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It is known that humans can be insensitive to large changes in illumination. For example, if an object of interest is extracted

from one digital photograph and inserted into another, we do not always notice the differences in illumination between the object
and its new background. This inability to spot illumination inconsistencies is often the key to success in digital “doctoring”

operations. We present a set of experiments in which we explore the perception of illumination in outdoor scenes. Our results

can be used to predict when and why inconsistencies go unnoticed. Applications of the knowledge gained from our studies
include smarter digital “cut-and-paste” and digital “fake” detection tools, and image-based composite scene backgrounds for

layout and pre-visualization.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Three-Dimensional Graphics and Realism—Display Algo-
rithms

Additional Key Words and Phrases: Lighting, Perception, Images

1. INTRODUCTION

Combining different structures extracted from existing photographs to generate a novel composite
scene has many practical applications. Photographs of existing physical scenes are often used as inspi-
ration for applications such as designing architectural structures or creating sets for film production,
for example. These photos are then combined together in various ways, thus allowing the designer or
film director to evaluate alternative designs and to rapidly “pre-visualize” different concepts.

To be a useful system, we require that the pre-visualization look natural and that any newly-inserted
structure does not appear out of place. Several factors might make the structure appear to “pop-out”: (1)
bad segmentations (e.g., the structure was improperly segmented from its original image); (2) the scene
semantics are wrong (e.g., the structure appears to be floating in mid-air); (3) mismatched geometry
(e.g., it is not oriented properly with respect to existing structures); and/or (4) mismatched lighting
conditions (e.g., shadows point in different directions). All these considerations must be taken into
account by the artist when generating such pre-visualization scenes, which is an arduous task.
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While powerful image editing tools already exist to account for problems 1–3 listed above (segmenta-
tions, semantics, and, to some extent, geometry), the same cannot be said of mismatched illumination
conditions, which are very hard to modify after the fact as they require an accurate estimate of the
shape and material properties of the object to transfer. Luckily, it has been shown that humans are
notoriously bad at reasoning about the physical accuracy of lighting effects [Cavanagh 2005], so maybe
illumination does not have to be matched exactly to generate a realistic composite.

Is there a point at which we do not notice illumination inconsistencies? Several studies have at-
tempted to answer this question, but so far they have been performed in the lab with abstract or
limited indoor stimuli, so it is not clear whether their results will generalize to the much more com-
plex setting of real-world, outdoor scenarios. In this work, we focus on determining whether or not
a resulting image composite will appear realistic, by analyzing the perception of directional lighting
inconsistencies in composite outdoor scenes. To this end, we introduce two novel experiments. The first
experiment employs composite images generated from real webcam images, where the lighting direc-
tion is known. The observations we made in this first experiment, and the limitations we encountered
in using the webcam data, informed the design of a second experiment. This second experiment, from
which we draw most of our final results, is based on a set of realistic synthetic outdoor images. In both
cases, one structure in the scene exhibits varying degrees of illumination inconsistencies.

2. BACKGROUND

Inserting new objects into photographs of existing scenes is a common task in computer graphics. Suc-
cessfully inserting new objects requires estimating the lighting in the scene, and then rendering the
synthetic objects according the estimated illumination [Karsch et al. 2011; Karsch et al. 2014]. Many
algorithms may be used to estimate the illumination in an image [Lalonde et al. 2012; Chen et al.
2011; Lopez-Moreno et al. 2013]. Algorithms have also been proposed to determine the realism of im-
age composites [Reinhard et al. 2001; Lalonde and Efros 2007; Xue et al. 2012]. In particular, Xue et
al. systematically examined the perceived realism of a composite by independently manipulating lumi-
nance, color temperature and saturation in a foreground image. Based on their findings, they developed
algorithms for altering these quantities to create realistic composites. However, such techniques can
not alter the spatial patterns of light and dark regions produced by the original illumination in a scene.

Previously, several experiments have been conducted to explore human sensitivity to illumination
changes. Koenderink et al. have studied how humans estimate light direction for a synthetic Gaussian
landscape viewed from above [Koenderink et al. 2004], and for captured imagery of textured surfaces
in the CURET database, viewed along the normal to the sample surface [Koenderink et al. 2003].
Observers could accurately estimate the illumination direction for the artificial surfaces but not for
the images of real-world surfaces. Unlike in our work, Koenderink and colleagues do not examine the
detection of inconsistencies—rather, they focus on the ability to estimate the lighting direction. Also,
they only consider the case of viewing a surface or landscape normal to the surface. In our case we
consider a variety of surface orientations that are typically observed in outdoor scenes.

