Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha
MIT Computer Science and Atrtificial Intelligence Laboratory
Cambridge, MA 02139, USA

ABSTRACT

Researchers in transactional memory (TM) have proposed ogsting as a methodology for increasing the
concurrency of a program. The idea is to ignore certain “‘level” memory operations of an open-nested
transaction when detecting conflicts for its parent tratisacand instead perform abstract concurrency
control for the “high-level” operation that nested trarigat represents. To support this methodology, TM
systems use an open-nested commit mechanism that cominisaalges performed by an open-nested
transaction directly to memory, thereby avoiding low-les@nflicts. Unfortunately, because the TM runtime
is unaware of the different levels of memory, an unconst@inse of open-nested commits can lead to
anomalous program behavior.

In this paper, we describe a frameworkasfnership-awardransactional memory which incorporates the
notion of modules into the TM system and requires that tretitgas and data be associated with specific
transactional module®r Xmodules. We propose a neswnership-aware commit mechanisen hybrid
between an open-nested and closed-nested commit which it®@rpiece of data differently depending
on whether the current Xmodule owns the data or not. Morgavergive a set of precise constraints on
interactions and sharing of data among the Xmodules bast&halar notions of abstraction. We prove that
ownership-aware TM has has clean memory-level semantit€am guaranteserializability by modules
which is an adaptation of multilevel serializability fronatdbases to TM. In addition, we describe how
a programmer can specify Xmodules and ownership in a Jagddnguage. Our type system can enforce
most of the constraints required by ownership-aware TNcstiit, and can enforce the remaining constraints
dynamically. Finally, we prove that if transactions in theogess of aborting obey restrictions on their
memory footprint, theOAT model is free fronsemantic deadlock

1. INTRODUCTION

In the past few years, transactional memory [4] has beentared®Id of research. Transactional memory
(TM) is meant to simplify concurrency control in parallebgramming by providing a transactional interface
for accessing memory; the programmer simply encloses tiieatrregion inside arat omi ¢ block, and
the TM system ensures that that section of code executescaltymnA TM system enforces atomicity by
tracking the memory locations that each transaction in tlséem accesses, finding transaction conflicts,

This research is supported in part by NSF Grants CNS-06182d5°NS-0540248 and a grant from Intel corporation.

Permission to make digital or hard copies of all or part o§ thiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00.

and aborting and possibly retrying transactions that anfliM guarantees that transactions seealizable
[10], that is, transactions affect global memory as if therevexecuted one at a time in some order, even if
in reality, several executed concurrently.

When using TM, one of the issues that programmers must dehlisvihe semantics afested trans-
actions When a TM system hasdosed-nestedransactions [6], if a transactiok contains a closed-nested
transactiorY, afterY commits, for the purpose of detecting conflicts the TM rueticonsiders any memory
locations accessed byas conceptually also being accesseXbyM with closed-nested transactions guar-
antees that transactions are serializable at the level aiange Researchers have observed, however, that
closed nesting might unnecessarily restrict concurrendyansactional programs because it does not allow
two “high-level” transactions to ignore conflicts due to @sses to shared “low-level” memory inside nested
transactions.

To increase concurrency in transactional programs, relsees have proposed the methodologypén-
nested transactionsT he open-nesting methodology incorporatesapen-nested commit mechanidi, 8].
Conceptually, when an open-nested transactigmested inside transactiof) commits,Y makes its changes
directly to memory instead of propagating the changes fmaitentX. Thus, the TM runtime no longer detects
conflicts withX due to memory accessed Wy In this methodology, the programmer considéisinternal
memory operations to be at a “lower level” thinthereforeX should not care about the memory accessed
by Y when checking for conflicts. Instead,must acquire aabstract lockbased on the high-level operation
thatY represents and propagate this lockxiposo that the TM system can perform concurrency control at
an abstract level. Also, with open nestingXifaborts, it may need to executempensating action® undo
the effect of its committed open-nested transacti®ndoss in [7] illustrates use of open nesting with an
application that uses a B-tree. In [9], Ni et. al describefansye TM system that supports the open-nesting
methodology.

An unconstrained use of the open-nested commit mechanisead to anomalous program behavior [1]
that can be tricky to reason about. Since programmers mdstrstand the open-nested commit mechanism
to program using open nesting, at first glance, it might seleah tising the open-nesting methodology
is complicated. Although researchers have demonstratecifepexamples that safely use an open-nested
commit mechanism, the literature on TM offers relativetildiin the way of formal programming guidelines
which one can follow to haverovableguarantees of safety when using open-nested commits. Maneo
since these working examples require only two levels ofingsit is not obvious how one can correctly use
open-nested commits in a program with more than two levesbsfraction.

We believe that one reason for the apparent complexity oh opesting is that the mechanism and
methodology make different assumptions about memory. i@ens transactiorlY open-nested inside
transactionX. The open-nesting methodology requires tKaignore the “lower-level” memory conflicts
generated by, while the open-nested commit mechanism will ignallethe memory operations insidé
SayY accesses two memory locatiofisand/,, and X does not care about changes madé;{dut does
care about,. The TM system can not distinguish between these two acgeasd will commit both in an
open-nested manner, leading to anomalous behavior. Indpetific uses of open nesting that researchers
describe [3, 9] work because they exhibit a clean separatidhe data accessed by an outer transaction
and its (nested) inner transaction. For instance, in the &&nples [3], the open-nested transactions are
operations on a data structure, and the data structure "onasory needed for its implementation that can
not be accessed by a user’s application.

Contributions

In this paper, we bridge the gap between memory-level mestmsnfor open nesting and the high-level
view by explicitly integrating the notions @fansactional module§Xmodules) andwnershipinto the TM
system. We believe such an ownership-aware TM system alioagrammers safely use the methodology
of open nesting because the runtime’s behavior more closécts the programmer’s intent, and because

the additional structure imposed by ownership allows adagg and runtime to enforce properties needed to
provide provable guarantees of “safety” to the programiviere specifically, the contributions of this paper
are as follows:

1. We extend the theoretical framework from [1] to model tiv Jystem with the modules and ownership,
and suggest a concrete set of guidelines for sharing of datanéeractions between Xmodules.

2. We describe how the Xmodules and ownership can be spetifiedlava-like language and propose a
type system that enforces the above mentioned guidelingseiprograms written using this language
extension.

3. We formally describe the operational model, called@#& model, which uses a neawnership-aware
commit mechanismwhich is a compromise between open-nested commit anddztossted commit. An
ownership-aware commit of a transactibrcommits a memory location globally if that location belongs
to the module off ; otherwise, the read or write to the location is propagafetbd’s parent transaction.
Unlike an ordinary open-nested commit, the ownership-awammit treats memory locations differently
depending on the Xmodule that owns the location. Note thataivnership-aware commit is still a
mechanism; programmers must still use it in combinatiomafistract locks and compensating actions
to get the full methodology.

4. We prove that the if a program follows the guidelines fdaddnaring and interactions between Xmodules,
then theOAT model guarantees serializability by modules, which is segaization of “serializability-
by-levels” used in database transactions. Ownershipeaw@nmit is the same as open nested commit if
no module ever accesses data belonging to other modulesfdiee one corollary of our theorem is that
open-nested transactions are serializable when modulestddare data. This observation explains why
researchers [3, 9] have found it natural to use open-nestaddctions in the absence of sharing, in spite
of the apparent pitfalls in the open-nested transactioraséos.

5. We prove that under certain restrictive conditions, th@jputation can not enter a semantic deadlock.

Outline

The rest of the paper is organized as follows. In Section 2hredly review the transactional computation
framework [1], and explain how we extend this framework tarfally incorporate Xmodules and ownership.
In Section 3, we describe an example application and destailguage constructs for specifying Xmodules
and ownership. In Section 4, we describe ®AT model, an operational model for the TM system. In
Section 5, we give a formal definition of serializability byodules, and proof-sketch that tAT model
guarantees this definition. In Section 6, we give conditionder which theOAT model does not exhibit
semantic deadlocks.

2. COMPUTATIONS WITH MODULES

In this section, we formally define the structure of transaet! programs with Xmodules and incorporate the
concepts of Xmodules and ownership into the transactiomalputation framework described in [1]. First,

we briefly review the framework. We then add Xmodules to thésrfework, and describe a way to restrict
data sharing between transactions of different Xmodulggyws“module tree” structure.

Transactional Computations

In the framework from [1], the execution of a program is medelising a “computation tree” that
summarizes both the information about the control strectfr a program and the nesting structure of
transactions, and an “observer functio®’ which characterizes the behavior of memory operations. A
program execution is assumed to generataee (C,P).

A computation treeC is defined as an ordered tree with two types of nodesmory-operation nodes
memOps(C) as leaves andontrol nodesspNodes(() as internal nodes. A memory operatiosatisfies the

O P-Node
O s-Node
[] Transaction
O Memory Op.

Figure 1. A sample (a) computation trgeé and (b) its corresponding d&sy C).

read predicate Ry, /) if v reads from locatiorf, while v satisfies thevrite predicate Wv, ¢) if v writes to.
Control nodes are eithes (series) orP (parallel) nodes. Conceptually, the children of &node must be
executed serially, from left to right, while the children®hode can be executed in parallel. So8modes
are labeled as transactions; defizetions(() as the set of these nodes.

Instead of specifying the value that an operation reads ibesvwio a memory locatioh, we abstract away
the values by using aobserver function®. For a memory operation that accesses a memory locatign
the noded(v) is defined to be the operation that wrote the valué thiatv sees.

We define several structural notations on the computaties. tbenote theoot of a computation tree
C asroot((C). For any tree node&X € nodes(C), let ances(X) denote the set of all ancestors Xf
in C, and letdesc(X) denote the set of alK’s descendants. Denote the set of proper ancestobs of
by pAnces(X). Denote theleast common ancestoof two nodesX;, Xy € C by LCA(Xy, Xp). For any
node X € nodes(C), we define thetransactional parentof X, denotedxparent (X), as parent(X) if
parent(X) € xactions(C), or xparent (parent(X)) if parent(X) ¢ xactions(C). Define thetransac-
tional ancestorsof X asxAnces(X) = ances(X) Nxactions(C). DefinexLCA(X1,X2) aSZ = LCA(X1, X2)
if Z € xactions((), and aspar ent (Z) otherwise.

A computation tree can also be represented as a computaip(dolected acyclic graph). Given a trég
the dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. JEveernal nodeX in
the tree appears as two vertices in the dag. Between theseetiices, the children oK are connected in
series ifX is anSnode, and are connected in paralleXifs aP node. Figure 1 show a computation tree and
its corresponding computation dag.

In classical theories on transactions and serializapiéityparticular execution order for a program is
referred to as aistory [10]. In our framework, a history corresponds to a topolagisort S of the
computation dads(C). We define our models of TM using these sorts. Reordering tarkiso produce
a serial history is equivalent to choosing different togidal sorts$’ of G(C) whose observer function is
still “consistent” with,$’, but where all transactions appear contiguous’in

Xmodules and Computation Tree

In this paper, we consider traces generated by a programhvidiorganized into a set/ of Xmodules.
Each XmoduleA € A has some number of methods and a set of memory locationsassbwith it. In the
transactional computation framework, we assume everyadathan XmoduleA generates some transaction
instanceT . We use the notatioxMbd(T) = Ato associate the instan@ewith the XmoduleA. We also define

the instances associated walas
modXactions(A) = {T € xactions(C) : xMd(T) =A}.

We partition the set of all memory locations into sets of memory owned by each Xmodule. Let
modMemory(A) C L denote the set of memory locations ownedAyfFor a location/ € modMemory(A),
we say thabwner(¢) = A. Xmodules of a program are arranged as a rooted, ordereddiied themodule
tree denoted byD. The root of D is called thenor | d module. An XmoduléA is said to be owned by its
parentnodParent(A) in D. The set of ancestors éfis modAnces(A) (modDesc(A) for descendants).

Each Xmodule is assigned aevel according to its position in the tree as follows: visit thedas in a
left-to-right depth-first search order and assign ids inscdeding order. Therefor®r | d has the maximum
level. Lower-level Xmodules have lowéevel numbers.

We use the module tre® to restrict the sharing of data between Xmodules and to linatvisibility of
Xmodule methods according to the rules given in Definition 1.

DEFINITION 1. A program with a module tre@ should generate only trace&, ®) which satisfy the
following rules:

1. For any memory operation v which accesses a memory lacgtiet T = xpar ent (v). Thenowner(¢) €
modAnces(XMod(T)).

2. Let XY € xactions(() be transaction instances such thetbd (X) = A andxMbd(Y) = B. We can
have X= xpar ent (Y) only if modParent(B) € modAnces(A), andlevel(A) > level(B).

By Rule 1, an XmoduleA can only directly access memory that it owns, or memory thaam@cestor
Xmodule B owns (e.g., becaud® passed in that data to a lower-level Xmodule). Since all stocg of A
have highel evel thanA, a transaction from modul& can not directly access any “lower-level” memory.

