stealing,
or mugging, and cycles spent stealing and mugging are
wasted.

The theoretical analysis in [3] demonstrates that A-
STEAL schedules threads effectively — bounding comple-
tion time and wasted processor cycles — even in the face
of an adversarial job scheduler. This analysis employs
a technique called trim analysis [2], where we deduct a
small number “bad” quanta and guarantee good perfor-
mance on the remaining ones. Specifically, the R-high-
trimmed mean availability (or R-trimmed availability, for
short) is defined to be the value obtained by removing the R
time steps with the highest availability and taking the arith-
metic average of the remaining. In [3], we show that for any
given job with work T1 and critical path T∞ scheduled by
A-STEAL, the job completes in O(T1/P̃ + T∞ + L lg P)
expected time steps, where P̃ denotes the O(T∞ +L lg P)-
trimmed availability. Moreover, the total waste is at most
O(T1), a constant fraction of the total work.

Despite the guarantees of these theoretical bounds, A-
STEAL might nevertheless operate poorly in practice for
three potential reasons:
• The constants hidden by the asymptotic notation might

be too large to be practical.

• The assumption of an adversarial job scheduler might
be too stringent, leading a simpler algorithm such as
ABP to perform as well or better in realistic settings.

• The true mean availability P might diverge consider-
ably in practice from the trimmed availability P̃ , lead-
ing A-STEAL to perform poorly on average.

In this paper, we describe simulation studies which show
that A-STEAL is indeed an effective thread-scheduling al-
gorithm, and that the empirical evidence refutes these three
potential reasons for poor performance. We built a discrete-
time simulator using DESMO-J [23] to evaluate the perfor-
mance of A-STEAL. Some of our experiments evaluated
the constants hidden in the asymptotic notations, while oth-
ers benchmarked A-STEAL against ABP [4]. We conducted
four sets of experiments on the simulator with synthetic
jobs. Our results are summarized below.

The time experiments investigated the performance of
A-STEAL on over 2300 job runs. A linear-regression anal-
ysis of the results provides evidence that the constants hid-
den by the asymptotic notation are small. A second linear-
regression analysis indicates that A-STEAL completes jobs
on average in at most twice the optimal number of time

steps, which is the same bound provided by offline greedy
scheduling [9, 16, 35].

The waste experiments were designed to measure the
waste incurred by A-STEAL in practice and compare the
observed waste to the theoretical bounds. Our experiments
indicate that the waste is almost insensitive to the parameter
settings and is a tiny fraction (less than 10%) of the work
for jobs with high parallelism.

The time-waste experiments compared the completion
time and waste of A-STEAL with ABP [4] by running single
jobs with predetermined availability profiles. These experi-
ments indicate that on large machines, when the mean avail-
ability P is considerably smaller than the number of proces-
sor P in the machine, A-STEAL completes jobs faster then
ABP while wasting fewer processor cycles than ABP. On
medium-sized machines, when P is of the same order as P ,
ABP completes jobs somewhat faster than A-STEAL, but it
still wastes many more processor cycles than A-STEAL.

The utilization experiments compared the utilization of
A-STEAL and ABP when many jobs with varying charac-
teristics are using the same multiprocessor resource. The
experiments provide evidence that on moderately to heav-
ily loaded large machines, A-STEAL consistently provides
a higher utilization than ABP for a variety of job mixes.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the A-STEAL algorithm and its theoretical
bounds. Section 3 describes our simulation setup. Sections
4, 5, 6, and 7 describe the four sets of experiments in de-
tail. Section 8 describes related work, and Section 9 offers
concluding remarks.

2. Overview of A-STEAL

This section briefly reviews the A-STEAL algorithm
originally presented in [3], including its desire-estimation
algorithm and its theoretical guarantees.

A-STEAL’s simple desire-estimation algorithm is in-
spired by that in [2]. During each quantum q, A-STEAL

monitors how each processor allotted to the job spends its
cycles: working, stealing, or mugging. At the end of the
quantum, it determines the job’s nonsteal usage nq for the
job: the total number of cycles the jobs spends working or
mugging. To estimate the desire for the next quantum q+1,
A-STEAL uses the nonsteal usage nq , as well as the desire
dq and allotment aq from the previous quantum.

In addition, A-STEAL employs two tuning parameters.
The utilization parameter δ ≤ 1 determines whether a
quantum q is deemed efficient, namely, whether nq ≥
δLaq . That is, the nonsteal usage is at least a δ fraction
of the Laq total processor cycles allotted for the quantum.
A quantum is deemed inefficient otherwise. Typical values
for δ might lie in the range 80–95%. The responsiveness
parameter ρ > 1 determines how quickly the scheduler re-
sponds to changes in parallelism. Typical values for ρ might
lie in the range 1.2–2.0.

Figure 1 shows the pseudocode for A-STEAL. The theo-
retical paper [3] contains more details about the algorithm.

