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Abstract. We present a two-step process including white matter atlas
generation and automatic segmentation. Our atlas generation method is
based on population fiber clustering. We produce an atlas which con-
tains high-dimensional descriptors of fiber bundles as well as anatomical
label information. We use the atlas to automatically segment tractogra-
phy in the white matter of novel subjects and we present quantitative
results (FA measurements) in segmented white matter regions from a
small population. We demonstrate reproducibility of these measurements
across scans. In addition, we introduce the idea of using clustering for
automatic matching of anatomical structures across hemispheres.

1 Introduction

The use of diffusion MRI tractography [1] to select regions of interest (ROIs)
in cerebral white matter has recently become a popular technique. The regions
of interest, thought to correspond to particular anatomical white matter tracts,
have been employed in quantitative analysis of scalar measures derived from the
diffusion tensor, such as anisotropy values or mean diffusivities [2,3,4]. Ideally,
in order to perform neuroscientific studies using white matter regions of interest,
these regions should be automatically identified, correspond across subjects, and
have anatomical labels. Our work addresses these three goals.

Related work on tractography segmentation includes multiple methods for
calculation of tract-specific regions. One class of methods uses trajectories gen-
erated via tractography and groups them into regions either interactively or au-
tomatically. Manual interactive grouping of trajectories using multiple selection
regions of interest (also known as “virtual dissection” [5]) has been performed
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to create a fiber tract atlas [6] and in several clinical studies [2,3,4]. In fact,
Partridge et al. found tractography-based definitions of a pyramidal tract ROI
to be more reproducible than manual ROI drawing [4]. Automated trajectory
grouping using clustering algorithms has been proposed by Brun et al. [7], Gerig
et al. [8], O’Donnell et al. [9], and Corouge et al. [10]. Automated trajectory
grouping via atlas-based labeling of tractography was described by Maddah et
al. [11] who manually created a tractography atlas and gave a method for trans-
ferring its labels to a novel subject. A second class of methods for generation of
tract-specific ROIs (including approaches by Behrens et al. [12] and Parker et
al. [13]) defines regions based on probabilistic connectivity measures.

We present a two-step method which automatically finds white matter struc-
tures present in a group of tractography datasets (atlas generation), and has a
natural extension to find those structures in new datasets (automatic segmenta-
tion). The information that allows labeling of a new dataset is a high-dimensional
representation of white matter structure that we call an atlas. However, it dif-
fers from traditional digital (voxel-based) atlases because it represents long-range
connections from tractography rather than local voxel-scale information.

2 Methods

2.1 Population Data

Diffusion tensor MRI (single-shot spin echo EPI diffusion-weighted images, from
a 1.5 T Philips scanner with SENSE parallel imaging, acquired along 30 non-
collinear gradient directions (b = 700s/mm2), with five non-diffusion-weighted
T2 images, 2.5 x 2.5mm x 2.5mm voxels, and 50-60 slices per subject covering the
entire hemispheres and the cerebellum) was analyzed for 15 subjects. Tractog-
raphy was performed in each subject using Runge-Kutta order two integration,
with the following parameters: seeding threshold of cL 0.25, stopping threshold
of cL 0.15, step size 0.5mm, and minimum total length 25mm. The quantity cL is
defined as λ1−λ2√

λ2
1+λ2

2+λ2
3

, where λ1, λ2, and λ3 are the eigenvalues of the diffusion

tensor sorted in descending order [14]. Group registration of subject FA (frac-
tional anisotropy [15]) images was performed using the congealing algorithm [16]
to calculate rotation, translation, and scaling (no shear terms). This registration
was then applied to the trajectories generated via tractography.

2.2 Step One: Atlas Generation

To find common white matter structures in the population, we used our frame-
work [9] for simultaneous clustering and matching of bundles across subjects. To
complete the atlas, each cluster was given an expert anatomical label.

Similarity of Fiber Trajectories. Tractography clustering methods assume
that trajectories that begin near each other, follow similar paths, and end near
each other should belong to the same anatomical structure. Various affinity mea-
sures have been proposed in the literature to quantify this assumption [17,7,8,10].
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In this study we employed the mean closest point distance [10,18] which is de-
fined as the average distance from each point on one trajectory to the nearest
point on another trajectory. We symmetrized this distance by taking the min-
imum of the two possible distances. Each distance (dij) was converted to an
affinity (aij) via a Gaussian kernel, aij = e−d2

ij/σ2, with σ of 30mm. The clus-
tering and automatic segmentation is insensitive to small registration errors or
anatomical differences due to the capture range of the similarity measure.

