
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 827

Distributed Top-N Local Outlier Detection in Big Data

Yizhou Yan

Computer Science
Worcester Polytechnic Institute

Worcester, MA, USA
yyan2@cs.wpi.edu

Lei Cao

CSAIL
Massachusetts Institute of Technology

Cambridge, MA, USA
lcao@csail.mit.edu

Elke A. Rundensteiner

Computer Science
Worcester Polytechnic Institute

Worcester, MA, USA
rundenst@cs.wpi.edu

Abstract—The concept of Top-N local outlier that focuses on
the detection of the N points with the largest Local Outlier
Factor (LOF) score has been shown to be very effective for
identifying outliers in big datasets. However, detecting Top-N
local outliers is computationally expensive, since the computa-
tion of LOF scores for all data points requires a huge number
of high complexity k-nearest neighbor (kNN) searches. In this
work, we thus present the first distributed solution to tackle
this problem of Top-N local outlier detection (DTOLF). First,
DTOLF features an innovative safe elimination strategy that
efficiently identifies dually-safe points, namely those that are
guaranteed to (1) not be classified as Top-N outliers and (2) not
be needed as neighbors of points residing on other machines.
Therefore, it effectively minimizes both the processing and
communication costs of the Top-N outlier detection process.
Further, based on the well-accepted observation that strong
correlations among attributes are prevalent in real world
datasets, we propose correlation-aware optimization strategies
that ensure the effectiveness of grid-based partitioning and of
the safe elimination strategy in multi-dimensional datasets. Our
extensive experimental evaluation on OpenStreetMap, SDSS,
and TIGER datasets demonstrates the effectiveness of DTOLF
− up to 10 times faster than the alternative methods and scaling
to terabyte level datasets.

Keywords-Local Outlier Factor; Top-N; Safe Elimination;

I. INTRODUCTION

Motivation. Outlier detection is an important data mining

technique [2] that discovers abnormal phenomena, namely

values that deviate significantly from the common occur-

rence of values in the data [10]. Outlier detection is critical

for applications from credit fraud prevention, network in-

trusion detection, stock investment planning, to disastrous

weather forecasting.

Local Outlier Factor (LOF) [5] is one of the most popular

outlier detection methods [2]. LOF generates an outlierness

score (LOF score) for each point in the dataset. The LOF

score is measured based on the relative density of each point

in relation to its local neighbors to detect outliers. Since the

relative density reflects the local data distribution, LOF is

shown to be very effective [2], [6] at handling real world

large datasets which tend to be heavily skewed [16]. A

variation of LOF called Top-N LOF was proposed in [12].

It leverages the insight that outliers typically correspond to

only an extremely small fraction of the overall input dataset.

Therefore Top-N LOF only returns N points with the largest
LOF scores that represent the most extreme outliers and thus

are of great importance to the application.

State-of-the-Art. Intuitively Top-N LOF can be supported

by first computing the LOF scores for all points and then

selecting the Top-N among them. However, computing the

LOF score for all points is a high complexity process,

because it requires the expensive computation of the k

nearest neighbors (kNN) for each single point. The time

complexity is quadratic in the number of points. As will

be shown in our experiments (Sec. V), even if leveraging

the state-of-the-art distributed pipeline framework for LOF

computation (DLOF) [18], it still takes days to process a

terabyte dataset. Obviously this naive two-step solution is

grossly inadequate to handle big datasets.

To reduce the computation costs, a customized strategy

for Top-N LOF detection was recently proposed [19]. It

features an effective pruning strategy to identify the points

that do not have a chance to be among the Top-N LOF

outliers without computing their LOF scores. It thus saves

expensive kNN search operations. However, this centralized

approach obviously cannot handle a dataset that is too large

to be accommodated by one single machine. Thus, the

development of a highly distributed solution customized for

Top-N LOF remains open.

Challenges. Designing an efficient distributed Top-N LOF

approach is challenging. Intuitively an efficient distributed

Top-N LOF approach can be devised if we could make the

pruning strategy [19] applicable in the DLOF framework

[18]. However, given a point p, even if p is declared as not

an outlier without computing its kNN, p cannot be simply

eliminated from the computation process. This is so because

based on the LOF definition, the kNN of p might be needed

by another point q when computing q’s LOF score. In a

centralized setting, solving this problem is straightforward.

Since all points reside on the same machine, the kNN of p
can be computed on demand when processing the point q.

However, in a distributed setting, the kNNs of p and q might

be computed on different machines. One extra step has to be

introduced in the DLOF pipeline to compute p’s kNN once

p is needed. This will lead to prohibitive communication

and computation costs in a distributed setting − much larger

828

than the computation costs saved by avoiding the LOF score

computation of p. Furthermore, the pruning strategy [19] and

the DLOF pipeline framework [19] both rely on the grid-

based partitioning strategy. However, grid-based partitioning

is considered to be only effective in datasets with very low

dimensions, such as two or three dimensions [11]. Therefore,

designing a distributed Top-N LOF approach that is effective

for multi-dimensional data is challenging.