A-STEAL (q, δ, ρ)

1 if q = 1
2 then dq ← 1 � base case
3 elseif nq−1 < Lδaq−1

4 then dq ← dq−1/ρ � inefficient
5 elseif aq−1 = dq−1 � efficient
6 then dq ← ρdq−1

7 else dq ← dq−1

8 Report dq to the job scheduler.
9 Receive allotment aq from the job scheduler.

10 Schedule on aq processors using randomized
work stealing for L time steps.

Figure 1: Pseudocode for the adaptive work-stealing thread
scheduler A-STEAL, which provides parallelism feedback to a job
scheduler in the form of a processor desire. Just before quantum
q begins, A-STEAL uses the previous quantum’s desire dq−1, al-
lotment aq−1, and nonsteal usage nq−1 to compute the current
quantum’s desire dq based on the utilization parameter δ and the
responsiveness parameter ρ.

The trim analysis presented in [3] provides the follow-
ing bounds on the performance of A-STEAL with respect
to time and waste. Suppose that a job with work T1 and
critical-path length T∞ is scheduled on a machine with P
processors, and let P̃ be the O(T∞+L lg P)-trimmed avail-
ability. Then, A-STEAL completes the job in time T while
wasting at most W processor cycles, where

E [T] ≤ T1

δP̃
(1 + O(1/L))

+O

(
T∞

1− δ
+ L log

ρ
P

)
, (2)

W ≤
(

1 + ρ− δ

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1 . (3)

3. Simulation setup

To study A-STEAL, we built a Java-based discrete-time
simulator using DESMO-J [23]. Our simulator implements
four major entities — processors, jobs, thread schedulers,
and job schedulers — and simulates their interactions in
a two-level scheduling environment. Like prior work on
scheduling of multithreaded jobs [5–7, 9, 10, 28, 41, 49], we
modeled the execution of a multithreaded job as a dynam-
ically unfolding directed acyclic graph (dag), where each
node in the dag represents a unit-time instruction and an
edge represents a serial dependence between nodes. When a
job is submitted to the simulated multiprocessor system, an
instance of a thread scheduler is created for the job. The job
scheduler allots processors to the job, and the thread sched-
uler simulates the execution of the job using work-stealing.
The simulator operates in discrete time steps: a processor
can complete either a work-cycle, steal-cycle, or mug-cycle

Figure 2: The parallelism profile (for 2 iterations) of the jobs used
in the simulation.

during each time step. We ignored the overheads due to the
reallocation of processors.

We tested synthetic multithreaded jobs with the paral-
lelism profile shown in Figure 2. Each job alternates be-
tween a serial phase of length w1 and a parallel phase (with
h-way parallelism) of length w2. The average parallelism of
the job is approximately (w1 + hw2)/(w1 + w2). By vary-
ing the values of w1, w2, h, and the number of iterations, we
can generate jobs with different work, critical-path lengths,
and frequency of the change of the parallelism.

We implemented three kinds of job schedulers — profile-
based, equipartitioning [46], and dynamic-equipartitioning
[46]. A profile-based job scheduler was used in the
first three sets of experiments, and both equipartitioning
and dynamic-equipartitioning job schedulers were used in
the utilization experiment. An equipartitioning (EQ) job
scheduler simply allots the same number of processors to all
the active jobs in the system. Since ABP provides no par-
allelism feedback, EQ is a suitable job scheduler for ABP’s
scheduling model. Dynamic equipartitioning (DEQ) is a
dynamic version of the equipartitioning policy, but it re-
quires parallelism feedback. A DEQ job scheduler main-
tains an equal allotment of processors to all jobs with the
constraint that no job is allotted more processors than it
requests. DEQ is compatible with A-STEAL’s scheduling
model, since it can use the feedback provided by A-STEAL

to decide the allotment.

For the first three experiments — time, waste, and time-
waste — we ran a single job with a predetermined avail-
ability profile: the sequence of processor availabilities pq

for all the quanta during job’s execution. For the profile-
based job scheduler, we precomputed the availability pro-
file, and during the simulation, the job scheduler simply
used the precomputed availability for each quantum. We
generated three kinds of profiles:
• Uniform profiles: The processor availabilities in these

profiles follow the uniform distribution in the range
from 1 to P , the maximum number of processors in the
system. These profiles represent near-adversarial con-
ditions for A-STEAL, because the availability for one

quantum is unrelated to the availability for the previous
quantum.

• Smooth profiles: In these profiles, the change of pro-
cessor availabilities from one scheduling quantum to
the next follows a standard normal distribution. Thus,
the processor availability is unlikely to change signifi-
cantly over two consecutive quanta. These profiles at-
tempt to model situations where new arrivals of jobs
are rare, and the availability changes significantly only
when a new job arrives.

• Practical profiles: These availability profiles were
generated from the workload archives [29] of various
computer clusters. We computed the availability at ev-
ery quantum by subtracting the number of processors
that were being used at the start of the quantum from
the number of processors in the machine. These pro-
files are meant to capture the processor availability in
practical systems.