Rule 2 says that a method frafncan call a method frorB only if B is the child of some ancestor 8f
and if B is “to the right” of A in the tree. The second rule requires that an Xmodule canaatilynethods of
some (but not all) lower-level Xmodules.

In our model, primarily for convenience, we assume an methoah XmoduleA never calls another
transactional method frovh or an ancestor oA. If a method fromA does call another transactional method
from A, the new method call does not generate a new transactioangestand we subsume the nested
method call using flat nesting. Similarly, if a method frékncalls a method from an ancestor Xmodule
(e.g., callback), we subsume the nested method call, ane@lIntitd case a# accessing the memory from
ancestor Xmodule directfy.

The concept of higher-level and lower-level modules is irheto the definition of serializability-by-
modules and abstract serializability; the very justificatof open-nesting is that transactions must be able
to ignore lower-level conflicts. Therefore, our formalisequires a partial order among Xmodules; if an
XmoduleA can call XmoduleB, then conceptualhA is at a higher level thaB. Therefore B can not callA
(except in a flat-nested manner described in the previowgpaph), since lower-level modules can not call
methods from higher-level modules transactionally. If mamponents of the program call each other, then
we would require that these two components be combinedhetsame Xmodule.

Properties of Xmodules

Definition 1 guarantees certain properties of the compridtiee which are essential to the ownership-aware
commit mechanism. The following lemma can be proved by itidoon nesting depth of transactions.

LEMMA 1. Given acomputation tre€, consider any Te xactions(C). Let§ = {xMdd(T’) : T’ € xAnces(T)}.
ThenmodAnces(xMod(T)) C Sr.

10ne could also use closed nesting instead of flat nesting wheétmodule calls its own methods or its ancestor’'s methods.

PROOF We prove this fact by induction on the nesting depth of teatisns in the computation tree.

In the base case, the top-level transacfior- root(C), andxMd(root((C)) = worl d. Thus, the fact
holds trivially.

For the inductive step, assume thatiAnces(xMbd(T)) C St holds for any transactiom at depthd. We
show that the fact holds for arly* € xactions(() at depthd + 1.

For any suchT*, we know T = xparent (T*) is at depthd. By Rule 2, modParent(xMd(T*)) €
modAnces(XxMd(T)). Thus,modAnces(xMd(T*)) C modAnces(xMd(T)) U {xMd(T*)}. By construction
of the setSr, we haveSr- = Sy U {xMd(T*)}. Therefore, we havgodAnces(xMd(T*)) C Sr-. O

THEOREM 2. If a transaction Te xactions(() directly (without nesting) accesses a memory location
then there exists a unique transactioi & (xAnces(T) — {root((C)})), such that

1. owner(¢) = xMod(T*), and
2. For all transactions Xe pAnces(T*) Nxactions((), X can not directly access locatian

PrROOE This result follows from the properties of the module treel @omputation tree stated in Defini-
tion 1.

First, by Rule 1, we knowwner(¢) € modAnces(xMd(T)), i.e., ¢ is owned by some Xmodule which is
an ancestor ofMd(T) in the module tree. By Lemma 1, we knawdAnces(xMbd(T)) C Sr. Therefore,
there exists some transactidrn € xAnces(T) such thabwner(¢) = xMd(T™).

We can use Rule 2 to show that the is unique. LetX; be the chain of ancestor transactions of
T. More formally, letXo = T, and letX; = xparent (X_1), up until Xx = root(C). By Rule 2, we
know level(xMd (X)) > level(xMbd(X;_1)), that is, the module ids become strictly larger walking up
the tree fromT. Thus, there can only be one ancestor transactiorof T with level(xMd(T*)) =
level(owner({)).

To check the second condition drf, consider anyX € pAnces(T*) Nxactions(C), and assume for
contradiction thatX could accesd directly. By Rule 1,X can accesd directly only if owner(?) €
modAnces(xMd (X)), which then implieslevel(owner(¢)) > level(xMd(X)), since an Xmodule always
has a smaller id than its ancestor Xmodules. This, howewerradicts the facts derived earlier, that
owner({) = T* andlevel(T*) < level(xMd(X)). U

Intuitively, Theorem 2 implies that for programs that oblg tonstraints described in Definition 1, if a
transactionT accesses a memory locatiérthen some unique ancestorfofsayT*, belongs to the Xmodule
that ownst. In the context of the ownership-aware commit mechanisis,tthnsactionl * is “responsible
for” committing ¢ and making it visible to the world. The second condition oedtem 2 states that no
ancestor transaction af* in the call stack can ever directly accésshus, it is “safe” forT* to commit/.

3. OWNERSHIP TYPES FOR Xmodules

In this section, we illustrate how one may use an ownershigr@ transaction system to write a simple
example application. First, we describe the example agjudic, which consists of user code interacting with
a simple database system. Next, we describe one way to lsgliapplication into Xmodules, and explain
the restrictions imposed by Definition 1 in the context okthpplication. Finally, we describe language
constructs for Java that can be used to both specify Xmodutdsownership for this application, and
describe a type system design (called @%T type system) that statically enforces some of the resiristi
of Definition 1.

Example Application

To explain the notions of modules and ownership, we desanibapplication similar to the one in [7], but
extended to include more than two levels of transactionimgesind data sharing between a nested transaction
and its parent.

Level s
UserApp |1 evel: 4

level:3 “ level:0

level:2 level:1

Figure 2. A module treeD for the program described in Section 1. Thevel’s are assigned by visiting
Xmodules in a left-to-right depth-first tree walk, numbegridmodules in a descending order.

Consider a user application which concurrently accessatadadse of many individuals’ book collections.
The user application may provide many other functionalitreaddition to accessing the book database, but
for the purpose of this paper, we are only describing a stilgb@ complex system.

The database implementor chooses to store records in & Isi@arch tree, keyed by name. Each tree node
corresponds to a different person, and maintains a list ok&an that person’s collection. The database
supports queries by name, as well as updates that add a nssnpera new book to a person’s collection.
The database also maintains a private hashmap, keyed bytidepto support a reverse query, i.e., given a
book title, return a list of people who own the book.

Finally, the user application wants the database to loggémion disk for recoverability. Whenever the
binary search tree or hash table are updated, the datalsastsimetadata into the buffer of a logger to record
the change that just took place. Periodically, the useriegimn is able to request a checkpoint operation
which flushes the buffer to disk.

One may implement this example in Java with the followingstsUser App as the top-level application
that manages the book collectioRsy son andBook as the abstractions representing book owners and books,
DB for the databaseéBST andHashmap for the binary search tree and hashmap maintained by thbatsa
andLogger for logging the metadata to disk. In addition, there are sother auxiliary classes such as tree
nodeBSTNode for the BST, Bucket in theHashnmap, andBuf f er used by the.ogger .

Xmodules for Example Application

Intuitively, an Xmodule is as a stand-alone entity that eore data and methods; a Xmodule owns data
that it privately manages, and uses its methods to provididigoservices to other modules. Not all of a
program’s classes are meant to be Xmodules; some classewi@g data, while others are Xmodules that
provide services. In our example, we identify five Xmodul&ser App, DB, BST, Hashmap, andLogger . The
User App uses services fromB, BST andHashnap are submodules @B, andLogger provides services to all
User App, DB, Hashnap, andBST. Classes such @pok andPer son, on the other hand, are data types used by
User App. Similarly, classes lik®STNode andBucket are data types used IBgT andHashmap to maintain

the internal state of the data structures.

We organize the Xmodules of the application into the mode shown in Figure 2Jser App is directly
owned bywor | d, DB and Logger are ownedUser App; BST and Hashmap are owned byDB. By dividing
Xmodules this way, the ownership of data falls out naturaley, an Xmodule owns certain pieces of data
if the data is encapsulated under the Xmodule. For exantmeanstances d®er son or Book are owned by
User App because they should only be accessed eltkerApp or its descendants.

If Definition 1, Rule 1 is satisfied, all dbB, BST, Hashmap, andLogger can only directly access data
owned byUser App, but theUser App can not directly access data owned by any of the other Xmedulas
rule corresponds to standard software-engineering roleatfstraction; the “high-level” Xmodulégser App

can pass its data down and lower-level Xmodules can accaisddta directly, butlser App itself should not
modify data owned by lower-level Xmodules.

If Rule 2 is satisfied, théser App may invoke methods frorBB, DB may invoke methods frorBST and
Hashmap, and every other Xmodule may invoke methods frbogger . While the BST Xmodule can call
methods fronmLogger, it can not pass data owned by itself directly into tlegger . But it can pass data
owned by theJser App to the logger, which is all that is required in this applioati In the module tree in
Figure 2, if theLogger had any children, then they would be lower level tHg8T, but BST can not call
methods from this hypothetical child.

Specification of Xmodules and Parametric Ownership Types

Angelina: Ok, maybe the title

Although the restrictions on Xmodules required by Defimtib are not difficult to state or reason about
abstractly, the programmer has to specify the Xmodules ameiship of data in their programs. In addition,
if the program violates the rules from Definition 1, then tloenpiler or the runtime system should be able
report this error. We propose ti@AT type system, which is an extension of the ownership typersehe
of Boyapati et. al [2], because the restrictions descrilpedafinition 1 are similar to the concept of object
containment / encapsulation in an object-oriented langubigte that the scheme of Boyapati et. al allows
owner polymorphism by parameterizing class / method datitars with ownership tags. We adapt this
annotation as well to enable code reuse.

Before describing how to specify Xmodules and their comesing data, we first describe the scheme of
Boyapati et. al [2]. Their type system enforces the follayvproperties:

1. Every object has a unique owner.
2. The owner can be either another objectyarl d .
3. The ownership relation forms awnership tregooted ator | d.

4. An objecta can access another objdxtirectly (@ can obtain a pointer tb) only if b is eithera’s child
or a’s ancestor’s child in the ownership tree.

They enforce these properties by adding annotations tg definitions and type declarations. Every type
T1 has a set of associated ownership tags, deridtéf], f,,... fy). The first formalf; denotes the owner of
the correspondinghi s object. The remaining formals, f3,... f, are additional tags which the object can
propagate down to its encapsulated objects. The formalasggined with actual ownegs,0,,...0, when

an objecta of type T1 is created. The type system checks #@iaiownero; is a descendant @, Vi € 2..n,
(denoted byo; < o henceforth) in the ownership tree. Of course, when an asgghtakes place, the type
system also enforces that the types from both sides matdtgxa

Within the class definition of typ&l, the only visible ownership tags afd, f2,... f,} U{thi s,worl d},
wheret hi s denotes the owner to be the correspondihgs object, andwor | d denotes the object to be
globally accessible. The object can declare (and theretsat another object of ty@@ using only owners
from this set. Thus, an object can not access another dbjetts owner is nota or one ofa’s ancestors.

Boyapati et. al's type system enforces constraints on tbjebich are similar to, but not exactly the
constraints that we would like for Xmodules (i.e., Definitith). Therefore, we extend their type system to
satisfy three additional requirements.

First, the OAT type system imposes restrictions to guarantee that only dihes own other objects.
Normally, in the ownership tree of [2], every object can b@amer of other objects. Therefore, we explicitly
distinguish between objects and Xmodules by requiringXmabdules extend from a specigiodul e class.

In addition, theOAT type system allows the use @i s as an ownership tag only in the class definition that
is a subtype oKnodul e.

Second, theOAT type system prohibits an Xmodule from having any primitiype fields. In the
parametric type system we use, one can not specify the oviipeinative fields of an object, and primitive
fields are owned by the owner of the corresponding objects;Tany primitive fields of an Xmodula are

1 public class UserApp<appO> extends Xmodul e {
2 private DB<this[0], this[1], this[2]> db;
3 private Logger<this[1], this[2]> |ogger;

4 pﬁbiic User App() {

5 | ogger = new Logger<this[1]>();

6 db = new DB<this[0], this[1], this[2]>(logger);
7

8

9 public class DB<dbQ, |0gQ dataC>
extends Xmodul e where(logO <= dataOQ ({

10 private Logger<l ogOQ dataC> |ogger;

11 private BST<this[0], logQ dataO> bst;

12 private Hashmap<this[1], |ogQ dataC®> hashmap;
13 public DB(Logger<logQ, dataC®> |ogger) {

14 this.logger = |ogger;

15 1}

Figure 3. Specifying Xmodules and ownership for the example apptinadescribed in Section 1.

owned byA’s parent in the ownership tree. Therefore, two sibling Xmled would be able to access each
other’s primitive fields directly, since they have the sammer. To disallow this behavior, we do not allow
Xmodules to declare primitive fields.