Similarity Across Hemispheres. To facilitate visual and quantitative com-
parison of anatomical structures which are present bilaterally, it is useful for the
clusters (and their colors for visualization based on spectral embedding coor-
dinates [17]) to correspond across hemispheres. To accomplish this goal, before
computing the similarity metric we reflected one side of each brain across the
midsagittal plane, such that trajectories with similar shapes and locations in
either hemisphere would cluster together, automatically giving anatomical cor-
respondences. (We defined the midsagittal plane as the midsagittal plane of the
average group registered FA image.) This method gave better separation of some
anatomical structures, for example the inferior parts of the cingulum from the
inferior parts of the fornix. The improvement in clustering is due to the fact
that reflecting across the midsagittal plane effectively doubles the number of
prototype brain examples we have as input. Our atlas creation method is not
dependent upon this reflection approach, however the bilateral matching is a
useful additional property which we can obtain. We note that the success of the
reflection approach would decrease in subjects with midline shift.

Clustering Algorithm. As in [9], to find common anatomical structures in
the population using the calculated affinities, we performed Normalized Cuts
spectral clustering [19,20], a method whose application to tractography was first
proposed by Brun et al. [7]. Spectral clustering methods employ eigenvectors of
an affinity matrix to group data. We used the Nystrom method [20] to extend
the eigenvector solution from a random subproblem (the normalized affinity
matrix from a random sample of trajectories) to estimate a solution to the larger
problem (eigenvectors for the whole population). The Nystrom method was used
to estimate the leading eigenvectors of the normalized population affinity matrix

D− 1
2 WD− 1

2 (1)

where the symmetric matrix W contained affinities from all pairs of trajectories,
and D was a diagonal matrix containing the row sums of W. To estimate these
eigenvectors, first a random sample of trajectories was compared to all other tra-
jectories to generate a partial population affinity matrix with parts A (the square
affinity matrix from the random subproblem) and B (the affinities between the
random sample and all other trajectories). See Figure 1. The normalization of
the A and B matrices by D was then estimated as [20]:

d̂ =
[

ar + br

bc + BTA−1br

]
(2)
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Fig. 1. Diagram of the parts of the affinity (tract similarity) matrix. A and B are
used in atlas construction and S contains affinities for embedding a new subject.

where ar and br are column vectors containing the row sums of A and B, and bc

is the column sum of B. The eigenvectors U and diagonal eigenvalue matrix Λ of
the normalized matrix A were calculated, and finally the population eigenvectors
Ū were estimated via projection of normalized affinity values in B onto the
eigenvector basis from A. Ū was estimated via the following formula [20].

Ū =
[

U
BTUΛ−1

]
. (3)

Spectral embedding vectors were then calculated for each trajectory as Ej =
1√
Djj

(Ūj,2, Ūj,3, ..., Ūj,n). This generated a coordinate system, the spectral em-

bedding space, where each trajectory was represented as a point, and similar
trajectories were embedded near each other. K-means clustering was then per-
formed on these embedding vectors, giving k clusters.

Using Expert Knowledge to Label Atlas Clusters. This step introduced
high-level anatomical knowledge to label the common white matter structures
discovered by the clustering step. The k clusters corresponded across subjects,
in the sense that cluster number i represented approximately the same region
for each. So providing higher-level anatomical information was reduced to the
problem of defining k labels. We interactively labeled one subject, transferred
the labels to the next, and worked through each atlas subject in this manner,
ensuring that at the end all clusters had a high-level anatomical description.
Due to the fact that tractography may cross from one anatomical structure to
another, these anatomical labels represented the best approximate description
of the regions discovered in atlas creation.

Atlas Contents. The atlas consisted of a set of cluster centroids in the embed-
ding space, plus information for mapping new trajectories into this space. The
necessary information was the random sample of input trajectories used in the
affinity calculations, plus (as formulas 2 and 3 show) the basis vectors in UΛ−1,
the matrix A−1br for estimating the row sums, and the row (also column) sum
ar + br. In addition the atlas contained per-cluster anatomical labels.
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2.3 Step Two: Automatic Segmentation

By embedding new trajectories as points in the atlas embedding space, we were
able to automatically segment tractography from novel subjects. First, affinity
values were calculated by comparing the new subject’s trajectories to the ran-
dom sample of trajectories which was saved as part of the atlas. As shown in
Figure 1, this generated a new partial affinity matrix S, which then needed to
be normalized using row and column sums as in (2). To keep the scaling of the
old and new embedding vectors consistent, we estimated the row sum as

d̂row =
[
sc + STA−1br

]
(4)

where sc is the column sum of S. Then we employed the column sum from the
original matrix.