A-STEAL requires certain parameters as input. The re-
sponsiveness parameter is ρ = 1.5 for all the experiments.
For all experiments except the waste experiments, the uti-
lization parameter is δ = 0.8. We varied δ in the waste
experiments. The quantum length L represents the time
between successive reallocations of processors by the job
scheduler, and is selected to amortize the overheads due
to the communication between the job scheduler and the
thread scheduler and the reallocation of processors. In con-
ventional computer systems, a scheduling quantum is typi-
cally between 10 and 20 milliseconds. Our experience with
the Cilk runtime system [57] indicated that a steal/mug-
cycle takes approximately 0.5 to 5 microseconds, indicating
that the quantum length L should be set to values between
103 and 105 time steps. Our theoretical bounds indicate that
as long as T∞ � L log P , the length of L should have lit-
tle effect on our results. Due to the performance limitations
of our simulation environment, however, we were unable to
run very long jobs — most have a critical-path length on
the order of only a few thousand time steps. Therefore, to
satisfy the condition that T∞ � L log P , we set L = 200.

4. Time Experiments
The running-time bounds proved in [3], though asymp-

totically strong, have weak constants. The time experiments
were designed to investigate what constants would occur in
practice and how A-STEAL performs compared to an opti-
mal scheduler. We performed linear-regression analysis on
the results of 2331 job runs using many availability profiles
of all three kinds to answer these questions.

Our first time experiment uses the bounds in Inequal-
ity (2) as a simple model, as in the study [8]. Assuming that
equality holds and disregarding smaller terms, the model
estimates performance as

T ≈ c1T1/P̃ + c∞T∞ , (4)

where c1 > 0 is the work overhead and c∞ > 0 is

Figure 3: Comparing the (true) mean availability P with the
trimmed availability P̃ using three availability profiles. Each data
point represents a job execution for which the mean availability
and trimmed availability were measured. These values were nor-
malized by dividing by the parallelism T1/T∞ of the job. When
the parallelism satisfies T1/T∞ > 5P , the experiments indicate
that for all profiles, the trimmed availability is a good approxima-
tion of the mean availability. All these experiments used δ = 0.8
and ρ = 1.5.

the critical-path overhead. When δ = 0.8, ρ = 1.5,
and L = 200, the coefficients for the asymptotic bounds
in Inequality (2) turn out to be 1.26 < c1 < 1.27 and
c∞ = 480, but a direct analysis of expectation can improve
the bound on critical-path overhead to c∞ = 60. Since
the critical-path overhead c∞ is large, the bound indicates
that A-STEAL may not provide linear speedup except when
T1/T∞ � 60P̃ . In practice, however, we should not expect
these large overheads to materialize.

Our first linear-regression analysis fits the running time
of the 2331 job runs to Equation (4). The least-squares fit to
the data to minimize relative error yields c1 = 0.960±0.003
and c∞ = 0.812 ± 0.009 with 95% confidence. The R2

correlation coefficient of the fit is 99.4%. Since c∞ =
0.812± 0.009, on average the jobs achieved linear speedup
when T1/T∞ � P̃ . In addition, since c1 = 0.960 ± 0.003
A-STEAL achieves almost perfect linear speedup on the ac-
counted steps. The work overhead c1 is less than 1, because
the jobs performed work during some of the steps that were
trimmed.

We performed a second set of regressions on the same
set of jobs to compare the performance of A-STEAL with
an optimal scheduler. We fit the job data to the curve

T = ĉ1T1/P + ĉ∞T∞ . (5)

The analysis yields ĉ1 = 0.992 ± 0.003 and c∞ =
0.911± 0.008 with an R2 correlation coefficient of 99.4%.
Both T1/P and T∞ are lower bounds on the job’s run-

ning time, and thus an optimal scheduler requires at least
max

{
T1/P , T∞

}
≥ (T1/P + T∞)/2 ≥ (ĉ1T1/P +

ĉ∞T∞)/2 time steps, since ĉ1 < 1 and ĉ∞ < 1. Thus, on
average A-STEAL completed the jobs within at most twice
the time of an optimal scheduler.

The two models 4 and 5 both predict performance with
high accuracy, and yet P̃ and P can diverge significantly.
To resolve this paradox, we compared P̃ and P on the job
runs. Figure 3 shows a graph of the results, where P̃ and P
are each normalized by dividing by the parallelism T1/T∞

of the job. The diagonal line is the curve P̃ = P .
If a job has parallelism T1/T∞ > 5P (data points on

the left), the experiment indicates that for all three kinds of
availability profiles, we have P̃ ≈ P . In this case, we have
T1/P̃ ≈ T1/P and T1/P � T∞, which implies that the
first terms in Equations (4) and (5) are nearly identical and
dominate the running time. On the other hand, if a job has
small parallelism (data points on the right), the values of P̃
and P diverge and the divergence depends on the availabil-
ity profile used. In this region, the running time is domi-
nated by the critical-path length T∞, however, and thus, the
divergence of P̃ and P has little influence on the running
time.