Lastly, the OAT type system enforces ordering between sibling Xmod&leend B to prevent cyclic
dependencies between the subtrees ahdB in the module tree. In Boyapati's type system, an object can
call any of its ancestor’s siblings, while Definition 1 digs that an Xmodul& can only call its ancestor’s
siblings to the right. To enforce this restriction, we exteach ownership tagwith anindex o.index

Inside a class file for an Xmodulke, whenever the programmer wishes to specify an ownéhos$, the
programmer must also specify a static index, i.e., pashiig[i] as the tag. The tachi s[i] replaces some
formal tago in the type ofB;, and the index become®. index the index of the tag. The type system uses
these indices to impose a partial order on the childreAiofthe module tree. In this example, by specifying
indices, the type system can statically enforce Byatever call a method froB; if j <.

For the same reason, we disallow arbitrary use ofithié d tag; otherwise it would be difficult to enforce
an ordering between sibling Xmodules owned directly bywbrd d. Instead, we allow only theai n method
for the application program to specify owners usiog! d[i] (with an index), thereby imposing an ordering
among children belong to ther | d.

With these restrictions, the ownership tree in our systethomnly have Xmodules as internal nodes, and
all other objects as leaves. Note that in our ownership &g@rent-child relationship has two meanings. If
an XmoduleA has a regular objed as its child, therA owns all the memory associated withWhen an
Xmodule A has another XmodulB as its child,B is A’s child in the Xmodule tree. The Xmodule tree does
not contain objects.

Figure 3iillustrates how one can specify Xmodules and oviigrssing ownership types. The programmer
specifies an Xmodule by creating a class which extends fragmeea Xnodul e class. ThéB class has three
formal owner tags -dbO which is the owner of thé&B Xmodule instancel, ogO which is the owner of the
Logger Xmodule instance that theB Xmodule will use, and one ownedat aOfor the user data being stored
in the database. When an instanceUsér App initializes Xmodules in lines 5-6, it declares itself as the
owner of theLogger, theDB, and the user data being passed iDBoThe indices on hi s are declaring the
ordering of Xmodules in the module tree, i.e., the user datawer-level than théogger, and theLogger

is lower level than thé&B. lines 10-12 illustrate how theB class can initialize its Xmodules and propagate
the formal owner tags (i.e. ogOanddat a0) down.

Type System Guarantees

We extend the type system of [2] to encompass the requirentescribed in the previous section. To state
the guarantees of our type system, we first define a partial amdindexed ownership tags.

DEFINITION 2. For ownership tags with indices, we adopt the notatiem-@, to mean that either p< 0,
and g # 0p, Or 0 = 02 and q.index< 0y.index.

Note that if A has owner tag;, B has owner tag,, 01 = 02, ando;.index< 0,.index theno; and o,
represent the same Xmodule instance, Arehd B are sibling Xmodules, withB to the right ofA in the
module tree.

In summary, type system enforces the following properties.

1. The tag hi s[i] can be used as an ownership tag only in the class file of an Ximaodject.
2. Xmodule objects can not have primitive-type fields.
3. For a typeT (01, 0,,...0,), we must have; > o; forall i € {2,...n}.

4. A variablec, with type T2(0p,...) can be assigned to a variabde with type T1(o1,...) (either via
assignment statement or passing arguments for methodagcallsuch) if and only ib; = 0, andos &> 05.

The detailed type rules for our type system are describedpeAdix B.

THEOREM 3. Our type system guarantees the following properties.

1. An Xmodule A can access an object with ownership tag o bAlyio.
2. An Xmodule A with ownership tag can access another Xmodule B with ownership tagrdy if A owns
B, orif 0, > 0,.

PrOOF Condition 1 is the same as Boyapati et. al's access rulese3iur type system makes the type
rules stricter, it still holds with our type systefn. Jim: Condition 1.is essentalh
Condition 2 requires more explanation. An XmodAlean access another XmoduBeonly if inside A's
class file, it is possible to declare a variablef type T and assigrB to x. The only ownership tags thafs
class file can use as the owner Toare one ofA’s formal tags, ot hi s[i] tag.
If the owner ofT is one of the formal tage;, then by Property 3, we know, o> 0;. By Property 4, we
know B can be assigned toonly if o; = 0, ando; > 0,. Since the relation- is transitive, we have; > 0,.
Similarly, if x is declared with a taghi s[i], then by Property 4, we can assignto x only if 0, =
this[j] (wherei <j).Thus, we havé\ ownsB.
(]

These properties translate to the definition Definition Ulittee children of a particular Xmodule have
unigue indices. By indexinghi s owner tags, we are able to enforce some ordering constria@tigeen
sibling Xmodules. One should note, however, that our typsesy can not prevent cyclic dependencies
between Xmodules, since the programmer can always dealarkrmodulesA andB with the same indexed
ownerthis[i]. In this case, the type system does not enforce any ordeongtraint betwee\ and
B statically. In general, it seems difficult enforce the ondggrof children entirely statically (Rule 2 of
Definition 1) without imposing too many programming redtdns. The runtime system, however, could
dynamically check for cycles and throw a runtime error if aleyis detected.

2Note that in this paper, we do not consider the possibilitynnér classes, unlike the original ownership type systef@of

4. OWNERSHIP-AWARE TRANSACTIONS

In this section, we informally sketch tH@AT model, an abstract execution model for TM with ownership
and Xmodules. The novel feature of tAT model is that it uses the structure of Xmodules to provide a
commit mechanism which can be viewed as a hybrid of closedbaed nested commits. TH@AT model
presents an operational semantics for TM, and is not intttmldescribe an actual implementation.

Overview

The TM system is modeled as a nondeterministic state maehiithetwo components: @rogramand a
runtime systemThe runtime system, which we call tl@AT model, dynamically constructs and traverses
a computation tre€ as it executes instructions generated by the program OAlemodel maintains a set
of readynodes, denoted hyeady(C) C nodes(C), and at every step, tt@AT model nondeterministically
chooses one of these ready nodes ready(() to issue the next instruction. The program then issues one
of the following instructions (whose precondition is sidid) on X’s behalf: f ork, j oi n, xbegi n, xend,
xabort, read, orwrite. For shorthand, we sometimes say thassues an instruction.

The OAT model describes a sequential semantics, that is, we asdwweratime step, a program issues
a single instruction. The parallelism in this model arigesf the fact that at a particular time, several nodes
can be ready, and the runtime nondeterministically choa$egsh one to have issue an instruction.

In the rest of this section, we give a detailed descriptiothefOAT model. First, we describe the state
information maintained by th©AT model and define the notation we use to refer to this statarBleeve
describe how th©AT model constructs and traverses the computation tree agdgtens are issued. Then,
we describe how th®AT model handles memory operations (ireead andwr i t e), conflict detection, and
transaction commits, and transaction aborts.

4.1 State Information and Notation

As the OAT model executes instructions, it dynamically constructs cbmputation tree”. For each of
the sets defined in Section 2 (e.gades(C), spNodes(C), memOps(C), xactions(C), etc.), we define
corresponding time-dependent versions of these sets byimglthem with an additional time argument. For
example, we define the sebdes(t, C) denotes the set of nodes in the computation tree afiere steps
have passed. The generalized sets from Section 2 are maapincreasing, i.e., once an element is added
to the set, it is never removed at a later tim8ometimes for shorthand, we omit the time argument when it
is clear that we are referring to a particular fixed titne

Since theOAT model has a computation tre@ which is dynamic, at any fixed timg each inter-
nal nodeA € spNodes(t,C) has astatus field status[A]. If A € xactions(t,(), i.e., A is a trans-
action, thenstatus[A] can be one ofcOW TTED, ABORTED, PENDI NG, or PENDI NG.ABORT. Otherwise,
Ac spNodes(t, C) —xactions(t, C) is either a P-node or a nontransactional S-node; in this saseus|A]
can either b&ORKI NG or SYNCHED. We define several abstract sets for the tree based on this fitdd. The
first 6 sets partition thepNodes(t, C), the set of internal nodes of the computation tree. The lesgtd
categorize transactions and nodes as being either actoagplete.

. pending(t,C) = {X € xactions(t,C) : status|[Z] = PENDI NG} (Pending transactions).

. pendingAbort(t,C) = {X € xactions(t,C) : status|Z] = PENDI NG_ABORT} (Aborting transactions).
. committed(t,C) = {X € xactions(t,C) : status[Z] = COW TTED} (Committed transactions).

. aborted(t,C) = {X € xactions(t,C) : status|Z] = ABORTED} (Aborted transactions).
.working(t,C) = {Z € spNodes(t, C) — xactions(t,C) : status[Z] = WORKI NG} (Working nodes).

0 N O O b~ W N PP

(t,C)
. synched(t, C) = {Z € spNodes(t, C) —xactions(t,C) : status[Z] = SYNCHED} (Synched nodes).
.activeX(t,C) = pending(t, C) UpendingAbort(t, C) (Active transactions).
.activeN(t,C) = activeX(t, C) Uworking(t, C). (Active nodes).

9. doneX(t,C) = committed(t, C) Uaborted(t, C) (Complete transactions).
10. doneN(t, C) = doneX(t, C) Usynched(t, C) (Complete nodes).

The OAT model maintains a set eéady S-nodes, denoted asady(t, C). We discuss the properties of
ready nodes later, in Section 4.2. Note thatdy(t, C), and the sets defined above which are subsets of
activeN(t, C) are not monotonic, because completing nodes removes efefnem these sets.

For the purposes of detecting conflicts, at any tinfer any active transaction, i.e., T € activeX(t, (),
the OAT model maintains aeadsetR(t,T) and awritesetw(t, T) for T. The readsek(t,T) is a set of pairs
(¢,v), wherel € L is a memory location and< memOps(t, C) is @ memory operation that reads frégmi\e
definew(t, T) similarly. We represent main memory as the readset/wtitglseoot(C). Attimet = 0, we
assume (0,root(C)) andw(0,root(()) initially contain a pair(¢, L) for all locations? € L.

The OAT model maintains two invariants a&it,T) andw(t,T). First,w(t,T) C R(t, T) for every transac-
tion T € xactions(t,), i.e., a write also counts as a read. Seca(tl,T) andw(t, T) each contain at most
one pair(¢,v) for any location/. Thus, we use the shorthafid: R(t, T) to mean that there exists a node
such that(¢,u) € R(t,T), and similarly forw(t,T). We also overload the union operator: at some tijran
operationk(T) < R(T)U{(¢,u) } means we construdi(t+ 1,T) by

R(t+1T)={(,u)}U(R(tT)—{((U)€rtT)}).

In other words, we ad¢¢,u) toR(T), replacing any/,u’) € R(t, T) that existed previously.
Finally, for a transactiofl € activeX(t, C), we also define enodule readseas

modR(t,T) = {(¢,v) €R(t,T) : owner({) =xMd(T)}.

In other wordsmodR(t, T) is the subset ok(t, T) that accesses memory owned b XmodulexMbd(T).
Similarly, we define thenodule writesetis

modW(t, T) = {(¢,v) €W(t,T) : owner(¢) =xMd(T)}.

4.2 Constructing the Computation Tree

In the OAT model, the runtime constructs the computation tree in agéiifarward fashion as instructions
are issued. Th®AT model maintains a computation tree that satisfies two siralcproperties.
First, theOAT model builds only computation tregswhich have the following canonical form.

PROPERTY 1. A canonical computation tre€ satisfies the following properties.

1. root(() is a transaction.
2. All transactions Z xactions((C) are S-nodes.

3. InC, every P-node Y has exactly two nontransactional S-noges\d 2 as children, ancarent(Y) is
an S-node.

Second, at any timg if one looks only the active nodes:tiveN(t, C), the OAT model maintains the
invariant the active nodes form a tree, with the ready nodéiealeaves. In other words, t@AT model
preserves the following invariant.

PROPERTY 2. At any time t, the computation tre¢esatisfies these properties:

1. For all X € ready(t, C), ances(X) C activeN(t, ().
2. For all X € ready(t, C), (pDesc(X) Nnodes(t, C)) C doneN(t, C).

In other words, the setctiveN(t, C) forms anactive tree

Since theODAT model is a sequential semantics, it is clear that the seguehiostructions always generates
a valid topological sor§ of the computation dadz(C). Jim: Don't know where this s

oes this actually make any
- to be careful about having

The instructions in th©AT model maintain Properties 1 and 2 for the computation treestraightfor-
ward fashion. For completeness, however, we give a mordetbtdescription of this construction.

Initially, at timet = 0, we begin with only the root node in the tree, irndes(0, C) = xactions(0,(C) =
{root(C)}. Throughout the entire computation, tBAT model always maintainstatus[root(()] =
PENDI NG, i.e., the root node of the tree is alwapENDI NG. This root node also begins as ready, i.e.,
ready(0,C) = {root(()}.

The OAT model creates new internal nodesdnduring time stegt + 1 when it chooses a ready node
X € ready(t, C) and hasX issue & or k or xbegi n instruction. IfX issues d or k, then the runtime creates
a P-nodeP as a child ofX, and two S-node§; andS; as children ofP, all with statusWORKI NG. Thef or k
also removeX from ready(C) and addsS; andS; to ready(C). If X issues arxbegi n, then the runtime
creates a new transactiohe xactions(C) as a child ofX, with status[Y] = PENDI NG, removesX from
ready(C), and add¥ to ready(C).

