
Multi-View Architecture Description and
Enforcement

Amanda Liu
Columbia University

New York, NY
al3623@columbia.edu

ABSTRACT
In software development, implementation strays from the
intended architecture in what is known as architectural
drift as programmers introduce communication pathways
between components that shouldn’t be interacting. In our
approach, we have embedded an architecture description
language (ADL) into a programming language that restricts
resource access with capabilities and generates connections
via metaprogramming. Not only does this ensure that the sys-
tem semantics reflect its architectural principles, but this also
facilitates editing compatible with rapid software evolution.

CCS CONCEPTS
• Software and its engineering → Software organiza-
tion and properties; Software system structures;

KEYWORDS
Software architecture, architecture description language
ACM Reference Format:
Amanda Liu. 2018. Multi-View Architecture Description and En-
forcement. In Proceedings of 2018 ACM SIGPLAN International Con-
ference on Systems, Programming, Languages, and Applications: Soft-
ware for Humanity (Splash Companion ’18). ACM, New York, NY,
USA, Article 4, 3 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Software architecture allows programmers to reason about
systems and create coherent designs consistent with project
demands [3]. Complex architectures are often described with
multiple views. Common architectural views include a mod-
ule view of relationships between units of functionality, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Splash Companion ’18, November 2018, Boston, Massachusetts
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Figure 1: A simple client-server network architecture.

component-and-connector (CnC) view of runtime entities
and interactions, and a deployment view of component con-
figurations and allocations [2]. The separation of concerns
afforded by views can also ease software evolution. In to-
day’s languages, an architectural change entails modifying
multiple files. However, integrating architecture and seman-
tics could localize such changes and streamline software
evolution.

As software evolves, it is common for programmers to vi-
olate the intended architecture by introducing unintentional
interactions between components. These dependencies are
generally created when programmers can make arbitrary
connections between components and access libraries which
provide unrestricted use of system resources. Take, for in-
stance, a three-tier system; it is not uncommon for program-
mers to make direct connections between the client and
database, bypassing the server. After several iterations of
such changes, the architectural drift results in software that
bears little to no relation to the conceived architecture [11].
In this work, we propose an architecture description lan-

guage (ADL) that prevents structural violations of the in-
tended architecture by incorporating the architectural speci-
fication into the software implementation.

2 APPROACH
We implemented this ADL in the context of the Wyvern
programming language. Wyvern was designed to enable
programmers to express and enforce design constraints [10,
12]. In the CnC view of our ADL, systems are described
using standard architectural notions such as components,
connectors, ports, etc [2]. Consider the client-server system
whose architecture is shown in Figure 1. This system would
be described as follows in our ADL:

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Splash Companion ’18, November 2018, Boston, Massachusetts Amanda Liu

1 component Client

2 port getInfo: requires CSIface

3 component Server

4 port sendInfo: provides CSIface

5 connector JSONWebCtr

6 val host: String

7 val prt: Int

8 architecture ClientServer

9 components

10 Client client

11 Server server

12 connectors

13 JSONWebCtr jsonCtr

14 attachments

15 connect client.getInfo and server.sendInfo with jsonCtr

To implement a system using our ADL, programmers must
supply implementations of the components by providing a
corresponding module definition for each component type.
The component ports reflect the dependencies of themodules.
Since the Client component declares a getInfo port that
requires the CSIface interface, the Client module takes
in a corresponding argument. Likewise, since the Server
component sendInfo port provides the CSIface interface,
the Server module exposes a CSIface field.
1 module def Client(getInfo: CSIface): TCPClient

2 def start (): Unit

3 getInfo.getVal("key")

1 module def Server (): TCPServer

2 val database = hashmap.make()

3 val sendInfo: CSIface = new

4 def getVal(key: String): String

5 database.get(key)

To prevent unintended component interactions, our system
does not leave the creation of connections up to the pro-
grammer. Instead, they are assembled at runtime with their
implementations derived from the architecture. This is done
via metaprogramming, wherein Wyvern types can contain
metadata declaring methods that are run at compile time.
Our ADL uses methods in the connector type’s metadata to
create component connections at compile time.
1 type JSONWebCtr

2 val host: String

3 val prt: String

4 metadata new

5 // methods for generating connector implementation

The modules generated to make connections must be given
the capabilities to do so. Due to non-transitive authority in
Wyvern, these capabilities are inaccessible to the components
[8]. The client-server ports must be given network capability.
The generated client port restricts network access to a socket
connection to a specific host and port. The generated server
port only listens for connections on the specified port.
1 module def reqPort(prop: JSONWebCtr , net: Network): CSIface