5. Waste Experiments
The theoretical analysis in [3] shows that the waste in-

curred by A-STEAL is at most O(T1). The constant hidden
in the O-notation depends on the parameter settings. In our
first waste experiment, we varied the value of the utiliza-
tion parameter δ to understand the relationship between the
waste and the setting of δ. For our second experiment, we
investigated whether the waste incurred by a job depends on
the job’s parallelism.

Inequality (3) gives the total waste by A-STEAL, but
it can be shown that that the number of processor cycles
wasted by a job is ((1 − δ)/δ)T1 on efficient quanta and
approximately (ρ/δ)T1 on inefficient quanta. Substituting
δ = 0.8 and ρ = 1.5, A-STEAL could waste as many as
0.25T1 processor cycles on efficient quanta and as many as
1.875T1 processor cycles on inefficient quanta. Since this
analysis assumes that the job scheduler is an adversary and
that the job completes the minimum number of work-cycles
in each quantum, we should not expect these constants to
materialize in practice.

We measured the waste for 300 jobs, most of which had
parallelism T1/T∞ > 5P , for δ = 0.5, 0.6, . . . , 1.0. The
job runs used many availability profiles drawn equally from
the three kinds. Figure 4 shows the average of waste nor-
malized by the work T1 of the job. For comparison we plot-
ted the normalized theoretical bound Inequality (3) for the
total waste and the normalized bound ((1− δ)/δ)T1 for the
waste on efficient quanta. As the figure shows (although
the curve is barely distinguishable from the x-axis), the ob-
served waste is less than 10% of the work T1 for most val-
ues of δ and is considerably less than the theoretical bounds
predict. Moreover, the waste seems to be quite insensitive

to the particular value of δ.
We also ran an experiment to determine whether par-

allelism has an effect on waste. The bound in Inequal-
ity (3) does not depend on the parallelism T1/T∞ of the
job, but only on the work T1. For the 2331 job runs used
in the time experiments, we measured the waste versus par-
allelism. Since waste is insensitive to δ, all jobs used the
value δ = 0.8. Figure 5 graphs the results. As can be seen
in the figure, the higher the parallelism, the lower the waste-
to-work ratio. The reason is that when the parallelism is
high, the job can usually use most of the available proces-
sors without readjusting its desire. When the parallelism
is low, however, the job’s desire must track its parallelism
closely to avoid waste. This situation is where A-STEAL

is most effective, as the job pushes the theoretical waste
bounds to their limit.

6. Time-waste experiments
The time-waste experiments were designed to compare

A-STEAL with ABP, an adaptive thread scheduler with no
parallelism feedback. For our first experiment, we ran A-
STEAL and ABP to execute 756 job runs on a simulated
machine with P = 512 processors. Each head-to-head
run used one of two practical availability profiles, one with
P = 30 and one with P = 60. We measured the time and
waste of A-STEAL and ABP for each run. Our second ex-
periment was similar, but it used only P = 128 processors
in the simulated machine over 330 job runs. Whenever the
availability exceeded 128, which was not often, we chopped
the availability to 128.

Figure 6 shows the ratio of ABP to A-STEAL with re-
spect to both time and waste as a function of the mean
availability P , normalized by dividing by the parallelism
T1/T∞. This experiment shows that A-STEAL completed
jobs about twice as fast as ABP while wasting only about
10% of the processor cycles wasted by ABP. Not surpris-
ingly, A-STEAL wastes fewer processor cycles than ABP,
since A-STEAL uses parallelism feedback to limit possi-
ble excessive allotment. Paradoxically, however, A-STEAL

completes jobs faster than ABP, even though A-STEAL’s al-
lotment in every quantum is at most that of ABP, which is
always allotted all the available processors.

ABP’s slow completion is due to how ABP manages its
work queues. In particular, ABP has no mechanism for in-
creasing and decreasing the number r of work queues, and
it maintains r = P queues throughout the execution. Ran-
domized work-stealing algorithms require Θ(r) steal-cycles
to reduce the length of the critical path by 1 in expectation.
Consequently, if r is large, each steal-cycle becomes less ef-
fective, and the job’s progress along its critical path slows.
Thus, if the job has small or moderate parallelism (data
points on the right), the critical-path length dominates the
running time. If the job has large parallelism (data points
on the left), however, the impact is less. In contrast, A-
STEAL continues to make good progress along the critical
path, regardless of parallelism, by reducing the number of

queues according to its allotment.
This paradox can also be understood by using the model

from Equation (4) for A-STEAL and an analogous model
based on Equation (1) for ABP. Consider three cases:
• T1/T∞ < P � P (data points on the right): Whereas

A-STEAL completes the job in Θ(T∞) time, ABP re-
quires Θ(PT∞/P) time.

• P < T1/T∞ � P (data points in the middle): A-
STEAL provides linear speedup since T1/T∞ > P̃ , but
ABP does not, since T1/T∞ � P .

• P < T1/T∞ (data points on the left): Both provide
linear speedup in this range.

