
New Approaches to Estimation of White Matter
Connectivity in Diffusion Tensor MRI: Elliptic
PDEs and Geodesics in a Tensor-Warped Space

Lauren O’Donnell1, Steven Haker2, and Carl-Fredrik Westin1,2

1 MIT AI Laboratory, Cambridge MA 02139, USA
odonnell@ai.mit.edu

2 Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard
Medical School, Boston MA, USA
{haker,westin}@bwh.harvard.edu

Abstract. We investigate new approaches to quantifying the white mat-
ter connectivity in the brain using Diffusion Tensor Magnetic Reso-
nance Imaging data. Our first approach finds a steady-state concentra-
tion/heat distribution using the three-dimensional tensor field as diffu-
sion/conductivity tensors. Our second approach casts the problem in a
Riemannian framework, deriving from each tensor a local warping of
space, and finding geodesic paths in the space. Both approaches use the
information from the whole tensor, and can provide numerical measures
of connectivity.

1 Background

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) measures the self-
diffusion of water in biological tissue. The utility of this method stems from the
fact that tissue structure locally affects the Brownian motion of water molecules.
Consequently, a coherent organization of tissue (over scales comparable to that
of a voxel) will be reflected in the DT-MRI diffusion measurements.

Neural fiber tracts contain parallel axons whose membranes restrict diffusion,
so the self-diffusion of water is most probable along the tracts. Thus in DT-MRI
imagery of the brain, the local structure of the diffusion tensor can be treated
as an approximation to the local neural fiber structure. The diffusion tensor is
a low-pass, Gaussian approximation to the actual microscopic structure of the
neuroanatomy, but it provides a fast and non-invasive anatomical measurement.

In DT-MRI, the diffusion tensor field is calculated from a set of diffusion-
weighted images by solving the Stejskal-Tanner equation (eq. 1). This equation
describes how the signal intensity at each voxel decreases in the presence of
diffusion:

Sk = S0e−bĝT
k Dĝk . (1)

Here S0 is the non-diffusion-weighted image intensity at the voxel and Sk

is the intensity measured after the application of the kth diffusion-sensitizing
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gradient. ĝk is a unit vector representing the direction of this diffusion-sensitizing
gradient, and D is the diffusion tensor, so the product ĝT

k Dĝk represents the
diffusivity in direction ĝk. In addition, b is LeBihan’s factor describing the pulse
sequence, gradient strength, and physical constants [1].

There is a physical interpretation of the diffusion tensor, D, which is closely
tied to the standard ellipsoid tensor visualization scheme. The eigensystem of the
diffusion tensor describes an ellipsoidal isoprobability surface, where the axes of
the ellipsoid have lengths given by the square root of the tensor’s eigenvalues. A
proton which is initially located at the origin of the voxel has equal probability
of diffusing to all points on the ellipsoid.

Initial work on DT-MRI connectivity focused on tractography [8,2,1], or the
interpolation of paths through the principal eigenvector field. An extension of
this method evolved a surface through the field using a discretized fast marching
method, where the speed function was dependent on the principal eigenvector
field [7]. Another approach iteratively simulated diffusion in a 2D tensor volume,
and quantified connection strengths based on a probabilistic interpretation of the
arrival time of the diffusion front [3]. The tractography approach has also been
extended to much higher angular resolution diffusion data, and connectivity has
been estimated using the most probable path between points [10].

Our first approach finds a steady-state concentration/heat distribution using
the three-dimensional tensor field as diffusion/conductivity tensors. The steady-
state flow along any path reflects connectivity. Our second approach casts the
problem in a Riemannian framework, deriving from each tensor a local warping
of space, and finding geodesic paths in the space. In this method, path lengths
are related to connectivity. Both approaches use the information from the whole
tensor, and can provide numerical measures of connectivity.

2 Diffusion Theory

Fick’s first law relates a concentration difference to a flux (a flow across a unit
area). It states that the flux, j, in any direction is proportional to the concen-
tration gradient, ∇u, in the opposite direction. The proportionality constant d
is the diffusivity in the direction of interest.

j = −d∇u. (2)

For an anisotropic material, the flow field does not follow the concentration
gradient directly, since the material properties also affect diffusion. Consequently,
the diffusion tensor, D, is introduced to model the material locally.

j = −D∇u. (3)

The standard model of diffusion says that over time, the concentration of the
solute will change as the divergence of the flux:

ut = ∇ · (D∇u). (4)
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This is due to conservation of mass. Intuitively it means that, for example,
fluid flow outward from a point (divergence) should decrease the concentration
at that point while increasing the concentration at neighboring points. In the
steady state, the concentration does not change; consequently the steady-state
flux vector field is divergence-free.