2 def getVal(key: String): String

3 val conn = net.connect(

4 prop.host , prop.prt)

5 // invoke getVal of Server

1 module def provPort(prt: CSIface , net: Network)

2 def run(): Unit

3 // accept incoming connections

Since our approach groups relevant concerns into multiple
architectural views, it is easier to make certain modifications.
For example, if a connector is changed, only the CnC view
must be modified. No change has to be made to the imple-
mentation since the connections are generated based on the
architecture description. Take for instance changing a client-
server connection using a JSON protocol to one using a
Simple Object Access Protocol (SOAP). This would normally
involve changes across multiple files. Furthermore, it is diffi-
cult to ensure that all relevant changes were addressed. The
same modification in our systemwould be limited to changes
in the CnC view alone. Thus, by automatically handling
connector creation, we definitively construct component in-
teractions in terms of the ADL specification and preserve
architectural integrity across system modifications.

3 RELATEDWORK
Many existing formal ADLs have sufficient complexity to
describe software systems and their structural constraints
but lack an integrated method of enforcing these properties
[4–7]. A few ADLs such as ArchJava can check and enforce
architecture in implementation but do not address commu-
nication through the runtime system [1]. Techniques such
as reflexion models support conformance checking between
the static architecture and the implementation [9]. However,
reflexion models require the programmer to map elements
of a high-level model to the source code. This process can
be tedious and error-prone, especially for large systems.

4 CONCLUSION
Consistency between software semantics and architecture is
important in software development—not only for protection
against hazardous dependencies and structural vulnerabili-
ties, but also for traceability in large systems. We can protect
against the introduction of component interactions that vio-
late the architectural specification by constructing a system
that derives its connector implementation from the archi-
tecture in a capability-safe language. Moreover, our use of
multiple architectural views allows high-level changes to be
made to software in a simple, concise way. Our implementa-
tion of a multi-view ADL incorporating the capability safety
of Wyvern and its application on a client-server network sys-
tem demonstrates its potential for the development of larger,
complex software systems that are architecturally sound.

ACKNOWLEDGMENTS
This project was supervised by Jonathan Aldrich and Selva
Samuel at Carnegie Mellon University. It was supported by
a National Science Foundation REU grant.

Multi-View Architecture Description and Enforcement Splash Companion ’18, November 2018, Boston, Massachusetts

REFERENCES
[1] Jonathan Aldrich, Craig Chambers, and David Notkin. 2009. ArchJava:

Connecting Software Architecture to Implementation. International
Conference of Software Engineering (2009).

[2] Paul Clements, Felix Bachmann, Lenn Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. 2011. Doc-
umenting Software Architectures: Views and Beyond (2nd ed.). Addison-
Wesley Professional.

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. 2002. A Practical Method
for Documenting Software Architectures. (2002).

[4] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lonn, Yiannis
Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat,
Ramin Tavakoli Kolagari, Martin Torngren, and Matthis Weber. 2007.
The EAST-ADL Architecture Description Language for Automotive Em-
bedded Software.

[5] Peter H. Feiler and Bruce A. Lewis. 2006. The SAE Architecture Analy-
sis &Design Language (AADL) a standard for engineering performance
critical systems. 2006 IEEE Conference on Computer Aided Control Sys-
tem Design (2006).

[6] Marc M. Lankhorst, Henderik Alex Proper, and Henk Jonkers. 2010.
The Anatomy of the ArchMate Language. International Journal of
Information System Modeling and Design (2010).

[7] David C. Luckham. 1996. Rapide: A Language and Toolset for Simula-
tion of Distributed Systems by Partial Orderings of Events. (1996).

[8] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich.
2017. A Capability-Based Module System for Authority Control. 31st
European Conference on Object-Oriented Programming (ECOOP 2017)
(2017).

[9] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. 2001. Software Re-
flexion Models: Bridging the Gap between Design and Implementation.
IEEE Transactions on Software Engineering 27, 4 (2001).

[10] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex
Potanin, and Jonathan Aldrich. 2013. Wyvern: A Simple, Typed, and
Pure Object-Oriented Language. Proceedings of the 5th Workshop on
MechAnisms for SPEcialization, Generalization and inHerItance (2013).

[11] Lakshitha de Silva and Dharini Balasubramaniam. 2011. Controlling
software architecture erosion: A survey. The Journal of Systems and
Software (2011).

[12] Esther Wang and Jonathan Aldrich. 2016. Capability Safe Reflection
for the Wyvern Language. ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for
Humanity (2016).

	Abstract
	1 Introduction
	2 Approach
	3 Related Work
	4 Conclusion
	Acknowledgments
	References