Since ABP performed relatively poorly when P is large
compared to P , our second experiment investigated the case
when P is closer to P . Figure 7 shows the results on 330
job runs on a simulated machine with P = 128. In this
case, ABP performs slightly better than A-STEAL with re-
spect to time and slightly worse with respect to waste. Since
P ≈ P , the two models coincide, and ABP and A-STEAL

perform comparably. Therefore, on small machines, where
the disparity between P and P cannot be very great, the
advantage of parallelism feedback is diminished, and ABP
may yet be an effective thread-scheduling algorithm.

7. Utilization experiments
The utilization experiments compared A-STEAL with

ABP on a large server where many jobs are running si-
multaneously and jobs arrive and leave dynamically. We
implemented job schedulers to allocate processors among
various jobs: dynamic equipartitioning [46] for A-STEAL

and equipartitioning [59] for ABP. We simulated a 1000-
processor machine for about 106 time steps, where jobs had
a mean interarrival time of 1000 time steps. We compared
the utilization provided by A-STEAL and ABP over time.

It was unclear to us what distribution the parallelism
and the critical-path lengths should follow. Although
many workload models for parallel jobs have been stud-
ied [19, 24, 30, 45, 55], none appears to apply directly to
multithreaded jobs. Some studies [39, 40, 44] claim that the
sizes of Unix jobs follow a heavy-tailed distribution. With-
out clear guidance, we decided to try various distributions,
and as it turned out, our results were fairly insensitive to
which we chose.

We considered 9 sets of jobs using three distributions on
each of the parallelism and the critical-path length. The
means of the distributions were chosen so that jobs arrive
faster than they complete and the load on the machine pro-
gressively increases. Thus, we were able to measure the
utilization of the machine under various loads. The three
distributions we explored were the following:
• Uniform distribution (U): The critical-path length is

picked uniformly from the range 1, 000 to 99, 000. The
parallelism is generated uniformly in the range [1, 80].

• Heavy-tailed distribution 1 (HT1): We used a Zipf’s-
like [61] heavy-tailed distribution where the probabil-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 0.6 0.7 0.8 0.9 1

W
as

te
/T

1

δ

theoretical value of waste/T1
theoretical value of waste/T1 for efficient steps

experimental result of waste/T1

Figure 4: Comparing the theoretical and practical waste (nor-
malized by T1) using A-STEAL for various values of the uti-
lization parameter δ. The top line shows the total theoretical
waste, the next line shows the theoretical waste on efficient
quanta, and the bottom line shows the observed waste. The
observed waste appears to be almost insensitive to the value of
δ and is much smaller than the theoretical waste.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 1 10 100 1000

W
as

te
/T

1

Parallelism/P
−

Waste/T1

Figure 5: How waste varies with parallelism. When
T1/T∞ > 10P , that is, the job’s parallelism significantly ex-
ceeds the average availability, the observed waste was only a
tiny fraction of the work T1. For jobs with small parallelism,
the waste showed a large variance but never exceeded the work
T1 in any of our runs. The utilization parameter was δ = 0.8
for all job runs.

 1

 10

 100

 0.1 1 10

T
im

e A
B

P/
T

im
e A

-S
T

E
A

L

P
−

/Parallelism

Time Ratio

 1

 10

 100

 0.1 1 10

W
as

te
A

B
P/

W
as

te
A

-S
T

E
A

L

P
−

/Parallelism

Waste Ratio

Figure 6: Comparing the time and waste of A-STEAL against ABP when P = 512 and P = 30, 60. In this experiment, where P exceeds
P by a significant margin, A-STEAL completes jobs about twice as fast as ABP while wasting less than 10% of the processor cycles wasted
by ABP.

ity of generating x is proportional to 1/x. In our ex-
periments, the distribution for parallelism has mean
about 36, and the distribution for critical-path length
has mean 50, 000.

• Heavy-tailed distribution 2 (HT2): In this distribu-
tion, the probability of generating x is proportional to
1/
√

x. In our experiments, the distribution for paral-
lelism has mean 36, and the distribution for critical-
path length has mean 50, 000.

Of the 9 possible sets of jobs, we ran 6 experiments
using parallelism and critical-path lengths drawn from
U/U, U/HT1, HT1/U, HT1/HT1, HT2/U, and HT2/HT2.
For all these experiments, the comparison between A-
STEAL+DEQ and ABP+EQ followed the same qualitative
trends. We broke time into intervals of 2000 time steps and

measured the utilization — the fraction of processor cycles
spent working — for each interval. Figure 8 shows the uti-
lization as a function of time (log-scale) for the U/U exper-
iment on the left and for HT1/HT1 on the right. As can
be seen in both figures, ABP+EQ starts out with a higher
utilization, since A-STEAL+DEQ initially requests just one
processor. Before 10% of the simulation has elapsed, how-
ever, A-STEAL+DEQ overtakes ABP+EQ with respect to
the utilization and then consistently provides a higher uti-
lization. Although the figure does not show it, the mean
completion time of jobs under ABP+EQ is nearly 50%
slower than those under A-STEAL+DEQ for both these dis-
tributions.