Ostrovsky et al. [2005] have examined the ability to detect lighting inconsistencies in simple syn-
thetic test data (e.g., free-floating cubes). They argue that substantial anomalies can be introduced
into complicated scenes without detection, and present a series of “doctored” real-world photographs
confirming this observation. They note that there is no evolutionary advantage to detecting inconsis-
tencies in a scene—we act on local illumination information, so why would we have developed the
ability to pick out these anomalies? They hypothesize that when compositing artifacts are visible in
feature film, it may be because of the conflicting brightness levels, rather than the conflicting illumi-
nation directions. Furthermore, while they were able to illustrate the possibility of constructing scenes
in which lighting inconsistencies are not noticeable, they did not provide rules for doing so.
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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Lopez-Moreno et al. [2010] studied the ability to detect lighting inconsistencies with the aim of quan-
tifying the point at which the inconsistencies become noticeable. In their study, variations in lighting
direction were limited to variations in a plane normal to the “vertical” direction in the scene. Fur-
thermore, they only considered blob-like objects and physical scenes in which objects were organized
to eliminate cast shadows, thus achieving a limited depth of field. Their study of isolated diffuse and
specular objects indicated a threshold of a 30◦ (for light coming from the front) and 20◦ (for light coming
from the back). They also found that detection was more difficult for textured objects, up to a threshold
of 40◦. The authors remark that this increased threshold was unexpected, since it would seem that in-
consistencies would be easier to spot in natural textures. For our applications, we want to see whether
their results hold for architectural-scale outdoor scenes. We also wish to see if the same thresholds ap-
ply to variations of light direction, with respect to the ground plane. Note that the set of light directions
tested in their study naturally correspond to sun positions in the sky.

We extend the previous experiments in lighting inconsistency perception to the analysis of outdoor
scenes that are of interest in applications such as film set creation and architectural design. In this
context, we seek specific parameters that can be used in rendering and compositing. We are interested
in the following questions:

(1) Can we quantify the noticeable light source inconsistencies for sun direction relative to view direc-
tion in outdoor scenes?

(2) Do we see the same thresholds for angle as observed by Lopez-Moreno et al. [2010] for the real and
textured scenarios? Do we see the same back lit/front lit effects?

(3) Do we see the same thresholds for angles vary with respect to height above the viewer (elevation)
as for angular variations from left to right (azimuth)?

(4) Is the sensitivity for large structures in large depth-of-field images the same as for sets of synthetic
or low-depth-of-field objects?

(5) Is there an effect of whether light comes from the left or right of the camera?

3. EXPERIMENT I: REAL SCENES

We first explore the effects of illumination inconsistencies in composite scenes by using real imagery
taken from webcam sequences. We chose to experiment with real images, since our motivating pre-
visualization application involves compositing into natural images. In this section, we describe how
stimuli were generated, the experiment performed on this data, the results, and discuss the insights
we obtained and the limitations we encountered.

We selected 15 different scenes from the Webcam Clipart Database [Lalonde et al. 2009]. This
database was chosen due to the availability of the sun position with respect to the camera at each
frame of a sequence. Fig. 3 shows five example scenes used in this experiment. Although our moti-
vating application involves compositing a synthetic image with a natural image, our focus is on the
illumination-related artifacts in such composites and not on any geometric errors introduced during
the process. To avoid such errors, we generate stimuli from webcam images by compositing two images
taken from the same webcam at different times of day.

3.1 Image selection

In order to isolate the lighting changes due to the sun position, we first manually selected one day
for each webcam sequence where the sky was completely clear. On each day, the sun moves through a
different arc in the sky. As a result, the elevation and azimuth angles (as defined in previous work on
lighting direction) are different for each point on the arc, but they vary monotonically.
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Since webcam images are downloaded every 15 minutes or so, we select a subset of images based
on their sun elevations, normalized by the maximum sun elevation that day, θ′s = θs/max(θs). This is
done to account for variations in maximum sun elevations, which depend on the latitude of the camera
and the time of year. In particular, we choose 4 images such that θ′s = {0.2, 0.4, 0.6, 0.8}, representing
roughly early morning, late morning, early afternoon, and late afternoon. Finally, we also identify one
large building in the scene, and manually segment it to obtain a mask M that is used to generate the
composites.

3.2 Image compositing

Given two images IF and IB , each lit with different lighting conditions F and B, and segmentation
mask M , we generate the composite IC as:

IC = M ◦ IF + (1−M) ◦ IB , (1)

where ◦ denotes the Hadamard product. The resulting composite IC therefore contains the foreground
object of interest in lighting condition F , and the background (including the shadow on the ground, if
any) in lighting condition B.

Fig. 1 shows example images of the webcam “Formica” from [Lalonde et al. 2009] generated with
this method. All possible combinations of the 4 lighting conditions from above are generated, resulting
in a set of 16 images for each sequence. Images along the diagonal of the figure correspond to the cases
where lighting between background and foreground are perfectly consistent.

