
Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha
MIT Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, USA

ABSTRACT

Researchers in transactional memory (TM) have proposed open nesting as a methodology for increasing the
concurrency of a program. The idea is to ignore certain “low-level” memory operations of an open-nested
transaction when detecting conflicts for its parent transaction, and instead perform abstract concurrency
control for the “high-level” operation that nested transaction represents. To support this methodology, TM
systems use an open-nested commit mechanism that commits all changes performed by an open-nested
transaction directly to memory, thereby avoiding low-level conflicts. Unfortunately, because the TM runtime
is unaware of the different levels of memory, an unconstrained use of open-nested commits can lead to
anomalous program behavior.

In this paper, we describe a framework ofownership-awaretransactional memory which incorporates the
notion of modules into the TM system and requires that transactions and data be associated with specific
transactional modulesor Xmodules. We propose a newownership-aware commit mechanism, a hybrid
between an open-nested and closed-nested commit which commits a piece of data differently depending
on whether the current Xmodule owns the data or not. Moreover, we give a set of precise constraints on
interactions and sharing of data among the Xmodules based onfamiliar notions of abstraction. We prove that
ownership-aware TM has has clean memory-level semantics and can guaranteeserializability by modules,
which is an adaptation of multilevel serializability from databases to TM. In addition, we describe how
a programmer can specify Xmodules and ownership in a Java-like language. Our type system can enforce
most of the constraints required by ownership-aware TM statically, and can enforce the remaining constraints
dynamically. Finally, we prove that if transactions in the process of aborting obey restrictions on their
memory footprint, theOAT model is free fromsemantic deadlock.

1. INTRODUCTION

In the past few years, transactional memory [4] has been an active field of research. Transactional memory
(TM) is meant to simplify concurrency control in parallel programming by providing a transactional interface
for accessing memory; the programmer simply encloses the critical region inside anatomic block, and
the TM system ensures that that section of code executes atomically. A TM system enforces atomicity by
tracking the memory locations that each transaction in the system accesses, finding transaction conflicts,

This research is supported in part by NSF Grants CNS-0615215and CNS-0540248 and a grant from Intel corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

and aborting and possibly retrying transactions that conflict. TM guarantees that transactions areserializable
[10], that is, transactions affect global memory as if they were executed one at a time in some order, even if
in reality, several executed concurrently.

When using TM, one of the issues that programmers must deal with is the semantics ofnested trans-
actions. When a TM system hasclosed-nestedtransactions [6], if a transactionX contains a closed-nested
transactionY, afterY commits, for the purpose of detecting conflicts the TM runtime considers any memory
locations accessed byY as conceptually also being accessed byX. TM with closed-nested transactions guar-
antees that transactions are serializable at the level of memory. Researchers have observed, however, that
closed nesting might unnecessarily restrict concurrency in transactional programs because it does not allow
two “high-level” transactions to ignore conflicts due to accesses to shared “low-level” memory inside nested
transactions.

To increase concurrency in transactional programs, researchers have proposed the methodology ofopen-
nested transactions. The open-nesting methodology incorporates theopen-nested commit mechanism[5,8].
Conceptually, when an open-nested transactionY (nested inside transactionX) commits,Y makes its changes
directly to memory instead of propagating the changes to itsparentX. Thus, the TM runtime no longer detects
conflicts withX due to memory accessed byY. In this methodology, the programmer considersY’s internal
memory operations to be at a “lower level” thanX; thereforeX should not care about the memory accessed
byY when checking for conflicts. Instead,Y must acquire anabstract lockbased on the high-level operation
thatY represents and propagate this lock toX, so that the TM system can perform concurrency control at
an abstract level. Also, with open nesting, ifX aborts, it may need to executecompensating actionsto undo
the effect of its committed open-nested transactionsY. Moss in [7] illustrates use of open nesting with an
application that uses a B-tree. In [9], Ni et. al describe a software TM system that supports the open-nesting
methodology.

An unconstrained use of the open-nested commit mechanism can lead to anomalous program behavior [1]
that can be tricky to reason about. Since programmers must understand the open-nested commit mechanism
to program using open nesting, at first glance, it might seem that using the open-nesting methodology
is complicated. Although researchers have demonstrated specific examples that safely use an open-nested
commit mechanism, the literature on TM offers relatively little in the way of formal programming guidelines
which one can follow to haveprovableguarantees of safety when using open-nested commits. Moreover,
since these working examples require only two levels of nesting, it is not obvious how one can correctly use
open-nested commits in a program with more than two levels ofabstraction.

We believe that one reason for the apparent complexity of open nesting is that the mechanism and
methodology make different assumptions about memory. Consider a transactionY open-nested inside
transactionX. The open-nesting methodology requires thatX ignore the “lower-level” memory conflicts
generated byY, while the open-nested commit mechanism will ignoreall the memory operations insideY.
SayY accesses two memory locationsℓ1 andℓ2, andX does not care about changes made toℓ1, but does
care aboutℓ2. The TM system can not distinguish between these two accesses, and will commit both in an
open-nested manner, leading to anomalous behavior. In fact, specific uses of open nesting that researchers
describe [3, 9] work because they exhibit a clean separationof the data accessed by an outer transaction
and its (nested) inner transaction. For instance, in the TCCexamples [3], the open-nested transactions are
operations on a data structure, and the data structure “owns” memory needed for its implementation that can
not be accessed by a user’s application.

Contributions

In this paper, we bridge the gap between memory-level mechanisms for open nesting and the high-level
view by explicitly integrating the notions oftransactional modules(Xmodules) andownershipinto the TM
system. We believe such an ownership-aware TM system allowsprogrammers safely use the methodology
of open nesting because the runtime’s behavior more closelyreflects the programmer’s intent, and because

the additional structure imposed by ownership allows a language and runtime to enforce properties needed to
provide provable guarantees of “safety” to the programmer.More specifically, the contributions of this paper
are as follows:

1. We extend the theoretical framework from [1] to model the TM system with the modules and ownership,
and suggest a concrete set of guidelines for sharing of data and interactions between Xmodules.

2. We describe how the Xmodules and ownership can be specifiedin a Java-like language and propose a
type system that enforces the above mentioned guidelines inthe programs written using this language
extension.

3. We formally describe the operational model, called theOAT model, which uses a newownership-aware
commit mechanism, which is a compromise between open-nested commit and closed-nested commit. An
ownership-aware commit of a transactionT commits a memory location globally if that location belongs
to the module ofT; otherwise, the read or write to the location is propagated up toT ’s parent transaction.
Unlike an ordinary open-nested commit, the ownership-aware commit treats memory locations differently
depending on the Xmodule that owns the location. Note that the ownership-aware commit is still a
mechanism; programmers must still use it in combination with abstract locks and compensating actions
to get the full methodology.

4. We prove that the if a program follows the guidelines for data sharing and interactions between Xmodules,
then theOAT model guarantees serializability by modules, which is a generalization of “serializability-
by-levels” used in database transactions. Ownership-aware commit is the same as open nested commit if
no module ever accesses data belonging to other modules. Therefore, one corollary of our theorem is that
open-nested transactions are serializable when modules donot share data. This observation explains why
researchers [3, 9] have found it natural to use open-nested transactions in the absence of sharing, in spite
of the apparent pitfalls in the open-nested transaction semantics.

5. We prove that under certain restrictive conditions, the computation can not enter a semantic deadlock.

Outline

The rest of the paper is organized as follows. In Section 2, webriefly review the transactional computation
framework [1], and explain how we extend this framework to formally incorporate Xmodules and ownership.
In Section 3, we describe an example application and describe language constructs for specifying Xmodules
and ownership. In Section 4, we describe theOAT model, an operational model for the TM system. In
Section 5, we give a formal definition of serializability by modules, and proof-sketch that theOAT model
guarantees this definition. In Section 6, we give conditionsunder which theOAT model does not exhibit
semantic deadlocks.

2. COMPUTATIONS WITH MODULES

In this section, we formally define the structure of transactional programs with Xmodules and incorporate the
concepts of Xmodules and ownership into the transactional computation framework described in [1]. First,
we briefly review the framework. We then add Xmodules to this framework, and describe a way to restrict
data sharing between transactions of different Xmodules using a “module tree” structure.

Transactional Computations

In the framework from [1], the execution of a program is modeled using a “computation tree”C that
summarizes both the information about the control structure of a program and the nesting structure of
transactions, and an “observer function”Φ which characterizes the behavior of memory operations. A
program execution is assumed to generate atrace(C ,Φ).

A computation treeC is defined as an ordered tree with two types of nodes:memory-operation nodes
memOps(C) as leaves andcontrol nodesspNodes(C) as internal nodes. A memory operationv satisfies the

Figure 1. A sample (a) computation treeC and (b) its corresponding dagG(C).

read predicate R(v, ℓ) if v reads from locationℓ, while v satisfies thewrite predicate W(v, ℓ) if v writes toℓ.
Control nodes are eitherS (series) orP (parallel) nodes. Conceptually, the children of anS-node must be
executed serially, from left to right, while the children ofP node can be executed in parallel. SomeSnodes
are labeled as transactions; definexactions(C) as the set of these nodes.

Instead of specifying the value that an operation reads or writes to a memory locationℓ, we abstract away
the values by using anobserver functionΦ. For a memory operationv that accesses a memory locationℓ,
the nodeΦ(v) is defined to be the operation that wrote the value ofℓ thatv sees.

We define several structural notations on the computation tree. Denote theroot of a computation tree
C as root(C). For any tree nodeX ∈ nodes(C), let ances(X) denote the set of all ancestors ofX
in C , and letdesc(X) denote the set of allX’s descendants. Denote the set of proper ancestors ofX
by pAnces(X). Denote theleast common ancestorof two nodesX1,X2 ∈ C by LCA(X1,X2). For any
node X ∈ nodes(C), we define thetransactional parentof X, denotedxparent(X), as parent(X) if
parent(X) ∈ xactions(C), or xparent(parent(X)) if parent(X) 6∈ xactions(C). Define thetransac-
tional ancestorsof X asxAnces(X) = ances(X)∩xactions(C). DefinexLCA(X1,X2) asZ = LCA(X1,X2)
if Z ∈ xactions(C), and asxparent(Z) otherwise.

A computation tree can also be represented as a computation dag (directed acyclic graph). Given a treeC ,
the dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. Every internal nodeX in
the tree appears as two vertices in the dag. Between these twovertices, the children ofX are connected in
series ifX is anSnode, and are connected in parallel ifX is aP node. Figure 1 show a computation tree and
its corresponding computation dag.

In classical theories on transactions and serializability, a particular execution order for a program is
referred to as ahistory [10]. In our framework, a history corresponds to a topological sort S of the
computation dagG(C). We define our models of TM using these sorts. Reordering a history to produce
a serial history is equivalent to choosing different topological sortsS ′ of G(C) whose observer function is
still “consistent” withS ′, but where all transactions appear contiguous inS ′.

Xmodules and Computation Tree

In this paper, we consider traces generated by a program which is organized into a setN of Xmodules.
Each XmoduleA∈N has some number of methods and a set of memory locations associated with it. In the
transactional computation framework, we assume every method of an XmoduleA generates some transaction
instanceT. We use the notationxMod(T) = A to associate the instanceT with the XmoduleA. We also define

the instances associated withA as

modXactions(A) = {T ∈ xactions(C) : xMod(T) = A} .

We partition the set of all memory locationsL into sets of memory owned by each Xmodule. Let
modMemory(A) ⊆ L denote the set of memory locations owned byA. For a locationℓ ∈ modMemory(A),
we say thatowner(ℓ) = A. Xmodules of a program are arranged as a rooted, ordered treecalled themodule
tree, denoted byD. The root ofD is called theworld module. An XmoduleA is said to be owned by its
parentmodParent(A) in D. The set of ancestors ofA is modAnces(A) (modDesc(A) for descendants).

Each Xmodule is assigned anlevel according to its position in the tree as follows: visit the nodes in a
left-to-right depth-first search order and assign ids in a descending order. Thereforeworld has the maximum
level. Lower-level Xmodules have lowerlevel numbers.

We use the module treeD to restrict the sharing of data between Xmodules and to limitthe visibility of
Xmodule methods according to the rules given in Definition 1.

DEFINITION 1. A program with a module treeD should generate only traces(C,Φ) which satisfy the
following rules:

1. For any memory operation v which accesses a memory location ℓ, let T =xparent(v). Thenowner(ℓ)∈
modAnces(xMod(T)).

2. Let X,Y ∈ xactions(C) be transaction instances such thatxMod(X) = A andxMod(Y) = B. We can
have X= xparent(Y) only if modParent(B) ∈ modAnces(A), andlevel(A) > level(B).

By Rule 1, an XmoduleA can only directly access memory that it owns, or memory that an ancestor
XmoduleB owns (e.g., becauseB passed in that data to a lower-level Xmodule). Since all ancestors ofA
have higherlevel thanA, a transaction from moduleA can not directly access any “lower-level” memory.

Rule 2 says that a method fromA can call a method fromB only if B is the child of some ancestor ofA,
and ifB is “to the right” ofA in the tree. The second rule requires that an Xmodule can onlycall methods of
some (but not all) lower-level Xmodules.

In our model, primarily for convenience, we assume an methodin an XmoduleA never calls another
transactional method fromA or an ancestor ofA. If a method fromA does call another transactional method
from A, the new method call does not generate a new transaction instance and we subsume the nested
method call using flat nesting. Similarly, if a method fromA calls a method from an ancestor Xmodule
(e.g., callback), we subsume the nested method call, and model this case asA accessing the memory from
ancestor Xmodule directly.1

The concept of higher-level and lower-level modules is inherent to the definition of serializability-by-
modules and abstract serializability; the very justification of open-nesting is that transactions must be able
to ignore lower-level conflicts. Therefore, our formalism requires a partial order among Xmodules; if an
XmoduleA can call XmoduleB, then conceptuallyA is at a higher level thanB. Therefore,B can not callA
(except in a flat-nested manner described in the previous paragraph), since lower-level modules can not call
methods from higher-level modules transactionally. If twocomponents of the program call each other, then
we would require that these two components be combined into the same Xmodule.

