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Abstract. We present a novel method for finding white matter fiber
correspondences and clusters across a population of brains. Our input
is a collection of paths from tractography in every brain. Using spectral
methods we embed each path as a vector in a high dimensional space.
We create the embedding space so that it is common across all brains,
consequently similar paths in all brains will map to points near each other
in the space. By performing clustering in this space we are able to find
matching fiber tract clusters in all brains. In addition, we automatically
obtain correspondence of tractographic paths across brains: by selecting
one or several paths of interest in one brain, the most similar paths in all
brains are obtained as the nearest points in the high-dimensional space.

1 Introduction

Diffusion MRI measures water diffusion in tissue. Where many cells have similar
orientations, such as in muscle or nervous tissue, the MRI measurements de-
scribe that local cellular pattern. Starting from these measurements of diffusion
(represented as diffusion tensors) in the brains of several subjects, we produce
an approximation of the neural fiber tract anatomy of the population.

Due to the complexity of the data, manual exploration of diffusion tensor im-
ages for the purposes of segmentation, registration, diagnosis, surgical planning,
etc. is currently very difficult. One may choose to visualize tensors directly using
small glyphs, or attempt to reconstruct anatomical structure by interpolating
paths that follow the principal direction of diffusion. Detailed three-dimensional
neuroanatomical knowledge is necessary to pinpoint the expected location of a
white matter fiber, so it is not easy to choose a region of interest for display
of the glyphs or paths. By creating an automatic segmentation of all possible
paths, one could reduce this data interaction problem to a simple choice of which
group of paths to display. Not only would this aid in visualization of the data, but
also in the automatic quantification of properties of interest such as anisotropy
measures, and in finding cross-patient anatomical correspondences.

Early work in grouping of tractographic paths by Brun et. al has used color
to enhance visual perception of connectivity using information from spectral



embeddings [2, 1]. Related work in segmentation of tractographic paths has em-
ployed clustering approaches which divide the problem into two parts: the deci-
sion of how to quantify distance (or similarity) between paths, and the choice of
clustering method. Several distance measures have been proposed in the litera-
ture. In one of the earliest approaches, Ding et al. calculate the mean distance
separating paths using pointwise correspondences between path segments [4].
Their method is specific to paths which have been seeded in one image slice,
but in later approaches more general distances have been defined. Brun et al.
introduced a 9-D vector for tract shape approximation which they define as the
mean and lower triangular part of the covariance matrix of the points on a path
[1]. They compute the distance between paths as the Euclidean distance between
the corresponding 9-D vectors. Gerig et al. and Corouge et al. propose distances
that do pointwise comparison of tract shapes: they define three measures related
to the Hausdorff distance [6, 3]. In more recent work by Jonasson et al. (who use
paths through high angular resolution diffusion data) a path similarity measure
is calculated based on the number of times two paths share the same voxel [7].
Two general types of clustering methods have been employed in the literature,
hierarchical clustering [3, 6, 10], and the spectral clustering approach [1, 7].

To our knowledge, there is little prior work on the topic of matching tracto-
graphic paths across patients. In work by Zhang et al., a two-step process first
performs clustering on each patient, then describes the clusters with 9-D vec-
tors (the average start point, end point, and “middle point” of all paths in the
cluster). These feature vectors are used to match clusters across patients [10].

2 Methods

Our method has several steps: tractography, estimation of distances/similarities
between paths, spectral embedding, and finally clustering and/or anatomical
region of interest (ROI) selection in the population. Figure 1 illustrates this
process using data from the population of brains described further in Section
3. In the rest of this section we explain each step in our algorithm and its
parameters.

Path Comparison Multi-Brain Embedding Clusters/ROI Selection

Fig. 1. Visual overview of the method using data from the population: two paths, a
random sample of 500 embedding vectors, and population tract clusters in one brain.

2.1 Tractography

We perform tractography using open-source software (www.slicer.org), which
does second-order Runge-Kutta integration. We produce paths starting at all



points in a region of interest that covers most of the brain. Paths stop when the
FA (fractional anisotropy) or curvature become too low or high, respectively.
For the experiments in this paper, the region of interest was the area with FA
greater than 0.3, and the settings used for the thresholds were FA of 0.1 and
curvature of 1.1. In addition, to limit the number of paths, paths shorter than
a length cutoff of approximately 30mm were discarded. To give an idea of the
numbers of paths involved, there are about 256× 256× 50, or 3 million, voxels
in a dataset, of which we select approximately 300,000 for path seeding. After
pruning the number of paths is between 5,000 and 25,000 for one brain.