Proposed DTOLF Approach. In this work, we propose

the first distributed Top-N LOF approach, called DTOLF,

that efficiently detects the Top-N local outliers in big data.

First, DTOLF features a safe elimination strategy that by

only looking at the local distribution characteristics of the

data partition residing on one machine, efficiently identifies

the safe-to-eliminate points that are guaranteed to not be

outliers and also not be needed by any other machine.

These points can be completely eliminated from the Top-

N LOF computation process, thus avoiding costs due to

computation, storage and transmission to other machines

in the next step of Top-N LOF computation. This saves

significant computation and communication costs. The key

innovation here is that, given a partition P, the safe-to-

eliminate points in P can be correctly identified based on

their distances to the boundaries of P. This inspires us to

design a safe elimination strategy that can locate the safe-

to-eliminate points of each partition without requiring any

information about other partitions.

Moreover, DTOLF features a correlation-aware strat-

egy that ensures the effectiveness of DTOLF in multi-

dimensional data. Utilizing the strong correlations often

present in real world datasets, it effectively divides multi-

dimensional data into grid partitions with a small domain

range on each dimension yet avoiding the generation of

a large number of partitions − critical for reducing the

communication costs of distributed LOF computation and

the effectiveness of the safe elimination strategy. The key

insight here is that the correlations can be explored to bound

the neighborhood of each data partition by only taking the

essential data attributes into consideration.

DTOLF is inherently parallel and works in virtually any

distributed computing infrastructure. This helps to assure

ease of adoption by others on popular open-source dis-

tributed infrastructures such as MapReduce [1] and Spark

[20]. Leveraging a moderate size compute cluster, DTOLF

is shown to scale to big datasets at the terabyte level and

cut down the processing time from days to hours.

Contributions. Key contributions of this work include:

• We propose the first distributed Top-N LOF approach

scalable to terabyte level datasets.

• Our safe elimination strategy effectively identifies points

from local data partition that are guaranteed to be not Top-N

outliers, plus also not needed by other machines. Significant

computation and communication costs are saved.

• DTOLF efficiently processes multi-dimensional data by

exploiting the correlations among the data for optimizing

data partitioning and the safe-elimination process.

• Experiments on real OpenStreetMap, SDSS and TIGER

datasets demonstrate that DTOLF drives down the process-

ing time of terabyte level datasets from days to hours −
finally making Top-N local outlier detection practical in big

data applications.

II. PRELIMINARIES

A. Top-N LOF Semantics

Local Outlier Factor (LOF) [5] introduces the notion

of local outliers important for many applications. More

precisely, for each point p, LOF computes the ratio between

its local density and the local density around its neighboring

points. This ratio assigned to p as its local outlier factor

(LOF score) denotes its degree of outlierness. LOF depends

on a parameter k. For each point p in dataset D, k is used to

determine k-distance and neighborhood of p. The k points

closest to p are the k-nearest neighbors (kNN) of p, also

called k-neighborhood of p. k-distance of p is the distance

to its kth nearest neighbor. The LOF score below depends

on the points in its k-neighborhood.

Definition 2.1: The reachability distance of point p w.r.t.

point q is defined as:

reach-dist(p,q) = max {k-distance(q), dist(p,q)}
If one of the kNN of p, say q, is far from p, the reach-

dist between p and q is simply their actual distance. On the

other hand, if q is close to p, the reach-dist between them

is the k-distance of q.

Definition 2.2: The local reachability density (LRD) of

a point p is the inverse of the average reachability distance

of p’s kNN defined by:

LRD(p) = 1/[

∑
q∈Knn(p) reach− dist(p, q)

‖k-neighborhood‖]

Essentially, the LRD of a point p is an estimation of the

density at point p. It represents the inverse of the average

reachability distance between p and the points in its k-

neighborhood. Based on LRD, LOF is defined as follows.

Definition 2.3: The LOF score of a point p is defined by:

LOF (p) =

∑
q∈kNN(p)

LRD(q)
LRD(p)

‖k-neighborhood‖
LOF score is a positive value. Intuitively, the higher the

LOF score, the more the point is considered to be an outlier.

Finally, we define the semantics of Top-N LOF detection.

Definition 2.4: Given the input parameters k and N , the

outliers O of a dataset D correspond to a subset of D
(O ⊂ D) with cardinality |O| = N , where for any p ∈ O
and any q ∈ D −O, LOF (p) ≥ LOF (q).