3.3 Experiment I design

In this first experiment with five participants, we presented one image at a time to each observer,
and asked them to say whether the image appeared real or fake. In all, we showed each of the 4 × 4
lighting combinations individually for each of the 15 scenes, for a total of 240 images, to each observer.
Users had a maximum of 10 seconds to make a decision. After the 10-second delay was over, the
images disappeared from view. Participants were told ahead of time which object was being potentially
manipulated by showing the segmentation mask prior to displaying the image, but they were not told
what kind of manipulations were being made.

3.4 Experiment I results

Overall, the mean accuracy at identifying real vs manipulated was 68.08%, with chance being 50%.
As shown by fig. 2-(a), the particular set of lighting conditions did not seem to affect accuracy when
averaged over all 15 scenes. We observe a slight increase in accuracy when the background is lit by
late afternoon skies and the object by early to late morning conditions (bottom-left of fig. 2-(a)). Other-
wise, performance across lighting configurations is relatively constant. We also analyze performance
as a function of the size of the object in the image, and show the results in fig. 2-(b). As expected,
illumination inconsistencies tend to be more perceptible in larger objects.

Fig. 3 shows the accuracy in detecting inconsistencies for different scenes. All the results shown have
the same illumination configuration, that is: the object is illuminated by early afternoon lighting, while
the background was captured in the late afternoon. Even if the lighting configuration is the same, the
average accuracy differs quite significantly across scenes.

3.5 Experiment I histogram analysis

In order to determine whether simple image metrics can predict how likely it is that a discrepancy will
be detected, we compute image intensity histogram differences as follows. First, we convert the images
IF and IB (from sec. 3.2) into grayscale, and define masks MF and MB selecting different regions of
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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Fig. 1: Example images used in Experiment I for the “Formica” webcam sequence from [Lalonde et al. 2009]. The horizontal
axis shows changes in the lighting conditions of the foreground object IF , and the vertical axis shows changes in the lighting
conditions associated with the background IB .

each image. Then, we compute the difference in intensity distributions D between these two image
regions by taking:

D = χ2 (h(IF (MF )), h(IB(MB))) , (2)

where h(·) is the histogram of image intensities, and I(M) represents the pixels in image I that lie
under the mask M . We use the well-known χ2 distance between two histograms. Table I provides an
overview of the values for M used in the metrics we experimented with.

Metric name MF MB

All entire image entire image
Bg–bg background background
Fg–fg foreground foreground
Fg–bg foreground background

Fg–boundary foreground constant-width border (5% image width)
around foreground

Table I. : Description of the metrics used in the histogram comparison experiments.
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Fig. 2: (a) Lighting inconsistency detection accuracy from Experiment I, as a function of the lighting configurations for the
foreground and background, averaged over all 15 scenes in the study; Note that the diagonal shows the percentage of correct
images identified as such, and the other values denote accuracy of anomaly detection; (b) Detection accuracy by size of the
manipulated object, shown as a fraction of image size (in pixels). Overall, we note that accuracy seems to be relatively constant
over the different lighting configurations (a), and it seems to increase with object size (b), (c) the accuracy results recast as
percentage accepted as unmanipulated, with the drop off in values away from the diagonal showing the impact of lighting
inconsistencies.

0% 20% 20% 60% 100%

Fig. 3: The accuracy in detecting lighting inconsistencies widely varies across scenes. Here, 0% means
that no participant identified the image on the left as inconsistent, while all participants did so for
the image on the right. In all these cases, the relative difference between the lighting conditions of the
background and that of the object of interest are the same, that is: the object is early afternoon, and
the background late afternoon. Yet, can you tell that all these images have been manipulated?

We calculated the correlation coefficients between the proportion of participants who detected each
discrepancy (excluding the correct images in this case) and each of the metrics. We found significant
correlations for Fg–fg, Fg-boundary and Fg-bg, although the coefficients were low (0.31, 0.25, 0.20 re-
spectively). Nevertheless, there is some evidence to suggest that such metrics may explain some, but
not all, results. However, it is clear that there are several other factors at play and that a more con-
trolled experiment may help to elucidate these.

3.6 Experiment I discussion

The results shown in fig. 2-(a) appear to confirm the observation by Ostrovsky et al. [2005] that lighting
inconsistencies are difficult to accurately detect. It might be expected that this would translate to being
accepting of a wide range of images as unmodified. The diagonal of fig. 2-(a) should have been 100%
if observers were able to accurately identify consistent illumination conditions. The low values on the
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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diagonal suggest that showing the images individually in the experiment does not purely assess the
impact of the error in lighting direction, but also other judgments about the object and scene.