3 PDE-Based Connectivity

Previous work has employed an iterative technique to create time-of-arrival maps
of a heat diffusion front [3]. Instead, we solve directly for the steady state con-
centration, u, which can also be thought of as a heat distribution in the tensor
field:

∇ · (D∇u) = 0. (5)

We use this information to create the flux vector field, j = −D∇u, which de-
scribes the steady-state heat flow in the tensor volume (eq. 3). Paths in this
divergence-free vector field can be compared using a connection strength metric
that approximates the total flow along the path:∫

P

|jT t| ds (6)

where j is the flux along the path, and t is the unit tangent to the path. Nor-
malization for the length of the path may also be included in the metric. To
obtain an overall connection strength measure between two points, the value of
the maximum flow path can be taken.

Of great interest in this method are the boundary conditions, or the locations
of sources and sinks in the tensor field. One possibility is to set a region or regions
of interest as the source, and simulate a sink at infinity. Another useful possibility
is to choose one region of interest as the source, and another as the sink. In the
experiments discussed in this paper, we have simulated a sink at one point of
interest, and a source at another, in order to estimate the flow between the
regions.

3.1 Experiments

DT-MRI Data Acquisition. DT-MRI scans of normal subjects were acquired
using Line Scan Diffusion Imaging [6] on a 1.5 Tesla GE Echospeed system. The
following scan parameters were used: rectangular 22 cm FOV (256x128 image
matrix, 0.86 mm by 1.72 mm in-plane pixel size); slice thickness = 4 mm; inter-
slice distance = 1 mm; receiver bandwidth = +/-6 kHz; TE = 70 ms; TR =
80 ms (effective TR = 2500 ms); scan time = 60 seconds/section. 20 axial slices
were acquired, covering the entire brain. This protocol provides diffusion data
in 6 gradient directions as well as the corresponding T2-weighted image. All
gradients and T2-weighted images are acquired simultaneously, and thus do not
need any rigid registration prior to the tensor reconstruction process. Tensors
are reconstructed as described in [12] and eigenvalues are computed.
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Tensor Preprocessing. We are interested in measuring connectivity in the
white matter, and consequently, to de-emphasize other regions, we multiply the
tensors by a soft mask. This is necessary to decrease the effect of the ventricles,
where neural fiber tracts are nonexistent but water diffusion is relatively unre-
stricted and has large magnitude. We calculate the weights in the mask as the
linear shape measure at each voxel, which lies in the range of zero to one [11,12]

cl =
λ1 − λ2

λ1
. (7)

In addition, we remove negative eigenvalues to ensure that each tensor is a pos-
itive definite matrix. We set a small positive lower bound for the eigenvalues to
guarantee that the tensors are invertible, which is necessary when utilizing them
as local metric descriptors as described below. Setting the negative eigenvalues
to zero would give the closest positive semi-definite tensor in the least-squares
sense, but would not ensure invertibility.

Concentration/Heat Flow between Regions. In this experiment we solve
for the steady-state concentration/heat distribution in the tensor field, with
boundary conditions of one source and one sink. The maximal flow is found as
expected along the strong anatomical path between the source and sink, the
corpus callosum. Figure 1 displays the steady-state concentration and flow.

Fig. 1. Results of solving equation 5 for the steady-state heat distribution. The tem-
perature (left) and the steady-state flow magnitude (center) demonstrate the flow from
the source to the sink. In the temperature image the source is bright and the sink is
dark; in the center flow image, dark means high flow magnitude. The grayscale image
on the right, a non-diffusion-weighted image, shows the corresponding anatomy.

4 A Riemannian Metric Space

A natural interpretation of the “degree of connectivity” between two points is the
distance between the points in some metric space. For our purposes, the distance
between two anatomical locations should depend on the diffusion tensor field.
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The diffusion operator (eq. 4) can naturally be associated with a Riemannian
metric tensor G via the relation G = D−1, allowing us to compute geometric
quantities such as geodesic paths and distances between points in the brain. The
relation between the diffusion and metric tensors is intuitive: large eigenvalues in
the original DT-MRI tensor become small when the tensor is inverted to create
the metric tensor. Consequently, large eigenvalues in the original tensor imply
short metric distances along the direction of the corresponding eigenvector.