829

B. Distributed LOF Computation Framework
In [18], a distributed framework that computes LOF

scores for all data points in a given dataset D is proposed,

called DLOF. DLOF first divides the data space into regular

shaped grid cell partitions. Then given a partition P, DLOF

augments P with the “supporting area” that could potentially

contain the kNNs of any of the points (called core points)

in P. As shown in Fig. 1, partition P1 is augmented with the

gray area in partition P2 as its supporting area. The points

inside the supporting areas are replicates of the cores points

in other partitions. For example, points in the gray area serve

as core points in partition P2 as well as support points in

partition P1. By this, each partition is augmented to become

self-sufficient, i.e., the computation of kNN can be achieved

independently in each partition without having to access the

data assigned to other partitions.
Given these support-augmented partitions, DLOF com-

putes the LOF score for each point in 3 steps.
• Step 1: K-distance Computation. This step is further

decomposed into two sub-steps: core partition kNN search

and support partition kNN search. The core partition kNN

computes the local kNNs for points in each partition utilized

to bound the supporting area. The final kNN and k-distance
of each point are computed in the support partition kNN

search step and materialized as intermediate values.
• Step 2: LRD Computation. By Def. 2.1, the reachability

distances of each point p to its kNN q is computed using

the k-distances of p and q from step 1. At the same time,

the LRD value of p − the average reachability distance of

p to its kNN q, can be naturally derived and materialized.
• Step 3: LOF Computation. LRD values materialized in

the second step is leveraged to compute the final LOF scores.
One critical task accomplished at each of the first two

steps is that each input data point p is enriched with

its corresponding intermediate values (its kNN, k-distance,

LRD) computed by that step. Then at the beginning of the

next step, these enriched data points are distributed again to

the machines that list them as support points. This ensures

each point has sufficient information to conduct the next step

computation. For example, in the LRD computation step,

given a core point p in partition P1, suppose p has a kNN

q in the supporting area of P1. The LRD computation of p
needs the kNN of q. Since q is a core point of partition P2,

the kNN of q might be computed in a different machine at

the first step and hence is not directly accessible by p. The

above mechanism solves this problem by re-distributing the

enhanced q to P1. This ensures that DLOF process is fully

distributed in each step.
Moreover, DLOF has been further enhanced with an

early termination strategy, thus called DLOF-Early. That

is, instead of calculating the LOF score strictly step by

step, DLOF-Early aggressively pushes the LOF computation

into the early stage of the pipeline and completes the LOF

computation of any point as early as possible. Only the point

that cannot acquire its LOF score in the current step will be

passed to the next step. For the details please refer to [18].

Figure 1: Support area of P1 and pruning (k=3).

C. TOLF: Top-N LOF approach

Recently, a centralized strategy for Top-N LOF approach

is proposed, called TOLF [19]. TOLF features a multi-
granularity pruning strategy that quickly locates and prunes

points having no chance to be in the Top-N outlier list. By

partitioning the data into grid cells with the length of each

side set as l (Equation 1), a cell C that contains more than

k points can be immediately pruned without any further

evaluation. This cell-based pruning strategy is called Cell
Prune or in short CPrune.

l =
ct× cp

2
√
d

(1)

In Equation 1, cp represents the distance of the closest

pair of points in a data partition of a d-dimensional dataset

D. ct denotes the n-th largest LOF scores among the points

that have been processed so far. The intuition here is that

any point in such a cell C is guaranteed to have a LOF score

smaller than ct. Therefore, all points in C are not outliers.

As shown in Fig. 1, partition P1 has been divided into small

grid cells, the cell in the middle that contains 3 points can

be directly pruned without any further computation.

If an entire cell cannot be pruned, then the pruning is

conducted at the individual point level, thus called Point
Prune or in short PPrune. The idea is to approximate the

upper bound LOF score U (p) (Equation 2) for a given point

p. If U (p) is smaller than ct, then p is not an outlier.

U(p) =
max{reach− dist(p, q)|q ∈ kNN(p)}

min{d(q, o) | q ∈ kNN(p) and o ∈ kNN(q)}
(2)

III. SAFE ELIMINATION STRATEGY

In Sec. II-A, we observe that the LOF score of each single

point p is determined by many other points, namely its k
nearest neighbors (kNN), its kNN’s kNN, and its kNN’s

kNN’s kNN. Accordingly, each point p serves two roles

during the entire computation, namely as a “core point”

of which LOF value needs to be computed and a “support

830

point” that assists the LOF computation of other core points

q. Therefore, even if a point p can be pruned by TOLF [19]

as a “core point” indicating that the point itself is guaranteed

to be not within the Top-N LOF list, p might still need to

serve as a “support point” of possibly many other points q
residing on other machines thus cannot be eliminated from

the detection process.

For TOLF [19], all points are available at any time on the

same machine. For this reason, the computation for point p
as a “support point” can be postponed and conducted only

when necessary. To be specific, only when a point p is one

of the kNN of point q that cannot be pruned, the kNN and

LRD of point p will have to be calculated in order to support

the computation of q’s LOF score.