The entries in fig. 2-(a) though are different from chance (50%), and light consistency appears to
have an impact on the observer’s judgment of whether the image has been manipulated. This effect
is clear when the overall results are recast as the percentage of images accepted as unmanipulated
in fig. 2-(c), where the off-diagonal elements are sharply different from the diagonal. However the
highly varying results for individual scenes portrayed in fig. 3 suggest though that scene structure
may have an influence—for example whether the element being composited is set apart from other
parts of the scene, or is closer to other elements in position and orientation. This observation leads us
to the possibility that the answers to the questions we posted in sec. 2 will be conditional on the type
of scene.

Unfortunately, experimenting with real webcam data offers significant challenges in further pursu-
ing answers to the questions we have posed. First and foremost, illumination cannot be controlled.
Even despite the use of calibrated webcam data, we can choose only amongst a relatively limited set
of light directions, which depend on the camera latitude and orientation. Second, the sun color and
intensity both change over the course of the day. Finally, scenes cannot be controlled; so many factors
such as scale, orientation, and viewpoint may vary from one scene to the next. These insights and lim-
itations of the first experiment thus led us to the design of a second experiment that provided greater
experimental control.

4. EXPERIMENT II: PHOTOREAL SYNTHETIC SCENES

To explore the impact of illumination when adding a new structure to a scene, we need to have con-
trol over both illumination conditions and scene geometry. However, while illumination may be easily
manipulated in a lab setting, it is impossible to fully control the lighting conditions for real outdoor
imagery, which we also learned from Experiment 1. For this reason, we chose to use a highly detailed
digital model of an outdoor urban district, and render it under realistic outdoor lighting conditions.

4.1 Scenes

We used a model of Trinity College Dublin and surrounding streets that was created manually by
artists in Autodesk 3D Studio Max [O’Sullivan and Ennis 2011]. Special attention was paid to accuracy
and a high level of detail was incorporated via photographic texture maps. This model has been used
in a variety of previous studies involving realistic urban scenes, e.g., [Hamill et al. 2005; Ennis et al.
2008; 2011].

Based on our observations from Experiment I, we wanted to study two scenes with fundamentally
different structures. We chose to focus on two complementary cases: 1) when an object is near, but
separated from existing structures; and 2) when an object is in close contact with existing structures.
The rich Dublin model offered several possibilities for both of these cases. The Campanile is a landmark
on the Trinity College Dublin campus, and is isolated from the surrounding buildings in our first
scene. It casts a shadow on the nearby ground plane that can easily be observed independently of its
appearance. However, the overall texture and design style of the Campanile are similar to the other
buildings in the scene. In contrast, the red brick building selected as the object of interest in our second
scene is embedded with its neighbors on a street as one continuous facade, but it has a different texture
and design style than its surroundings.

For each scene, we generated a sub-pixel accurate segmentation mask by rendering the selected
object in white, and the rest of the scene in black (disabling shading in the rendering engine). Fig. 4
shows the scenes we selected (top row) and the corresponding objects of interest and background we
selected (bottom row).

ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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(a) Campanile (b) Street

Fig. 4: Overview of the two selected scenes used in Experiment II. The first row shows the original images, while the second row
shows the segmentation masks (green = object, red = background).

4.2 Realistic, controllable outdoor lighting

As mentioned previously, we employ a rendering approach because real imagery does not afford control
over the natural lighting conditions. Our goal is to employ as realistic and natural an illumination
model as possible. For this purpose, we employ the recently-proposed parametric model of Lalonde and
Matthews [2014], which represents the light intensity along direction l as a weighted sum of sky and
sun components fsky and fsun respectively:

f(l) = ωskyfsky(l, ls, t) + ωsunfsun(l, ls, β, κ) , (3)

where ls = (θs, φs) is the sun position, t is the sky turbidity, (β, κ) are parameters that control the shape
of the angular scattering close to the sun, (ωsky,ωsun) are the sky and sun mean colors respectively,
fsky is the well-known Preetham sky model [Preetham et al. 1999], and fsun is a sun-specific model
introduced in [Lalonde and Matthews 2014]. We refer the reader to their paper for more details. Given
values for its parameters, eq. 3 can be used to generate a hemispherical environment map (where only
values above the horizon are valid) representing a physically-plausible, high dynamic range sky.

We obtain photo-realistic values for the sky model parameters by using the database of high dynamic
range (HDR), natural skies also introduced in the same paper. The database contains HDR hemispher-
ical photographs of the sky, captured over more than 3,300 different illumination conditions, on 25
different days, over the course of 6 months. The authors have also provided the results of fitting eq. 3
to each of their sky photographs, thereby resulting in a database of 3,300+ lighting parameters.