We will limit ourselves here to a brief discussion of the theory; see [4] for a
more rigorous and thorough treatment of the connection between diffusion and
Riemannian geometry. The Laplacian for a scalar function u on a manifold can
in tensor notation be written as:

∇2
Gu = (Gklu;k);l = Gkl ∂2u

∂xk∂xl
− Γ l ∂u

∂xl
(8)

where Gkl is the metric tensor, and Γ is the Christoffel symbol that represents
the derivatives of the basis vectors and the metric,

Γ i =
1
2
GklGij

(
∂Gjk

∂xl
+

∂Gjl

∂xk
− ∂Gkl

∂xj

)
. (9)

It can be noted that the Christoffel symbol is zero when the basis vectors and
the metric are spatially invariant, as in the case of Rn. Inserting the expression
for the Christoffel symbol from equation 8 gives

∇2
Gu =

1
|G| 1

2

∂

∂xk

(
|G| 1

2 Gkl ∂u

∂xl

)
, (10)

which is known as the Laplace-Beltrami operator, the generalization of the Lapla-
cian to manifolds. In matrix notation the Laplace-Beltrami operator can be writ-
ten as

∇2
Gu = |G|− 1

2 ∇ ·
(
|G| 1

2 G−1∇u
)

. (11)

It is straightforward to check from these definitions that we have the following
relation between the diffusion operator in (eq. 4) and a diffusion operator in the
Riemannian space characterized by G :

∇ · (D∇u) = ∇2
Gu − 1

2
〈∇log|G|, ∇Gu〉 (12)

where the second order term on the right hand side represents simple Laplacian
smoothing in the tensor-warped space, i.e. isotropic diffusion associated with
the heat equation.

4.1 Measuring Distances in the Tensor-Warped Space

Once we have the metric tensor G, we are able to apply results from Riemannian
geometry to describe geometric objects such as geodesic paths and distances
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between points in the brain. Unlike tractographic methods based on following
the flow of principal eigenvectors of D, these geodesic paths are well-defined even
in regions where the tensor diffusion is isotropic.

We have approached the measurement of distances in this space in two ways.
First, we have implemented an Eikonal-type equation using level-set methods
to produce a distance transform which respects the metric G. This required the
derivation of a formula for the speed of an evolving front in the direction of its
Euclidean normal. Second, we have implemented Dijkstra’s algorithm using G
to determine distances between neighboring voxels, using the formula (wT Gw)

1
2

where w is the vector from a voxel to its neighbor. Though it can suffer from
discretization problems, Dijkstra’s algorithm is fast and allows interactive display
of return paths.

For our level set [9] implementation, we seek a speed function F for use in
the evolution equation

φt = F |∇φ|. (13)

This can be done using the following algorithm, which amounts to finding the
length of the projection of the unit normal in the tensor-warped space onto the
Euclidean normal:
1) Set n = ∇φ

|∇φ| , the Euclidean normal to the level set.

2) Find any two linearly independent vectors t1 and t2 perpendicular to n. These
are tangents which span the tangent space to the level set.
3) Set w = (Gt1) × (Gt2).
4) Set ñ = w

(wT Gw)
1
2
. This is the unit normal with respect to G.

5) Set F = |ñT n|. This is the length of the projection of ñ onto n.

4.2 Experiments

These experiments were performed on the same data set and with the same
preprocessing as in Section 3.1.

Tensor-Warped Distances. Figure 2 shows a slice through a 3D distance
transform with respect to the metric derived from the DT-MRI tensor field. The
result can be viewed as a topographical map, with iso-level contours. Defining
the seed point as the highest elevation, the direction of maximum connectivity
will be in the direction of slowest descent.

Connectivity Measure. By comparing the geodesic path length to the Eu-
clidean length of the same path, we produce a measure of the “degree of connec-
tivity” between any two points. We compute the ratio of Euclidean path length
to geodesic path length for all paths outward from the initial point. Figure 3
displays the connectivity measure as calculated for the distance map shown in
Figure 2.
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Fig. 2. Tensor-warped distance map: this contour map shows metric distance from an
initial point located in the posterolateral part of the corpus callosum. The image is a
slice through a 3D distance map, at the level of the initial point. The apparent “ridges”
in the image indicate low metric distance, or high connectivity.

5 Discussion

The introduction of a Riemannian metric allowed us to reformulate the connec-
tivity/diffusion simulation problem as a search for geodesic paths. In addition,
we solved for a steady-state heat distribution and flow field which reflect con-
nectivity.

The connection between the anisotropic diffusion operator and the Laplace-
Beltrami operator (eq. 12) relates an anisotropic diffusion process in R3 to an
isotropic diffusion process in a Riemannian space, where the metric is defined
by the inverse of the diffusion tensor. This connection is likely responsible for
the observed similarity between the results of both methods. Qualitatively, the
steady-state maximal heat flow path between the source and sink appears to
follow the geodesic derived from the Riemannian shortest path algorithm. The
precise nature of this connection is a topic for further investigation.
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Fig. 3. Degree of connectivity, measured as Euclidean path length over geodesic path
length. Very low connectivity is not shown. Purple is the highest connectivity. Tradi-
tional tractography based on following the principal eigenvector direction, with seed
locations around the initial point, is displayed in red (right). Visual inspection confirms
that the trace lines agree well with the region of highest connectivity.
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