Properties of Xmodules

Definition 1 guarantees certain properties of the computation tree which are essential to the ownership-aware
commit mechanism. The following lemma can be proved by induction on nesting depth of transactions.

L EMMA 1. Given a computation treeC , consider any T∈ xactions(C). Let ST = {xMod(T ′) : T ′ ∈ xAnces(T)}.
ThenmodAnces(xMod(T))⊆ ST .

1One could also use closed nesting instead of flat nesting whenan Xmodule calls its own methods or its ancestor’s methods.

PROOF. We prove this fact by induction on the nesting depth of transactions in the computation tree.
In the base case, the top-level transactionT = root(C), andxMod(root(C)) = world. Thus, the fact

holds trivially.
For the inductive step, assume thatmodAnces(xMod(T))⊆ ST holds for any transactionT at depthd. We

show that the fact holds for anyT∗ ∈ xactions(C) at depthd+1.
For any suchT∗, we know T = xparent(T∗) is at depthd. By Rule 2, modParent(xMod(T∗)) ∈

modAnces(xMod(T)). Thus,modAnces(xMod(T∗)) ⊆ modAnces(xMod(T))∪{xMod(T∗)}. By construction
of the setST , we haveST∗ = ST ∪{xMod(T∗)}. Therefore, we havemodAnces(xMod(T∗))⊆ ST∗ .

THEOREM 2. If a transaction T∈ xactions(C) directly (without nesting) accesses a memory locationℓ,
then there exists a unique transaction T∗ ∈ (xAnces(T)−{root(C)})), such that

1. owner(ℓ) = xMod(T∗), and
2. For all transactions X∈ pAnces(T∗)∩xactions(C), X can not directly access locationℓ.

PROOF. This result follows from the properties of the module tree and computation tree stated in Defini-
tion 1.

First, by Rule 1, we knowowner(ℓ) ∈ modAnces(xMod(T)), i.e.,ℓ is owned by some Xmodule which is
an ancestor ofxMod(T) in the module tree. By Lemma 1, we knowmodAnces(xMod(T)) ⊆ ST . Therefore,
there exists some transactionT∗ ∈ xAnces(T) such thatowner(ℓ) = xMod(T∗).

We can use Rule 2 to show that theT∗ is unique. LetXi be the chain of ancestor transactions of
T. More formally, let X0 = T, and let Xi = xparent(Xi−1), up until Xk = root(C). By Rule 2, we
know level(xMod(Xi)) > level(xMod(Xi−1)), that is, the module ids become strictly larger walking up
the tree fromT. Thus, there can only be one ancestor transactionT∗ of T with level(xMod(T∗)) =
level(owner(ℓ)).

To check the second condition onT∗, consider anyX ∈ pAnces(T∗)∩ xactions(C), and assume for
contradiction thatX could accessℓ directly. By Rule 1,X can accessℓ directly only if owner(ℓ) ∈
modAnces(xMod(X)), which then implieslevel(owner(ℓ)) ≥ level(xMod(X)), since an Xmodule always
has a smaller id than its ancestor Xmodules. This, however, contradicts the facts derived earlier, that
owner(ℓ) = T∗ andlevel(T∗) < level(xMod(X)).

Intuitively, Theorem 2 implies that for programs that obey the constraints described in Definition 1, if a
transactionT accesses a memory locationℓ, then some unique ancestor ofT, sayT∗, belongs to the Xmodule
that ownsℓ. In the context of the ownership-aware commit mechanism, this transactionT∗ is “responsible
for” committing ℓ and making it visible to the world. The second condition of Theorem 2 states that no
ancestor transaction ofT∗ in the call stack can ever directly accessℓ; thus, it is “safe” forT∗ to commitℓ.

3. OWNERSHIP TYPES FOR Xmodules

In this section, we illustrate how one may use an ownership-aware transaction system to write a simple
example application. First, we describe the example application, which consists of user code interacting with
a simple database system. Next, we describe one way to split this application into Xmodules, and explain
the restrictions imposed by Definition 1 in the context of this application. Finally, we describe language
constructs for Java that can be used to both specify Xmodulesand ownership for this application, and
describe a type system design (called theOAT type system) that statically enforces some of the restrictions
of Definition 1.

Example Application

To explain the notions of modules and ownership, we describean application similar to the one in [7], but
extended to include more than two levels of transaction nesting and data sharing between a nested transaction
and its parent.

Figure 2. A module treeD for the program described in Section 1. Thelevel’s are assigned by visiting
Xmodules in a left-to-right depth-first tree walk, numbering Xmodules in a descending order.

Consider a user application which concurrently accesses a database of many individuals’ book collections.
The user application may provide many other functionalities in addition to accessing the book database, but
for the purpose of this paper, we are only describing a subpart of a complex system.

The database implementor chooses to store records in a binary search tree, keyed by name. Each tree node
corresponds to a different person, and maintains a list of books in that person’s collection. The database
supports queries by name, as well as updates that add a new person or a new book to a person’s collection.
The database also maintains a private hashmap, keyed by booktitle, to support a reverse query, i.e., given a
book title, return a list of people who own the book.

Finally, the user application wants the database to log changes on disk for recoverability. Whenever the
binary search tree or hash table are updated, the database inserts metadata into the buffer of a logger to record
the change that just took place. Periodically, the user application is able to request a checkpoint operation
which flushes the buffer to disk.

One may implement this example in Java with the following classes:UserApp as the top-level application
that manages the book collections,Person andBook as the abstractions representing book owners and books,
DB for the database,BST andHashmap for the binary search tree and hashmap maintained by the database,
andLogger for logging the metadata to disk. In addition, there are someother auxiliary classes such as tree
nodeBSTNode for theBST, Bucket in theHashmap, andBuffer used by theLogger.

Xmodules for Example Application

Intuitively, an Xmodule is as a stand-alone entity that contains data and methods; a Xmodule owns data
that it privately manages, and uses its methods to provide public services to other modules. Not all of a
program’s classes are meant to be Xmodules; some classes only wrap data, while others are Xmodules that
provide services. In our example, we identify five Xmodules–UserApp, DB, BST, Hashmap, andLogger. The
UserApp uses services fromDB, BST andHashmap are submodules ofDB, andLogger provides services to all
UserApp, DB, Hashmap, andBST. Classes such asBook andPerson, on the other hand, are data types used by
UserApp. Similarly, classes likeBSTNode andBucket are data types used byBST andHashmap to maintain
the internal state of the data structures.

We organize the Xmodules of the application into the module tree shown in Figure 2.UserApp is directly
owned byworld, DB and Logger are ownedUserApp; BST and Hashmap are owned byDB. By dividing
Xmodules this way, the ownership of data falls out naturally, i.e., an Xmodule owns certain pieces of data
if the data is encapsulated under the Xmodule. For example, the instances ofPerson or Book are owned by
UserApp because they should only be accessed eitherUserApp or its descendants.

If Definition 1, Rule 1 is satisfied, all ofDB, BST, Hashmap, andLogger can only directly access data
owned byUserApp, but theUserApp can not directly access data owned by any of the other Xmodules. This
rule corresponds to standard software-engineering rules for abstraction; the “high-level” XmoduleUserApp

can pass its data down and lower-level Xmodules can access that data directly, butUserApp itself should not
modify data owned by lower-level Xmodules.

If Rule 2 is satisfied, theUserApp may invoke methods fromDB, DB may invoke methods fromBST and
Hashmap, and every other Xmodule may invoke methods fromLogger. While theBST Xmodule can call
methods fromLogger, it can not pass data owned by itself directly into theLogger. But it can pass data
owned by theUserApp to the logger, which is all that is required in this application. In the module tree in
Figure 2, if theLogger had any children, then they would be lower level thanBST, but BST can not call
methods from this hypothetical child.

Specification of Xmodules and Parametric Ownership Types
Angelina: Ok, maybe the title

Although the restrictions on Xmodules required by Definition 1 are not difficult to state or reason about
abstractly, the programmer has to specify the Xmodules and ownership of data in their programs. In addition,
if the program violates the rules from Definition 1, then the compiler or the runtime system should be able
report this error. We propose theOAT type system, which is an extension of the ownership type scheme
of Boyapati et. al [2], because the restrictions described in Definition 1 are similar to the concept of object
containment / encapsulation in an object-oriented language. Note that the scheme of Boyapati et. al allows
owner polymorphism by parameterizing class / method declarations with ownership tags. We adapt this
annotation as well to enable code reuse.

Before describing how to specify Xmodules and their corresponding data, we first describe the scheme of
Boyapati et. al [2]. Their type system enforces the following properties:

1. Every object has a unique owner.

2. The owner can be either another object, orworld .

3. The ownership relation forms anownership treerooted atworld.

4. An objecta can access another objectb directly (a can obtain a pointer tob) only if b is eithera’s child
or a’s ancestor’s child in the ownership tree.

They enforce these properties by adding annotations to class definitions and type declarations. Every type
T1 has a set of associated ownership tags, denotedT1〈 f1, f2, . . . fn〉. The first formalf1 denotes the owner of
the correspondingthis object. The remaining formalsf2, f3, . . . fn are additional tags which the object can
propagate down to its encapsulated objects. The formals getassigned with actual ownerso1,o2, . . .on when
an objecta of typeT1 is created. The type system checks thata’s ownero1 is a descendant ofoi , ∀i ∈ 2..n,
(denoted byo1 � oi henceforth) in the ownership tree. Of course, when an assignment takes place, the type
system also enforces that the types from both sides match exactly.

Within the class definition of typeT1, the only visible ownership tags are{ f1, f2, . . . fn}∪{this,world},
wherethis denotes the owner to be the correspondingthis object, andworld denotes the object to be
globally accessible. The object can declare (and thereby access) another object of typeT2 using only owners
from this set. Thus, an object can not access another objectb if b’s owner is nota or one ofa’s ancestors.

Boyapati et. al’s type system enforces constraints on objects which are similar to, but not exactly the
constraints that we would like for Xmodules (i.e., Definition 1). Therefore, we extend their type system to
satisfy three additional requirements.

First, theOAT type system imposes restrictions to guarantee that only Xmodules own other objects.
Normally, in the ownership tree of [2], every object can be anowner of other objects. Therefore, we explicitly
distinguish between objects and Xmodules by requiring thatXmodules extend from a specialXmodule class.
In addition, theOAT type system allows the use ofthis as an ownership tag only in the class definition that
is a subtype ofXmodule.

Second, theOAT type system prohibits an Xmodule from having any primitive-type fields. In the
parametric type system we use, one can not specify the owner of primitive fields of an object, and primitive
fields are owned by the owner of the corresponding object. Thus, any primitive fields of an XmoduleA are

1 public class UserApp<appO> extends Xmodule {
2 private DB<this[0], this[1], this[2]> db;
3 private Logger<this[1], this[2]> logger;

...
4 public UserApp() {
5 logger = new Logger<this[1]>();
6 db = new DB<this[0], this[1], this[2]>(logger);
7 }
8 }

9 public class DB<dbO, logO, dataO>
extends Xmodule where(logO <= dataO) {

10 private Logger<logO, dataO> logger;
11 private BST<this[0], logO, dataO> bst;
12 private Hashmap<this[1], logO, dataO> hashmap;
13 public DB(Logger<logO, dataO> logger) {
14 this.logger = logger;

...
15 }

Figure 3. Specifying Xmodules and ownership for the example application described in Section 1.

owned byA’s parent in the ownership tree. Therefore, two sibling Xmodules would be able to access each
other’s primitive fields directly, since they have the same owner. To disallow this behavior, we do not allow
Xmodules to declare primitive fields.

Lastly, theOAT type system enforces ordering between sibling XmodulesA and B to prevent cyclic
dependencies between the subtrees ofA andB in the module tree. In Boyapati’s type system, an object can
call any of its ancestor’s siblings, while Definition 1 dictates that an XmoduleA can only call its ancestor’s
siblings to the right. To enforce this restriction, we extend each ownership tago with an index, o. index.

Inside a class file for an XmoduleA, whenever the programmer wishes to specify an owner ofthis, the
programmer must also specify a static index, i.e., pass inthis[i] as the tag. The tagthis[i] replaces some
formal tago in the type ofBi , and the indexi becomeso. index, the index of the tago. The type system uses
these indices to impose a partial order on the children ofA in the module tree. In this example, by specifying
indices, the type system can statically enforce thatBi never call a method fromB j if j < i.

For the same reason, we disallow arbitrary use of theworld tag; otherwise it would be difficult to enforce
an ordering between sibling Xmodules owned directly by theworld. Instead, we allow only themain method
for the application program to specify owners usingworld[i] (with an index), thereby imposing an ordering
among children belong to theworld.

With these restrictions, the ownership tree in our system will only have Xmodules as internal nodes, and
all other objects as leaves. Note that in our ownership tree,a parent-child relationship has two meanings. If
an XmoduleA has a regular objecto as its child, thenA owns all the memory associated witho. When an
XmoduleA has another XmoduleB as its child,B is A’s child in the Xmodule tree. The Xmodule tree does
not contain objects.