We cluster these lighting parameters into 10 sub-clusters using k-means, and keep the cluster that
has the highest sun intensity, thereby modeling a clear day. Since the mean sun color ωsun is much
brighter than any of the other parameters (values may go up to 104), we use its log-value in the clus-
tering algorithm. Fig. 5 illustrates the resulting environment obtained with this method, shown at
different exposures to reveal its extremely high dynamic range. Since this is a parametric model, we
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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1/20,000 11/41/16

Fig. 5: HDR lighting model used to relight the virtual scene, shown at different exposures. The numbers are fractions of the
original exposure, shown on the right. The sun is not saturated only when dividing the original exposure by 20,000, which shows
the extreme dynamic range represented by our lighting model. Note that clouds present in the original data, but not captured
by Lalonde’s parametric model of 2014, make the mean sky color tend towards gray.

θs = 0◦ θs = 30◦ θs = 60◦ θs = 90◦

Fig. 6: Effect of varying the elevation of the sun θs in our lighting model (φs is kept constant at 45◦). Note: capturing a sky with
the sun directly at zenith (θs = 90◦) would be challenging because this only happens between the tropics at certain times of the
year. With our model, this can easily be replicated. Also note that we do not change the sun intensity as a function of elevation.

can choose to place the sun at any position in the hemisphere, and obtain a physically-plausible sky,
as demonstrated in fig. 6. Also note how the resulting sky is smooth since eq. 3 does not model clouds.
This is acceptable in our case, since clouds could act as a distraction to users. All the images used in
our experiment were rendered with the resulting environment map as the sole light source.

4.3 Image generation

From the lighting environment obtained in the previous section, we rendered images of both scenes
using the MentalRay renderer in 3D Studio Max, by enabling soft shadows and final gather. We set the
environment map as the sole light source. For the Campanile scene, hair and fur modifiers (WSM) were
used to achieve more realistic grass rendering. Note that we use the renderer to generate images where
the lighting is perfectly “consistent” and generate “inconsistent” images by combining two real images
that have different lighting directions with a compositing approach. Here we describe the lighting
directions employed to generate the environment maps from sec. 4.2. Images were composited using
the same procedure as in sec. 3.

4.3.1 Azimuth increment. To limit the test cases to a reasonable size but ensure a sufficient cover-
age of the azimuth circle, we define a set of foreground angles with increments of 60◦:
φs = [0, 60, 120, 180, 240, 300]◦. Elevation is kept constant at θs = 45◦ (see fig. 7-(a)). From these
foreground angles, we define relative changes by increments of 30◦ away from the original angle:
∆φs = [−90,−60,−30,+30,+60,+90]◦ to obtain background angles. This approach is similar to the
one use in the work of Lopez-Moreno et al. [2010].
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4.3.2 Elevation increment. In addition to azimuth, we also test for sensitivity to sun elevation vari-
ations. We selected foreground elevation angles by 15◦ increments, θs = [0, 15, 30, 45, 60, 75, 90]◦, as
shown in fig. 7-(a). Azimuth is kept constant at φs = [45, 135]◦ (two diametrically opposed values).
From these foreground angles, we define relative changes by increments of 15◦ away from the original
angle: ∆θs = [−45, −30, −15, +15, +30, +45]◦ to obtain background angles. Fig. 7-(c) shows an example
of relative changes shown for a given foreground angle.

As opposed to the azimuth-only case, we impose additional constraints on the generation of compos-
ite images in the case of elevation. In particular, we do not include the case where θs + ∆θs < 0◦, which
corresponds to the sun below the horizon. In addition, we discard the case where θs + ∆θs ≥ 90◦, which
means that the sun moves past zenith, and down the opposite direction.

4.4 User study design

Fourteen naive volunteers (9M/5F, ages 24-36) participated in this experiment. We did not wish to
ask participants to judge each image individually, as we found in Experiment I that the nature of each
scene could influence them. We therefore designed a comparison task using an experimental procedure
described by Hospedales and Vijayakumar [2009] for oddity detection. Rather than simply asking the
observer which of two stimuli is more realistic, we present two correct scenes alongside one altered
scene, and ask the observer to select the least realistic one. Even if we are modifying only the sun
direction, observers may rely on many different cues which may point to illumination inconsistencies
in an image. For example, cast shadows, shading, and overall brightness may all be good reasons for
deciding whether an image composite is consistent or not. Since we do not want to bias our participants
towards preferring one cue over another, we created a simple user interface in which the three images
are arranged horizontally on a straight line, and provided a radio button interface which forces the
user to make a selection before the next image can be displayed. Images are shown in randomized
order. Each fake image was tested three times in different sets of three images. Users had a maximum
of 8 seconds to view the images, after which they disappeared.

5. RESULTS

We analyze the results of Experiment II for variations in the sun azimuth and elevation independently.