However, in the distributed environment, this is more

complex since one machine cannot access all data points.

Therefore, the kNN of a core point p in partition P1 cannot

be computed on demand when the core point q in another

machine needs it. Unfortunately introducing an additional

step in the distributed framework to compute and then

pass the kNN of p to the machine where q resides leads

to prohibitive additional computation and communication

costs. Therefore, even if a core point p in partition P1 can be

pruned without computing its LOF score based on the key

innovations from TOLF on Equations 1 and 2, we might

still have to compute its kNN. However, in a distributed

context, this would negate the major benefit of pruning, since

the major performance bottleneck of LOF is caused by the

expensive kNN search computation.

Data Flow Data Flow

Compute KNN &
Bound supporting area

Compute LRD Compute LOF

Top-N LOF

Multi-granularity Pruning
& Safe elimination Point-based Pruning

Figure 2: New Proposed DTOLF Framework.

To solve this problem, we now propose a novel safe

elimination strategy that, given a partition P1, can quickly

identify the points guaranteed to be not needed by any other

machine (so called safe-to-eliminate points) based on only

the local distribution characteristics of P1 itself. Therefore

it naturally fits the DLOF framework (Sec. II-B). Once

the safe-to-eliminate points have been identified, then this

opens up the opportunity to seamlessly plug the cell-based

and point-based pruning strategies proposed in [19] into the

DLOF framework. The overall process of our distributed

Top-N LOF framework is shown in Fig. 2.

A. Safe Elimination Strategy

Given a partition Pi, the points that are not the kNN of any

point in any other partition Pj are called “safe-to-eliminate

points”. These points can be safely eliminated from the

outlier detection process if they can also be pruned based

on Equations 1 and 2.

Our safe elimination strategy is based on the observation

that given a partition Pi, a safe-to-eliminate point can be

identified based on its distance to the boundaries of Pi.

Intuitively, given two partitions P1 and P2 that share a

common boundary b, most likely a point p in partition P1 is

not a kNN of any point in P2 if p is far away from boundary

b. As shown in Fig. 3, very possibly p2 in P1 is not a kNN

of any point in partition P2.

Next, we demonstrate how our safe elimination strategy

determines whether a point p in P1 is guaranteed not to be

the kNN of one point in partition P2 based on its distance

to the boundary. Given a point pi in partition P1 and a point

qj in partition P2, the line that connects pi and qj must

intersect the boundary b at point bij . For example, as shown

in Fig. 3, the line connecting point p1 in partition P1 and

q1 in partition P2 intersects the boundary at point b11. The

insight here is that if pi is not a kNN of bij , then pi is

guaranteed to be not a kNN of qj .

Lemma 3.1: Given three data points p, q, and b connected

by one straight line, where p ∈ partition P1, q ∈ partition

P2, and b is on the boundary shared by P1 and P2, if p �∈
kNN(b), then p �∈ kNN(q).

Proof: Since p is not a kNN of b, there ex-

ists k points p1 , p2 , . . . , pk in partition P1, where

dist(pi , b) < dist(p, b) (1 ≤ i ≤ k). By triangle inequal-

ity, it holds that dist(pi , q) <= dist(pi , b) +dist(b, q)
< dist(p, b) +dist(b, q) = dist(p, q). Therefore, there ex-

ists k points, namely p1 , p2 , . . . , pk , that are closer to q than

p. Therefore, p is not a kNN of q. Lemma 3.1 is proven.

By Lemma 3.1, since p2 in Fig. 3 is obviously not a

kNN of b21, it is guaranteed to also not be a kNN of q1.

Thus p2 is called a “safe-to-eliminate point” w.r.t point q1
in partition P2. Correspondingly, if a point pi in partition

P1 is not a kNN of any point bij , where bij corresponds to

the intersection point of boundary b and the line connecting

pi and any point qj in partition P2, then pi is not a support

point of partition P2. In other words, pi a safe-to-eliminate

point w.r.t. P2.

However, this raises the challenge that computing the

kNNs for all bij points is expensive. Furthermore, this would

require the knowledge about the points in partition P2 when

identifying the safe-to-eliminate points in P1. Unfortunately,

in a distributed environment, P1 and P2 might reside on dif-

ferent machines. Typically, in many modern shared-nothing

distributed infrastructure, one machine cannot access the

data on other machines as well. Even if it is possible, this

will introduce prohibitive communication costs.

831

Figure 3: Boundary Points.

We solve the above problems by instead computing for

each point pi in partition P1 the maximal and minimal

distances from pi to any point on boundary b denoted as

pi .max and pi .min . First, we compute an upper bound k-

distance of any point on boundary b, denote as U (b), based

on the k-th smallest pi .max . Then given any point pi, if

its pi .min is larger than U (b), it has no chance to be the

kNN of any point on b. This in turn proves that pi is a safe-

to-eliminate point w.r.t. P2 by Lemma 3.1. Lemma 3.2 and

Lemma 3.3 prove the correctness of the strategy.