Figure 3 illustrates how one can specify Xmodules and ownership using ownership types. The programmer
specifies an Xmodule by creating a class which extends from a specialXmodule class. TheDB class has three
formal owner tags –dbO which is the owner of theDB Xmodule instance,logO which is the owner of the
Logger Xmodule instance that theDB Xmodule will use, and one ownerdataO for the user data being stored
in the database. When an instance ofUserApp initializes Xmodules in lines 5–6, it declares itself as the
owner of theLogger, theDB, and the user data being passed intoDB. The indices onthis are declaring the
ordering of Xmodules in the module tree, i.e., the user data is lower-level than theLogger, and theLogger

is lower level than theDB. lines 10–12 illustrate how theDB class can initialize its Xmodules and propagate
the formal owner tags (i.e.,logO anddataO) down.

Type System Guarantees

We extend the type system of [2] to encompass the requirements described in the previous section. To state
the guarantees of our type system, we first define a partial order on indexed ownership tags.

DEFINITION 2. For ownership tags with indices, we adopt the notation o1 �o2 to mean that either o1� o2

and o1 6= o2, or o1 = o2 and o1. index≤ o2. index.

Note that if A has owner tago1, B has owner tago2, o1 = o2, ando1. index< o2. index, theno1 and o2

represent the same Xmodule instance, andA andB are sibling Xmodules, withB to the right ofA in the
module tree.

In summary, type system enforces the following properties.

1. The tagthis[i] can be used as an ownership tag only in the class file of an Xmodule object.

2. Xmodule objects can not have primitive-type fields.

3. For a typeT〈o1,o2, . . .on〉, we must haveo1 �oi for all i ∈ {2, . . .n}.

4. A variablec2 with type T2〈o2, . . .〉 can be assigned to a variablec1 with type T1〈o1, . . .〉 (either via
assignment statement or passing arguments for method callsand such) if and only ifo1 = o2 ando1 �o2.

The detailed type rules for our type system are described in Appendix B.

THEOREM 3. Our type system guarantees the following properties.

1. An Xmodule A can access an object with ownership tag o only if A� o.
2. An Xmodule A with ownership tag o1 can access another Xmodule B with ownership tag o2 only if A owns

B, or if o1 �o2.

PROOF. Condition 1 is the same as Boyapati et. al’s access rules. Since our type system makes the type
rules stricter, it still holds with our type system.2

Jim: Condition 1 is essentially

Condition 2 requires more explanation. An XmoduleA can access another XmoduleB only if insideA’s
class file, it is possible to declare a variablex of typeT and assignB to x. The only ownership tags thatA’s
class file can use as the owner forT are one ofA’s formal tags, orthis[i] tag.

If the owner ofT is one of the formal tagso j , then by Property 3, we knowo1 � o j . By Property 4, we
know B can be assigned tox only if o j = o2, ando j �o2. Since the relation� is transitive, we haveo1 �o2.

Similarly, if x is declared with a tagthis[i], then by Property 4, we can assignB to x only if o2 =
this[j] (wherei ≤ j). Thus, we haveA ownsB.

These properties translate to the definition Definition 1 if all the children of a particular Xmodule have
unique indices. By indexingthis owner tags, we are able to enforce some ordering constraintsbetween
sibling Xmodules. One should note, however, that our type system can not prevent cyclic dependencies
between Xmodules, since the programmer can always declare two XmodulesA andB with the same indexed
owner this[i]. In this case, the type system does not enforce any ordering constraint betweenA and
B statically. In general, it seems difficult enforce the ordering of children entirely statically (Rule 2 of
Definition 1) without imposing too many programming restrictions. The runtime system, however, could
dynamically check for cycles and throw a runtime error if a cycle is detected.

2Note that in this paper, we do not consider the possibility ofinner classes, unlike the original ownership type system of[2].

4. OWNERSHIP-AWARE TRANSACTIONS

In this section, we informally sketch theOAT model, an abstract execution model for TM with ownership
and Xmodules. The novel feature of theOAT model is that it uses the structure of Xmodules to provide a
commit mechanism which can be viewed as a hybrid of closed andopen nested commits. TheOAT model
presents an operational semantics for TM, and is not intended to describe an actual implementation.

Overview

The TM system is modeled as a nondeterministic state machinewith two components: aprogram and a
runtime system. The runtime system, which we call theOAT model, dynamically constructs and traverses
a computation treeC as it executes instructions generated by the program. TheOAT model maintains a set
of readynodes, denoted byready(C) ⊆ nodes(C), and at every step, theOAT model nondeterministically
chooses one of these ready nodesX ∈ ready(C) to issue the next instruction. The program then issues one
of the following instructions (whose precondition is satisfied) onX’s behalf: fork, join, xbegin, xend,
xabort, read, or write. For shorthand, we sometimes say thatX issues an instruction.

TheOATmodel describes a sequential semantics, that is, we assume at every time stept, a program issues
a single instruction. The parallelism in this model arises from the fact that at a particular time, several nodes
can be ready, and the runtime nondeterministically chooseswhich one to have issue an instruction.

In the rest of this section, we give a detailed description ofthe OAT model. First, we describe the state
information maintained by theOAT model and define the notation we use to refer to this state. Second, we
describe how theOAT model constructs and traverses the computation tree as instructions are issued. Then,
we describe how theOAT model handles memory operations (i.e.,read andwrite), conflict detection, and
transaction commits, and transaction aborts.

4.1 State Information and Notation

As the OAT model executes instructions, it dynamically constructs the computation treeC . For each of
the sets defined in Section 2 (e.g.,nodes(C), spNodes(C), memOps(C), xactions(C), etc.), we define
corresponding time-dependent versions of these sets by indexing them with an additional time argument. For
example, we define the setnodes(t,C) denotes the set of nodes in the computation tree aftert time steps
have passed. The generalized sets from Section 2 are monotonically increasing, i.e., once an element is added
to the set, it is never removed at a later timet. Sometimes for shorthand, we omit the time argument when it
is clear that we are referring to a particular fixed timet.

Since theOAT model has a computation treeC which is dynamic, at any fixed timet, each inter-
nal nodeA ∈ spNodes(t,C) has astatus field status[A]. If A ∈ xactions(t,C), i.e., A is a trans-
action, thenstatus[A] can be one ofCOMMITTED, ABORTED, PENDING, or PENDING ABORT. Otherwise,
A∈ spNodes(t,C)−xactions(t,C) is either a P-node or a nontransactional S-node; in this case, status[A]
can either beWORKING or SYNCHED. We define several abstract sets for the tree based on this status field. The
first 6 sets partition thespNodes(t,C), the set of internal nodes of the computation tree. The last 4sets
categorize transactions and nodes as being either active orcomplete.

1. pending(t,C) = {X ∈ xactions(t,C) : status[Z] = PENDING} (Pending transactions).

2. pendingAbort(t,C) = {X ∈ xactions(t,C) : status[Z] = PENDING ABORT} (Aborting transactions).

3. committed(t,C) = {X ∈ xactions(t,C) : status[Z] = COMMITTED} (Committed transactions).

4. aborted(t,C) = {X ∈ xactions(t,C) : status[Z] = ABORTED} (Aborted transactions).

5. working(t,C) = {Z ∈ spNodes(t,C)−xactions(t,C) : status[Z] = WORKING} (Working nodes).

6. synched(t,C) = {Z ∈ spNodes(t,C)−xactions(t,C) : status[Z] = SYNCHED} (Synched nodes).

7. activeX(t,C) = pending(t,C)∪pendingAbort(t,C) (Active transactions).

8. activeN(t,C) = activeX(t,C)∪working(t,C). (Active nodes).

9. doneX(t,C) = committed(t,C)∪aborted(t,C) (Complete transactions).

10. doneN(t,C) = doneX(t,C)∪synched(t,C) (Complete nodes).

TheOAT model maintains a set ofreadyS-nodes, denoted asready(t,C). We discuss the properties of
ready nodes later, in Section 4.2. Note thatready(t,C), and the sets defined above which are subsets of
activeN(t,C) are not monotonic, because completing nodes removes elements from these sets.

For the purposes of detecting conflicts, at any timet, for any active transactionT, i.e.,T ∈ activeX(t,C),
theOAT model maintains areadsetR(t,T) and awritesetW(t,T) for T. The readsetR(t,T) is a set of pairs
(ℓ,v), whereℓ ∈ L is a memory location andv∈ memOps(t,C) is a memory operation that reads fromℓ. We
defineW(t,T) similarly. We represent main memory as the readset/writeset of root(C). At time t = 0, we
assumeR(0,root(C)) andW(0,root(C)) initially contain a pair(ℓ,⊥) for all locationsℓ ∈ L .

TheOAT model maintains two invariants onR(t,T) andW(t,T). First,W(t,T)⊆ R(t,T) for every transac-
tion T ∈ xactions(t,C), i.e., a write also counts as a read. Second,R(t,T) andW(t,T) each contain at most
one pair(ℓ,v) for any locationℓ. Thus, we use the shorthandℓ ∈ R(t,T) to mean that there exists a nodeu
such that(ℓ,u) ∈ R(t,T), and similarly forW(t,T). We also overload the union operator: at some timet, an
operationR(T)← R(T)∪{(ℓ,u)} means we constructR(t +1,T) by

R(t +1,T) = {(ℓ,u)}∪
(

R(t,T)−
{

(ℓ,u′) ∈ R(t,T)
})

.

In other words, we add(ℓ,u) to R(T), replacing any(ℓ,u′) ∈ R(t,T) that existed previously.
Finally, for a transactionT ∈ activeX(t,C), we also define amodule readsetas

modR(t,T) = {(ℓ,v) ∈ R(t,T) : owner(ℓ) = xMod(T)} .

In other words,modR(t,T) is the subset ofR(t,T) that accesses memory owned byT ’s XmodulexMod(T).
Similarly, we define themodule writesetas

modW(t,T) = {(ℓ,v) ∈ W(t,T) : owner(ℓ) = xMod(T)} .

4.2 Constructing the Computation Tree

In theOAT model, the runtime constructs the computation tree in a straightforward fashion as instructions
are issued. TheOAT model maintains a computation tree that satisfies two structural properties.

First, theOAT model builds only computation treesC which have the following canonical form.

PROPERTY 1. A canonical computation treeC satisfies the following properties.

1. root(C) is a transaction.
2. All transactions Z∈ xactions(C) are S-nodes.
3. In C , every P-node Y has exactly two nontransactional S-nodes Z1 and Z2 as children, andparent(Y) is

an S-node.

Second, at any timet, if one looks only the active nodesactiveN(t,C), the OAT model maintains the
invariant the active nodes form a tree, with the ready nodes at the leaves. In other words, theOAT model
preserves the following invariant.

PROPERTY 2. At any time t, the computation treeC satisfies these properties:

1. For all X ∈ ready(t,C), ances(X)⊆ activeN(t,C).
2. For all X ∈ ready(t,C), (pDesc(X)∩nodes(t,C)) ⊆ doneN(t,C).

In other words, the setactiveN(t,C) forms anactive tree.

Since theOATmodel is a sequential semantics, it is clear that the sequence of instructions always generates
a valid topological sortS of the computation dag,G(C). Jim: Don’t know where this sentence

The instructions in theOAT model maintain Properties 1 and 2 for the computation tree ina straightfor-
ward fashion. For completeness, however, we give a more detailed description of this construction.

Initially, at timet = 0, we begin with only the root node in the tree, i.e.,nodes(0,C) = xactions(0,C) =
{root(C)}. Throughout the entire computation, theOAT model always maintainsstatus[root(C)] =
PENDING, i.e., the root node of the tree is alwaysPENDING. This root node also begins as ready, i.e.,
ready(0,C) = {root(C)}.

The OAT model creates new internal nodes inC during time stept + 1 when it chooses a ready node
X ∈ ready(t,C) and hasX issue afork or xbegin instruction. IfX issues afork, then the runtime creates
a P-nodeP as a child ofX, and two S-nodesS1 andS2 as children ofP, all with statusWORKING. Thefork
also removesX from ready(C) and addsS1 andS2 to ready(C). If X issues anxbegin, then the runtime
creates a new transactionY ∈ xactions(C) as a child ofX, with status[Y] = PENDING, removesX from
ready(C), and addsY to ready(C).

The OAT model completes a nontransactional S-nodeZ ∈ ready(t,C)− xactions(t,C) (which must
havestatus[Z] = WORKING) by having Z issue ajoin instruction. Thejoin instruction first changes
status[Z] to SYNCHED. In the tree, sinceparent(Z) is always a P-node,Z has exactly one sibling. IfZ
is the first child ofparent(Z) to beSYNCHED, theOAT model removesZ from ready(C). Otherwise,Z is
the last child ofparent(Z) to beSYNCHED, and theOAT model removesZ andparent(Z) from ready(C)
and addsparent(parent(Z)) to ready(C).Does this actually make any

ve to be careful about having
TheOAT model can complete a transactionX ∈ ready(t,C) by having it issue either anxend or xabort

instruction. If status[X] = PENDING, then X can issue anxend to changestatus[X] to COMMITTED.
Otherwise,status[X] = PENDING ABORT, andX can issue anxabort to change its status toABORTED. For
bothxend andxabort, theOATmodel removesX fromready(C) and addsparent(X) back intoready(C).
Thexend instruction also performs an ownership-aware commit and changes readsets and writesets, which
we describe later in Section 4.4.

Finally, a ready nodeX issues aread andwrite instruction, if the instruction does not generate a conflict,
it adds a memory operation nodev to memOps(t,C), with v as a child ofX. If the instruction would create
a conflict, the runtime may change the status of onePENDING transactionT to PENDING ABORT to make
progress in resolving the conflict. For shorthand, we refer to the status change of a transactionT from
PENDING to PENDING ABORT as asigabort of T.

4.3 Memory Operations and Conflict Detection

TheOAT model performs eager conflict detection; before performinga memory operation that would create
a newv∈ memOps(C), theOAT model first checks whether creatingv would cause a conflict, according to
Definition 3.