5.1 Azimuth

We ran a five-way, repeated measures Analysis of Variance (ANOVA) on the results of the Azimuth
data, with factors Model (Campanile, Street), ForegroundAzimuth (the foreground sun azimuth angle
from sec. 4), Side (whether the foreground is lit from the front or back), ChangeDirection (sun going
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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(a) Lit from front (b) Lit from back

Fig. 8: Results for sun azimuth φs changes, when the sun is (a) in front of, or (b) to the back of the scene
(top Campanile, bottom Street in all graphs). Error bars show standard errors and R(+), L(-) indicate
whether the scene boundary was reached or crossed. The arrows show the direction of the ∆ error
and the icons/dots and axis labels show the foreground sun azimuth. Sample images with perceptible
differences are marked with red “*” The images with red outlines have consistent illumination, and
other images correspond to ∆φs = ±[30, 60, 90]◦.

towards the left of the camera, or towards the right) and Error (differences in the background az-
imuth angle of [30, 60, 90]◦.). We performed post-hoc analysis using Newman-Keuls tests of differences
between means to examine the effects further. The results can be seen in table II and fig. 8.

There were significant interaction effects between almost all combinations of factors, which is an
indication of how many different types of changes to the positioning of the sun, and the surrounding
environment, can result in a different perception of the illumination of the scene. Note that in both our
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(a) Lit from front (b) Lit from back

Fig. 9: Results for sun elevation θs changes, when the sun is (a) in front of, or (b) to the back of the
scene(top Campanile, bottom Street in all graphs). Error bars show standard errors and R(+), L(-) indi-
cate whether the scene boundary was reached or crossed. The arrows show the direction of the ∆ error
and the icons/dots and axis labels show the foreground sun elevation. Sample images with perceptible
differences are marked with red “*” The images with red outlines have consistent illumination, and
other images correspond to ∆θs = ±[15, 30, 45]◦ as indicated.

graphs shown below, a random guess would result in 33% performance, since we show 3 images at a
time (c.f. sec. 4.4). Therefore, effects that proved to be significantly different from chance as indicated
by single sample t-tests are shown in bold color.

First, participants were indeed able to distinguish all error sizes under some circumstances. The
most significant effect to note is that when the Foreground Azimuth was in front of the scene, i.e., at
180◦, the errors were most noticeable for both models. Fig. 8 also shows several examples of images
that were shown to the participants of our study.

ChangeDirection also had a significant effect, where shifting the sun to the right of the scene (with
respect to the camera viewpoint) was more noticeable than shifting to the left. When the sun reached
or crossed the left or right boundaries of the scene, this was also quite noticeable in some, but not
all, cases. There is an important discrepancy between the two scenes when φs = 0◦: We believe this
asymmetry was due to the particular geometry of the street scene. In this scene, the object of interest
has one main plane, facing towards the right. Therefore, when the sun is at 0◦ (directly in front of the
ACM Transactions on Applied Perception, Vol. 1, No. 1, Article 1, Publication date: January 2015.
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camera) and it moves to the right, it shines straight on the building, thereby making changes more
noticeable. When it moves to the left, however, it shines on the back of the building so it the effects are
less visible from the camera viewpoint.

5.2 Elevation

We also ran a four-way, repeated measures Analysis of Variance (ANOVA) on the results of the Eleva-
tion data, with factors Model (Campanile, Street), ForegroundElevation (the foreground sun elevation
angle from sec. 4), Side (whether the foreground is lit from the front or back) and Error (differences in
the background azimuth angle of [15, 30, 45]◦.) We also tested whether the direction of the change (up or
down) had an effect, and found that it did not, so we removed that factor from our analysis (though it
is shown in the graph for completeness). We again performed post-hoc analysis using Newman-Keuls
tests of differences between means to examine the effects further. The results can be seen in table II
and fig. 9.

It should be noted that the size of the errors in the Elevation test were smaller (15,30,45), as we
only have one hemisphere to work within, and we wished to have an equal number of observations for
each condition. Taking into account the smaller error sizes, there are fewer noticeable changes than
with the Azimuth condition. However, again we notice some interesting differences depending on the
context. For example, when the Campanile is lit from the front, elevation changes are quite noticeable,
whereas from the back, only one bigger change was detected above chance. However, the opposite is
true for the Street scene, where changes were most noticeable when the sun was lit from the back on
the right. This is because of the particular nature of the street scene, where the sun shines from the
right on the red building.

5.3 Histogram Analysis

We compute the same histogram metrics as described in Section 3.5 and the most significant correla-
tions are shown in Figure 10. The most interesting observations we made are as follows:

Azimuth: there is a significant correlation between the front-front histogram metric values and par-
ticipant accuracy in detecting inconsistencies, which is higher than any other metric we tested. This
is interesting because for the front-front metric, the participants do not actually see what the object
should have been. This suggest that they may be using some higher-level understanding of the scene to
infer what the object should have looked like, given the lighting conditions dictated by the background.