Lemma 3.2: Given a partition P ={p1 , p2 , . . . , pn} (n ≥
k) and a boundary b, for any point bx on boundary b, k-
distance(bx) ≤ U (b), where U (b) corresponds to the k-th

smallest pi .max for ∀pi ∈ P.

Proof: Since pi .max = max{dist(pi , bx), ∀bx ∈ b},

∀bx ∈ b, dist(pi , bx) ≤ pi .max . Since U (b) is the k-th

smallest pi .max , there exists at least k points {p1 ,
p2 , . . . , pk} in partition P with pi .max ≤ U(b)
(1 ≤ i ≤ k). Therefore, given any point bx on boundary b,
dist(bx , pi) ≤ U (b). Since 1 ≤ i ≤ k , there are at least k

points in P whose distances to bx are smaller than U(b).
Therefore k-distance(bx) ≤ U (b). Lemma 3.2 is proven.

Lemma 3.3: Given a partition P1, its boundary b shared

with partition P2, and an upper bound U (b), ∀ point pi
∈ P1, pi is a safe-to-eliminate point w.r.t P2, if pi .min >
U (b).

Proof: Since pi .min = min{dist(pi , bx), bx ∈ b},

∀bx ∈ b, dist(pi , bx) ≥ pi .min > U (b). According to

Lemma. 3.2, every point on the boundary can find their

kNN within distance U (b). If ∀bx ∈ b, dist(pi , bx) > U (b),
then pi has no chance to be kNN of any point on boundary

b. By Lemma 3.1, pi is safe-to-eliminate point w.r.t P2.

Lemma 3.3 is proven.

Since each partition corresponds to a grid cell, each

boundary b is parallel to one axis of the data space.

Therefore, computing pi .max and pi .min is straightforward.

pi .max can be determined by first computing the distances

from pi to the endpoints of b and then selecting the largest

distance. The pi .min corresponds to the perpendicular dis-

tance from pi to b. The safe elimination algorithm based on

the above observation is demonstrated in Algorithm 1.

Segment-based Safe Elimination Strategy. The effec-

tiveness of our proposed safe elimination strategy relies

Algorithm 1 Safe Elimination

1: k ← number of nearest neighbors

2: pi.max = max{dist(pi, bx), bx ∈ b}
3: pi.min = min{dist(pi, bx), bx ∈ b}
4: function SAFE-ELIMINATION(POINT-LIST[p1 ,. . . ,

pm], BOUNDARY b)

5: kNN(b) = Compute pi .max and maintain k small-

est distance

6: U (b) = max (kNN (b))
7: for pi ∈ point-list do
8: if pi .min > U (b) then
9: Sb = Sb ∪ pi

return Sb

Algorithm 2 Segment-based Safe Elimination

1: function SAFEELIMINATIONFORSEGMENTS(POINT-

LIST[p1 ,. . . , pm], BOUNDARY b)

2: Sb = point-list

3: S = {s1 , s2 , . . . , sm} � divide into segments

4: for si ∈ S do
5: Sb = Sb∪ SAFE-ELIMINATION(point-list, si)

return Sb

on the value of U(b). When U(b) is large, only a limited

number of points can be marked as safe-to-eliminate points.

As shown in Fig. 4, since U(b) is large, the gray area

corresponding to the area that potentially contains the kNNs

of points on b covers almost all points in partition P1. Hence,

only a few points can be safely eliminated.

Next, we thus design a method to minimize U(b). The

idea is inspired by the boundary length observation. Since

pi .max is determined by the distances between pi and the

two endpoints of the boundary b, U(b) is highly correlated

to the length of boundary b. In general the longer b is, the

larger the U(b) tends to be. Therefore, if we divide the entire

boundary into small units and compute the pi.max w.r.t each

segment separately, we will get a much smaller segment

level upper bound denoted as U (s).

As shown in Fig. 5, the black dashed line corresponds to

the U (s) for segment s3. That is, the k-th smallest pi.max
from points in partition P1 to segment s3. After obtaining the

upper bound for s3, the gray area is bounded, in which points

are potentially the kNNs of the points on segment s3. After

establishing U(s) and the corresponding kNN areas for all

segments, the safe-to-eliminate points are determined, that

is, the points out of the union of all gray areas. The segment-

based safe elimination algorithm is shown in Algorithm 2.

In general, the safe elimination strategy not only supports

the multi-granularity pruning strategy, but also reduces the

duplication rate compared to DLOF [18]. More specifically,

even if a point p in partition P1 is inside the supporting

area of partition P2 based on the bounding method of DLOF

832

Figure 4: Large Upper Bound (k=3)

descried in Sec. II-B, it is not a supporting point of P2 when

it is a safe-to-eliminate point in partition P1.