 1

 10

 0.1 1 10

T
im

e A
B

P/
T

im
e A

-S
T

E
A

L

P
−

/Parallelism

Time Ratio

 1

 10

 0.1 1 10

W
as

te
A

B
P/

W
as

te
A

-S
T

E
A

L

P
−

/Parallelism

Waste Ratio

Figure 7: Comparing the time and waste of A-STEAL against ABP when P = 128 and P = 30, 60. In this experiment, where P and P
are closer in magnitude, A-STEAL runs slightly slower than ABP, but it still tends to waste fewer processor cycles than ABP.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+003 1e+004 1e+005 1e+006

U
til

iz
at

io
n

Time Steps

A-STEAL+DEQ
ABP+EQ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+003 1e+004 1e+005 1e+006

U
til

iz
at

io
n

Time Steps

A-STEAL+DEQ
ABP+EQ

Figure 8: Comparing the utilization over time of A-STEAL+DEQ and ABP+EQ. In the left figure, both the critical-path length and the
parallelism follow the uniform distribution, and in the right figure, they follow the HT1 distribution.

8. Related work
This section discusses related work on adaptive and non-

adaptive scheduling of multithreaded jobs.
Work-stealing has been used as a heuristic since Bur-

ton and Sleep’s research [17] on scheduling functional pro-
grams and Halstead’s implementation of Multilisp [38].
Many variants have since been implemented [32, 37, 47],
and work-stealing algorithms have been analyzed in the
context of load balancing [52] and backtrack search [42].
Blumofe and Leiserson [10] proved that work stealing is ef-
ficient with respect to time, space, and communication for
scheduling multithreaded computations on a fixed number
of processor, and Arora, Blumofe, and Plaxton [4] extended
the result to varying numbers of processors. Acar, Blelloch,
and Blumofe [1] showed that work-stealing schedulers are
efficient with respect to cache misses for jobs with “nested
parallelism.” Work-stealing algorithms have been imple-
mented in many systems [8, 14, 33], and empirical studies
show that work-stealing schedulers are scalable and practi-
cal [13, 33].

Adaptive thread scheduling without parallelism feed-
back has been studied in the context of multithreading, pri-

marily by Blumofe and his coauthors [4, 12, 13, 15]. In this
work, the thread scheduler uses randomized work-stealing
strategy to schedule threads on available processors but
does not provide the feedback about the job’s parallelism
to the job scheduler. The work in [12, 15] addresses net-
works of workstations where processors may fail or join and
leave a computation while the job is running, showing that
work-stealing provides a good foundation for adaptive task
scheduling. Arora, Blumofe, and Plaxton [4] show that the
ABP thread scheduler is provably efficient, and they give
a nonblocking implementation of their algorithm. Blumofe
and Papadopoulos [13] perform an empirical evaluation of
ABP and show that on an 8-processor machine, ABP pro-
vides almost perfect linear speedup for jobs with reasonable
parallelism. In all these experiments, the parallelism of jobs
is much greater than 8.

Adaptive task scheduling with parallelism feedback has
been studied empirically in [53, 56, 58]. These researchers
use a job’s history of processor utilization to provide feed-
back to dynamic-equipartitioning job schedulers. Their
studies use different strategies for parallelism feedback, and
all report better system performance with parallelism feed-

back than without, but it is not apparent which of their
strategies is best. Our earlier work [2, 3] appears to be the
only theoretical analysis of a thread scheduler with paral-
lelism feedback.

Adaptive job schedulers have been studied extensively,
both empirically [25, 34, 46, 50, 51, 54, 60] and theoretically
[22, 26, 27, 36, 48]. McCann, Vaswani, and Zahorjan [46]
studied many different job schedulers and evaluated them
on a set of benchmarks. They also introduced the notion of
dynamic equipartitioning, which gives each job a fair allot-
ment of processors, while allowing processors that cannot
be used by a job to be reallocated to other jobs.

9. Conclusions
This section offers some conclusions and directions for

future work.
A-STEAL needs full information about the previous

quantum to estimate the desire of the current quantum. Col-
lecting perfect information might become difficult as the
number of processors becomes larger, especially if the num-
ber of processors exceeds the quantum length. A-STEAL

only estimates the desire, however, and therefore approx-
imate information should be enough to provide feedback.
We are currently studying the possibility of using sampling
techniques to estimate the number of steal-cycles, instead
of counting the exact number.

Our empirical studies provide evidence that A-STEAL

performs better than ABP when the machine has a large
number of processors and has many jobs running on it. The
reason is that A-STEAL uses parallelism feedback and the
mugging mechanism to reclaim abandoned queues. One
can imagine implementing ABP, which does not use paral-
lelism feedback, but which does use a mugging mechanism.
Although adding a mugging mechanism to ABP may not
improve its performance theoretically, such a modification
to ABP might improve its performance as a matter of prac-
tice. We are currently studying ABP with this modification
in order to evaluate the importance of parallelism feedback
itself in adaptive work-stealing.