d̂col =
[
ar + br

]
(5)

Performing the scaling in this way made sense for two reasons. First, if we were
to re-embed a trajectory that we had already seen (whose information was in A
or B) it would be mapped to the same location in the embedding space. Second,
we would expect that each individual new trajectory would not significantly
change the column sum d̂col of the (entire W) matrix, due to the fact that
30,000 trajectories were used in creation of the original atlas affinity matrices.
Thus the scaling applied to a novel trajectory was basically the same as that
which would have been applied if it were part of the original clustering problem.

After normalization of the S matrix, the embedding vectors were calculated
as in (3) for the B matrix. This step successfully embedded new trajectories as
points in the clustered and labeled atlas embedding space. To create the auto-
matic tractography segmentation, each new subject’s trajectories were labeled
according to the nearest cluster centroid.

2.4 Parameters in Atlas Creation and Labeling

To form the atlas, we used tractography from subjects 1 through 10 (of 15) for
the clustering and anatomical labeling. 3,000 trajectories were randomly selected
from each subject as input to the clustering, giving 30,000 total trajectories to
cluster. The size of the random sample used to create the A matrix was 2,500
and k = 200 clusters were generated. Finally, we labeled 10,000 trajectories from
each of the 15 subjects using the atlas. These 10,000 trajectories were then used
for measurement of FA and for creation of the images in this paper.

2.5 Region-Based Measurements

Any scalar invariant (cL, FA, mode, trace, eigenvalues, etc.) or the tensors
themselves can be measured in the white matter ROIs (individual clusters or
anatomically-labeled regions) defined by the atlas. To illustrate the method
we calculated the FA using tensors sampled at each point on the trajecto-
ries. Another possibility would be to label voxels according to the clusters (or
fraction thereof) they contain, and to use the original tensors directly for FA
calculation.
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3 Results

3.1 Automatic Segmentation of Novel Subjects

Five novel subjects (11-15) were labeled using the atlas, and Figure 2 shows trac-
tography from three of these subjects. Note that the labeling is consistent across
subjects, and that major anatomical structures such as the corpus callosum,
arcuate fasciculus, uncinate fasciculus, etc. are found in each subject.

S11 S11 (repeat scan) S12 S13

Fig. 2. Result of automatic segmentation of novel subjects (11-13). Selected regions
are shown as follows: navy blue, corpus callosum; yellow, corticospinal fibers; purple,
arcuate fasciculus/SLF region; orange, uncinate fasciculus; green, inferior longitudinal
fasciculus; sky blue, middle cerebellar peduncle; light pink, superior cerebellar pedun-
cle; hot pink, inferior occipitofrontal fasciculus.

3.2 Measurement of Scalar Invariants in the Population

Figure 3 shows the mean FA measured in selected anatomical regions in all sub-
jects. The FA was measured bilaterally (both hemispheres together). The mean
FA is relatively similar across subjects (in each structure) yet differs across struc-
tures, as would be expected from anatomically consistent group measurements.
We have plotted using bar graphs in order to show the pattern across subjects
where some were found to have consistently high or low FA relative to other
subjects, as seen clearest in the corpus callosum and corona radiatae graphs.

3.3 Reproducibility Experiment

Using the atlas, we automatically segmented tractography and then measured
FA in two subjects (10 and 11) who had each been scanned three times. Au-
tomatically segmented trajectories from two scans of subject 11 were shown in
Figure 2. The quantitative measurements of FA demonstrate reproducibility and
are shown in Figure 4.
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Fig. 3. Mean FA in three regions for 15 subjects. (The “corona radiatae” region
includes trajectories in the cerebral peduncles, internal capsules, and corona radiatae.)
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Fig. 4. Mean FA measurements from three repeat scans of two subjects (10 and 11).
Abbreviations are: CC, corpus callosum; CR, corona radiatae (plus cerebral pedun-
cles and internal capsules); UF, uncinate fasciculi; AF, arcuate fasciculi; OT, inferior
longitudinal (occipitotemporal) fasciculi; and CB, cingulum bundles. The arcuate mea-
surements were made in one bilateral cluster containing the traditional C-shaped fibers.