Figure 5: Segment-based Upper Bound (k=3)

Safe Elimination with Index. Note, in order to com-

pute the U(b) and identify the safe-to-eliminate points, our

segment-based strategy requires the computation of pi.max

and pi.min for each point with respect to each segment. This

process can be time-consuming especially when there are a

large number of points in the partition. Next, we design

indexing-based method to speed up this process.

First, we show how an index such as an R-tree can be

utilized to speed up the U(b) computation. Assume an R-

tree structure is built for partition P. Given a segment si,
we first locate the bounding boxes in the R-tree structure

that intersect si. Then for each point pi in these bounding

boxes, we compute pi.max and maintain the k-th smallest

pi.max as a temporal U(b)t. We then construct a regular

rectangle shaped “unsafe area” utilizing U(b)t as shown in

Fig. 4. Then we compute q.max for each point q in the

bounding boxes that overlap with the unsafe area. U(b)t
will be updated if q.max is smaller than U(b)t. U(b)t gets

smaller than smaller when more points are processed. After

processing all points in these bounding boxes, we get the

final U(b). It defines the final “unsafe area” that is smaller

than the initial one.

Next, we show how to locate the safe-to-eliminate points.

This is done by identifying the “unsafe points”, namely the

points that might be the kNNs of points in other partitions.

Again we first locate the bounding boxes in R-tree that

overlap the unsafe area. We then examine the data points

inside these bounding boxes. Point pi is marked as an unsafe

point if pi .min ≤ U (b). Naturally, the points not marked as

unsafe points are marked as the safe-to-eliminate points.

Utilizing the index, only a limited number of data points

is examined w.r.t each segment. Thus this index significantly

speeds up the safe elimination process.

IV. CORRELATION-AWARE DTOLF

Although DTOLF approach works well when dealing with

low dimensional datasets, as dimensionality increases, the

partitioning strategy of the distributed LOF framework as

well as the cell-based CPrune strategy of Top-N LOF com-

putation become less efficient. In this section, we further pro-

pose correlation-aware optimization strategies that ensures

the effectiveness of DTOLF in handling multi-dimensional

data. These strategies are based on the observation that

strong correlations often exist in real datasets. We now

illustrate how such correlations could be leveraged during

partitioning and pruning.

Correlation-aware Partitioning. Similar to other dis-

tributed analytics work [21], [15], [18], we adopt the

domain-based partitioning strategy that partitions the domain

space into regular shaped grid partitions. Each partition

contains similar number of points. This ensures both data

proximity within each partition and the load balancing across

all partitions. The partitions are generated by iteratively

dividing each dimension such that each dimension of a grid

partition only covers a small domain range. This successfully

restricts the size of the supporting area of each partition and

in turn reduces the duplication rates. However this strategy

tends to generate a large number of grids when the data

dimension increases. Significant cost arises when assigning

the points to the corresponding grids.

Correlation Observation. The observation here is that

if two dimensions are strongly correlated, dividing one

dimension is effectively equivalent to dividing both. For

instance, given a two-dimensional domain space x ∈ [0 , 9]
and y ∈ [0 , 9], if these two dimensions exhibit a strong

correlation x = y , then when dividing dimension x into

x1 ∈ [0 , 4] and x2 ∈ [5 , 10], dimension y tends to be also

automatically divided into y1 ∈ [0 , 4] and y2 ∈ [5 , 10].
Based on this property, data partitioning can be performed

only on independent dimensions instead of on all dimen-

sions. This effectively reduces the number of partitions,

while still ensuring that each partition has a supporting area

covering a small domain space. This reduces the number

of the duplicated support points and thus saves both the

computation and communication cost.

Correlation-aware Pruning. When generating the cells

for the cell-based CPrune pruning strategy, the correlation

property can be leveraged in the same manner as data

partitioning, that is, dividing each partition only on the in-

dependent dimensions. This will generate a smaller number

of cells compared to dividing on all dimensions. Obviously

when the number of the cells is reduced, on average the

833

number of cells that contain more than k points will increase.

This benefits CPrune as shown in Sec. II-C. However, by

Equation 1, CPrune restricts the size of the cell on each

dimension to be l = ct∗cp
2
√
d

. If cells are generated by dividing

only on independent dimensions, the undivided dimension

might not satisfy the size requirement. Therefore, the cell

with more than k points cannot be simply pruned. In order

to still effectively conduct CPrune on the cells produced by

only dividing the independent dimensions, we enhance the

original CPrune strategy with some specific constraints on

correlated dimensions, namely Correlation-aware CPrune.

