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Abstract. We present a new method for detecting the interface, or edge, structure
present in diffusion MRI. Interface detection is an important first step for appli-
cations including segmentation and registration. Additionally, due to the higher
dimensionality of tensor data, humans are visually unable to detect edges as easily
as in scalar data, so edge detection has potential applications in diffusion tensor
visualization. Our method employs the computer vision techniques of local struc-
ture filtering and normalized convolution. We detect the edges in the tensor field
by calculating a generalized local structure tensor, based on the sum of the outer
products of the gradients of the tensor components. The local structure tensor pro-
vides a rotationally invariant description of edge orientation, and its shape after
local averaging describes the type of edge. We demonstrate the ability to detect
not only edges caused by differences in tensor magnitude, but also edges between
regions of different tensor shape. We demonstrate the method’s performance on
synthetic data, on major fiber tract boundaries, and in one gray matter region.

1 Introduction

The problem of interface detection in diffusion tensor imaging (DTI) is more compli-
cated than the problem of interface detection in scalar images. This is because there
are two types of interface. In DTI data, one would like to detect both interfaces due to
changes in tensor orientation and interfaces due to changes in tensor magnitude. Fur-
thermore, it would be ideal to control the relative effects of tensor magnitude and tensor
orientation information on the output interfaces.

Potential applications of interface detection in MRI diffusion data are both the same
as those in scalar data, and different. Segmentation and registration are two applications
that are already known from scalar data. An application that is different is the detection
of interfaces that may not be apparent to the human eye. In scalar data, a radiologist
is the gold standard for interface detection. However with tensor data, the higher di-
mensionality of the data and the limitations of any tensor visualization technique may
confound human edge detectors. Consequently it is truly useful to study methods of
edge detection in tensor fields, not just to automate tasks that could be laboriously per-
formed by a human, but to actually enable localization of the interfaces at all.



There are many anatomical interfaces of interest in DTI. The most obvious are tract
boundaries, for example the medial and lateral borders of the optic radiation. Another
interface that is obvious is the border between the near-isotropic diffusion tensors in
cerebrospinal fluid and neighboring tensors, for example those in white matter which
have a more anisotropic shape. A very interesting and less obvious type of interface
is that within gray matter. For example, it would be clinically interesting if borders of
thalamic nuclei were directly detectable.

Related work on tensor interfaces includes one study which presents a method very
similar to ours, but without addressing the difference between magnitude and orien-
tation interfaces [4]. Their application is level set motion in a tensor field, and their
results while nice show mainly interfaces due to tensor magnitude and do not address
any anatomical features of interest. An earlier investigation of tensor field edge detec-
tion defines the tensor field gradient and its generalized correlation matrix, then applies
these to point detection in DTI [14]. Another approach to defining edges using local
structure in DTI was presented in the context of adaptive filtering [11]. Other interface
detection in DTI includes the implied interfaces at the borders of tractographic paths
[1, 2, 16]. Finally, any type of segmentation will output interfaces. Work on DTI seg-
mentation includes two methods that have been presented for automatic segmentation
of nuclei in thalamic gray matter. The first technique groups voxels using a combined
tensor similarity and distance measure [20]. The second method classifies voxels based
on their connection probabilities to segmented cortical regions [2]. Both methods pro-
duce beautiful results but to our knowledge there has been no work which looks at the
local interface structure within the thalamus.

In this paper we present an extension of the method of local structure estimation
to tensor-valued images using normalized convolution for estimating the gradients. We
produce a new local structure tensor field which describes the interfaces present in the
original data. We use the method of normalized convolution to reduce the overall de-
pendence of our results on the magnitude of the tensors, in order to enable detection
of both magnitude and orientation interfaces. We present results of our method on syn-
thetic tensor data and anatomical diffusion tensor data.

2 Materials and Methods

2.1 Data Acquisition

DT-MRI scans of normal subjects were acquired using Line Scan Diffusion Imaging [6]
on a 1.5 Tesla GE Echospeed system. The following scan parameters were used: rect-
angular 22 cm FOV (256x128 image matrix, 0.86 mm by 1.72 mm in-plane pixel size);
slice thickness = 3 mm; inter-slice distance = 1 mm; receiver bandwidth = +/-6 kHz; TE
= 70 ms; TR = 80 ms (effective TR = 2500 ms); scan time = 60 seconds/section. Be-
tween 20 and 40 axial slices were acquired covering the entire brain. This protocol pro-
vides diffusion data in 6 gradient directions as well as the corresponding T2-weighted
image. All gradients and T2-weighted images are acquired simultaneously, and thus do
not need any rigid registration prior to the tensor reconstruction process. Tensors are
reconstructed as described in [17].