DEFINITION 3. Suppose at time t, the OAT model issues aread or write instruction that potentially
creates a memory operation node v. We say that v generates amemory conflictif there exists a location
ℓ ∈ L and an active transaction Tu ∈ activeX(t,C) such that

1. Tu 6∈ xAnces(v), and
2. either R(v, ℓ)∧ ((ℓ,u) ∈ W(t,Tu)), or W(v, ℓ)∧ ((ℓ,u) ∈ R(t,Tu)).

If v would generate a conflict, then the memory operationv does not occur; instead, asigabort of some
transaction may occur. We describe the mechanism for abortsin Section 4.5.

Otherwise,v does not generate a conflict. Then,v observes the valueℓ from R(Y), whereY is the closest
ancestor ofv with ℓ in its readset (i.e.,(ℓ,u) ∈ R(Y) andΦ(v) = u). Theread also addsv to X’s readset.

A successfulwrite operationv sets the observer functionΦ(v) in the same way as aread. Thewrite
adds(ℓ,v) to bothR(X) andW(X).

4.4 Ownership-Aware Transaction Commit

TheOATmodel implements an ownership-aware commit mechanism for nested transactions which contains
elements of both a closed-nested and an open-nested commit.A PENDING transactionY issues anxend in-
struction to commitY into X = xparent(Y). WhenY commits, it commits locations from its readset/writeset
which are owned byxMod(Y)’s in an open-nested fashion to the root of the tree, while it commits locations
owned by other Xmodules in a closed-nested fashion, by propagating those reads/writes toX.

We can describe theOAT model’s commit mechanism more formally in terms of module readsets and
writesets. Suppose at timet, Y ∈ xactions(t,C) with status[Y] = PENDING issues anxend. This xend
changes readsets and writesets as follows.

R(root(C)) ← R(root(C))∪modR(Y)

R(xparent(Y)) ← R(xparent(Y))∪ (R(Y)−modR(Y))

W(root(C)) ← W(root(C))∪modW(Y)

W(xparent(Y)) ← W(xparent(Y))∪ (W(Y)−modW(Y))

For a memory operationu, Theorem 2 implies that the the ownership-aware commit mechanism has a
well-defined “committer” foru.

DEFINITION 4. For any memory operation u, which accesses a locationℓ, define thecommitterof u, denoted
committer(u), as the unique transaction T∗ from Theorem 2 such thatowner(ℓ) = xMod(T∗).

Intuitively, committer(u) is the transaction which “belongs” to the same Xmodule as thelocationℓ which
u accesses, and is responsible for committingu to memory. One can also show for anyu which accesses
a locationℓ, ℓ can never appear in the readset (or writeset) of any transaction T ′ which is an ancestor of
committer(u). Note that this property does not hold for TM with open-nested commits; in that case,R(T ′)
may contain a different value forℓ that may be replaced upon commit. Jim: THIS WAS AN OLD PARA

For programs where every XmoduleA accesses only locationsℓ which it owns, an open-nested commit
is equivalent to an ownership-aware commit because any memory modified byT with xMod(T) = A is
committed directly toroot(C). Some program examples, however, are arguably easier to reason about using
an ownership-aware commit. For instance, suppose in the example application from Section 1, that aBook
object has a field oflastSearched that keeps track of the last time a query was performed involving that
Book in a successful top-level transaction. Suppose this field isalso read by theUserApp Xmodule. In this
case, if theBST uses an open-nested commit, the programmer must worry aboutnot only the commutativity
with methods inBST Xmodule, but also the commutativity with methods in theUserApp Xmodule that access
(read or write) thelastSearched field. Similarly, when compensating the methods of theBST Xmodule, the
compensating action would need to undo the modification to the lastSearched field. With an ownership-
aware commit mechanism, on the other hand, the write on thelastSearched field is then propagated up
to the parent transaction, and eventually committed to memory only when a top-level transaction of the
UserApp Xmodule ends, (since we assume theBook instance is owned by theUserApp).

4.5 Transaction Abort

When theOAT model detects a conflict, it aborts one of the conflicting transactions by changing its
status fromPENDING to PENDING ABORT. In the OAT model, a transactionT ∈ xactions(C) might not
abort immediately; instead, it might continue to issue moreinstructions after it’s status has changed to
PENDING ABORT. This condition allows the system to use compensating actions to compensate for the nested
transactions that may have committed. Eventually aPENDING ABORT transaction issues anxend instruction,
which then changes its status fromPENDING ABORT to ABORTED.

Later, it will be useful to refer to the set of operations a transaction T issues while its status is
PENDING ABORT.

DEFINITION 5. The set of operations issued by T or its descendants after T ’sstatus changes toPENDING ABORT
are called T ’sabort actions. This set is denoted byabortactions(T).

If a potential memory operationv generates a conflict withTu andTu’s status isPENDING, then theOAT
model can nondeterministically choose to abort eitherxparent(v), orTu. In the latter case,v then “waits” for
Tu to finish aborting (i.e., change its status toABORTED) before continuing. IfTu’s status isPENDING ABORT,
thenv just waits forTu to finish aborting before trying to issueread or write again.3

This operational model uses the same conflict detection algorithm as TM with ordinary closed-nested
transactions does; the only subtleties are thatv can generate a conflict with aPENDING ABORT transactionTu,
and that transactions no longer abort instantaneously because they have abort actions. Some restrictions on
the abort actions of a transaction may be necessary to avoid deadlock, as we describe later in Section 6.

5. SERIALIZABILITY BY MODULES

In this section, we defineserializability by modules, a definition inspired by the database definition of
multilevel serializability (e.g., as described in [11]). We then provide a proof sketch that theOAT model
from Section 4 guarantees serializability by modules.

First, we describe the definition of serializability in the transactional computation framework, as given
in [1]. Next, we incorporate Xmodules into this definition and define serializability by modules. We then
prove that theOATmodel guarantees serializability by modules. Finally, we discuss the relationship between
the definition of serializability by modules, and the notionof abstract serializability for the methodology of
open nesting.

5.1 Transactional Computations and Serializability

In [1], serializability for a transactional computation with computation treeC was defined in terms of
topological sortsS of the computation dagG(C). Informally, a trace(C ,Φ) is serializable if there exists
a topological sort orderS of G(C) such thatS is “sequentially consistent with respect toΦ”, and all
transactions appear contiguous in the orderS . In this section, we give more precise, formal definitions of
this concept.

Content Sets

For a given trace(C ,Φ), we define “content” sets for every transactionT by partitioningmemOps(T) into
three sets:cContent(T), oContent(T) andaContent(T). For anyu∈ memOps(T), we define the content
sets based on the status of transactions inC that one visits when walking up the tree fromu to T.

DEFINITION 6. For any transaction T and memory operation u, define the setscContent(T), oContent(T),
andaContent(T) according theContentType(u,T) procedure:

ContentType(u,T) � For any u∈ memOps(T)
1 X← xparent(u)
2 while (X 6= T)
3 if (X isABORTED) return u∈ aContent(T)
4 if (X = committer(u)) return u∈ oContent(T)
5 X← xparent(X)
6 return u∈ cContent(T)

Recall that in theOAT model, the commit ofT commits some memory operations in an open-nested
fashion, directly to memory, and some operations in a closed-nested fashion, toparent(T). Informally,

3 If v causes a conflict, we know thatZ = parent(v) andZ ∈ ready(C); waiting until Tu has finished aborting can be modeled as
either the runtime not choosingZ as a ready node to issue an instruction until anxabort for Tu occurs, or havingZ issue “nop”
instructions untilTu as finished aborting.

oContent(T) is the set of memory operations that are committed in an “open” manner byT ’s subtransac-
tions. Similarly,aContent(T) is the set of operations that are discarded due to the abort ofsome subtrans-
action inT ′ subtree. Finally,cContent(T) is the set of operations that are neither committed in an “open”
manner, nor aborted.

Sequential Consistency with Transactions

For computations with transactions, we can modify the classic notion of sequential consistency to account
for transactions which abort. Transactional semantics dictate that memory operations belonging to an aborted
transactionT should not be observed by (i.e.,hidden from) memory operations outside ofT.

DEFINITION 7. For any two vertices u,v∈V(C), let X= xLCA(u,v). We say that u ishiddenfrom v, denoted
uHv, if u∈ aContent(X).

Our definition of serializability by modules requires that computations satisfy some notion of sequential
consistency, generalized for the setting of TM.

DEFINITION 8. Consider a trace(C ,Φ) and a topological sortS of G(C). For all v ∈ memOps(C) such
that R(v, ℓ) ∨W(v, ℓ), the transactional last writerof v according toS , denotedXS (v), is the unique
u∈ memOps(C)∪{⊥} that satisfies four conditions:

1. W(u, ℓ),
2. u<S v,
3. ¬(uHv), and
4. ∀w(W(w, ℓ)∧ (u <S w <S v))⇒ wHv.

DEFINITION 9. A trace (C ,Φ) is sequentially consistentif there exists a topological sortS such that
Φ = XS . We say thatS is sequentially consistent with respect toΦ.

In other words, the transactional last writer of a memory operation u which accesses locationℓ, is the
last writev to locationℓ in the orderS , except we skip over writesw which are hidden from (i.e., aborted
with respect to)u. Intuitively, Definition 9 requires that there exists an order S explaining all the memory
operations of the computation.

Serializability

DEFINITION 10. A trace(C ,Φ) is serializableif there exists a topological sortS that satisfies two condi-
tions:

1. Φ = XS (S is sequentially consistent with respect toΦ), and
2. ∀T ∈ xactions(C) and∀v∈V(C), we havexbegin(T)≤S v≤S xend(T) implies v∈V(T)).

Ordinary serializability can be thought of as a strengthening of sequential consistency which also requires
that the orderS both explains all memory operations, and also has all transactions appearing contiguous.

5.2 Defining Serializability by Modules

In [1], a trace(C ,Φ) was said to beserializableif there exists a topological sortS of G(C) such thatS is
sequentially consistent with respect toΦ, and all transactions appear contiguous inS . Serializability in this
context can be thought of as a sequential consistency plus the requirement that transactions are atomic. For
ownership-aware transactions, this definition of serializability is too strong because conflicting accesses to
memory owned by a low-level Xmodule causes transactions of ahigher-level Xmodule to conflict, preventing
these transactions from commuting with each other.

Instead, we describe a definition of serializability by modules which checks for correctness one Xmodule
at a time. Informally, the definition proceeds as follows. Given a trace(C ,Φ), for each XmoduleA, we

transform the treeC into a new treemTree(C ,A), and then check that in the trace(mTree(C ,A),Φ), that
only the transactions of XmoduleA are serializable. The new treemTree(C ,A) is constructed in such a way
as to ignore memory operations of Xmodules which are lower-level thanA, and also to ignore all operations
which are hidden from transactions ofA. If the check holds for all Xmodules, then trace(C ,Φ) is said to be
serializable by modules. We constructmTree(C ,A) according to Definition 11.

DEFINITION 11. For any computation treeC , let mTree(C ,A) be the result of modifyingC as follows:

1. For all memory operations u∈ memOps(C) with u accessingℓ, if owner(ℓ) = B for somelevel(B) <
level(A), convert u into a nop.

2. For all transactions T∈ modXactions(A), convert all u∈ aContent(T) into nops.

The intuition behind Step 1 of Definition 11 is that when looking at XmoduleA, we throw away memory
operations belonging to a lower-level XmoduleB, since by Theorem 2, transactions ofA can never directly
access the same memory as those operations anyway. For Step 2, we ignore the content of any aborted
transactions nested inside transactions ofA; those transactions might access the same memory locationsas
operations which we did not turn into nops, but those operations are aborted with respect to transactions of
A.

Lemma 4 argues that for a trace which is originally sequentially consistent, turning memory operations
into nops according to Definition 11 does not create an invalid trace, i.e., one where an operationu that
remains in the trace attempts to observe a value from aΦ(u) which was turned into a nop.

L EMMA 4. Let (C ,Φ) be any sequentially consistent trace. Then for any Xmodule A, (mTree(C ,A),Φ)
is a valid trace. In other words, if u∈ memOps(mTree(C ,A)), thenΦ(u) ∈ memOps(mTree(C ,A))). Fur-
thermore, anyS which is sequentially consistent forΦ in (C ,Φ) is also sequentially consistent forΦ in
(mTree(C ,A),Φ).

PROOF. In the new treemTree(C ,A), for any transactionT, pick anyu ∈ memOps(mTree(C ,A)) which
remains. Assume for contradiction thatv = Φ(u) was turned into a nop in one of Steps 1 and 2.

If v was turned into a nop in Step 1, the we know becausev accessed anℓ satisfyinglevel(owner(ℓ)) <
level(A). Sinceu must access the same locationℓ, u must also be converted into a nop.

If v was turned into a nop in Step 2, thenv∈ aContent(T) for somexMod(T) = A. Then we can show
that eithervHu, or u should have also been turned into a nop. LetX = xLCA(v,u). SinceX andT are both
ancestors ofv, eitherX is an ancestor ofT or T is a proper ancestor ofX. Consider the path of transactions
Y0,Y1, . . .Yk, whereY0 = xparent(v), xparent(Yi) = Yi+1, andxparent(Yk) = T. Sincev∈ aContent(T),
for someYj for 0≤ j ≤ k must havestatus[Yj] = ABORTED.

1. First, supposeT is a proper ancestor ofX. SinceT is a proper ancestor ofX, X = Yx for somej satisfying
0≤ x≤ k.

(a) If status[Yj] = ABORTED for any j satisfying 0≤ j < x, then we knowv ∈ aContent(X), and thus
vHu. Since we assumed(C ,Φ) is sequentially consistent andΦ(v) = u, by Definition 8, we know
¬vHu, leading to a contradiction.