2.2 Similarity Measure for Tract Paths

We use a symmetrized Hausdorff distance, as suggested in [6], and we compare
paths in all brains. The Hausdorff distance Hij is defined as the maximum of
pointwise minimum distances between a pair of curves i and j. We symmetrize
the distance by averaging Hij with Hji. In the common case where a short
and long path are aligned, the average distance is a more forgiving measure
than the maximum distance, but it preserves some information about the length
mismatch, unlike the minimum distance. We convert the distance measure to a
similarity measure Wij using a Gaussian kernel where σ controls the distance
over which paths can influence each other. For the experiments in this paper, σ
was set to 10.

Wij = e−Hij/σ2
(1)

2.3 Spectral Clustering

Spectral clustering methods group data using eigenvectors of a data affinity
matrix. The method we employ is described in [8] and is identical to the k-way
normalized cuts procedure from [5], except we do not need to postprocess the
clusters to correct for oversegmentation. First the symmetric tract similarity
matrix W is scaled using a diagonal matrix D whose entries are the row (or
column) sums of W . This produces L:

L = D−
1
2 WD−

1
2 (2)

Embedding vectors are then calculated from the eigensystem of L (L =
UΛUT ) by applying a scaling to the rows of U . The scaling converts the eigen-
vectors to the solution one would get by solving the generalized eigensystem
(D −W )y = Dλy, which minimizes the Normalized Cut [9]. From [5], the em-
bedding vector for the jth tract is

Ej =
1√
Djj

(Uj,2, Uj,3, ..., Uj,n) (3)

where n is the number of eigenvectors chosen for the embedding, and the column
index of U starts at 2 in order to skip the first (major and smoothest) eigenvec-
tor. Care is needed in choosing n because the eigenvectors become noisy as the
eigenvalues decrease. For the experiments in this paper we have set n to 20. In
spectral clustering, the next step is to cluster the embedding vectors, usually by
k-means.



2.4 The Nystrom Method

In our application it is important to avoid computing the full W matrix, which
for 5 brains would be at least 25, 000×25, 000. The Nystrom method is a way to
interpolate values of a function, using known values and interpolation weights.
We use this method to approximate the eigenvectors of W , as described in [5].

Instead of computing W directly, a random subset of paths is selected for
comparison, and the similarity measure is calculated between each path and that
subset. The matrix A contains similarities between paths in the subset, and the
matric B contains similarities between other paths and the selected subset. From
[5], the approximate eigenvectors of W are calculated as

Ū =
[

U
BT UΛ−1

]
(4)

where U = AUΛ−1 and the ordering of the rows of Ū is such that those corre-
sponding to rows of A are first, followed by those corresponding to rows from
BT . To get an intuition for why this works, imagine that you have performed
clustering using the information in A and you would like to add some new data
to the problem without starting over. Since A = AT we can rewrite equation 4
as

Ū =
[

AT UΛ−1

BT UΛ−1

]
(5)

So this process can be thought of as estimating the rows of Ū by projecting the
new data from B into the same space where the old data in A were projected.

There are two more details when using this approximation method. First of
all, the normalization of A and B using row sums of W must be performed some-
how before calculating Ū . In [5] this is shown to be possible without computing
W itself. The second detail is that the estimated eigenvectors of W (the columns
of Ū) should be orthonormal. In [5] the authors give two methods for orthogo-
nalizing the columns. However we have found this to be unnecessary because in
practice, after the columns of Ū are normalized to length one, we have always
found ŪT Ū to be close to the identity matrix.

3 Results

We employed our method to cluster tractographic paths in a population of 5
brains. For each, the input to tractography was a DTI scan with voxel size
0.86× 0.86× 5mm. The total number of tract paths from all brains was 36,003.
We randomly selected 1000 tract paths from the population, and compared all
other paths to these in order to generate A, B, and Ū We then performed spectral
clustering to generate 100 clusters, a number that we find in practice is large
enough to avoid grouping very dissimilar tracts. Interesting anatomical clusters
exist at many size scales so choosing the number of clusters is not easy.