The empirical studies presented in this paper use a sim-
ulated multiprocessor. We ignore all scheduling overheads
due to the communication between the job scheduler and
the thread scheduler and due to the reallocation of proces-
sors. We plan to implement A-STEAL in the Cilk [8, 33]
or JCilk [20,21,43] programming environments to evaluate
parallelism feedback in the context of real multiprocessors.

Acknowledgments
Thanks to the members of the Supercomputing Tech-

nologies group at MIT CSAIL and to Wen Jing Hsu of the
Nanyang Technological Institute in Singapore for numerous
helpful discussions.

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. In SPAA, pages 1–12, New York,

NY, USA, 2000.
[2] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive

task scheduling with parallelism feedback. In PPoPP, 2006.
[3] K. Agrawal, Y. He, and C. E. Leiserson. A theoretical anal-

ysis of work stealing with parallelism feedback. 2006.
[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread

scheduling for multiprogrammed multiprocessors. In SPAA,
pages 119–129, Puerto Vallarta, Mexico, 1998.

[5] G. Blelloch, P. Gibbons, and Y. Matias. Provably effi-
cient scheduling for languages with fine-grained parallelism.
Journal of the ACM, 46(2):281–321, 1999.

[6] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In ICFP, pages 213–225,
1996.

[7] R. D. Blumofe. Executing Multithreaded Programs Effi-
ciently. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1995.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Com-
puting, 37(1):55–69, 1996.

[9] R. D. Blumofe and C. E. Leiserson. Space-efficient schedul-
ing of multithreaded computations. SIAM Journal on Com-
puting, 27(1):202–229, Feb. 1998.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. Journal of the
ACM, 46(5):720–748, 1999.

[11] R. D. Blumofe, C. E. Leiserson, and B. Song. Automatic
processor allocation for work-stealing jobs. 1998.

[12] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable par-
allel computing on networks of workstations. In USENIX,
pages 133–147, Anaheim, California, 1997.

[13] R. D. Blumofe and D. Papadopoulos. The performance of
work stealing in multiprogrammed environments. In SIG-
METRICS, pages 266–267, 1998.

[14] R. D. Blumofe and D. Papadopoulos. Hood: A user-level
threads library for multiprogrammed multiprocessors. Tech-
nical report, University of Texas at Austin, 1999.

[15] R. D. Blumofe and D. S. Park. Scheduling large-scale par-
allel computations on networks of workstations. In HPDC,
pages 96–105, San Francisco, California, 1994.

[16] R. P. Brent. The parallel evaluation of general arithmetic
expressions. Journal of the ACM, pages 201–206, 1974.

[17] F. W. Burton and M. R. Sleep. Executing functional pro-
grams on a virtual tree of processors. In FPCA, pages 187–
194, Portsmouth, New Hampshire, Oct. 1981.

[18] S.-H. Chiang and M. K. Vernon. Dynamic vs. static
quantum-based parallel processor allocation. In JSSPP,
pages 200–223, Honolulu, Hawaii, United States, 1996.

[19] W. Cirne and F. Berman. A model for moldable supercom-
puter jobs. In IPDPS, page 59, Washington, DC, USA, 2001.
IEEE Computer Society.

[20] J. S. Danaher. The JCilk-1 runtime system. Master’s thesis,
MIT Department of Electrical Engineering and Computer
Science, June 2005.

[21] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson. The JCilk
language for multithreaded computing. In Synchronization
and Concurrency in Object-Oriented Languages (SCOOL),
San Diego, California, Oct. 2005.

[22] X. Deng and P. Dymond. On multiprocessor system schedul-
ing. In SPAA, pages 82–88, 1996.

[23] DESMO-J: A framework for discrete-event modelling
and simulation. http://asi-www.informatik.
uni-hamburg.de/desmoj/.

[24] A. B. Downey. A parallel workload model and its implica-
tions for processor allocation. Cluster Computing, 1(1):133–
145, 1998.

[25] D. L. Eager, J. Zahorjan, and E. D. Lozowska. Speedup
versus efficiency in parallel systems. IEEE Transactions on
Computers, 38(3):408–423, 1989.

[26] J. Edmonds. Scheduling in the dark. In STOC, pages 179–
188, 1999.

[27] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-
clairvoyant multiprocessor scheduling of jobs with changing
execution characteristics. Journal of Scheduling, 6(3):231–
250, 2003.

[28] Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic
processor self-scheduling for general parallel nested loops.
IEEE Transactions on Computers, 39(7):919–929, 1990.

[29] D. Feitelson. Parallel workloads archive. http://www.
cs.huji.ac.il/labs/parallel/workload/.

[30] D. G. Feitelson. Packing schemes for gang scheduling. In
D. G. Feitelson and L. Rudolph, editors, JSSPP, volume
1162, pages 89–110. Springer, 1996.