(b) If Yj is ABORTED for any j satisfying x ≤ j ≤ k, then status[Yj] = ABORTED implies that u ∈
abortedContentX, and thus,u should have been turned into a nop, contradicting the original setup
of the statement.

2. Next, consider the case whereX is an ancestor ofT. If we follow the chain of transactionsY0,Y1, . . .Yk

and chooseYj as before in Case 1, we see thatYj always falls into Case 1a, and thus we derive the same
contradiction.

Finally, if Φ is the transactional last writer according toS for (C ,Φ), it is still the transactional last writer
for (mTree(C ,A),Φ) because the memory operations which are not turned into nopsremain in the same
relative order. Thus, the last condition is satisfied.

Note that Lemma 4depends onthe restrictions described in Definition 1. Without this structure of modules
and ownership, the construction of Definition 11 is not guaranteed to generate a valid trace. Also, note that the
set of memory operations which are turned into nops strictlyincreases as we look atmTree(C ,A) and increase
level(A). For the lowest-level Xmodule, sayA0, we keep all memory operations (i.e.,mTree(C ,A0) = C).
Once a memory operationu is turned into a nop for XmoduleA, it is turned into a nop for all XmodulesB
with level(B) > level(A).

Finally, we can define serializability by modules.

DEFINITION 12. A trace (C ,Φ) is serializable by modulesif it is sequentially consistent, and if for all
Xmodules A inD, there exists a topological sortS of CA = mTree(C ,A) such that:

1. Φ = XS , (S is sequentially consistent with respect toΦ), and
2. For the treeCA, ∀T ∈ modXactions(A) and∀v∈V(CA), if we havexbegin(T)≤S v≤S xend(T), then

v∈V(T).

Informally, a trace(C ,Φ) is serializable by modules if it is sequentially consistent, and if for every Xmodule
A, there exists a sequentially consistent orderS for the trace(mTree(C ,A),Φ) which also has all transactions
of A contiguous.

5.3 OAT Model Guarantees Serializability by Modules

In this section, we show that theOAT model described in Section 4 generates traces(C ,Φ) that are
serializable by modules, i.e., that satisfy Definition 12. The proof of this fact consists of three steps. First,
we generalize the notion of “prefix race-freedom” describedin [1], to computations with Xmodules. Second,
we prove that theOAT model guarantees that a program execution is prefix race-free. Finally, we argue that
any trace which is prefix race-free is also serializable by modules.

Defining Prefix Race-Freedom

First, we define the prefix races. These definitions are essentially the same as those in [1], except adapted for
a system with an ownership-aware commit mechanism instead of an open-nested commit mechanism.

DEFINITION 13. For any execution orderS , for any transaction T∈ xactions(C), consider any v6∈
memOps(T) such thatxbegin(T) <S v <S xend(T), we say there exists aprefix race between T and v
if there exists a memory operation w∈ cContent(T) s.t., w<S v,¬(vHw), v and w both accessℓ, and one
of v,w writes toℓ.

DEFINITION 14. A trace (C ,Φ) is prefix race-freeiff exists a topological sortS of G(C) satisfying two
conditions:

1. Φ = XS (S is sequentially consistent with respect toΦ), and
2. ∀v∈V(C) and∀T ∈ xactions(C) there is no prefix race between v and T.

S is called aprefix race-free sortof the trace.

Properties of theOAT Model

Second, we prove several invariants thatOAT model preserves, and then use these invariants to prove that
theOAT model generates only traces(C ,Φ) which are prefix race-free.

The sequence of instructions that theOAT model issues naturally generates a topological sortS of the
computation dagG(C): the fork andxbegin instructions correspond to the begin nodes of a parallel or

series blocks in the dag, thejoin, xend, andxabort instructions correspond to end nodes of parallel or
series blocks, and theread or write instructions correspond to memory operation nodesv∈ memOps(C).

THEOREM 5. Suppose the OAT model generates a trace(C ,Φ) and an execution orderS . Then,Φ = XS ,
i.e.,S is sequentially consistent with respect toΦ.

PROOF. This result is reasonably intuitive, but the proof is tedious and somewhat complicated. We defer
the details of this proof to Appendix A.

Next, we describe an invariant on readsets and writesets that theOAT model maintains.

L EMMA 6. Suppose the OAT model generates a trace(C ,Φ) with an execution orderS . For any transaction
T , consider a memory operation u∈ cContent(T) which accesses memory locationℓ at step t0. Let tf be
step whenxend(T) or xabort(T) happens. At any time t such that t0 ≤ t < t f there exists some active
transaction T′ ∈ xDesc(T)∩activeX(t,C) (which is a descendant of T) such that

1. If R(u, ℓ), thenℓ ∈ R(t,T ′).
2. If W(u, ℓ), thenℓ ∈ W(t,T ′).

PROOF. Let X1,X2, . . .Xk be the chain of transactions fromxparent(u) up to, but not includingT, i.e.,
X1 = xparent(u), Xj = xparent(Xj−1), andxparent(Xk) = T. Since we assumeu ∈ cContent(T), and
since T completes at timet f , we know at some timet j which satisfiest0 ≤ t j < t f , an xend changes
status[Xj] from PENDING to COMMITTED; otherwise, we would haveu∈ aContent(T).

Also, by Definitions 4 and 6, we knowcommitter(u) ∈ xAnces(T), i.e., none of theXj ’s will commit
locationℓ in an open-nested fashion to the world; otherwise, we would haveu∈ oContent(T).

First, supposeR(u, ℓ). At time ti , when the memory operationu completes,(ℓ,u) is added toR(X1). In
general, at timet j , the ownership-aware commit mechanism, as described in Section 4.4, will propagate
ℓ from R(Xj) to R(Xj+1). Therefore, for any timet in the interval[t j−1, t j), we knowℓ ∈ R(t,Xj), i.e., for
Lemma 6,T ′ = Xj . Similarly, for any timet in the interval[tk, t f), we haveℓ ∈ R(t,T), i.e., we choose
T ′ = T.

The case whereW(u, ℓ) is completely analogous to the case ofR(u, ℓ), except we have bothℓ ∈ R(t,T ′)
andℓ ∈ W(t,T ′).

Informally, Lemma 6 states that, if a memory operationu that reads / writes locationℓ is in the
cContent(T) for some transactionT, thenl is pending in the readset / writeset of some active transaction
underT ’s subtree between the time when the memory operation is performed and the time whenT ends.

Finally, we use Theorem 5 and Lemma 6 to prove that theOAT model generates traces which are prefix
race-free.

THEOREM 7. Suppose the OAT model generates a trace(C ,Φ) with an execution orderS . ThenS is an
prefix race-free sort of(C ,Φ).

PROOF.
For the first condition of Definition 14, we know by Theorem 5, we know theOAT model generates an

orderS which is sequentially consistent with respect toΦ.
To check the second condition, assume for contradiction that we have an orderS generated by theOAT

model, but there exists a prefix race between a transactionT and a memory operationv 6∈ memOps(T). Let w
be the memory operation from Definition 13, i.e.,w∈ cContent(T), w <S v <S xendT, ¬(vHw), w andv
access the same locationℓ, with one of the accesses being a write. Lettw andtv be the time steps in which
operationsw andv occurred, respectively, and lettendT be the time at which eitherxend(T) or xabort(T)
occurs (i.e., eitherT commits or aborts). We argue that at timetv, the memory operationv should not have
succeeded because it generated a conflict.

We consider three cases. First supposeW(v, ℓ) andR(w, ℓ). Sincetw < tv < tendT, by Lemma 6, at timetv,
ℓ is in the writeset of some active transactionT ′ ∈ desc(T). Sincev 6∈ memOps(T), we knowT 6∈ ances(v).

Thus, sinceT ′ is a descendant ofT, we haveT ′ 6∈ ances(v). SinceT ′ 6∈ ances(v), by Definition 3, at time
tv, v generates a conflict withT ′. The other two cases, whereR(v, ℓ)∧W(w, ℓ) or W(v, ℓ)∧W(w, ℓ), are
analogous.

Prefix Race-Freedom Implies Serializability by Modules

Finally, we show that a trace(C ,Φ) which is prefix race-free is also serializable by modules.

THEOREM 8. Any trace(C ,Φ) which is prefix race-free is also serializable by modules.

PROOF.
First, by Definition 11 and Lemma 4, it is easy to see that a prefix-race free sortS of a trace(C ,Φ) is also

prefix-race free of the sort(mTree(C ,A),Φ) for any XmoduleA. Now we shall argue that for any Xmodule
A, we can transformS into SA such that all transactions inxactions(A) appear contiguous inSA.

Consider a prefix-race free sortS of (mTree(C ,A),Φ) which hask nodesv which violate the second
condition of Definition 12. We show how to construct a new order S ′ which is still a prefix race-free sort of
(mTree(C ,A),Φ), but which has onlyk−1 violations.

We reduce the number of violations according to the following procedure:

1. Of all transactionsT ∈ modXactions(A) such that there exists an operationv such thatxbegin(T) ≤S

v≤S xend(T) andv 6∈V(T), choose theT = T∗ which has the latestxend(T) in the orderS .

2. In T∗, pick the firstv 6∈V(T∗) which causes a violation.

3. Create a new sortS ′ by movingv to be immediately beforexbegin(T∗).

In order to argue thatS ′ is still a prefix race-free sort of(mTree(C ,A),Φ), we need to show that moving
v does not generate any new prefix races, and does not create a sort S ′ which is no longer sequentially
consistent with respect toΦ (i.e., thatΦ is still the transactional last writer according toS ′). There are three
cases:v can be a memory operation, anxbegin(T ′), or anxend(T ′).

1. Supposev is a memory operation which accesses locationℓ. For all operationsw such thatxbegin(T) <S

w <S v, we argue thatw can not access the same locationℓ unless bothw andv read fromℓ. Since we
chosev to be the first memory operation such thatxbegin(T) <S v <S xend(T) such thatv 6∈V(T), we
know w∈V(T). We know by construction ofmTree(C ,A), thatw∈ cContent(T) (if w∈ oContent(T)
or w∈ aContent(T), then steps 1 or 2, respectively, in Definition 11 will turnw into a nop). Therefore,
by Definition 13, unlessw andv both read fromℓ, v has a prefix race withT, contradicting the fact that
S is a prefix race-free sort of the trace. Thus, movingv to be beforexbegin(T) can not generate any
new prefix races or change the transactional last writer for any memory operation, andS ′ is still a prefix
race-free sort of the trace.

2. Next, supposev = xbegin(T ′). Moving xbegin(T ′) can not generate any new prefix races withT ′,
because the only memory operationsu which satisfyxbegin(T) <S u <S xbegin(T ′) satisfy u 6∈
cContent(T ′). Also, movingxbegin(T ′) does not change the transactional last writer for any nodev
because the move preserves the relative order of all memory operations. Therefore,S ′ is still a prefix
race-free sort.

3. Finally, supposev = xend(T ′). By moving xend(T ′) to be beforexbegin(T), we can only lose
prefix races withT ′ that already existed inS because we are moving nodes out of the interval
[xbegin(T ′),xend(T ′)]. Also, as withxbegin(T ′), movingxend(T ′) does not change any transaction
last writers. Therefore,S ′ is still a prefix race-free sort of the trace.

Since we can eliminate violations of the second condition ofDefinition 12 one at a time, we can construct
a sortSA which satisfies serializability by modules by eliminating all violations.

Jim: This proof is probably still

Finally, we can prove theOATmodel guarantees serializability by modules by putting theprevious results
together.

THEOREM 9. Any trace(C ,Φ) generated by the OAT model is serializable by modules.

PROOF. By Theorem 7, theOAT model generates only trace(C ,Φ) which are prefix race-free. By
Theorem 5.3, any trace(C ,Φ) which is prefix race-free is serializable by modules.

5.4 Abstract Serializability

By Theorem 9, theOAT model guarantees serializability by modules. We now relatethis definition to the
notion of abstract serializabilityused in multilevel database systems [11]. As we mentioned inSection 1,
ownership-based commit mechanism forms a part of a methodology which includes abstract locks and
compensating actions. In this section we argue thatOAT model provides enough flexibility to accommodate
abstract locks and compensating actions. In addition, if a program is “properly locked and compensated,”
then serializability by modules guarantees abstract serializability.

The definition of abstract serializability in [11] assumes that the program is divided into levels and a
transaction at leveli can only call a transaction at leveli−1. In addition, transactions at a particular level have
predefined commutativity rules, i.e., some transactions ofthe same Xmodule can commute with each other
and some can not. These commutativity rules might be specified using abstract locks [9]: if two transactions
grab the same abstract lock in a conflicting manner, then theycannot be reordered. Using the application
in Section 1 for instance, transactions callinginsert andremove on theBST using the same key do not
commute and should grab the same write lock.

The transactions at level 0 are naturally serializable. Given this scheduleZ0 of level-0 transactions,
the schedule is said to be serializable at level 1 if all transactions inS0 can be reordered, obeying all
commutativity rules, so that we can construct a serializable order for level-1 transactions. This order of level-
1 transactions can be calledZ1. Similarly, for level-i transactions, reorderZi−1 of level-i−1 transactions,
obeying all commutativity rules, so that we get a serializable order for level-i transactions. Continuing in
this way up to the top-level transactions, the original schedule is said to be abstractly serializable if it is
serializable for all levels.