4 Discussion and Conclusion

An important point when labeling tractography with anatomical names is that
the correspondence between tractography and anatomical regions is not al-
ways perfect, for instance one trajectory may traverse part of the arcuate fas-
ciculus and part of the external capsule. An advantage of the clustering ap-
proach is that common such trajectories will form clusters, and can be labeled
as a mix of structures. However, detection of uncommon trajectories merits
investigation.

We have introduced a method for high-dimensional white matter atlas cre-
ation and automatic tractography segmentation which is robust to small errors
in registration and can be used to find automatic region correspondences across
hemispheres. In addition, we have shown that the tract-specific regions of in-
terest obtained via automatic segmentation can be used to measure FA with
consistency across subjects and reproducibility across scans of a single subject.
Our technique enables quantitative neuroscience studies of the white matter in
populations.



250 L. O’Donnell and C.-F. Westin

References

1. Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractog-
raphy using DT–MRI data. Magnetic Resonance in Medicine 44 (2000) 625–632

2. Concha, L., Beaulieu, C., Gross, D.W.: Bilateral limbic diffusion abnormalities in
unilateral temporal lobe epilepsy. Annals of Neurology 57(2) (2004) 188 – 196

3. Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J., Shergill, S.S., O’Sullivan,
M., Golesworthy, P., McGuire, P., Horsfield, M.A., Simmons, A., Williams, S.C.,
Howard, R.J.: Age effects on diffusion tensor magnetic resonance imaging trac-
tography measures of frontal cortex connections in schizophrenia. Human Brain
Mapping (2005)

4. Partridge, S.C., Mukherjee, P., Berman, J.I., Henry, R.G., Miller, S.P., Lu, Y.,
Glenn, O.A., Ferriero, D.M., Barkovich, A.J., Vigneron, D.B.: Tractography-
based quantitation of diffusion tensor imaging parameters in white matter tracts
of preterm newborns. Magnetic Resonance in Medicine 22(4) (2005) 467–474

5. Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive
dissection of white matter fasciculi in the human brain. NeuroImage 17 (2002)
77–9

6. Mori, S., Wakana, S., Nagae-Poetscher, L.M., van Zijl, P.C.: MRI Atlas of Human
White Matter. Elsevier (2005)

7. Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering fiber
traces using normalized cuts. In: MICCAI. (2004) 368–375

8. Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract
modeling. In: EMBS. (2004) 426

9. O’Donnell, L., Westin, C.F.: White matter tract clustering and correspondence in
populations. In: MICCAI. (2005)

10. Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber
bundles using diffusion tensor MRI. In: ISBI. (2004) 344–347

11. Maddah, M., Mewes, A., Haker, S., Grimson, W.E.L., Warfield, S.: Automated
atlas-based clustering of white matter fiber tracts from DTMRI. In: MICCAI.
(2005) 188 – 195

12. Behrens, T., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C.,
Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., Thompson, A.,
Brady, J., Matthews, P.: Non-invasive mapping of connections between human
thalamus and cortex using diffusion imaging. Nature Neuroscience 6 (2003) 750–
757

13. Parker, G.J., Wheeler-Kingshott, C.A., Barker, G.J.: Estimating distributed
anatomical connectivity using fast marching methods and diffusion tensor imaging.
IEEE TMI 21(5) (2002) 505–512

14. Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing
and visualization of diffusion tensor MRI. Medical Image Analysis 6(2) (2002) 93–
108

15. Basser, P., Pierpaoli, C.: Microstructural and physiological features of tissues elu-
cidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111 (1996)
209–219

16. Zollei, L., Learned-Miller, E., Grimson, W.E.L., Wells III, W.M.: Efficient popu-
lation registration of 3D data. In: ICCV 2005, Computer Vision for Biomedical
Image Applications. (2005)

17. Brun, A., Park, H.J., Knutsson, H., Westin, C.F.: Coloring of DT-MRI fiber traces
using Laplacian eigenmaps. In: EUROCAST. (2003) 564–572



High-Dimensional White Matter Atlas Generation and Group Analysis 251

18. Wang, X., Tieu, K., Grimson, E.: Learning semantic scene models by trajectory
analysis. Technical report, MIT CSAIL (2006)

19. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8) (2000)
888–905

20. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nys-
trom method. PAMI 26(2) (2004) 214–225


	Introduction
	Methods
	Population Data
	Step One: Atlas Generation
	Step Two: Automatic Segmentation
	Parameters in Atlas Creation and Labeling
	Region-Based Measurements

	Results
	Automatic Segmentation of Novel Subjects
	Measurement of Scalar Invariants in the Population
	Reproducibility Experiment

	Discussion and Conclusion