The OAT model completes a nontransactional S-ndde ready(t, C) —xactions(t,C) (which must
have status[Z] = WORKI NG) by having Z issue aj oi n instruction. Thej oi n instruction first changes
status[Z] to SYNCHED. In the tree, sincgarent(Z) is always a P-nodeZ has exactly one sibling. [¥
is the first child ofparent(Z) to be SYNCHED, the OAT model removeg from ready(C). OtherwiseZ is
the last child ofparent(Z) to be SYNCHED, and theOAT model remove& andparent(Z) from ready(C)
and addgarent(parent(Z)) to ready(C).

The OAT model can complete a transacti¥re ready(t, C) by having it issue either axend or xabor t
instruction. If status[X] = PENDI NG, then X can issue arxend to changestatus[X]| to COW TTED.
Otherwise,status[X] = PENDI NG.ABORT, andX can issue amabort to change its status ®BORTED. For
bothxend andxabor t , theOAT model removeX from ready(() and addgarent(X) back intoready(C).
Thexend instruction also performs an ownership-aware commit arzshghs readsets and writesets, which
we describe later in Section 4.4.

Finally, a ready nod& issues a ead andwr i t e instruction, if the instruction does not generate a conflict
it adds a memory operation nogld¢o memOps(t, C), with v as a child ofX. If the instruction would create
a conflict, the runtime may change the status of BEMDI NG transactionT to PENDI NG_ABORT to make
progress in resolving the conflict. For shorthand, we refethe status change of a transactibrfrom
PENDI NG to PENDI NG_ABORT as asi gabort of T.

4.3 Memory Operations and Conflict Detection

The OAT model performs eager conflict detection; before perfornaimgemory operation that would create
a newv € memOps((C), the OAT model first checks whether creatingvould cause a conflict, according to
Definition 3.

DEFINITION 3. Suppose at time t, the OAT model issuasead or wr i t e instruction that potentially
creates a memory operation node v. We say that v generatesnaory conflictif there exists a location
¢ € L and an active transactionyE activeX(t, C) such that

1. Ty & xAnces(v), and
2. either Rv,2) A ((¢,u) € W(t, Ty)), or W(v,£) A ((¢,u) € R(t, Ty))-

If vwould generate a conflict, then the memory operatidioes not occur; instead,sagabort of some
transaction may occur. We describe the mechanism for almo8sction 4.5.

Otherwisey does not generate a conflict. Thembserves the valuéfrom R(Y), whereY is the closest
ancestor ol with ¢ in its readset (i.e.(¢,u) € R(Y) and®(v) = u). Ther ead also addw to X's readset.

A successfulw i t e operationv sets the observer functioh(v) in the same way asreead. Thewite
adds(¢,v) to bothr(X) andw(X).

4.4 Ownership-Aware Transaction Commit

The OAT model implements an ownership-aware commit mechanismefsted transactions which contains
elements of both a closed-nested and an open-nested cofRENDI NG transactiony issues arxend in-
struction to commiY into X = xpar ent (Y). WhenY commits, it commits locations from its readset/writeset
which are owned byMd(Y)’s in an open-nested fashion to the root of the tree, whileibmits locations
owned by other Xmodules in a closed-nested fashion, by gaipay those reads/writes ¥

We can describe th®AT model’s commit mechanism more formally in terms of moduledsets and
writesets. Suppose at timeY € xactions(t, C) with status[Y] = PENDI NG issues arxend. This xend
changes readsets and writesets as follows.

R(root(C)) « R(root(C))UmodR(Y)

R(xparent (Y)) <« R(xparent (Y))U(R(Y)—modR(Y))
Wroot(C)) « Wroot((C))UmodW(Y)

Wxparent (Y)) «— Wxparent (Y))U(W(Y)—modW(Y))

For a memory operation, Theorem 2 implies that the the ownership-aware commit @rg@sin has a
well-defined “committer” foru.

DEFINITION 4. For any memory operation u, which accesses a locatjaiefine theommitterof u, denoted
committer(u), as the unique transaction*ffrom Theorem 2 such thatiner(¢) = xMod(T*).

Intuitively, committer(u) is the transaction which “belongs” to the same Xmodule asdabation ¢ which
u accesses, and is responsible for commitiing memory. One can also show for anywhich accesses
a location/, ¢ can never appear in the readset (or writeset) of any transatt which is an ancestor of
committer(u). Note that this property does not hold for TM with open-néstemmits; in that cas&(T’)
may contain a different value fdrthat may be replaced upon commit. Jim: THIS WAS AN OLD PAI
For programs where every Xmodubeaccesses only locatioswhich it owns, an open-nested commit
is equivalent to an ownership-aware commit because any myemodified by T with xMd(T) = A is
committed directly taroot (). Some program examples, however, are arguably easierdorredout using
an ownership-aware commit. For instance, suppose in th@raapplication from Section 1, thatBaok
object has a field ofast Sear ched that keeps track of the last time a query was performed iivglthat
Book in a successful top-level transaction. Suppose this fietdsis read by théser Aop Xmodule. In this
case, if theBST uses an open-nested commit, the programmer must worry abbonly the commutativity
with methods irBST Xmodule, but also the commutativity with methods in tser App Xmodule that access
(read or write) thé ast Sear ched field. Similarly, when compensating the methods ofB&§€ Xmodule, the
compensating action would need to undo the modificationdd &lst Sear ched field. With an ownership-
aware commit mechanism, on the other hand, the write ohabeSear ched field is then propagated up
to the parent transaction, and eventually committed to nmgronly when a top-level transaction of the
User App Xmodule ends, (since we assume Boek instance is owned by thdser App).

4.5 Transaction Abort

When the OAT model detects a conflict, it aborts one of the conflicting seamions by changing its
status fromPENDI NG to PENDI NG_.ABORT. In the OAT model, a transactio € xactions(() might not
abort immediately; instead, it might continue to issue miostructions after it's status has changed to
PENDI NG_ABORT. This condition allows the system to use compensating Betio compensate for the nested
transactions that may have committed. Eventual¥eldDl NG_ABORT transaction issues awnd instruction,
which then changes its status frdtENDI NG_ABORT to ABORTED.

Later, it will be useful to refer to the set of operations ang@ctionT issues while its status is
PENDI NG_ABCRT.

DEFINITION 5. The set of operations issued by T or its descendants aftestdtiss changes t8ENDI NG_ABORT
are called T’sabort actions. This set is denoted ybortactions(T).

If a potential memory operationmgenerates a conflict witly, andT,’s status iSPENDI NG, then theOAT
model can nondeterministically choose to abort eikipar ent (v), or T,. In the latter case; then “waits” for
Ty to finish aborting (i.e., change its statusABORTED) before continuing. IfT,’s status iSPENDI NG_ABORT,
thenv just waits forT, to finish aborting before trying to issuead orw i t e again.?

This operational model uses the same conflict detectionridigo as TM with ordinary closed-nested
transactions does; the only subtleties are Wte#n generate a conflict withRENDI NG_ABORT transactionil,
and that transactions no longer abort instantaneouslyusedaey have abort actions. Some restrictions on
the abort actions of a transaction may be necessary to aeaidlatk, as we describe later in Section 6.

5. SERIALIZABILITY BY MODULES

In this section, we defingerializability by modulesa definition inspired by the database definition of
multilevel serializability (e.g., as described in [11]).eWhen provide a proof sketch that t@AT model
from Section 4 guarantees serializability by modules.

First, we describe the definition of serializability in tharsactional computation framework, as given
in [1]. Next, we incorporate Xmodules into this definitiondadefine serializability by modules. We then
prove that theOAT model guarantees serializability by modules. Finally, veeulss the relationship between
the definition of serializability by modules, and the notmfrabstract serializability for the methodology of
open nesting.

5.1 Transactional Computations and Serializability

In [1], serializability for a transactional computation tivicomputation tree” was defined in terms of
topological sortsS of the computation da(C). Informally, a trace(C, @) is serializable if there exists
a topological sort orders of G(C) such thats is “sequentially consistent with respect @, and all
transactions appear contiguous in the orglein this section, we give more precise, formal definitions of
this concept.

Content Sets

For a given tracé C,®), we define “content” sets for every transactidrby partitioningmemOps(T) into
three setscContent(T), oContent(T) andaContent(T). For anyu € memOps(T), we define the content
sets based on the status of transactions that one visits when walking up the tree frano T.

DEFINITION 6. Forany transaction T and memory operation u, define thes®istent(T), oContent(T),
andaContent(T) according theContentType(u, T) procedure:

ContentType(u,T) > For any uc memOps(T)
1 X<« xparent(u)
2 while(X#T)
3 if (X is ABORTED) return u € aContent(T)
4 if (X = committer(u)) return u € oContent(T)
5 X« xpar ent (X)
6 returnue cContent(T)

Recall that in theOAT model, the commit off commits some memory operations in an open-nested
fashion, directly to memory, and some operations in a clossted fashion, tparent(T). Informally,

3If v causes a conflict, we know that= parent(v) andZ € ready((); waiting until T, has finished aborting can be modeled as
either the runtime not choosing as a ready node to issue an instruction untikabort for T, occurs, or having issue “nop”
instructions untilTy as finished aborting.

oContent(T) is the set of memory operations that are committed in an “bpeanner byT’s subtransac-
tions. Similarly,aContent(T) is the set of operations that are discarded due to the abedroé subtrans-
action inT’ subtree. FinallycContent(T) is the set of operations that are neither committed in anrfope
manner, nor aborted.

Sequential Consistency with Transactions

For computations with transactions, we can modify the @asstion of sequential consistency to account
for transactions which abort. Transactional semantidsidichat memory operations belonging to an aborted
transactionl should not be observed by (i.biddenfrom) memory operations outside of

DEFINITION 7. For any two vertices v € V (), let X=xLCA(u, V). We say that u isiddenfrom v, denoted
uHv, if u€ aContent(X).

Our definition of serializability by modules requires thatutations satisfy some notion of sequential
consistency, generalized for the setting of TM.

DEFINITION 8. Consider a trace(C,®) and a topological sorts of G(C). For all v € memOps(C) such
that R\v,¢) VW(v,¢), the transactional last writerof v according toS, denotedXs(v), is the unique
u € memOps(C) U {L} that satisfies four conditions:

1. W(u,?),

2.Uu<gV,

3. =(uHv), and

4. YWW(W,) A (U<sW<gV))=WHvV.

DEFINITION 9. A trace (C,®) is sequentially consistentf there exists a topological sotf such that
@ = X;. We say thaf is sequentially consistent with respect @

In other words, the transactional last writer of a memoryratien u which accesses locatiofy is the
last writev to location? in the orders, except we skip over writes which are hidden from (i.e., aborted
with respect tolu. Intuitively, Definition 9 requires that there exists anard explaining all the memory
operations of the computation.

Serializability

DEFINITION 10. A trace(C,®) is serializableif there exists a topological sorf that satisfies two condi-
tions:

1. ® = X, (S is sequentially consistent with respectd, and
2. VT € xactions(C) andVv e V((), we havexbegin(T) <s Vv < xend(T) implies ve V(T)).

Ordinary serializability can be thought of as a strengthgrof sequential consistency which also requires
that the ordets both explains all memory operations, and also has all tcdioses appearing contiguous.

5.2 Defining Serializability by Modules

In [1], a trace(C, P) was said to beserializableif there exists a topological so of G(C) such thats is
sequentially consistent with respectd®g and all transactions appear contiguous irSerializability in this
context can be thought of as a sequential consistency ptuetiuirement that transactions are atomic. For
ownership-aware transactions, this definition of segdlility is too strong because conflicting accesses to
memory owned by a low-level Xmodule causes transaction$mfteer-level Xmodule to conflict, preventing
these transactions from commuting with each other.

Instead, we describe a definition of serializability by miesuvhich checks for correctness one Xmodule
at a time. Informally, the definition proceeds as followsvesi a trace(C,®), for each XmoduleA, we

transform the tree” into a new treenTree(C,A), and then check that in the traGeTree(C,A), ®), that
only the transactions of Xmodulkeare serializable. The new tre€ree((C,A) is constructed in such a way
as to ignore memory operations of Xmodules which are loeeellthanA, and also to ignore all operations
which are hidden from transactions AfIf the check holds for all Xmodules, then tra@é, @) is said to be
serializable by modules. We construftree((,A) according to Definition 11.

DEFINITION 11. For any computation tre€’, letmTree((C,A) be the result of modifying as follows:

1. For all memory operations & memOps(C) with u accessind, if owner(¢) = B for somelevel(B) <
level(A), convert u into a nop.