In addition, a synthetic dataset was created in matlab for the purpose of demonstrat-
ing edge detection based on orientation differences. The dataset consisted of a circle
of nonzero diffusion tensors in a “sea” of background 0-valued tensors. The left half
of the circle contained tensors whose major eigenvectors pointed vertically, while ten-
sors in the right half of the circle had horizontal principal directions. The purpose of
this test data is to demonstrate the results of the method on magnitude and orientation
differences in the tensor field.

2.2 Local Image Structure

In two dimensions, local structure estimation has been used to detect and describe edges
and corners [5]. The local structure in 2D is described in terms of dominant local ori-
entation and isotropy, where isotropy means lack of dominant orientation. In three di-
mensions, local structure has been used to describe landmarks, rotational symmetries,
and motion [7, 3, 8, 12, 13]. In addition to isotropy, it describes geometrical properties
which have been used to guide the enhancement and segmentation of blood vessels in
volumetric angiography datasets [10, 15], bone in CT images [18], and to the analysis
of white matter in DTI [17].

Let the operator
Pa denote averaging in the local neighborhooda about the cur-

rent spatial location. Then the local structure tensor for a scalar neigborhood can be
estimated by X
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For multi-valued (vector) data, this formula extends straightforwardly to
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wherek indicates the component. For a tensor field with componentsDkl the general-
ized local structure is then estimated by
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2.3 Normalized Convolution

Normalized convolution (NC) was introduced as a general method for filtering missing
and uncertain data [9, 19]. In NC, a signal certainty,c, is defined for the signal. Missing
data is handled by setting the signal certainty to zero. This method can be viewed as
locally solving a weighted least squares (WLS) problem, where the weights are defined
by signal certainties and a spatially localizing mask. Here we estimate image gradients
using normalized convolution.

A local description of a signal,f , can be defined using a weighted sum of basis
functionsbk. LetB denote a matrix where these basis functions are stacked as column



vectors. In NC the basis functions are spatially localized by a positive scalar mask
denoted the “applicability function,”ora. MinimizingWaWc(B� � f))

 (4)

results in the following WLS local neighborhood model:

f0 = B(B�W 2aW 2c B)�1B�W 2aW 2c f; (5)

whereWa andWc are diagonal matrices containinga andc respectively, andB� is the
conjugate transpose ofB.

The coordinates� describing the local signalf0 = B� are

� = (B�W 2aW 2c B)�1B�W 2aW 2c f (6)

The estimated coordinates are used in this paper to describe the gradient from planar
basis functions,b1 = 1, b2 = x, b2 = y, andb2 = z, wherex, y, z are local spatial
coordinates. Since normalized convolution calculates the coordinates of data described
locally using this basis, the last three coordinates correspond to the derivative inx, y,
andz respectively.

2.4 Subvoxel Gradient Estimation

We can effectively calculate the gradient on a higher-resolution grid than the voxel
resolution, using the separation of data and certainty to our advantage. The goal of
using a higher-resolution grid is to increase the ability to detect edges that may be close
together on the original grid. To “expand” the initial grid, we insert zero-valued tensors
between data points. The operation of the rest of the algorithm is unchanged, since
those points are simply treated as uncertain in the gradient computation. Empirically
this gives improved results over a two-step process of first interpolating the tensor data
and second calculating the local structure.

2.5 Procedure

First, for each DTI dataset local structure estimation was performed as described above
using gradients from normalized convolution. We employed the trace of the diffusion
tensors as the certainty measure. This method emphasizes tensor shape edges over
diffusion-magnitude edges and aims to suppress border effects. Then regions of interest
were expanded as described above for detection of spatially close edges, and the local
structure estimation was run on these regions.