After further analysis of the data, we found that the front-boundary metric does not actually predict
detection accuracy for the Campanile scenes, whereas it does do so for the Street scene. This seems to
suggest that the geometric relationship between the object and its surroundings is important: when the
object is detached (Campanile), then local intensity changes are not sufficient to predict performance;
however when the object is attached to its surroundings, and thus shares geometric properties such as
main orientation (Street), then local intensity changes do predict performance more accurately.

We also found that the correlation with the front-front metric is strongest when the scene is lit from
the back, which seems to suggest that it is easiest to detect inconsistencies when the object is dark
and the background bright rather than vice-versa. Further studies are needed to explore this result
further.

Elevation: as with the Azimuth histogram data, the strongest correlation is observed with the front-
front histogram metric in the case of elevation. However, we also observed more correlations with the
other metrics, which seems to suggest that global intensity changes are more important in the case of
elevation.
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Fig. 10: Correlations between participant detection accuracy and the two most promising image his-
togram metrics.

6. DISCUSSION

6.1 Insights on original questions

From the results of Experiment II, we can suggest some answers to the questions posed in sec. 2:

(1) Can we quantify the noticeable light source inconsistencies for sun direction relative to view direc-
tion in outdoor scenes?
We cannot put any absolute bounds on whether a particular inconsistency is noticeable. For both
azimuth and elevation, there were cases where the smallest change we introduced was perceptible
and the largest case was not. Consistent with previous work [Koenderink et al. 2003], observers
were less sensitive to changes in elevation. We note that this adds to our understanding, since in
previous work the “camera view” was near 90 degrees elevation, rather than 0 degrees elevation
(closer to normal street view) in our study. Unlike previous work, we found that it was not just the
magnitude of the error, but the absolute value of the light direction that mattered.

(2) Do we see the same thresholds for angle as observed by Lopez-Moreno et al. [2010] for the real and
textured scenarios? Do we see the same back lit/front lit effects?
Despite the presence of texture in our study, we found in several cases that errors of 30 degrees
were easily perceptible. We found differences in front and back lit scenes, but we did not find that
illumination inconsistencies from the back were more readily detected. Our results were depen-
dent on scene structure. In particular, we are considering inserting building objects with strong
orientation in a particular direction, rather than the rounded objects considered by Lopez-Moreno
et al. As a result, the errors in the light direction with respect to the primary orientation of the
object being inserted have a greater effect.
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AZIMUTH

Effect F-Test Post-hoc
DIR F1,13 = 5.84, p < 0.05 Changes to right of camera higher
SIDE F1,13 = 81.01, p ≈ 0.05 Front > Back
ERR F2,26 = 28.65, p ≈ 0.00 30 < 60 < 90
AZI F2,26 = 16.63, p ≈ 0.00 Highest when lit from center or left of camera
MODEL×DIR F1,13 = 5.94, p < 0.05 Street: Left<Right
MODEL×AZI F2,26 = 7.72, p < 0.005 Left of camera lower for Street only
DIR×AZI F2,26 = 4.27, p < 0.05 Left dir vs. Right not sig. when lit from right
MODEL×SIDE×ERR F2,26 = 8.50, p < 0.005 Order of front and back errors different for Street and Campanile.
MODEL×DIR×AZI F2,26 = 29.28, p ≈ 0.00 Biggest change is in Street, lit from left, changedir to left
MODEL×SIDE×AZI F2,26 = 5.45, p < 0.05 Street: lit from left and back lower than from front. Not so Campanile
MODEL×ERR×AZI F4,52 = 4.93, p < 0.005 Best explained in 5-way interaction
DIR×SIDE×ERR F2,26 = 11.55, p ≈ 0.00 See 5-way interaction
DIR×SIDE×AZI F2,26 = 10.84, p ≈ 0.00 See 5-way interaction
MODEL×SIDE×ERR×AZI F4,52 = 9.72, p ≈ 0.00 See 5-way interaction
DIR×SIDE×ERR×AZI F4,52 = 5.86, p < 0.005 See 5-way interaction
MODEL×DIR×SIDE×ERR×AZI F4,52 = 6.41, p ≈ 0.00 See fig. 8 for full details

ELEVATION

Effect F-Test Post-hoc
ELE F7,91 = 5.33, p ≈ 0.0 Zenith, Horizon and midpoints higher
ERR F2,26 = 15.62, p ≈ 0.0 15 = 30 < 45

MODEL×SIDE F1,13 = 12.71, p < 0.005 Front < Back for Campanile, opposite for Street
MODEL×ERR F2,26 = 8.16, p < 0.005 15 = 30 < 45 for Campanile, all diff for Street
ELE×ERR F14,182 = 2.69, p < 0.005 See 3-way interactions
MODEL×SIDE×ERR F2,26 = 3.76, p < 0.05 Campanile: Front > Back only for 45; Opposite for all Street ERR.
MODEL×SIDE×ELE F7,91 = 3.45, p < 0.005 See fig. 9 for full details

Table II. : Main significant results for the experiments presented in this paper.