The output clustered/embedded brains are shown in Figure 2. The corre-
spondence of the colors directly shows the correspondence in embedding space.
To generate this visualization, the paths in each cluster were colored based on



the centroid of that cluster in the embedding space. Mapping the centroid vec-
tors to colors was performed as described in [1], where the first three components
of the embedding vector are used to define red, green, and blue.

In Figure 3 we show more detailed anatomical correspondences. Using the
same 100 clusters, one of the brains in the population was visualized in order to
identify clusters of interest. The cluster indices aren’t in themselves significant,
but clusters 3, 8, 12, 14, 19, 33, 54, 66, 77, and 81 were found to correspond to the
corpus callosum, cluster 31 happened to correspond to both cingulum bundles,
and clusters 29 and 42 represented the uncinate fasciculi. After selecting these
clusters in one brain, the same clusters were then displayed in all brains to
demonstrate correspondence.

4 Discussion

The first issue with the presented method is that it depends on paths from
tractography, a process prone to errors due to noise and partial voluming, with
limited validity in regions of low tensor anisotropy. The alternative approach of
working directly in voxel space by defining a suitable voxel-to-voxel similarity
measure is possible, however capturing long range connectivity may be more
difficult. Also in principle our method could be applied to paths produced by
another algorithm or paths through data with another diffusion model.

Another issue of interest is that because the scan protocol was chosen to
acquire the images in a consistent way, in this work we explored performing
clustering without rigid alignment. This can be seen especially in the fourth
brain from the top in Figure 2, where the brain stem is angled very differently
from the rest of the brains. This may be the reason for the less-structured unci-
nate fasciculus clusters for that brain in Figure 3. The robustness of the method
is shown by the overall success of the correspondence, however we believe cor-
respondence in the population will improve with rigid and potentially nonrigid
alignment and perhaps normalization for brain size.

A question that might be posed about our choice of method is whether we
could instead use a sparse W and sparse eigensolvers. Our W matrix is not
particularly sparse, unlike the case of a W matrix that comes from similari-
ties between pixels, because neighborhood relationships between paths are not
limited by a rectangular grid. In addition, in [5] it is shown that the Nystrom
approximation has comparable performance and much better running time when
compared to a sparse solver.

It also makes sense to ask how this method will scale to a large population of
brains. Our current implementation would likely scale up to a small clinical study,
but for population sizes in the 100’s a more memory-careful implementation
would be necessary. One difficulty is holding all embedding vectors in memory
to perform k-means clustering. But if a subset of the embedding vectors is chosen
for clustering, and the subset is representative enough of the population, possibly
the cluster centroids would be close to those obtained by doing the full clustering.

Another potential extension is the incorporation of additional information
into the creation of the affinity matrix. For example if there already exist seg-



mentations of the brains in question, the affinity should increase for two paths
that pass through similar segmented anatomy. Another important point about
the affinity matrix is that the choice of Hausdorff distance is somewhat arbi-
trary (though reasonable) and we hope to be able to compare various distance
measures now that we have a working framework for clustering studies.

5 Conclusion

We have presented a novel method for obtaining anatomical clusters and cor-
respondences across brains using paths from tractography through DTI data.
To our knowledge, this is the first method for obtaining dense correspondences
(path-to-path correspondences), as well as cluster-to-cluster correspondences
across a population of brains. We believe there are many interesting future ap-
plications for this method, including studies of anatomy in populations and DTI
visualization using automatic segmentation and labeling of tract clusters.
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Fig. 2. Anterior, right, and superior views of the five brains in the population. The
colors show correspondence via spectral embedding.



Fig. 3. Anatomical correspondences: selected clusters, displayed in all 5 brains. The
two leftmost images show the corpus callosum viewed superiorly and from the right. Of
the 100 clusters found, 10 were manually chosen as belonging to the corpus callosum.
The third images from the left show a single cluster containing the cingulum bundles,
viewed superiorly. Finally, the rightmost images show the two clusters that contain the
left and right uncinate fasciculi, viewed anteriorly and from the right.