2. For all transactions Te modXactions(A), convert all ue aContent(T) into nops.

The intuition behind Step 1 of Definition 11 is that when loukiat XmoduleA, we throw away memory
operations belonging to a lower-level Xmodesince by Theorem 2, transactionsfAo€an never directly
access the same memory as those operations anyway. For ,Stepignore the content of any aborted
transactions nested inside transactiongahose transactions might access the same memory locat#ons
operations which we did not turn into nops, but those opematare aborted with respect to transactions of
A

Lemma 4 argues that for a trace which is originally sequéynt@nsistent, turning memory operations
into nops according to Definition 11 does not create an idvilice, i.e., one where an operatiorhat
remains in the trace attempts to observe a value frenia which was turned into a nop.

LEMMA 4. Let (C,®) be any sequentially consistent trace. Then for any Xmodul@®ree(C,A), P)
is a valid trace. In other words, if & memOps(mTree(C,A)), then®(u) € memOps(mTree(C,A))). Fur-
thermore, anyS$ which is sequentially consistent f@¥ in (C,®) is also sequentially consistent f@r in
(mTree(C,A),P).

PROOF. In the new treenTree(C,A), for any transactiorT, pick anyu € memOps(mTree(C,A)) which
remains. Assume for contradiction thet ®(u) was turned into a nop in one of Steps 1 and 2.

If vwas turned into a nop in Step 1, the we know becausecessed ahsatisfyinglevel(owner({)) <
level(A). Sinceu must access the same locatigm must also be converted into a nop.

If v was turned into a nop in Step 2, ther aContent(T) for somexMd(T) = A. Then we can show
that eithervHu, or u should have also been turned into a nop. Xet xLCA(v,u). SinceX andT are both
ancestors of, eitherX is an ancestor of or T is a proper ancestor &f. Consider the path of transactions
Yo, Y1,... Yk, whereYp = xpar ent (v), xpar ent (Y;) = Yi+1, andxpar ent (Yi) = T. Sincev € aContent(T),
for somey; for 0 < j < k must havestatus[Y;j] = ABORTED.

1. First, suppose is a proper ancestor &f. SinceT is a proper ancestor of, X = Yy for some] satisfying
0<x<k

(a) If status[Y;] = ABORTED for any j satisfying 0< j < x, then we know € aContent(X), and thus
vHu. Since we assumef”, ®) is sequentially consistent anti(v) = u, by Definition 8, we know
—vHu, leading to a contradiction.

(b) If Y; is ABORTED for any j satisfying x < j <k, then status[Y;] = ABORTED implies thatu e
abortedContent)Xand thusu should have been turned into a nop, contradicting the @igetup
of the statement.

2. Next, consider the case wheXeis an ancestor of . If we follow the chain of transactiong, Y1,... Yk
and choose; as before in Case 1, we see tatlways falls into Case 1a, and thus we derive the same
contradiction.

Finally, if ® is the transactional last writer accordingdor (C,®), it is still the transactional last writer
for (mTree(C,A),P) because the memory operations which are not turned into respain in the same
relative order. Thus, the last condition is satisfied.

(]

Note that Lemma depends otthe restrictions described in Definition 1. Without thisusture of modules
and ownership, the construction of Definition 11 is not gotgad to generate a valid trace. Also, note that the
set of memory operations which are turned into nops strictyeases as we look@aTree((,A) and increase
level(A). For the lowest-level Xmodule, say, we keep all memory operations (i.eTree(C,A9) = C).
Once a memory operatianis turned into a nop for Xmodul4, it is turned into a nop for all XmoduleB
with 1level(B) > level(A).

Finally, we can define serializability by modules.

DEFINITION 12. A trace (C,®) is serializable by moduled it is sequentially consistent, and if for all
Xmodules A irD, there exists a topological sast of Co =mTree(C,A) such that:

1. ® = X, (S is sequentially consistent with respectd® and
2. For the treeCp, VT € modXactions(A) andvv e V((Ca), if we havexbegin(T) <; v < xend(T), then
veV(T).

Informally, a tracgC, @) is serializable by modules if it is sequentially consistamd if for every Xmodule
A, there exists a sequentially consistent otléor the tracgmTree(C,A),®) which also has all transactions
of A contiguous.

5.3 OAT Model Guarantees Serializability by Modules

In this section, we show that th®AT model described in Section 4 generates tra@@gb) that are
serializable by modules, i.e., that satisfy Definition 1ReTproof of this fact consists of three steps. First,
we generalize the notion of “prefix race-freedom” descriimgd], to computations with Xmodules. Second,
we prove that th€AT model guarantees that a program execution is prefix raeeffiaally, we argue that
any trace which is prefix race-free is also serializable byuhes.

Defining Prefix Race-Freedom

First, we define the prefix races. These definitions are gafgnihe same as those in [1], except adapted for
a system with an ownership-aware commit mechanism insteand @pen-nested commit mechanism.

DEFINITION 13. For any execution orders, for any transaction Te xactions(C), consider any ¥
memOps(T) such thatxbegin(T) <s v < xend(T), we say there exists prefix race between T and v
if there exists a memory operationavcContent(T) s.t., w<s v, =(vHwW), v and w both access and one
of vy w writes to.

DEFINITION 14. A trace (C,®) is prefix race-freeiff exists a topological sorfs of G(C) satisfying two
conditions:

1. ® = X (S is sequentially consistent with respectd, and
2.YveV(C)andVT € xactions(() there is no prefix race betweenvand T.

S is called aprefix race-free sorof the trace.

Properties of theOAT Model

Second, we prove several invariants teT model preserves, and then use these invariants to prove that
the OAT model generates only tracés, ®) which are prefix race-free.

The sequence of instructions that tB&T model issues naturally generates a topological Sast the
computation dads(C): the fork andxbegi n instructions correspond to the begin nodes of a parallel or

series blocks in the dag, thei n, xend, andxabort instructions correspond to end nodes of parallel or
series blocks, and threead or wri t e instructions correspond to memory operation nodesnemOps(C).

THEOREM 5. Suppose the OAT model generates a trag€eP) and an execution orde§. Then,® = Xj,
i.e.,S is sequentially consistent with respectdo

PrOOFE This result is reasonably intuitive, but the proof is tedia@and somewhat complicated. We defer
the details of this proof to Appendix A. U]

Next, we describe an invariant on readsets and writesetsith®AT model maintains.

LEMMA 6. Suppose the OAT model generates a trigcgb) with an execution ordes. For any transaction
T, consider a memory operationaicContent(T) which accesses memory locatiémt step §. Let t; be
step whernxend(T) or xabort(T) happens. At any time t such that<t t < t; there exists some active
transaction T € xDesc(T) NactiveX(t, C) (which is a descendant of T) such that

1. If R(u,?), then? e R(t, T').
2. IfW(u,?), thenl e W(t,T').

PROOF Let X1, Xp,... Xk be the chain of transactions frorpar ent (u) up to, but not includingr, i.e.,
X1 = xparent (u), X; = xpar ent (Xj_1), andxparent (Xx) = T. Since we assume € cContent(T), and
since T completes at timés, we know at some timé&; which satisfiestp < t; < t¢, anxend changes
status[X;] from PENDI NG to COW TTED; otherwise, we would have € aContent(T).

Also, by Definitions 4 and 6, we knowommitter(u) € xAnces(T), i.e., none of theX;’s will commit
location? in an open-nested fashion to the world; otherwise, we woaleth € oContent(T).

First, supposdr(u, /). At time t;, when the memory operatiamcompletes¢,u) is added taR(Xz). In
general, at timg;, the ownership-aware commit mechanism, as described iio8et.4, will propagate
¢ from R(X;) to R(Xj;+1). Therefore, for any time in the intervallt;_1,t;), we know/ € R(t,Xj), i.e., for
Lemma 6,T’ = X;. Similarly, for any timet in the intervalty,t;), we havel € R(t,T), i.e., we choose
T=T.

The case wher@/(u,/) is completely analogous to the caseRgftl, ¢), except we have bothe R(t, T)
and/ e w(t,T'). O

Informally, Lemma 6 states that, if a memory operatiorthat reads / writes locatiori is in the
cCont ent (T) for some transactioi, thenl is pending in the readset / writeset of some active trarmacti
underT’s subtree between the time when the memory operation isimeeid and the time wheh ends.

Finally, we use Theorem 5 and Lemma 6 to prove thatQAd model generates traces which are prefix
race-free.

THEOREM 7. Suppose the OAT model generates a tra€eP) with an execution ordels. Thens is an
prefix race-free sort of C, P).

PROOF

For the first condition of Definition 14, we know by Theorem % wnow theOAT model generates an
orderS which is sequentially consistent with respectio

To check the second condition, assume for contradictionviieshave an ordes generated by th©AT
model, but there exists a prefix race between a transattamd a memory operationZ memOps(T). Letw
be the memory operation from Definition 13, i.@.c cContent(T), W <s V <5 xendT, —=(VHwW), w andv
access the same locatiénwith one of the accesses being a write. t,gaindt, be the time steps in which
operationswv andv occurred, respectively, and lehqgr be the time at which eithetend(T) or xabort(T)
occurs (i.e., eithel commits or aborts). We argue that at titgethe memory operation should not have
succeeded because it generated a conflict.

We consider three cases. First suppd&e, /) andR(w, /). Sincety < t, < tend, by Lemma 6, at time,,
¢is in the writeset of some active transactibhe desc(T). Sincev ¢ memOps(T), we knowT ¢ ances(V).

Thus, sincel’ is a descendant &f, we haveT’ ¢ ances(v). SinceT’ ¢ ances(v), by Definition 3, at time
t,, v generates a conflict with’. The other two cases, wheR{v,¢) AW (w,¢) or W(v,£) AW(w,¢), are
analogous.

0

Prefix Race-Freedom Implies Serializability by Modules
Finally, we show that a tracg”, @) which is prefix race-free is also serializable by modules.

THEOREM 8. Any trace(C,®) which is prefix race-free is also serializable by modules.

PROOF

First, by Definition 11 and Lemma 4, it is easy to see that ayprefie free sor§ of a trace(C, ®) is also
prefix-race free of the sofhTree(C,A),®) for any XmoduleA. Now we shall argue that for any Xmodule
A, we can transforng into Sa such that all transactions iractions(A) appear contiguous ifa.

Consider a prefix-race free sastof (mTree(C,A),®) which hask nodesv which violate the second
condition of Definition 12. We show how to construct a new orsfewhich is still a prefix race-free sort of
(mTree(C,A),®), but which has onlk — 1 violations.

We reduce the number of violations according to the follaypnocedure:

1. Of all transactionS € modXactions(A) such that there exists an operatiosuch thatkbegin(T) <g
v <sxend(T) andv ¢V (T), choose thd = T* which has the latestend(T) in the orders.

2. InT*, pick the firstv ¢ V (T*) which causes a violation.
3. Create a new sof’ by movingv to be immediately beforegbegin(T*).

In order to argue thaf’ is still a prefix race-free sort dinTree(C,A),®), we need to show that moving
v does not generate any new prefix races, and does not create & ®dich is no longer sequentially
consistent with respect @ (i.e., that®d is still the transactional last writer according£6. There are three
casesv can be a memory operation, abegin(T’), or anxend(T’).

1. Suppose is a memory operation which accesses locafidror all operationsv such thakbegin(T) <s
w <5 Vv, we argue thatv can not access the same locatiuanless bothw andv read from/. Since we
chosev to be the first memory operation such thatgin(T) <5 vV <s xend(T) such tha ¢ V(T), we
knoww € V(T). We know by construction aiTree(C,A), thatw € cContent(T) (if w € oContent(T)
orw € aContent(T), then steps 1 or 2, respectively, in Definition 11 will twminto a nop). Therefore,
by Definition 13, unlessv andv both read fron?, v has a prefix race witl, contradicting the fact that
S is a prefix race-free sort of the trace. Thus, moving be beforexbegin(T) can not generate any
new prefix races or change the transactional last writerrfgmaemory operation, ang!’ is still a prefix
race-free sort of the trace.

2. Next, suppos& = xbegin(T’). Moving xbegin(T’) can not generate any new prefix races viith
because the only memory operationswvhich satisfy xbegin(T) <5 U <s xbegin(T’) satisfy u ¢
cContent(T’). Also, movingxbegin(T’) does not change the transactional last writer for any node
because the move preserves the relative order of all menmagations. Therefore§’ is still a prefix
race-free sort.

3. Finally, supposes = xend(T’). By moving xend(T’) to be beforexbegin(T), we can only lose
prefix races withT’ that already existed s because we are moving nodes out of the interval
[xbegin(T’),xend(T’)]. Also, as withxbegin(T’), movingxend(T’) does not change any transaction
last writers. Therefore§’ is still a prefix race-free sort of the trace.

Since we can eliminate violations of the second conditioD&finition 12 one at a time, we can construct
a sortSa which satisfies serializability by modules by eliminatiribvéolations.