The choice of applicability function depends on the width of the edges of interest.
Here we use a Gaussian function, and experiments were performed with standard devi-
ations between one and two mm, and neighborhood sizes (in voxels) from 9 by 9 by 9
to 21 by 21 by 11. We aimed to match the variance to the size of the features of interest
and to the data resolution. The neighborhood sizes were chosen to allow the Gaussian
to fall smoothly to near zero at the boundaries. In order to perform subvoxel gradient
estimation we found that inserting one or two zero voxels between known data points
was useful. In practice, creating a larger grid than that gave little improvement and was
computationally expensive.



3 Results

Here we demonstrate the performance of the method on synthetic data and we show
selected results from diffusion tensor MRI data.

First we present an experiment showing the performance of the method on the syn-
thetic data described in Section 2.1. The goal is to show that the algorithm will react
only to edges that are accompanied by local confidence in the data.

Figure 1 demonstrates the result: the input tensors have both magnitude-type and
orientation-type edges, but only the orientation-type edges are detected by the local
structure estimation with normalized convolution. The certainty outside of the “circle”
is proportional to the tensor trace which is zero there, so the method does not recognize
the border of the circle. It detects only the edge caused by differences in tensor shape.

Fig. 1. Simulated data to show unwanted bias in local interface estimation in tensor data close
to data borders. The leftmost image shows the input tensor data. The middle image is the local
structure tensor estimated without normalized convolution, i.e. with no knowledge of data cer-
tainty. Note the unwanted responses on the border of the data, and how this affects the estimation
of the interface between the to regions close to the border. The rightmost image shows the shape
of the local structure tensors estimated with normalized convolution. Note that the interface is
now correctly estimated between regions of tensor data and no border effects are present.

Figure 2 shows slices through the trace of the local structure tensor at many levels
in an axial DTI dataset. Anatomical borders, including the following list, are detected.
Note the bilateral cingulate bundles running in an anterior-posterior direction in the
top middle slice. In the top right and lower left slice the corpus callosum can be seen.
The anterior and posterior limbs of the internal capsule are seen in the lower left slice.
Additionally the optic radiation and some brainstem structure can be seen in the lower
right slice.

One motivation for this work was interest in measuring the structure, if any, that
is present in gray matter regions of a diffusion tensor dataset. The obvious choice for
initial investigation is the thalamus because it is home to many nuclei which have char-
acteristic connections to the rest of the brain, and hence some characteristic tensor ori-
entation. We investigated the local structure in the thalamic region in three diffusion
tensor datasets. The results were qualitatively similar and on some slices visually cor-



Fig. 2. Trace of the local structure tensor at several levels in an axial DTI dataset. Before filter-
ing, the data was masked with a rough segmentation of the brain. Dark regions inside the brain,
however, are not from masking but rather are regions of low edge magnitude.

responded to the expected nuclear anatomy. One such slice is shown here alongside a
3D diagram of the thalamus and its nuclei.

4 Discussion

We have demonstrated a novel method for tissue interface detection in diffusion tensor
MRI. By using a certainty field to define the importance of each tensor data point, it
is possible to control the behavior of the edge detection, be insensitive to missing data,
and produce subvoxel measurements. Another feature of this approach is that masks
defining anatomical regions can be applied to the certainty field, removing the impact
of surrounding tissue structures without obtaining erroneous responses from the inter-
face of the segmentation border. This is important since these border effects may be
magnitudes stronger than the changes of interest inside the structures. Here we choose
to employ the tensor trace as the certainty measure, but it would be informative to com-
pare the behavior of the method using other measures.

The presented method is able to detect boundaries of tracts such as the optic radia-
tion, corpus callosum, cingulate bundles, and internal capsule. In addition preliminary
results demonstrate some detectable structure in the gray matter region of the thalamus,



Fig. 3. DTI tissue interface detection in the region of the thalamus. The leftmost image is an
axial diffusion-weighted MRI image. The white square outlines the location of the middle image,
which displays the magnitude of the trace of the local structure tensor in the thalamic region. The
ventricles have been masked and show in black (at the top and bottom of the image), while regions
outside of the thalami with higher trace show as white. The image on the right is a diagram of
the nuclei of the thalamus, adapted from www.phys.uni.torun.pl/ duch/ref/00-how-brain/. In the
images the letters A, P, M, and L signify anterior, posterior, medial, and lateral, respectively.

but it is not clear at this point that these interfaces represent borders between thalamic
nuclei.
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