This definition holds for our model in the special case when the module tree is a chain (i.e., each non-leaf
module has exactly one child). A transactionT is at leveli if level(xMod(T)) = i. Although abstract locks
are not explicitly modeled in theOAT model, simple read/write locks can be modeled as reads and writes to
memory locations.4 We can think transactions acquiring the same abstract lock as them writing to a common
memory locationℓ. Locks associated with an XmoduleA are owned bymodParent(A). A moduleA is said
to beproperly lockedif the following is true for all transactionsT1,T2 with xMod(T1) = xMod(T2) = A: if T1

andT2 do not commute, then they access someℓ ∈ modMemory(modParent(A)) in a conflicting manner. In
the special case when the module tree is a chain, one can show that if all modules are properly locked, then
serializability by modules implies abstract serializability.

In the general case, however, a transaction at leveli can call transactions at many levels, not justi− 1.
By Rule 2 of Definition 1, however, we know that transactions at level i can only call transactions at a lower
levels. Thus, we change our definition slightly. Instead of reordering justSi−1 while serializing transactions
at level-i, we have to potentially reorderSx for all x where transactions at leveli can call transactions at level
x. Even in this case, the module tree properties guarantee that if every module is properly locked (by the
same definition as above), serializability by modules guarantees abstract serializability.locks work the same way?

The methodology of open-nesting in TM often requires the notion of compensating actions or inverse
actions. For instance, the inverse ofBST.insert is BST.remove with the same key. When a transaction
T aborts, all the changes made by its subtransactions must be inverted. Again, althoughOAT model does
not explicitly model compensating actions, it allows an aborting transaction with statusPENDING ABORT

4More complicated locks can be modeled by generalizing the definition of conflict.

to perform an arbitrary but finite number of operations before changing the status toABORTED. Therefore,
an aborting transaction can compensate for all its aborted subtransactions.OAT model does not place any
restrictions on the order of execution of compensating actions.

6. DEADLOCK FREENESS

In this section, we argue that theOATmodel we described in Section 4 can never enter a “semantic deadlock”
if we impose suitable restrictions on the memory that a transaction’s abort actions can access. In particular,
an abort action for a transactionT from xMod(T) can read (write) from a memory locationℓ belonging to
modAnces(xMod(T)) if ℓ is already inR(T) (W(T)).5 Under these conditions, we show that theOAT model
can always “finish” reasonable computations.

Intuitively, an ordinary TM without open nesting and with eager conflict detection never enters a semantic
deadlock because it is always possible to finish aborting a transactionT without generating additional con-
flicts. Thus, a scheduler in the TM runtime could abort all transactions, and then complete the computation
by running the remaining transactions serially. Using theOAT model, however, a TM system can enter a
semantic deadlock because it can enter a state in which it is impossible to finish aborting two parallel trans-
actionsT1 andT2 which both have statusPENDING ABORT. If T1’s abort action generates a memory operation
u which conflicts withT2, thenu will wait for T2 to finish aborting and change its status toABORTED. Simi-
larly, T2’s abort action can generate an operationv which conflicts withT1 and waits forT1 to finish aborting.
SinceT1 andT2 are both waiting on each other, neither transaction will ever finish aborting.

Defining Semantic Deadlock

Intuitively, we want to say that theOAT model exhibits a semantic deadlock if it causes the TM systemstate
machine to enter a state in which it is impossible to “finish” acomputation because of transaction conflicts.
A computation might not finish for other reasons, such as an infinite loop or livelock. This section defines
semantic deadlock precisely and distinguishes it from these other reasons for noncompletion.

Recall that our abstract model has two entities: the program, and a generic operational modelN represent-
ing the runtime system. At any timet, given a ready nodeX ∈ ready(C), the program chooses an instruction
and hasX issue the instruction. If the program issues an infinite number of instructions, thenN can not com-
plete the program no matter what it does. To eliminate programs which have infinite loops, we only consider
bounded programs.

DEFINITION 15. We say that a program isboundedfor an operational modelN if any computation tree
that N generates for that program is of a finite depth, and there exists a finite number K such that at
any time t, every node B∈ nodes(t,C) has at most K children with statusPENDING, COMMITTED or
PENDING ABORT.

Notice that this definition does not disallow infinite numberof aborted transactions, since even a computation
without an infinite loop may have to re-execute a transactionan infinite number of times if theN keeps
aborting the transaction. However, there is no reason to have in infinite number of pending or committed
transactions unless the computation is infinite.6

Another reason a program might run forever is if an operational model makes bad scheduling decisions. An
operational modelN makes two types of nondeterministic choices. First, at any timet, N nondeterministically
chooses which ready nodeX ∈ ready(C) executes an instruction. This choice models nondeterminism in
the program due to interleaving of the parallel executions.Second, while performing a memory operation
u which generates a conflict with transactionT, N nondeterministically chooses to abort eitherxparent(u)
or T. This nondeterministic choice models the contention manager of the TM runtime. A program may run

5Roughly, this translates into restrictions on the compensating actions as follows: A compensating action for transaction T ′ can not
access any new memory belonging to higher level modules.
6We assume that if a transaction aborts, it is not retried until it finishes aborting. That is, a transaction is retried onlyafter its status
changes toABORTED.

forever due tolivelock if N repeatedly makes “bad” choices. For example, two transactions may continually
abort each other due to retries, causing the program to run forever.

An intelligent scheduler, however, might be able to avoid a livelock. Therefore, we use a notion of
scheduleto distinguish a livelocks from a semantic deadlock.

DEFINITION 16. A scheduleΓ on some time interval[t0, t1] is the sequence of nondeterministic choices
made by an operational model in the interval.

Intuitively, an operational model deadlocks if it allows a bounded computation to reach a state where no
schedule can complete the computation after this point. Notice that this definition excludes livelocks since
livelocks can be solved by good subsequent scheduling decisions, while deadlocks can not be.

DEFINITION 17. Consider anN executing a bounded computation. We say thatN does not exhibit a
semantic deadlockif for all finite sequences of t0 instructions thatN can issue that generates some
intermediate computation treeC0, there exists a finite scheduleΓ on[t0, t1] such thatN brings the computation
tree to a rest stateC1, i.e.,ready(C1) = {root(C1)}.

This definition is sufficient, since once the computation tree is at the rest state, and only the root node is
ready,N can execute each transaction serially and complete the computation.

Restrictions to Avoid Semantic Deadlock

The generalOAT model described in Section 4 exhibits semantic deadlock because it is possible to enter a
state where two parallel aborting transactionsT1 andT2 keep each other from completing their aborts. But
for a restricted set of programs, where aPENDING ABORT transaction never accesses new memory belonging
to high-level modules, we can show theOAT model is free of semantic deadlock.

More formally, for all transactionsT, we restrict the memory footprint ofabortactions(T).

DEFINITION 18. An execution (represented by a computation treeC) has abort actions with limited
footprint if the following condition is true for all transactions T∈ aborted(C). At time t, if a memory
operation v∈ abortactions(T) accesses locationℓ and owner(ℓ) ∈ modAnces(xMod(T)), then (1) if
R(v, ℓ) thenℓ ∈ R(T), and (2) if W(v, ℓ) thenℓ ∈ W(T).

Intuitively, Definition 18 requires that once a transactionT ’s status becomesPENDING ABORT, any memory
operationv which T or a nested transaction insideT performs to finish abortingT can not read from (write
to) any locationℓ which is owned by any Xmodules which are ancestors ofxMod(T), unlessℓ is already in
the in the readset (writeset) ofT.

First, we show that the properties of Xmodules from Theorem 2in combination with the ownership-aware
commit mechanism imply that transaction readsets and writesets exhibit nice properties. In particular, we
have Corollary 10, which states that a locationℓ can appear in the readset of a transactionT only if T ’s
Xmodule is a descendant ofowner(ℓ) in the module treeD.

COROLLARY 10. For any transaction T ifℓ ∈ R(T), thenxMod(T) ∈ modDesc(owner(ℓ)).

PROOF. Follows from Definition 1 and Theorem 2, and induction on howa locationℓ can propagate into
readsets and writsets using the ownership-aware commit mechanism.

If all abort actions have a limited footprint, we can show that operations of an abort action of an Xmodule
A can only generate conflicts with a “higher-level” XmoduleB.

L EMMA 11. Suppose the OAT model generates an execution where abort actions have limited footprint.
For any transaction T , consider a potential memory operation v∈ abortactions(T). If v conflicts with
transaction T′, thenlevel(xMod(T ′)) < level(xMod(T)).

PROOF. Supposev ∈ abortactions(T) accesses a memory locationℓ with owner(ℓ) = A. Since
abortactions(T)⊆ memOps(T), by the properties of Xmodules given in Definition 1, we know that either

A ∈ modAnces(xMod(T)), or level(A) < level(xMod(T)). If A ∈ modAnces(xMod(T)), then by Defini-
tion 18,T already hadℓ in its read or write set. Therefore, using Definition 3,v can not generate a conflict
with T ′ because thenT would already have had a conflict withT ′ beforev occurred, contradicting the eager
conflict detection of theOAT model.

Thus, we havelevel(A) < level(xMod(T)). If v conflicts with some other transactionT ′, then T ′

has ℓ in its read or write set. Therefore, from Corollary 10,xMod(T ′) ∈ modDesc(A). Thus, we have
level(xMod(T ′)) < level(A) < level(xMod(T)).

THEOREM 12. In the case where aborted actions have limited footprint, the OAT model is free from
semantic deadlock.

PROOF. Let C0 be the computation tree after any finite sequence oft0 instructions. We describe a schedule
Γ which finishes aborting all transactions in the computationby executing abort actions and transactions
serially.

Without loss of generality, assume that at timet0, all active transactionsT havestatus[T] = PENDING ABORT.
Otherwise, the first phase of the scheduleΓ is to make this status change for all active transactionsT. 7

For a module treeD with k Xmodules, the scheduleΓ hask phases, 0,1, . . .k− 1, one for each Xmod-
ule in D, starting at the lowest level Xmodule. The invariant we maintain is that immediately before
phasei, we bring the computation tree into a stateC (i) which has no active transaction instancesT with
level(xMod(T)) < i, i.e., no instancesT from Xmodules at level lower thani.

In the proof, letβi denote the subset of all active transaction instancesT that are generated by Xmodule
at leveli. In other words,

βi(t) = {T ∈ xactions(C)∩activeN(t,C) : level(xMod(T)) = i} .

By induction, we show that if after phasei, for all j where j < i, β j(t) = /0, then after phasei scheduleΓ
makesβi(t) = /0, after some finite number of steps.

In the base case, consider the XmoduleA at the lowest level (level(A) = 0). We know, from Definition 1
thatT ∈ β0 has no nested subtransactions, since a transaction from moduleA can only call transactions from
a module at a lower level.

First, we claim that aborting any transactionT ∈ β0 never causes any conflicts. By Lemma 11, we
know that if v ∈ abortactions(T) causes a conflict with transactionT ′, then level(xMod(T ′)) <
level(xMod(T)). But xMod(T) has level 0. ThereforeT completes aborting eventually without generat-
ing any new conflicts. By Definition 15, there are a finite number of these transactionsT in β0, and each of
these transactions can generate a finite number of abort actions. Thus, in theOAT model,Γ can finally issue
anxabort for all T ∈ β0 and in some finite number of time steps, phase 1 ofΓ can makeβ0 = /0.

In the inductive step, assume before phasei at timet, β j(t) = /0 for all j < i. Pick any transactionT ∈ βi(t).
By the inductive hypothesis, we know that there are no activetransactionsT ′ with level(xMod(T ′)) <
level(xMod(T)). Therefore by Lemma 11, we can conclude thatΓ can finish abortingT in a finite amount
of time without generating any new conflicts. ThereforeΓ can abort all suchT serially in a finite number of
steps.

After phasek−1 of the scheduling algorithmΓ, we haveβi = /0 for all i < k. Thus, we only left with the
root transactionroot(C) from the Xmoduleworld , completing the proof.

7A slightly less wasteful serial scheduler in this case can belazy and issue asigabort to T if and when the first conflict toT is
discovered; the rest of the proof still works assuming thatPENDING ABORT transactions of the same Xmodule are all scheduled and
completed before attempting to finishPENDING transactions.

Restrictions on compensating actions

If transactionsY1,Y2... are nested inside transactionX and X aborts, typically abort actions ofX simply
consists of compensating actions forY1,Y2... Therefore, restrictions on abort actions translate in a straight-
forward manner to restrictions on compensating actions: A compensating action for a transactionY1 should
not access any memory owned byxMod(X) or its ancestors unless the memory location is already inX’s
read/write set. Assuming locks are modeled as accesses to memory locations, the same restriction applies,
meaning, a compensating action can not acquire new locks that were not already acquired by the transaction
it is compensating for.

7. CONCLUSIONS

In this paper, we have bridged the gap between the intent and the execution of open-nested transactions.
Open-nested transactions are meant to allow the TM to ignorelow-level memory conflicts while doing
conflict detection on high-level transactions. We have described a framework that incorporates the notions of
high-level and low-level in the specification of the program, thus allowing a transactional memory system to
make the right decisions about which memory conflicts shouldbe ignored.

We have described a framework that incorporates the notionsof Xmodules and ownership into a TM
system. We propose precise restrictions that must be imposed on the interactions between Xmodules. In
addition, we introduce the ownership-aware commit mechanism which commits memory selectively based
on which Xmodule owns that piece of memory. If a program follows all the restrictions we detailed and
the TM system uses the ownership-aware commit mechanism, weprove that the system will guarantee
serializability by modules. Finally, it might be difficult for the programmer to make sure that they have
followed all the restrictions outlined. Therefore, we propose a type system that allows the compiler to check
that the programmer has obeyed all the restrictions needed by the ownership-aware transactional memory
system.

REFERENCES
[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-nested transactions. InProceedings of

the ACM SIGPLAN Workshop on Memory Systems Performance and Correctness (MSPC), October 2006. In
conjunction ASPLOS.