(3) Do we see the same thresholds for angles vary with respect to height above the viewer (elevation) as
for angular variations from left to right (azimuth)?

We considered differences of 30 degrees for both azimuth and elevation. While differences of 30
degrees in azimuth were perceptible in a wider range of circumstances, differences in 30 degrees of
elevation were important for either (but not both) front illumination or back illumination, depend-
ing on the scene structure.

(4) Is the sensitivity for large structures in large depth-of-field images the same as for sets of synthetic
or low-depth-of-field objects?

The sensitivity for large structures is different, but apparently not because of texture masking or
“naturalness”, but because of the strong consistent orientation of the objects we are considering.

(5) Is there an effect of whether light comes from the left or right of the viewer?

The effect of light coming from the left or right of the viewer is different for the two different scenes.
It appears that the orientation of the light with respect to the main orientation of the element of
interest is more important than light direction with respect to the viewer.
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(a) Montage 1 (b) Montage 2

(c) Mask 1 (d) Mask 2

Fig. 11: Examples of real pre-visualization image composites. We show the composite images on the top row, and their corre-
sponding segmentation masks bottom row for reference. The masks indicate the inserted object (green) and the original back-
ground image (red). In both images, there is a difference of 30◦ in sun azimuth between the inserted object and the background.
According to our findings, users are typically not able to tell whether there is an illumination inconsistency on the image on the
left, but they are for the image on the right. Our results could be helpful in designing a pre-visualization system which takes
illumination inconsistencies into account.

6.2 Application: determining the realism of pre-visualization composites

We return to the original motivation for our work and apply our findings to the application of deter-
mining the realism of pre-visualization image composites, as are commonly needed in architectural
design or film production.

For the purpose of demonstration, we created image composites manually from images where the
relative position of the sun with respect to the camera is known. In fig. 11, we generated two montages
by transferring a structure from one image onto another. Montage 1 was created starting from an
image where the sun had an azimuth angle of φs = 120◦ (following the notation in fig. 7(a)), whereas
montage 2 was created from an image where φs = 180◦.

In both cases, we inserted a structure cut from an image with a 30◦ azimuth difference from the
background lighting conditions. All the images used to generate montages had a sun elevation of ap-
proximately θs = 45◦. This situation corresponds to the case shown in fig. 8(a). Indeed, we notice that,
while montage 1 looks correct, there is a perceivable illumination inconsistency in montage 2: the
building on the left has improper shading with respect to the one on the right. Even if the azimuth
difference is constant at 30◦ in both cases, the effect of the absolute location of the main light direction
is important.
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7. CONCLUSIONS

In this paper, we investigate the conditions in which lighting inconsistencies in montages of outdoor
scenes are perceivable by humans. Focusing on the directionality of outdoor lighting, we present find-
ings gathered from a user study asking participants to identify inconsistent composites generated from
a database of synthetically rendered images.

Our first main contribution is to show that previous studies done on simpler, toy-like stimuli, cor-
roborate most of our findings in the context of outdoor scenes. In particular, these studies have demon-
strated that humans seem to be insensitive to directional lighting inconsistencies when azimuth changes
are below 40◦ [Lopez-Moreno et al. 2010], and that changes in elevation are even harder to notice [Koen-
derink et al. 2004]. Our second main contribution is a novel observation, not mentioned by previous
studies, which is that when the sun is directly behind the camera, the threshold at which observers
spot illumination inconsistencies seems to decrease, and it becomes harder to generate a realistic com-
posite. Our findings are useful to guide the generation of pre-visualizations for outdoor scenes.

Our approach has the following limitations. First, in order to reduce the number of test cases to a
reasonable minimum, we sampled the space of azimuth angles at the relatively coarse increments of
60◦, and relative changes at 30◦ jumps. It would be interesting to repeat a similar study by reducing this
increment (especially the relative increment) to a lower value, to determine if a more precise threshold
can be recovered. Second, the set of scenes used in the study was limited to two, again to keep the total
number of conditions to evaluate to a manageable number. The Dublin model presented in sec. 4.1 is
very rich, and could easily be used to generate a more varied set of scenes. Third, objective measures
such as the light directionality are important, but probably not sufficient. Future work should explore
additional lighting properties such as intensity and chromaticity, which are indissociable from the sun
position in real-world imagery.
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