[31] D. G. Feitelson. Job scheduling in multiprogrammed paral-
lel systems (extended version). Technical report, IBM Re-
search Report RC 19790 (87657) 2nd Revision, 1997.

[32] R. Finkel and U. Manber. DIB—A distributed implementa-
tion of backtracking. TOPLAS, 9(2):235–256, Apr. 1987.

[33] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In PLDI,
pages 212–223, 1998.

[34] D. Ghosal, G. Serazzi, and S. K. Tripathi. The pro-
cessor working set and its use in scheduling multiproces-
sor systems. IEEE Transactions on Software Engineering,
17(5):443–453, 1991.

[35] R. L. Graham. Bounds on multiprocessing anomalies.
SIAM Journal on Applied Mathematics, pages 17(2):416–
429, 1969.

[36] N. Gu. Competitive analysis of dynamic processor alloca-
tion strategies. Master’s thesis, York University, 1995.

[37] M. Halbherr, Y. Zhou, and C. F. Joerg. MIMD-style paral-
lel programming with continuation-passing threads. In Pro-
ceedings of the International Workshop on Massive Paral-
lelism: Hardware, Software, and Applications, Capri, Italy,
Sept. 1994.

[38] R. H. Halstead, Jr. Implementation of Multilisp: Lisp on a
multiprocessor. In LFP, pages 9–17, Austin, Texas, Aug.
1984.

[39] M. Harchol-Balter. The effect of heavy-tailed job size. distri-
butions on computer system design. In Conference on Appli-
cations of Heavy Tailed Distributions in Economics, 1999.

[40] M. Harchol-Balter and A. B. Downey. Exploiting process
lifetime distributions for dynamic load balancing. ACM
Transactions on Computer Systems, 15(3):253–285, 1997.

[41] S. F. Hummel and E. Schonberg. Low-overhead scheduling
of nested parallelism. IBM Journal of Research and Devel-
opment, 35(5-6):743–765, 1991.

[42] R. M. Karp and Y. Zhang. A randomized parallel branch-
and-bound procedure. In STOC, pages 290–300, Chicago,
Illinois, May 1988.

[43] I.-T. A. Lee. The JCilk multithreaded language. Master’s
thesis, MIT Department of Electrical Engineering and Com-
puter Science, Aug. 2005.

[44] W. Leland and T. J. Ott. Load-balancing heuristics and pro-
cess behavior. In SIGMETRICS, pages 54–69, New York,
NY, USA, 1986. ACM Press.

[45] U. Lublin and D. G. Feitelson. The workload on paral-
lel supercomputers: Modeling the characteristics of rigid
jobs. Journal of Parallel and Distributed Computing,
63(11):1105–1122, 2003.

[46] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic
processor allocation policy for multiprogrammed shared-
memory multiprocessors. ACM Transactions on Computer
Systems, 11(2):146–178, 1993.

[47] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task cre-
ation: A technique for increasing the granularity of parallel
programs. In LFP, pages 185–197, 1990.

[48] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant
scheduling. In SODA, pages 422–431, 1993.

[49] G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling
of nested parallelism. ACM Transactions on Programming
Languages and Systems, 21(1):138–173, 1999.

[50] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximiz-
ing speedup through self-tuning of processor allocation. In
IPPS, pages 463–468, 1996.

[51] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Using run-
time measured workload characteristics in parallel proces-
sor scheduling. In D. G. Feitelson and L. Rudolph, editors,
JSSPP, pages 155–174. Springer-Verlag, 1996.

[52] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel ma-
chines. In SPAA, pages 237–245, Hilton Head, South Car-
olina, July 1991.

[53] S. Sen. Dynamic processor allocation for adaptively parallel
jobs. Master’s thesis, Massachusetts Institute of Technology,
2004.

[54] K. C. Sevcik. Characterizations of parallelism in applica-
tions and their use in scheduling. In SIGMETRICS, pages
171–180, 1989.

[55] K. C. Sevcik. Application scheduling and processor alloca-
tion in multiprogrammed parallel processing systems. Per-
formance Evaluation, 19(2-3):107–140, 1994.

[56] B. Song. Scheduling adaptively parallel jobs. Master’s the-
sis, Massachusetts Institute of Technology, 1998.

[57] Supercomputing Technologies Group. Cilk 5.3.2 Reference
Manual. MIT Laboratory for Computer Science, 2001.

[58] K. G. Timothy B. Brecht. Using parallel program character-
istics in dynamic processor allocation policies. Performance
Evaluation, 27-28:519–539, 1996.

[59] A. Tucker and A. Gupta. Process control and scheduling is-
sues for multiprogrammed shared-memory multiprocessors.
In SOSP, pages 159–166, New York, NY, USA, 1989. ACM
Press.

[60] K. K. Yue and D. J. Lilja. Implementing a dynamic pro-
cessor allocation policy for multiprogrammed parallel ap-
plications in the SolarisTMoperating system. Concurrency
and Computation-Practice and Experience, 13(6):449–464,
2001.

[61] G. K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley, 1949.