[2] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. InProceedings of the ACM
Symposium on Principles of Programming Languages (POPL), New Orleans, Louisiana, Jan. 2003.

[3] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun. Transactional collection classes. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP),
pages 56–67, New York, NY, USA, 2007. ACM Press.

[4] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures. In
Proceedings of the International Symposium on Computer Architecture (ISCA), pages 289–300, 2003.

[5] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. InProceedings of the International Symposium on Computer
Architecture (ISCA), June 2006.

[6] J. E. B. Moss.Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, Cambridge,
MA, USA, 1985.

[7] J. E. B. Moss. Open nested transactions : Semantics and support. InProceedings of the Workshop on Memory
Performance Issues (WMPI), Austin, Texas, Feb 2006.

[8] J. E. B. Moss and A. L. Hosking. Nested transactional memory: Model and architecture sketches. InScience of
Computer Programming, volume 63, pages 186–201. Elsevier, Dec 2006.

[9] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memory. InProceedings of ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPP), Mar. 2007.

[10] C. H. Papadimitriou. The serializability of concurrent database updates.Journal of the ACM, 26(4):631–653,
1979.

[11] G. Weikum. A theoretical foundation of multi-level concurrency control. InProceedings of the ACM SIGACT-
SIGMOD symposium on Principles of database systems (PODS), pages 31–43, New York, NY, USA, 1986. ACM
Press.

A. THE OAT MODEL AND SEQUENTIAL CONSISTENCY

This appendix contains the details of the proof of Theorem 5,that if theOAT model generates a trace(C ,Φ)
and a topological sort orderS , thatS satisfies Definition 9, i.e.,S is sequentially consistent with respect to
Φ.

In this appendix, we first define some useful notation for the proof. Next, we prove that theOAT model
preserves several invariants about memory operations, readset, and writesets. Finally, we use these invariants
to prove Theorem 5.

A.1 Notation

We define some notation that is useful later for stating operational invariants of theOAT model.
For any subsetSof nodes in the computation treeC , i.e.,S⊆ nodes(C), define

• low(S) = {X ∈ S : pDesc(X)∩S= /0}.
• high(S) = {X ∈ S : pAnces(X)∩S= /0}.

Intuitively, low(S) represents the nodes inSclosest to the leaves of the tree. Similarly,high(S) represents the
nodes inSclosest to the root of the tree. In cases where the setS is guaranteed to fall along one root-to-leaf
path in the tree, we definelowest(S) as the only elementX ∈ low(S). Similarly, we definehighest(S) as
the only element inhigh(S).

We also define two time-dependent sets of transactions.

• Thereader setreaders(t, ℓ) = {T ∈ activeX(t,C) : ℓ ∈ R(t,T)}.

• Thewriter set, writers(t, ℓ) = {T ∈ activeX(t,C) : ℓ ∈ W(t,T)}.

Said differently,readers(t, ℓ) is the set of active transactions at timet which have locationℓ in their readset.
Similarly, writers(t, ℓ) is the set of active transactions at timet with ℓ ∈ W(T).

Next, we generalize the content sets from Definition 6 and define a set of dynamic content sets.

DEFINITION 19. At any time t, for any transaction T∈ xactions(t,C) and a memory operation u∈
memOps(t,C), define the setscContent(t,T), oContent(t,T), aContent(t,T), and vContent(t,T) ac-
cording theContentType(t,u,T) procedure:

ContentType(t,u,T) � For any u∈ memOps(t,T)
1 X← xparent(u)
2 while (X 6= T)
3 if X ∈ activeX(t,C), return u∈ vContent(t,T)
4 if X ∈ aborted(t,C), return u∈ aContent(t,T)
5 if (X = committer(u)) return u∈ oContent(t,T)
6 X← xparent(X)
7 return u∈ cContent(t,T)

The difference between Definition 19 and the previous statement in Definition 6 is that for dynamic content
sets, if we encounter aPENDING or PENDING ABORT transaction when walking up the tree from a memory
operationu to a transactionT, we placeu in theactive contentof T, i.e.,u∈ vContent(t,T). If a transaction
T completes at timet∗, it is not hard to see that the dynamic classificationContentType(t,u,T) gives the
same answer as the static classificationContentType(u,T) for all timest ≥ t∗.

Finally, we define subsets of the dynamic content sets which write to a particular memory location.

A.2 OAT Model Invariants

Because theOAT model performs eager conflict detection according to Definition 3, it is not hard to prove
the following invariant about the readers and writers to a particular memory locationℓ.

THEOREM 13. At all times t, the OAT maintains the following invariants onthe setsreaders(ℓ) and
writers(ℓ):

1. For all ℓ ∈ L , |low(writers(t, ℓ))|= 1, i.e.,lowest(writers(t, ℓ)) exists.
2. For any T∈ readers(t, ℓ), eitherlowest(writers(t, ℓ))∈ desc(T) or T ∈ desc(lowest(writers(t, ℓ))).

PROOF. The proof is by induction on the instructions that theOAT model issues.
In the base case, for all locationsℓ∈ L , we begin withreaders(0, ℓ) = writers(0, ℓ) = {root(C)}, and

no other nodes in the computation treeC exceptroot(C). Thus, Invariants 1 and 2 are satisfied.
In the inductive step, suppose at timet−1, Invariants 1 and 2 are satisfied. Aread or write instruction at

time t can not break the invariants without causing a conflict according to Definition 3. Therefore, successful
read andwrite operations preserve the invariant. An unsuccessfulread or write operation can only trigger
thesigabort of transactions, which does not affect either invariant.

An xend instruction that commits a transactionT can only add the transactionxparent(T) to readers(ℓ)
or writers(ℓ). Sincexparent(T) is an ancestor ofT, it can not break either of the two invariants.

The remaining instructions preserve Invariants 1 and 2 trivially. A fork or join instruction at timet
preserves the invariants because they do not change the set active transactions or any transaction readsets
or writesets. Anxbegin preserves the invariants because it creates new transactions T with empty readsets
and writesets. Thexabort instruction preserves the invariants because it can only remove transactions from
readers(t, ℓ) or W(t, ℓ).

Jim: This proof could be better

The following invariant shows that, informally, the readsets of transactions act as caches for pairs(ℓ,u)
stored in writesets.

L EMMA 14. At any time t, for any T∈ readers(t, ℓ), suppose(ℓ,u)∈ R(t,T). Let T′= lowest(xAnces(T)∩
writers(t, ℓ)). Then(ℓ,u) ∈ W(t,T ′).

PROOF. The proof is by induction on the instructions issued by theOAT model. In the base case, we
know for all memory locationsℓ ∈ L ,, we start withreaders(0, ℓ) = writers(0, ℓ) = {root(C)} and
R(root(C)) = W(root(C)). SinceT ′ = T = root(C), Lemma 14 is satisfied in the base case.

For the inductive step, assume the lemma is satisfied at timet−1. We show after anyS-nodeX issues an
instruction at timet, the lemma is still satisfied.

For anyT ∈ xactions(t−1,C), after afork, join, or xbegin instruction in stept, we haveR(t,T) =
R(t−1,T) andW(t,T) = W(t−1,T). Thus, the lemma is satisfied after these instructions. Anxbegin which
creates a new transactionX at time stept starts withR(t,X) = W(t,X) = /0; thus, the lemma is satisfied.

Next, consider anxabort issued byX ∈ xactions(t−1,C). Suppose, before thexabort of X there exists
a transactionT ∈ readers(t−1, ℓ) with (ℓ,u) ∈ R(t−1,T). Let T ′ = lowest(xAnces(T)∩ writers(t−
1, ℓ)). Then before thexabort, (ℓ,u) ∈ W(t− 1,T ′). Assume for contradiction after thexabort of X, that
there exists some transactionT ∈ xactions(t,C) such that the invariant no longer holds forT, i.e., we no
longer have(ℓ,u) ∈ W(t,T ′). Since anxabort does not change the contents of any transaction’s writeset,but
removesX from writers(ℓ), the only way to violate the invariant is ifX = T ′. Consider two cases: either
X = T ′ = T, or X = T ′ 6= T. In the first case, we can not violate the invariant forT becauseT is aborted and
removed fromreaders(ℓ). In the second case, we must haveT ∈ pDesc(X). But then, before thexabort,
we haveT ∈ pDesc(X)∩activeN(t−1)C andX ∈ ready(t−1)C , contradicting Property 2, that the ready
nodes are the leaves of tree of active nodes. Thus, thexabort must preserve the invariant.

Finally, suppose at timet, a ready nodeX issues anxend. Consider two cases:

1. X 6= owner(ℓ). The only transactionY for which we could haveR(t,Y) 6= R(t−1,Y) orW(t,Y) 6= W(t−1,Y)
is Y = xparent(X). Thus, after thexend, for all T ∈ readers(t, ℓ) with T 6= Y, since the readset or
writeset ofT or any transaction inxAnces(T) remains the same, the invariant is still preserved forT.

2. SupposeX = owner(ℓ). Then, the only transaction whose readset or writeset can change isY = root(C).
But the only way to break the invariant is ifX commits a pair(ℓ,v) to root(C), which corrupts the version

(ℓ,u) ∈ R(t−1,T), for some parallel transactionT. But then, we would violate Theorem 13, and should
have had a conflict earlier.

Since all possible choices for actionk+1 preserve the invariant, the lemma holds by induction.

Theorem 15 characterizes when a transaction should have a location in its writeset.

THEOREM 15. At any time t, consider any transaction T∈ activeX(t,C) and any memory locationℓ such
thatlevel(owner(ℓ))≥ xMod(T). Let Sℓ(t) = {u∈ memOps(t,C) : W(u, ℓ)}. Exactly one of the following
cases holds:

1. T = root(C), (ℓ,⊥) ∈ W(t,T), and two conditions are satisfied:
(a) cContent(t,T)∩Sℓ = /0.
(b) For all v∈ Sℓ(t), we have v∈ aContent(t,T)∪vContent(t,T).

2. There exists an(ℓ,u) ∈ W(t,T) which happens at time tu, and two conditions are satisfied:
(a) u∈ cContent(t,T)∩Sℓ(t)
(b) For any operation v∈ (Sℓ(t)−{u}) which happens at time tv, where tu < tv ≤ t, we have v∈

aContent(t,T)∪vContent(t,T).
3. We haveℓ 6∈ W(t,T), andcContent(t,T)∩Sℓ(t) = /0.

PROOF.
This theorem can be proved by a straighforward, albeit tedious, induction on time.
Note that because we assumelevel(owner(ℓ))≥ xMod(T), Sℓ(t)∩memOps(t,C)∩oContent(t,T) = /0,

i.e., the theorem is only concerned with memory locationsℓ which belong toT ’s open content. Because
of the properties of ownership and Xmodules, any locationℓ with level(owner(ℓ)) < xMod(T) can never
propagate intoT ’s writeset anyway.

The intuition for Theorem 15 is that if at timetu, a pair(ℓ,u) appears in the writeset of a transactionT,
then all otherv which write toℓ which happen after timetu are inT ’s subtree, andv ∈ aContent(t,T)∪
vContent(t,T) (i.e.,v is aborted or still pending with respect toT).

A.3 Proof of Sequential Consistency

Finally, we can use the invariants from Lemma 14 and Theorem 15 to prove Theorem 5.
PROOF. [Theorem 5]

The first condition and second conditions are true by construction, since theOAT model can only set
Φ(v) = u if u <S v, W(u, ℓ) andR(v, ℓ)∧W(v, ℓ).

To check the third and fourth conditions, we require some setup. Suppose at timet = S(v), theOATmodel
setsΦ(v) = u. Let A= lowest(readers(t, ℓ)∩ances(v)). Because theOATmodel setsΦ(v) = u, we must
have(ℓ,u) ∈ R(t,A). LetT = lowest(xAnces(A)∩writers(t, ℓ)). By Lemma 14, we know(ℓ,u) ∈ W(t,T).
By Theorem 15, since(ℓ,u) ∈ W(t,T), we know u ∈ cContent(t,T). Let X = xLCAuv. We must have
T ∈ ances(X); otherwise, we could not have{u,v} ⊆ memOps(t,T).

Sinceu∈ cContent(t,T), we knowu∈ cContent(t,X)∪oContent(t,X). Therefore, we have¬(uHv),
satisfying the third condition.

To check the fourth condition, assume for contradiction that there exists aw such thatW(w, ℓ), and
u <S w <S v. Let tv be the time thatv happens. Then, sinceΦ(v) = u, we knowu ∈ W(tv,T). Therefore,
by Theorem 15 we knoww∈ memOps(tv,T), w∈ aContent(tv,T)∪vContent(tv,T).

LetY = xLCAwv. Sincew∈ memOps(tv,T), we knowT ∈ ances(Y). Consider the two cases forw:

1. Supposew∈ aContent(tv,T). SinceT ∈ ances(Y), we knoww∈ cContent(tv,Y)∪aContent(tv,Y).

We can show by contradiction that we must havew ∈ aContent(tv,Y). If Y = T, then we already
know w ∈ aContent(tv,Y). Otherwise, assumeT ∈ pAnces(Y). If we hadw ∈ cContent(tv,Y), then
by Theorem 15, we must have(ℓ,y) ∈ W(tv,Y). This statement contradicts the fact thatOAT model found
(ℓ,u) from transactionT, since a closer transactionY hadℓ in its readset.

But then, sincew∈ aContent(tv,Y), we havewHv.

2. Supposew∈ vContent(tv,T):

Then, we knoww ∈ cContent(tv,Y)∪ vContent(tv,Y). As in the previous case, we can showw 6∈
cContent(tv,Y).

If w∈ vContent(tv,Y), then there exists some transactionZ∈ activeX(tv,Y)−{Y} such thatℓ∈ W(tv,Z).