Jim: This proof is probably st

cks work the same way?

Finally, we can prove th®AT model guarantees serializability by modules by puttingaiteious results
together.

THEOREM 9. Any trace(C,®) generated by the OAT model is serializable by modules.

PrROOF By Theorem 7, theOAT model generates only trace”,®) which are prefix race-free. By
Theorem 5.3, any tradg”, @) which is prefix race-free is serializable by modules. L]

5.4 Abstract Serializability

By Theorem 9, th@®DAT model guarantees serializability by modules. We now rdlaite definition to the
notion of abstract serializabilityused in multilevel database systems [11]. As we mentioné&seittion 1,
ownership-based commit mechanism forms a part of a methggalvhich includes abstract locks and
compensating actions. In this section we argue @t model provides enough flexibility to accommodate
abstract locks and compensating actions. In addition, ifognam is “properly locked and compensated,”
then serializability by modules guarantees abstract |saimlity.

The definition of abstract serializability in [11] assumbattthe program is divided into levels and a
transaction at levelcan only call a transaction at leviel 1. In addition, transactions at a particular level have
predefined commutativity rules, i.e., some transactiorth®@Bsame Xmodule can commute with each other
and some can not. These commutativity rules might be specifag abstract locks [9]: if two transactions
grab the same abstract lock in a conflicting manner, then ¢aepot be reordered. Using the application
in Section 1 for instance, transactions callinggert andrenove on theBST using the same key do not
commute and should grab the same write lock.

The transactions at level 0 are naturally serializable.eGithis scheduleZy of level-0 transactions,
the schedule is said to be serializable at level 1 if all taatisns inSy can be reordered, obeying all
commutativity rules, so that we can construct a serialezabtler for level-1 transactions. This order of level-
1 transactions can be callegi. Similarly, for leveli transactions, reordef; 1 of leveli — 1 transactions,
obeying all commutativity rules, so that we get a serializadrder for levelr transactions. Continuing in
this way up to the top-level transactions, the original sicite is said to be abstractly serializable if it is
serializable for all levels.

This definition holds for our model in the special case whemtlodule tree is a chain (i.e., each non-leaf
module has exactly one child). A transactidns at leveli if Level(xMd(T)) =i. Although abstract locks
are not explicitly modeled in th@AT model, simple read/write locks can be modeled as reads ateswo
memory locationé.We can think transactions acquiring the same abstract btfean writing to a common
memory locatior?. Locks associated with an Xmodueare owned bynodParent(A). A moduleA is said
to beproperly lockedif the following is true for all transaction;, T, with xMod (T;) = xMd(Tz) = Arif Ty
andT, do not commute, then they access sahgemodMemory(modParent(A)) in a conflicting manner. In
the special case when the module tree is a chain, one can babw all modules are properly locked, then
serializability by modules implies abstract serializeil

In the general case, however, a transaction at legah call transactions at many levels, not justl.

By Rule 2 of Definition 1, however, we know that transactionk@el i can only call transactions at a lower
levels. Thus, we change our definition slightly. Insteadeafrdering justs;_1 while serializing transactions

at leveli, we have to potentially reordek for all x where transactions at levietan call transactions at level
x. Even in this case, the module tree properties guarantéef teery module is properly locked (by the
same definition as above), serializability by modules guges abstract serializability.

The methodology of open-nesting in TM often requires théomobf compensating actions or inverse
actions. For instance, the inverseRST. i nsert is BST. renove with the same key. When a transaction
T aborts, all the changes made by its subtransactions musivegedd. Again, althouglAT model does
not explicitly model compensating actions, it allows anrébg transaction with statuBENDI NG ABORT

4More complicated locks can be modeled by generalizing tfieitien of conflict.

to perform an arbitrary but finite number of operations befonanging the status #&BORTED. Therefore,
an aborting transaction can compensate for all its aborbttansactionsOAT model does not place any
restrictions on the order of execution of compensatingasti

6. DEADLOCK FREENESS

In this section, we argue that tiAT model we described in Section 4 can never enter a “semaraaiokk”

if we impose suitable restrictions on the memory that a @atien’s abort actions can access. In particular,
an abort action for a transactidn from xMd(T) can read (write) from a memory locatidrbelonging to
modAnces(xMbd(T)) if ¢ is already inR(T) (W(T)).> Under these conditions, we show that BAT model
can always “finish” reasonable computations.

Intuitively, an ordinary TM without open nesting and withgea conflict detection never enters a semantic
deadlock because it is always possible to finish abortingrestictionl without generating additional con-
flicts. Thus, a scheduler in the TM runtime could abort alhgactions, and then complete the computation
by running the remaining transactions serially. Using @%T model, however, a TM system can enter a
semantic deadlock because it can enter a state in whichifgessible to finish aborting two parallel trans-
actionsT; andT, which both have statuRENDI NG_ABORT. If T;'s abort action generates a memory operation
u which conflicts withT,, thenu will wait for T, to finish aborting and change its statusABORTED. Simi-
larly, T,’s abort action can generate an operatiamhich conflicts withT; and waits forT; to finish aborting.
SinceT; andT, are both waiting on each other, neither transaction wilt énésh aborting.

Defining Semantic Deadlock

Intuitively, we want to say that th@AT model exhibits a semantic deadlock if it causes the TM systzie
machine to enter a state in which it is impossible to “finisik€amputation because of transaction conflicts.
A computation might not finish for other reasons, such as #nit@ loop or livelock. This section defines
semantic deadlock precisely and distinguishes it fromalmtiser reasons for noncompletion.

Recall that our abstract model has two entities: the progaath a generic operational modérepresent-
ing the runtime system. At any timiegiven a ready nod¥ € ready(C), the program chooses an instruction
and hasX issue the instruction. If the program issues an infinite nemalb instructions, thei can not com-
plete the program no matter what it does. To eliminate pragravhich have infinite loops, we only consider
bounded programs

DEFINITION 15.We say that a program isoundedfor an operational modeN if any computation tree
that N generates for that program is of a finite depth, and theretexésfinite number K such that at
any time t, every node B nodes(t, () has at most K children with statU8ENDI NG, COVW TTED or
PENDI NG ABORT.

Notice that this definition does not disallow infinite numbé&aborted transactions, since even a computation
without an infinite loop may have to re-execute a transactionnfinite number of times if th&l keeps
aborting the transaction. However, there is no reason te lainfinite number of pending or committed
transactions unless the computation is infirfite.

Another reason a program might run forever is if an operatiorodel makes bad scheduling decisions. An
operational moddll makes two types of nondeterministic choices. First, at emgt, N hondeterministically
chooses which ready nodé € ready(C) executes an instruction. This choice models nondetermitiis
the program due to interleaving of the parallel executi@econd, while performing a memory operation
u which generates a conflict with transactibnN nondeterministically chooses to abort eitkgar ent (u)
or T. This nondeterministic choice models the contention manafithe TM runtime. A program may run

5Roughly, this translates into restrictions on the compemgactions as follows: A compensating action for transect’ can not
access any hew memory belonging to higher level modules.

6\We assume that if a transaction aborts, it is not retried itrihishes aborting. That is, a transaction is retried cafler its status
changes t@BORTED.

forever due tdivelockif N repeatedly makes “bad” choices. For example, two trarmastinay continually
abort each other due to retries, causing the program to remdo

An intelligent scheduler, however, might be able to avoidvaldck. Therefore, we use a notion of
scheduleto distinguish a livelocks from a semantic deadlock.

DEFINITION 16. A schedulel" on some time intervalo,t;] is the sequence of nondeterministic choices
made by an operational model in the interval.

Intuitively, an operational model deadlocks if it allows @unded computation to reach a state where no
schedule can complete the computation after this pointicBahat this definition excludes livelocks since
livelocks can be solved by good subsequent schedulingidesjswvhile deadlocks can not be.

DEeFINITION 17. Consider anN executing a bounded computation. We say tRatloes not exhibit a
semantic deadlockf for all finite sequences ofytinstructions thatN can issue that generates some
intermediate computation tre&), there exists a finite scheduleon [to, t1] such thalN brings the computation
tree to a rest stat€y, i.e.,ready((1) = {root((1)}.

This definition is sufficient, since once the computatiom tiseat the rest state, and only the root node is
ready,N can execute each transaction serially and complete thedaiign.

Restrictions to Avoid Semantic Deadlock

The generaDAT model described in Section 4 exhibits semantic deadlockusezit is possible to enter a
state where two parallel aborting transactidasand T, keep each other from completing their aborts. But
for a restricted set of programs, wherBENDI NG_ABCRT transaction never accesses new memory belonging
to high-level modules, we can show tBAT model is free of semantic deadlock.

More formally, for all transaction$, we restrict the memory footprint afbortactions(T).

DEFINITION 18. An execution (represented by a computation tt@ehas abort actions with limited
footprint if the following condition is true for all transactions & aborted((). At time t, if a memory
operation ve abortactions(T) accesses locatiofi and owner(¢) € modAnces(xMdd(T)), then (1) if
R(v,¢) then? € R(T), and (2) if W(v,¢) then? € W(T).

Intuitively, Definition 18 requires that once a transacfios status becomea2ENDI NG_ABCRT, any memory
operationv which T or a nested transaction insideperforms to finish aborting can not read from (write
to) any location? which is owned by any Xmodules which are ancestorshdfl(T), unless/ is already in
the in the readset (writeset) of

First, we show that the properties of Xmodules from Theoremc®mbination with the ownership-aware
commit mechanism imply that transaction readsets and setiseexhibit nice properties. In particular, we
have Corollary 10, which states that a locatibnan appear in the readset of a transacfioonly if T's
Xmodule is a descendant ofimer(¢) in the module treeD.

COROLLARY 10. For any transaction T i¥ € R(T), thenxMod(T) € modDesc(owner(¥)).

PrRoOE Follows from Definition 1 and Theorem 2, and induction on h¥ecation? can propagate into
readsets and writsets using the ownership-aware commttanésm. L]

If all abort actions have a limited footprint, we can showtthierations of an abort action of an Xmodule
A can only generate conflicts with a “higher-level” Xmod@e

LEMMA 11. Suppose the OAT model generates an execution where abmmsatiave limited footprint.
For any transaction T, consider a potential memory operatos abortactions(T). If v conflicts with
transaction T, thenlevel(xMd(T’)) < level(xMod(T)).

PROOF Supposev € abortactions(T) accesses a memory locatighwith owner(¢) = A. Since
abortactions(T) C memOps(T), by the properties of Xmodules given in Definition 1, we kniatteither

A € modAnces(xMd(T)), or level(A) < level(xMd(T)). If A € modAnces(xMd(T)), then by Defini-
tion 18, T already had in its read or write set. Therefore, using Definitionvdan not generate a conflict
with T’ because them would already have had a conflict wilH beforev occurred, contradicting the eager
conflict detection of th€©AT model.

Thus, we havelevel(A) < level(xMd(T)). If v conflicts with some other transactiorl, then T’
has/ in its read or write set. Therefore, from Corollary 2\bd(T’) € modDesc(A). Thus, we have
level(xMd(T')) < level(A) < level(xMd(T)). O

THEOREM 12. In the case where aborted actions have limited footpring @AT model is free from
semantic deadlock.

PROOF Let (j be the computation tree after any finite sequendg fstructions. We describe a schedule
I which finishes aborting all transactions in the computatignexecuting abort actions and transactions
serially.

Without loss of generality, assume that at tighell active transactions havestatus[T] = PENDI NG_ABORT.
Otherwise, the first phase of the schedulis to make this status change for all active transactions

For a module treeD with k Xmodules, the schedule hask phases, (,...k— 1, one for each Xmod-
ule in D, starting at the lowest level Xmodule. The invariant we rtaim is that immediately before
phasei, we bring the computation tree into a stat®’ which has no active transaction instandesvith
level(xMd(T)) <1, i.e., no instance$ from Xmodules at level lower thain

In the proof, letB; denote the subset of all active transaction instaficdsat are generated by Xmodule
at leveli. In other words,

Bi(t) = {T € xactions(C)NactiveN(t,C) : level(xMd(T))=i}.

By induction, we show that if after phasefor all j wherej <, B;(t) = 0, then after phasescheduld”
makesB;i(t) = 0, after some finite number of steps.

In the base case, consider the XmodAilat the lowest levelllevel(A) = 0). We know, from Definition 1
thatT € g has no nested subtransactions, since a transaction fromle®dan only call transactions from
a module at a lower level.

First, we claim that aborting any transactidne 3y never causes any conflicts. By Lemma 11, we
know that if v € abortactions(T) causes a conflict with transactioRY, then level(xMd(T’)) <
level(xMbd(T)). But xMod(T) has level 0. Thereford completes aborting eventually without generat-
ing any new conflicts. By Definition 15, there are a finite numiiethese transactionis in g, and each of
these transactions can generate a finite number of abashaciihus, in th€©AT model,l" can finally issue
anxabort for all T € B and in some finite number of time steps, phase 0 cdn makey = 0.