Suppose the dataset consists of a set of independent

dimensions I = {i1 , i2 , · · · , im} and a set of dimensions

R = {r1 , r2 , · · · , rn} that are correlated with the dimen-

sions in I . The cells are generated by only dividing inde-

pendent dimensions with size l.
Lemma 4.1: Given a cell Ci, all points contained in C�

can be pruned if: (1) Ci contains at least k + 1 points;

(2) for each dimension rj ∈ R, Dmaxrj
−Dminrj

≤ l , where

Dminrj
and Dmaxrj

are the minimum and maximum values

on dimension rj in all points of Ci.

Condition (2) puts the domain range constraint on the

correlated dimension rj . This ensures that the size of dimen-

sion rj does not exceed the cell size requirement (Equation

1) of cell-based CPrune . Therefore, any cell satisfying the

above conditions can be safely pruned despite the fact that

correlated dimensions are not partitioned. Based on our

correlation observation, since partitioning one dimension in

effect also partitions its strong correlated dimension, the

chance that Condition (2) is satisfied tends to be high. This

is also confirmed in our experiments on real datasets.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup & Methodologies

Experimental Infrastructure. All distributed experi-

ments are conducted on a Hadoop cluster with one master

node and 24 slave nodes. Each node consists of 16 core

AMD 3.0GHz processors, 32GB RAM, 250GB disk. Nodes

are interconnected with 1Gbps Ethernet. Each server runs

Hadoop 2.4.1. Each node is configured with up to 4 map

and 4 reduce tasks running concurrently, sort buffer size set

to 1GB, and replication factor 3. The centralized algorithm

runs on a computer with Intel 2.60GHz processor, 500GB

RAM, and Ubuntu operating system. All code used in

the experiments is available at https://github.com/yizhouyan/

TopNLOFPruningWithPrioirty.

Datasets. We evaluate our proposed methods on three

real-world datasets: OpenStreetMap [9], SDSS [8] and

TIGER [7] and two terabyte level synthetic datasets.

OpenStreetMap, one of the largest real datasets publicly

available, contains geolocation data from all over the world

and has been used in other similar research work [21],

[15]. Each row in this dataset represents an object like a

building or road. To evaluate the robustness of our methods

for diverse data sizes, we construct hierarchical datasets of

different sizes: Partial Massachusetts (3 million records),

Massachusetts (30 million records), Northeast of America
(80 million records), North America (0.8 billion records),

up to the whole planet (3 billion). In our experiment two

attributes are utilized for distance computation, namely

longitude and latitude.

Sloan Digital Sky Survey (SDSS) dataset [8] is one of

the largest astronomical catalogs publicly accessible. The

thirteenth release of SDSS data utilized in our experiments

contains more than 1 billion records and is 3.4TB in size.

In this experiment we extract the eight numerical attributes

including ID, Right Ascension, Declination, three Unit Vec-

tors, Galactic longitude and Galactic latitude. The size of

the extracted dataset is 240GB.

TIGER [7] dataset represents GIS features of the US.

This 60GB dataset contains 70 million line segments. The

four numerical attributes we utilize include the longitude and

latitude of the two endpoints of each line segment.

Synthetic Datasets. The OpenStreetMap data for the

entire planet contains more than 500GB of data. To eval-

uate how our proposed methods perform on terabyte level

data we generate two datasets 1TB and 2TB respectively

based on the OpenStreetMap dataset. More specifically,

we generate the 2TB dataset by moving each point ver-

tically, horizontally, and also along both directions to

create three replicas. That is, given a two dimensional

point p(x , y) where 0 ≤ x ≤ dx 0 ≤ y ≤ dy , three repli-

cas p′(x + dx , y),p
′′(x , y + dy) and p′′′(x + dx , y + dy)

are generated. Then the 1TB dataset (6 billion records) is

generated by extracting half of data from the 2TB dataset

(12 billion records).

Metrics. First, we measure the total end-to-end execution
time elapsed between launching the program and receiving

the results − common for the evaluation of distributed

algorithms [21], [15], [18]. To provide more insight into

potential bottlenecks, we break down the total time into time

spent on key phases of the MapReduce workflow, including

preprocessing, core partition kNN search, support partition
kNN search, LRD calculation, LOF calculation and Top-N
LOF calculation. Second, we measure the duplication rate
of each method.

Algorithms. Since no prior work on distributed Top-

N LOF exists in the literature, we create two alterna-

tive approaches leveraging the distributed LOF computation

framework (DLOF) [18]. That is, we first compute the LOF

value for each point by utilizing the DDLOF or the DD-

Early approaches of [18] and then rank the points based on

their LOF values. These two approaches are called DDLOF

and DD-Early in our experiments. The centralized TOLF

algorithm proposed in [19] is also evaluated on smaller

datasets. We compare DDLOF, DD-Early, and TOLF against

DTOLF proposed in our work. All four algorithms produce

the exactly identical set of Top-N LOF outliers.