Sincew∈ memOps(tv,Z), we can strengthen this condition toZ ∈ activeX(tv,LCA(w,v))−{LCA(w,v)}.
This statement leads to a contradiction, however, becausew∈ W(tv,Z) must conflict withv.

More formally, by statement Invariant 2 of Theorem 13, any new read operationv at timetv must satisfy
v∈ desc(low(writers(tv, ℓ))) (i.e.,v is a descendant of the base of the spine forℓ). At time tv, however,
we must havelow(writers(tv, ℓ)) ∈ desc(Z).

B. RULES FOR TYPE CHECKING

This appendix contains the type rules for theOAT type system. The grammar for the type system is shown
below.

P ::= de f n∗ e
de f n ::= class ocn〈 f ormal+〉 extends oc

where constr∗ { f ield∗ meth∗} |
class xcn〈 f ormal+〉 extends xc
where constr∗ {x f ield∗ meth∗}

c ::= oc | xc
oc ::= ocn〈owner+〉 | Object〈owner〉
xc ::= xcn〈owner+〉 | Xmodule〈owner〉

owner ::= world[i] | f ormal | this[i]
constr ::= (owner�owner) | (owner 6� owner) |

(owner= owner) | (owner 6= owner)
meth ::= t mn〈 f ormal∗〉(arg∗) where constr∗{e}
f ield ::= t f d

x f ield ::= c f d
arg ::= t x

t ::= c | int
f ormal ::= f

e ::= new c | x | x = e |
let (arg = e) in {e} |
x. f d | x. f d = y | x.mn〈owner∗〉(y∗)

ocn ∈ class names that are not subtype ofXmodule
xcn ∈ class names that are subtype ofXmodule
f d ∈ field names
mn ∈ method names
x,y ∈ variable names

f ∈ owner names
i, j ∈ type int literals

We define a number of predicates used in the type system. Thesepredicates are adapted from [2], but our
type system does not handle inner classes for now.

Predicate Meaning

WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice inP
FieldsOnce(P) No class contains two fields, decalred

or inherited with the same name
MethodsOnce(P) No class contains two methods with

the same name
OverridesOK(P) Overriding methods have the same

return type and parameter types as the
methods being overridden.

WorldInMainOnly(P) Only themain method uses the
world tag to initialize owner.

ThisInXcOnly(P) Only classes that are subtype of
Xmodule usethis tag to initialize owner.

Our typing judgment follows the form adapted from [2]:P; E ⊢ e : t, whereP is the program being
checked to provide information about class definitions;E is an environment providing type information for
the free variables ine; finally, t is the type ofe.

The typing environment is defined as

E ::= /0 | E, t x | E, owner f | E, constr

The typing environtment contains the the declared types of variables, the decalred owner parameters, the
declared constraints among owners, and certain inferred constraints, such asthis[i] = this[j] when they are
used in aXmodule class definition.

The typing system uses the following judgments.

Judgment Meaning

⊢ P : t programP yields typet
P⊢ de f n de f nis a well-formed class
P; E ⊢ constr constraintconstr is satisfied
P; E ⊢ (o1 = o2) o1 ando2 represent the same owner instance
P; E ⊢owner o o is an owner
P; E ⊢ w f typing environmentE is well-formed
P; E ⊢ t t is a well-formed type
P; E ⊢ t1 <: t2 t1 is a subtype oft2
P; E ⊢ t1 <:= t2 t2 is assignable tot1
P ⊢ x f ield∈ xc Xmodule classxc declares/inheritsx f ield
P ⊢ f ield ∈ oc non-Xmodule classocdeclares/inheritsf ield
P; E ⊢ f ield f ield is a well-formed field
P ⊢ meth∈ xc Xmodule classxc declares/inheritsmeth
P ⊢ meth∈ oc non-Xmodule classocdeclares/inheritsmeth
P; E ⊢ meth methis a well-formed method
P; E ⊢ e : t expressionehas typet

We present the type rules for these judgments in the following pages.

The type rules for these judgments are presented below:

⊢ P : t
[PROG]

WFClasses(P) ClassOnce(P) FieldsOnce(P) MethodsOnce(P) OverridesOK(P)
WorldInMainOnly(P) ThisInXcOnly(P) P = de f n1..n e P ⊢ de f ni P; /0 ⊢ e : t

⊢ P : t

P ⊢ de f n

[CLASS]

E = ocn〈 f1..n〉 this, owner f1..n, f1 � fi, constr∗

P; E ⊢ w f P; E ⊢ oc′ P; E ⊢ f ieldi P; E ⊢ methi
P ⊢ class ocn〈 f1..n〉 extends oc′ where constr∗ { f ield∗ meth∗}

[XMODULE CLASS]

E = xcn〈 f1..n〉 this, owner f1..n, f1 � fi, constr∗

P; E ⊢ w f P; E ⊢ xc′ P; E ⊢ f ieldi P; E ⊢ methi

P ⊢ class xcn〈 f1..n〉 extends xc′ where constr∗ {x f ield∗ meth∗}

P; E ⊢ constr

[CONSTR ENV] [� WORLD] [� OWNER] [� REFL] [� TRANS]

E = E1, constr, E2

P; E ⊢ constr

P; E ⊢owner o

P; E ⊢ (o� world)

P; E ⊢ e : xcn〈o1..n〉

P; E ⊢ (e�o1)

P; E ⊢ownero

P; E ⊢ (o�o)

P; E ⊢ (o1 �o2)
P; E ⊢ (o2 �o3)

P; E ⊢ (o1 �o3)

P; E ⊢ (o1 = o2)

[= OWNER] [= REFL] [= TRANS]

E = E1, xc this, E2

P; E ⊢ (this[i] = this[j])

P; E ⊢ownero

P; E ⊢ (o = o)

P; E ⊢ (o1 = o2)
P; E ⊢ (o2 = o3)

P; E ⊢ (o1 = o3)

P; E ⊢ownero

[OWNER WORLD] [OWNER FORMAL] [OWNER THIS]

P; E ⊢owner world

E = E1, owner f , E2

P; E ⊢owner f

E = E1, xc this, E2

P; E ⊢owner this[i]

P; E ⊢ w f

[ENV /0] [ENV X] [ENV OWNER]

P; /0 ⊢ w f

P; E ⊢ t
x 6 ∈ Dom(E)
P; E ⊢ w f

P; E, t x ⊢ w f

f 6 ∈ Dom(E)
P; E ⊢ w f

P; E, owner f ⊢ w f

[ENV CONSTR]

constr= (o�o′) ∨ (o 6� o′)∨ (o = o′)∨ (o 6=o′)
P; E ⊢ w f P; E ⊢owner o, o′ E′ = E, constr

6 ∃x,y (P; E′ ⊢ x�y) ∧ (P; E′ ⊢ x 6� y) 6 ∃x,y (P; E′ ⊢ x = y) ∧ (P; E′ ⊢ x 6= y)

P; E, constr ⊢ w f

P; E ⊢ t

[TYPE INT] [TYPE OBJECT] [TYPE OC]

P; E ⊢ int

P; E ⊢owner o

P; E ⊢ Object〈o〉

P ⊢ class ocn〈 f1..n〉 ... where constr∗ ...
P; E ⊢owner oi P; E ⊢ o1 �oi P; E ⊢ constr[o1/ f1]..[on/ fn]

P; E ⊢ ocn〈o1..n〉

[TYPE XMODULE] [TYPE XC]

P; E ⊢owner o

P; E ⊢ Xmodule〈o〉

P ⊢ class xcn〈 f1..n〉 ... where constr∗ ...
P; E ⊢owner oi P; E ⊢ o1 �oi P; E ⊢ constr[o1/ f1]..[on/ fn]

P; E ⊢ xcn〈o1..n〉

P; E ⊢ t1 <: t2

[SUBTYPE REFL] [SUBTYPE TRANS]

P; E ⊢ t

P; E ⊢ t <: t

P; E ⊢ t1 <: t2
P; E ⊢ t2 <: t3
P; E ⊢ t1 <: t3

[SUBTYPE XC] [SUBTYPE OC]

P; E ⊢ xcn〈o1..n〉
P ⊢ class xcn〈 f1..n〉 extends xcn′〈 f1 o∗〉 ...

P; E ⊢ xcn〈o1..n〉 <: xcn′〈 f1 o∗〉 [o1/ f1]..[on/ fn]

P; E ⊢ ocn〈o1..n〉
P ⊢ class ocn〈 f1..n〉 extends ocn′〈 f1 o∗〉 ...

P; E ⊢ ocn〈o1..n〉 <: ocn′〈 f1 o∗〉 [o1/ f1]..[on/ fn]

P; E ⊢ t1 <:= t2

[ASSIGNABILITY REFL] [ASSIGNABILITY TRANS]

P; E ⊢ t

P; E ⊢ t <:= t

P; E ⊢ t1 <:= t2
P; E ⊢ t2 <:= t3
P; E ⊢ t1 <:= t3

[ASSIGNABILITY FOR XC] [ASSIGNABILITY FOR OC]

P; E ⊢ xcn〈o1..n〉 P; E ⊢ xcn〈o′1..n〉

P; E ⊢ (oi = o′i)
i∈1..n P; E ⊢ (oi �o′i)

i∈1..n

P; E ⊢ xcn〈o1..n〉 <:= xcn〈o′1..n〉

P; E ⊢ ocn〈o1..n〉 P; E ⊢ ocn〈o′1..n〉

P; E ⊢ (oi = o′i)
i∈1..n P; E ⊢ (oi �o′i)

i∈1..n

P; E ⊢ ocn〈o1..n〉 <:= ocn〈o′1..n〉

P ⊢ x f ield ∈ xc

[XFIELD DECLARED] [XFIELD INHERITED]

P ⊢ class xcn〈 f1..n〉... {... x f ield ...}

P ⊢ x f ield ∈ xcn〈 f1..n〉

P ⊢ x f ield ∈ xcn〈 f1..n〉
P ⊢ class xcn′〈g1..m〉 extends xcn〈o1..n〉...

P ⊢ x f ield [o1/ f1]..[on/ fn] ∈ xcn′〈g1..m〉

P ⊢ f ield ∈ oc P; E ⊢ f ield

[FIELD DECLARED] [FIELD INHERITED] [FIELD]

P ⊢ class ocn〈 f1..n〉... {... f ield ...}

P ⊢ f ield ∈ ocn〈 f1..n〉

P ⊢ f ield ∈ ocn〈 f1..n〉
P ⊢ class ocn′〈g1..m〉 extends ocn〈o1..n〉...

P ⊢ f ield [o1/ f1]..[on/ fn] ∈ ocn′〈g1..m〉

P; E ⊢ t

P; E ⊢ t f d

P ⊢ meth∈ xc

[METHOD DECLARED IN XC] [METHOD INHERITED BY XC]

P ⊢ class xcn〈 f1..n〉... {... meth...}

P ⊢ meth∈ xcn〈 f1..n〉

P ⊢ meth∈ xcn〈 f1..n〉
P ⊢ class xcn′〈g1..m〉 extends xcn〈o1..n〉...

P ⊢ meth[o1/ f1]..[on/ fn] ∈ xcn′〈g1..m〉

P ⊢ meth∈ oc

[METHOD DECLARED IN OC] [METHOD INHERITED BY OC]

P ⊢ class ocn〈 f1..n〉... {... meth...}

P ⊢ meth∈ ocn〈 f1..n〉

P ⊢ meth∈ ocn〈 f1..n〉
P ⊢ class ocn′〈g1..m〉 extends ocn〈o1..n〉...

P ⊢ meth[o1/ f1]..[on/ fn] ∈ ocn′〈g1..m〉

P; E ⊢ meth P; E ⊢ e : t

[METHOD] [EXP SUB] [EXP NEW]

E′ = E, owner f1..n, constr∗, arg∗

P; E′ ⊢ w f P; E′ ⊢ e : t

P; E ⊢ t mn〈 f1..n〉(arg∗) where constr∗ {e}

P; E ⊢ e : t ′

P; E ⊢ t ′ <: t

P; E ⊢ e : t

P; E ⊢ c

P; E ⊢ new c : c

P; E ⊢ e : t

[EXP ASSIGNABILITY] [EXP LET] [EXP VAR] [EXP VAR ASSIGN]

P; E ⊢ e : t ′

P; E ⊢ t ′ <:= t

P; E ⊢ e : t

arg = t x P; E ⊢ e : t
P; E, arg ⊢ e′ : t ′

P; E ⊢ let (arg = e) in {e′} : t ′
E = E1, t x, E2

P; E ⊢ x : t

P; E ⊢ x : t
P; E ⊢ e : t

P; E ⊢ x = e : t

[EXP REF] [EXP REF ASSIGN]

P; E ⊢ x : cn〈o1..n〉
P ⊢ (t f d) ∈ cn〈 f1..n〉

P; E ⊢ x. f d : t [o1/ f1]..[on/ fn]

P; E ⊢ x : cn〈o1..n〉 P ⊢ (t f d) ∈ cn〈 f1..n〉
P; E ⊢ y : t [o1/ f1]..[on/ fn]

P; E ⊢ x. f d = y : t [o1/ f1]..[on/ fn]

[EXP INVOKE]

P ⊢ (t mn〈 f(n+1)..m〉(t j y j
j∈1..k) where constr∗ ...) ∈ cn〈 f1..n〉

P; E ⊢ x : cn〈o1..n〉 P; E ⊢ x j : t j [o1/ f1]..[om/ fm]
P; E ⊢ o1 � oi P; E ⊢ constr[o1/ f1]..[om/ fm]

P; E ⊢ x.mn〈o(n+1)..m〉(x1..k) : t [o1/ f1]..[om/ fm]