In the inductive step, assume before phiastimet, B (t) = 0 for all j <i. Pick any transactiof € [3;(t).

By the inductive hypothesis, we know that there are no adtiaesactionsT’ with level(xMd(T’)) <
level(xMd(T)). Therefore by Lemma 11, we can conclude thagan finish abortind in a finite amount
of time without generating any new conflicts. Therefbrean abort all sucfi serially in a finite number of
steps.

After phasek — 1 of the scheduling algorithm, we havef3j = 0 for all i < k. Thus, we only left with the
root transactiorroot () from the Xmoduleaor| d , completing the proof.

(]

7 A slightly less wasteful serial scheduler in this case catabg and issue ai gabort to T if and when the first conflict t@ is
discovered; the rest of the proof still works assuming BEAIDI NG ABORT transactions of the same Xmodule are all scheduled and
completed before attempting to finiBRNDI NG transactions.

Restrictions on compensating actions

If transactionsyYy,Y,... are nested inside transactidhand X aborts, typically abort actions of simply
consists of compensating actions %rY... Therefore, restrictions on abort actions translate irraiggit-
forward manner to restrictions on compensating actionsoygensating action for a transactignshould
not access any memory owned blybd(X) or its ancestors unless the memory location is already’sn
read/write set. Assuming locks are modeled as accessesnoméocations, the same restriction applies,
meaning, a compensating action can not acquire new locksvtita not already acquired by the transaction
it is compensating for.

7. CONCLUSIONS

In this paper, we have bridged the gap between the intentfaéxecution of open-nested transactions.
Open-nested transactions are meant to allow the TM to iglmavdevel memory conflicts while doing
conflict detection on high-level transactions. We have desd a framework that incorporates the notions of
high-level and low-level in the specification of the prograhus allowing a transactional memory system to
make the right decisions about which memory conflicts shbeldgnored.

We have described a framework that incorporates the notbnémodules and ownership into a TM
system. We propose precise restrictions that must be indposdhe interactions between Xmodules. In
addition, we introduce the ownership-aware commit meamnvhich commits memory selectively based
on which Xmodule owns that piece of memory. If a program fecall the restrictions we detailed and
the TM system uses the ownership-aware commit mechanisnprawe that the system will guarantee
serializability by modules. Finally, it might be difficulof the programmer to make sure that they have
followed all the restrictions outlined. Therefore, we prep a type system that allows the compiler to check
that the programmer has obeyed all the restrictions neegeldebownership-aware transactional memory
system.

REFERENCES

[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory modetsofpen-nested transactions. Pnoceedings of
the ACM SIGPLAN Workshop on Memory Systems Performance amdctess (MSPC)October 2006. In
conjunction ASPLOS.

[2] C. Boyapati, B. Liskov, and L. Shrira. Ownership types édject encapsulation. IRroceedings of the ACM
Symposium on Principles of Programming Languages (POR&)v Orleans, Louisiana, Jan. 2003.

[3] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis,@&K. Olukotun. Transactional collection classes. In
Proceedings of the ACM SIGPLAN Symposium on Principles aactiPes of Parallel Programming (PPoPP)
pages 56-67, New York, NY, USA, 2007. ACM Press.

[4] M. Herlihy and J. E. B. Moss. Transactional memory: Atelstural support for lock-free data structures. In
Proceedings of the International Symposium on Computdrifecture (ISCA)pages 289-300, 2003.

[5] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. @h&. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. Fimceedings of the International Symposium on Computer
Architecture (ISCA)June 2006.

[6] J. E. B. Moss.Nested Transactions: An Approach to Reliable Distributesn@uting MIT Press, Cambridge,
MA, USA, 1985.

[7] J. E. B. Moss. Open nested transactions : Semantics gmbsiu InProceedings of the Workshop on Memory
Performance Issues (WMPRRustin, Texas, Feb 2006.

[8] J. E. B. Moss and A. L. Hosking. Nested transactional memigodel and architecture sketches. Saience of
Computer Programming/olume 63, pages 186—201. Elsevier, Dec 2006.

[9] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hstn, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memoryPloceedings of ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPRYlar. 2007.

[10] C. H. Papadimitriou. The serializability of concurtatatabase updateslournal of the ACM26(4):631-653,
1979.

[11] G. Weikum. A theoretical foundation of multi-level courrency control. IrProceedings of the ACM SIGACT-
SIGMOD symposium on Principles of database systems (P@a&és 31-43, New York, NY, USA, 1986. ACM
Press.

A. THE OAT MODEL AND SEQUENTIAL CONSISTENCY

This appendix contains the details of the proof of Theorethd, if theOAT model generates a tra¢e,)
and a topological sort ordef, that§ satisfies Definition 9, i.e§ is sequentially consistent with respect to
®.

In this appendix, we first define some useful notation for treop Next, we prove that th©@AT model
preserves several invariants about memory operationgsegaand writesets. Finally, we use these invariants
to prove Theorem 5.

A.1 Notation

We define some notation that is useful later for stating dferal invariants of th@©AT model.
For any subse$ of nodes in the computation trgg i.e.,SC nodes((), define

® low(S) ={X €S : pDesc(X)NS=0}.
® high(S) = {X €S : pAnces(X)NS=0}.

Intuitively, 1ow(S) represents the nodes$tlosest to the leaves of the tree. Similatlygh(S) represents the
nodes inSclosest to the root of the tree. In cases where th& &guaranteed to fall along one root-to-leaf
path in the tree, we definewest(S) as the only elemerX € 1low(S). Similarly, we definehighest(S) as
the only element imigh(S).

We also define two time-dependent sets of transactions.

e Thereader setreaders(t,/) = {T € activeX(t,C) : L €R(t,T)}.
e Thewriter set writers(t,/) = {T € activeX(t,C): { € W(t,T)}.

Said differently,readers(t, /) is the set of active transactions at timehich have locatior in their readset.
Similarly, writers(t, /) is the set of active transactions at titneith ¢ € w(T).
Next, we generalize the content sets from Definition 6 andhdefiset of dynamic content sets.

DEFINITION 19. At any time t, for any transaction € xactions(t,) and a memory operation @
memOps(t, C), define the setsContent(t,T), oContent(t,T), aContent(t,T), and vContent(t,T) ac-
cording theContentType(t,u, T) procedure:

ContentType(t,u,T) > For any u€ memOps(t, T)
1 X< xparent(u)
2 while(X#T)

3 if X € activeX(t, (), return u € vContent(t,T)
4 if X € aborted(t, (), return u € aContent(t,T)
5 if (X = committer(u)) returnu& oContent(t,T)

6 X« xpar ent (X)
7 returnu e cContent(t,T)

The difference between Definition 19 and the previous staignim Definition 6 is that for dynamic content
sets, if we encounter BENDI NG or PENDI NG_ABORT transaction when walking up the tree from a memory
operationu to a transactio, we placeu in theactive contendf T, i.e.,u € vContent(t, T). If a transaction
T completes at timé*, it is not hard to see that the dynamic classificatiententType(t,u, T) gives the
same answer as the static classificaioatentType(u, T) for all timest > t*.

Finally, we define subsets of the dynamic content sets whiitle ¥ a particular memory location.

A.2 OAT Model Invariants

Because th®AT model performs eager conflict detection according to Dé&fimi8, it is not hard to prove
the following invariant about the readers and writers toi@aar memory locatiort.

THEOREM 13. At all times t, the OAT maintains the following invariants the setsreaders(¢) and
writers(/):

1. Forall /€ L, |low(writers(t,/))| =1, i.e.,lowest(writers(t,/)) exists.
2. Forany Te readers(t, /), eitherlowest(writers(t,/)) € desc(T) or T € desc(lowest(writers(t,/))).

ProOOFE The proof is by induction on the instructions that thAT model issues.

In the base case, for all locations £, we begin withreaders(0, /) = writers(0,¢) = {root((C)}, and
no other nodes in the computation tr€exceptroot(C). Thus, Invariants 1 and 2 are satisfied.

In the inductive step, suppose at tilne 1, Invariants 1 and 2 are satisfiedr #ad orwr i t e instruction at
timet can not break the invariants without causing a conflict atiogrto Definition 3. Therefore, successful
read andw i t e operations preserve the invariant. An unsuccessfad orw i t e operation can only trigger
thesi gabort of transactions, which does not affect either invariant.

An xend instruction that commits a transactidrcan only add the transactiomar ent (T) to readers(¢)
orwriters(?). Sincexparent (T) is an ancestor of , it can not break either of the two invariants.

The remaining instructions preserve Invariants 1 and 2athyv A fork or j oi n instruction at timet
preserves the invariants because they do not change thetset teansactions or any transaction readsets
or writesets. Arxbegi n preserves the invariants because it creates new transa€tivith empty readsets
and writesets. Theabort instruction preserves the invariants because it can onipve transactions from
readers(t,?) oru(t,?). Jim: This proof could be bett

The following invariant shows that, informally, the reatdsef transactions act as caches for pairsi)
stored in writesets.

LEMMA 14, Atanytimet, for any E readers(t, /), supposé/,u) e R(t,T). Let T'=lowest(xAnces(T)N
writers(t,)). Then(¢,u) e W(t,T').

PROOF The proof is by induction on the instructions issued by @&T model. In the base case, we
know for all memory location € L,, we start withreaders(0,/) = writers(0,/) = {root((C)} and
R(root(C)) =W(root(()). SinceT’ =T =root(C), Lemma 14 is satisfied in the base case.

For the inductive step, assume the lemma is satisfied atttinle We show after ang-nodeX issues an
instruction at time;, the lemma is still satisfied.

For anyT € xactions(t — 1, (), after af ork, j oi n, or xbegi n instruction in stef, we haveRr(t,T) =
R(t—1,T)andw(t,T) =w(t—1,T). Thus, the lemma is satisfied after these instructionsxi?egi n which
creates a new transactiohat time stef starts withR(t,X) = W(t, X) = 0; thus, the lemma is satisfied.

Next, consider arabort issued byX € xactions(t —1, C). Suppose, before thabort of X there exists
a transactiom € readers(t —1,¢) with (/,u) € R(t —1,T). Let T’ = lowest(xAnces(T)Nwriters(t —
1,7)). Then before theabort, (¢,u) € W(t — 1, T’). Assume for contradiction after thebort of X, that
there exists some transactidne xactions(t, C) such that the invariant no longer holds fbri.e., we no
longer havg/,u) € W(t, T'). Since arxabort does not change the contents of any transaction’s writeskt,
removesX from writers(?), the only way to violate the invariant is X = T’. Consider two cases: either
X=T =T,orX=T'#T.In the first case, we can not violate the invariantTdoecausd is aborted and
removed fromreaders(¥). In the second case, we must hdve pDesc(X). But then, before theabort,
we haveT € pDesc(X)NactiveN(t —1)C andX € ready(t —1)C, contradicting Property 2, that the ready
nodes are the leaves of tree of active nodes. Thusaine t must preserve the invariant.

Finally, suppose at time a ready nod& issues amxend. Consider two cases:

1. X # owner(¢). The only transactiol for which we could hava(t,Y) #R(t—1,Y) orw(t,Y) #W(t—1,Y)
is' Y = xparent (X). Thus, after thexend, for all T € readers(t,¢) with T # Y, since the readset or
writeset of T or any transaction irAnces(T) remains the same, the invariant is still preservedrfor

2. Suppos&X = owner(¢). Then, the only transaction whose readset or writeset camgehisY = root(C).
But the only way to break the invariant itfcommits a pai(/,v) to root(C), which corrupts the version

(¢,u) e R(t—1,T), for some parallel transactioh. But then, we would violate Theorem 13, and should
have had a conflict earlier.

Since all possible choices for actitr- 1 preserve the invariant, the lemma holds by induction. [
Theorem 15 characterizes when a transaction should hawatoo in its writeset.

THEOREM 15. At any time t, consider any transactiondactiveX(t, C) and any memory locatioAsuch
thatlevel(owner(¢)) > xMod(T). Let S(t) = {u € memOps(t,C) : W(u,?)}. Exactly one of the following
cases holds:

1. T=root(C), (¢, L) € W(t,T), and two conditions are satisfied:
(@) cContent(t, T)NS =0.
(b) For all ve S(t), we have \e aContent(t,T) UvContent(t,T).
2. There exists at¢,u) € W(t, T) which happens at timg,tand two conditions are satisfied:
(a) ue cContent(t,T)NS(t)
(b) For any operation v (S(t) —{u}) which happens at time,twhere § < t, <t, we have w
aContent(t,T)UvContent(t,T).
3. We have € W(t, T), andcContent(t,T)NS(t) = 0.

PROOF

This theorem can be proved by a straighforward, albeit tegjimduction on time.

Note that because we assuinsgrel(owner(¢)) > xMd(T), S(t) "memOps(t, C) NoContent(t,T) =0,
i.e., the theorem is only concerned with memory locatiénghich belong toT’s open content. Because
of the properties of ownership and Xmodules, any locatiovith 1evel(owner(¢)) < xMd(T) can never
propagate intd’'s writeset anyway. L]

The intuition for Theorem 15 is that if at tintg, a pair(¢,u) appears in the writeset of a transactibn
then all otherv which write to/ which happen after timg, are inT’s subtree, ané € aContent(t,T)U
vContent(t,T) (i.e.,vis aborted or still pending with respectT9.

A.3 Proof of Sequential Consistency

Finally, we can use the invariants from Lemma 14 and Theorgno prove Theorem 5.
PROOF. [Theorem 5]

The first condition and second conditions are true by coastmi, since theDAT model can only set
®(v) =uif u<gv,W(u,£) andR(v,£) A\W(V,?).

To check the third and fourth conditions, we require someseiuppose at timte= S(v), theOAT model
sets®(v) = u. Let A= lowest(readers(t,/)Nances(v)). Because th©AT model setsb(v) = u, we must
have(/,u) €R(t,A). LetT = lowest(xAnces(A)Nwriters(t,/)). By Lemma 14, we know/,u) € W(t,T).
By Theorem 15, sincé/,u) € W(t,T), we knowu € cContent(t,T). Let X = xLCAuv. We must have
T € ances(X); otherwise, we could not haves, v} C memOps(t,T).

Sinceu € cContent(t,T), we knowu € cContent(t,X)UoContent(t,X). Therefore, we have (uHv),
satisfying the third condition.

To check the fourth condition, assume for contradictiort thare exists av such thatwW(w,¢), and
u<sw<g V. Lett, be the time thav happens. Then, sinc@(v) = u, we knowu € W(ty,T). Therefore,
by Theorem 15 we know € memOps(ty, T), W € aContent(ty, T) UvContent(ty, T).

LetY = xLCAwv. Sincew € memOps(ty, T), we knowT € ances(Y). Consider the two cases for

1. Supposev € aContent(ty, T). SinceT € ances(Y), we knoww € cContent(ty,Y) UaContent(ty,Y).

We can show by contradiction that we must haves aContent(t,,Y). If Y = T, then we already
know w € aContent(ty,Y). Otherwise, assumé < pAnces(Y). If we hadw € cContent(ty,Y), then

by Theorem 15, we must havé,y) € W(t,,Y). This statement contradicts the fact tRsT model found

(¢,u) from transactiorT, since a closer transactidhhad/ in its readset.

But then, sincav € aContent(ty,Y), we havewH\v.
2. Supposev € vContent(ty, T):
Then, we knoww € cContent(ty,Y) U vContent(ty,Y). As in the previous case, we can show/
cContent(ty,Y).
If we vContent(ty,Y), then there exists some transactiba activeX(ty,Y)—{Y} such that e W(ty, Z).

Sincew € memOps(ty,Z), we can strengthen this condition Zoc activeX(ty,LCA(W,V)) — {LCA(W,V)}.
This statement leads to a contradiction, however, becaus#(t,,Z) must conflict withv.

More formally, by statement Invariant 2 of Theorem 13, amy mead operatiorv at timet, must satisfy
v € desc(low(writers(ty,¢))) (i.e.,vis a descendant of the base of the spine’foAt timet,, however,
we must hav@ow(writers(ty,f)) € desc(Z).

O

B. RULES FOR TYPE CHECKING

This appendix contains the type rules for DAT type system. The grammar for the type system is shown
below.

P = defrfe
defn := class ocn{formal+) extends oc
where constr { field* meth'} |
class xcn(formal+) extends Xxc
where constr {xfield" meth}
C &= ocC|Xxc

oc = ocnowner) | Object(owner
XC = Xxcnowner) | Xmodule(owner)
owner = world[i] | formal | this]i]
constr = (owner>owner | (owner j owner |
(owner=ownen | (owner %~ owner
meth := tmn{formal*)(arg*) where constr{e}
field == tfd
xfield == cfd
arg = tx
t o= c|int
formal = f
e = newcC | X|x=e]
let (arg=e)in {e} |
x.fd | x.fd=y | xmn{owner)(y*)
ocn € class names that are not subtypexofodule
xcn € class names that are subtypexafodule
fd € field names
mn € method names
X,y € variable names
f € ownernames
i,j € typeint literals

We define a number of predicates used in the type system. Phedieates are adapted from [2], but our
type system does not handle inner classes for now.

| Predicate | Meaning \

WFClasses(P) There are no cycles in the class hierarghy
ClassOnce(P) No class is declared twice i
FieldsOnce(P) No class contains two fields, decalred

or inherited with the same name
MethodsOnce(P) No class contains two methods with

the same name
OverridesOK(P) Overriding methods have the same

return type and parameter types as the
methods being overridden.
WorldInMainOnly(P) | Only themain method uses the

world tag to initialize owner.
ThisinXcOnly(P) Only classes that are subtype of
Xmodule usethis tag to initialize owner.

Our typing judgment follows the form adapted from [B; E + e:t, whereP is the program being
checked to provide information about class definitidass an environment providing type information for
the free variables im; finally, t is the type ofe.

The typing environment is defined as
E:=0| E,tx | E,ownerf | E, constr

The typing environtment contains the the declared typesnébles, the decalred owner parameters, the
declared constraints among owners, and certain inferradti@nts, such atis[i] = this[j] when they are
used in aXmodule class definition.

The typing system uses the following judgments.

| Judgment | Meaning
HP:t programP yields typet
PF defn defnis a well-formed class

F constr constraintconstris satisfied
- (01 =0p) | 01 ando, represent the same owner instance
Fowner O 0is an owner
F wf typing environmenk is well-formed
Ft t is a well-formed type
Ft<ito t1 is a subtype of,

 E F t1 <=ty | tyis assignable tt
P I xfield € xc | Xmodule classxc declares/inherits field
P I field € oc non-Xmodule classoc declares/inheritield
P; E + field field is a well-formed field
P = methe xc Xmodule classxc declares/inheritsneth
P = methe oc non-Xmodule classoc declares/inheriteneth
P; E meth methis a well-formed method
P,EFIF e:t expressiore has type

U0V TUTTUTUTUTO
mmmimImimim

We present the type rules for these judgments in the follgwwiages.

The type rules for these judgments are presented below:

[PROG

WFClassed) ClassOncéP) FieldsOncéP) MethodsOnceP) OverridesOKP)
WorldInMainOnlyP) T hisInXcOnlyP) P=defn e P defn P;0F e:t

FP:t

[CLASS

E = ocn(fy) this, ownerfy , f1> fj, constr
P: E + wf P. E + od P; E + field; P; E F meth

P I class ocn(f;) extends oc where consti {field" meth}

[XMODULE CLASS]

E = xcn(f1) this, ownerfy , f1 > fi, constr
P; E + wf P. E F xcd P; E + field; P; E F meth

P I class xcn(f) extends xc where consti {xfield* metH}

|P; E I constr]
[CONSTR ENV [> WORLD)] [> OWNER| [> REFL] [> TRANS]
P,E F (01>09)
E = E;, constr E; P; E Fowner O P; E b e:xcn(0g.n) P; E Fownero P, E - (02> 03)
P; E constr P; E - (o> world) P, E F (e>0) P; E + (o>0) P; E - (011> 03)

‘P; E I (olzoz)‘

[= OWNER [= REFL [= TRANS]
P; E F (01 = 02)
E = E;, xcthis, Es P; E Fownero P,EF (02=03)
P; E (this[ii=this[j]) P; E F (0=0) P,EF (01=03)

‘P; E FownerO‘
[OWNER WORLD [OWNER FORMAL [OWNER THIS

E = E;, ownerf, E E = E;, xcthis, Ep

P; E Fowner world P; E Fowner f P; E Fowner thisli]

[ENV 0] [ENV X] [ENV OWNER
P.E -t
x £ Dom(E) f £ Dom(E)
P; E - wf P. E - wf

P; 0 Fwf P, E,tx - wf P; E, ownerf + wf

[ENV CONSTR

constr= (or>0) VvV (0 > 0d)Vv(o=0)V (0 £0)
P E + wf P; E Fowner 0, 0 E' = E, constr
Axy (P E' F x>y) A (P E F X BAY) Axy (P, E' F x=y) A (P, E' = x£Y)
P; E, constr - wf

[TYPEINT] [TYPEOBJECT [TYPE OQ

P I class ocn(fy n) ... where constr ...
P; E Fowner O P; E Fowner O P, E - o1>0 P; E - constr|oy/ f1]..[0n/ fn]
P; E + int P; E + Object(0) P; E - ocr{0g.)

[TYPE XMODULE] [TYPE XC]

P I class xcr(fy) ... where constf ...

P; E Fowner © P; E Fowner O P,EF o> P; E - constr[oy/f1]..[0n/ fn]
P; E = Xmodule(0) P, E - XCrX01.n)
P EFt <t

[SUBTYPE REFL [SUBTYPE TRANS

PEF1t <t
P,E 1t P,EFTL < t3
PPEFt <t P.EF1t <:t3
[SUBTYPE XQ [SUBTYPE 0o¢
P; E - xcn(og n) P; E - ocn{oy. n)
P I class xcn(f;) extends xcri({f; o) ... P I class ocn(fy) extends ocr(f; 0*) ...

P; E - xcr{oy) <: xcri(fy 0%) [o1/f1]..[on/fa] P; E = ocn{or.n) <: ocri{fy o) [01/f1]..[0n/ fr]

P EFt <=t
[ASS|GNAB|L|TY REFL] [ASS|GNAB|L|TY TRANS]

PPEFNHh <=1

P;E Ft P,EF L <=13
PPEFt <=1 PLEFL <=13
[ASSIGNABILITY FOR XC] [ASSIGNABILITY FOR O(C

P; E - xcn(o. n) P; E - xcn(0]) P; E - ocn(oy) P; E - ocn(0) p)
PPEF (6=0)" P,EF (0>0d)" P EF (6=0)"" P,EF (0>0)<H"
P; E xcn(og) <:= xcno]) P; E - ocn(oyn) <:= ocn(o])

‘P - xfield xc‘
[XF|ELD DECLARED] [XF|ELD |NHER|TED]

P - xfield € xcn(fy.n)
P class xcn(fy p)... {... xfield ...} P F class xcr{(gy.m) extends Xcr(oj p)...

P + xfield € xcn(fy) P - xfield [oy/f1]..[on/fn] € xcr(gy.m)

\P - field ¢ oc\ P: E I field

[FIELD DECLARED] [FIELD INHERITED] [FIELD]

P I field € ocn(fy n)
P F class ocn(fy p)... {... field ...} P I class ocr(gy.m) extends ocr{o; p)... P;E It

P + field € ocn(fy) P + field [01/f1]..[on/fn] € ocr(g1.m) P,E Ftfd

|P - meth c xc
[METHOD DECLARED IN XC] [METHOD INHERITED BY XC]

P+ meth € xcn(fy)
P I class xcn(fy n)... {... meth...} P I class xcr(gy.m) extends XCr(0y p)...

P + meth e xcn(fy) P I meth[oy/f1]..[on/fn] € xcr(gy.m)

|P - methc oc|
[METHOD DECLARED IN OC [METHOD INHERITED BY O(C|

P + meth € ocn(fy n)
P I class ocn{fy p)... {... meth...} P I class ocri(g;.m) extends ocr(oy p)...

P + methe ocn(fy) P meth[oy/fi1]..[on/fn] € ocr(g.m)

[METHOD] [EXP SUB [EXP NEW,

E’ = E, ownerfy , constr, arg* P,E F e:t
P; E' - wf P,E I e:t P,EFt <t P,EFc
P; E F t mn(fy n)(arg*) where constr {e} P,EF e:t P,EF new c:c

[EXP ASSIGNABILITY] [EXP LET] [EXP VAR] [EXP VAR ASSIGN

P,E I e:t arg = tx P,EFe:t P; E - x:t
P,EFt <=t P, E,arg - € :t/ E=E;,tx E P.EF e:t

P.E I e:t P;E I let(arg = €)in {€}:t P;E F x:t P.EF x = e:
[EXP RER [EXP REF ASSIGN

P; E b x:cn(og) P; E F x:cn(og.n) PF (tfd) € cn(fyn)
PE (tfd) € cn(fyn) P, E F y:t[oy/f1]..[on/]

P; E - x.fd:t[o1/f1]..[0n/ fn] P, E + xfd = y:t[o1/f1]..[on/]
[EXP INVOKE]

P (t mn(fn 1) m)(tj y; 1<%) where constr ...) € cn(fy)
P; E b x:cn(og) P; E F xj:tj [01/f1]..[0m/ fm]
P,EF o1 > 0 P; E + constr[o1/ f1]..[Om/ fm]

P; E b Xxmn(0(n;1).m) (X1.k) it [01/ f1]..[Om/ frm]