834

DDLOF DD-Early TOLF DTOLF
0

100

200

300

400

500

600

700

800
T
im

e
(s
e
c
)

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(a) Massachusetts

DDLOF DD-Early TOLF DTOLF
0. 0

0. 3

0. 6

0. 9

1. 2

1. 5

1. 8

2. 1

T
im

e
(s
e
c
)

×103

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(b) NorthEast

DDLOF DD-Early DTOLF
0

1

2

3

4

5

6

T
im

e
(s
e
c
)

×103

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(c) North America

DDLOF DD-Early DTOLF
0

1

2

3

4

5

T
im

e
(s
e
c
)

×104

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(d) Planet

Figure 6: Evaluation of Processing Time with OpenStreetMap Datasets.

Experimental Methodology. We conduct experiments to

evaluate the effectiveness of our proposed algorithm using

various datasets derived from the OpenStreetMap, SDSS,

and TIGER datasets. Except for the experiments of varying

parameter k, the input parameter k of LOF is fixed as 6

shown to be effective in capturing outliers in [5]. Similarly,

except for the experiment varying parameter n, the input pa-

rameter n of top outliers is set to be 0.0001% of the total data

points for each dataset. For example, in the OpenStreetMap

Planet dataset (3 billion records) experiment, the top 3000

buildings with largest LOF scores are returned.

B. Evaluation of the Processing Time

We evaluate the breakdown of the processing time of the

four algorithms using OpenStreetMap datasets. Results are

shown in Fig. 6. DTOLF significantly outperforms DDLOF

and DD-Early in all four cases up to 10 times and 5 times

in total processing time respectively. Better yet, the larger

the dataset, the more it wins. The performance gain of

DTOLF results from the safe elimination strategy that elim-

inates the points that are neither Top-N outliers nor support

points of other partitions in the k-distance computation step

of the distributed pipeline. Although determining safe-to-

eliminate points introduces extra costs, our indexing-based

safe elimination strategy significantly speeds up the process.

On the contrary, the DDLOF and DD-Early approaches

cannot eliminate points, because they are not able to assess

whether a point will be needed by other partitions without

the support of our safe elimination strategy. This introduces

extra disk IO and communication costs. Worst yet, it also

increases the computation costs in the subsequent steps,

since more points are involved as support points. Besides,

DTOLF also outperforms the centralized TOLF approach on

both Massachusetts and Northeast datasets up to 3 times in

total processing time. This confirms the efficiency of the dis-

tributed strategy of DTOLF. The centralized TOLF approach

DDLOF DD-Early DTOLF
0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

T
im

e
(s
e
c
)

×105

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(a) Planet-1T

DD-Early DTOLF
0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

T
im

e
(s
e
c
)

×105

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(b) Planet-2T

Figure 7: Evaluation of Processing Time with Terabyte-
level Datasets

fails to process large datasets such as NorthAmerica dataset

due to the memory limitation.

C. Evaluation of Scalability

We utilize the 1TB and 2TB data described in Sec. V-A

to evaluate the scalability of DTOLF to terabyte level data.

As shown in Fig. 7, DTOLF is 10 times faster than DDLOF
and 5 times faster than DD-Early respectively. This again

is achieved by our safe elimination strategy that is able to

eliminate none Top-N outlier points that are not needed by

other partitions. In particular, DTOLF eliminates 87.88%

(for 1T case) and 85.19% (for 2T case) points after the

kNN search. Furthermore, as shown in Fig. 9, due to the

elimination capability, the duplication rate of DTOLF is up

to 20 times smaller as compared to the duplication rate of

DDLOF and DD-Early

D. Evaluation on Various Dimensional Data

To study the impact of varying the number of dimensions

on the distributed Top-N LOF outlier detection, we evalu-

835

1 5 10 20 50 100

K

102

103

104

105

T
im

e
(s
e
c
)
-
L
o
g
S
c
a
le

DDLOF

DD-Early

DTOLF

(a) Vary K

10 100 1000 5000 10000

N

0

1

2

3

4

5

6

T
im

e
(s
e
c
)

×103

DDLOF
DD-Early
DTOLF

(b) Vary N

Figure 8: Vary Parameters k and n on North America dataset

MA NE NA Planet 1T 2T

Datasets

0. 0

0. 5

1. 0

1. 5

2. 0

2. 5

D
u
p
li
c
a
ti
o
n
R
a
te

DDLOF
DTOLF

Figure 9: Duplication Rate of Open-
StreetMap Datasets

DDLOF DD-Early DTOLF
0

200

400

600

800

1000

1200

T
im

e
(s
e
c
)

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(a) TIGER

DDLOF DD-Early DTOLF
0

1

2

3

4

5

T
im

e
(s
e
c
)

×104

Preprocess

Core KNN

Support KNN

LRD

LOF

Top-N

(b) SDSS

Figure 10: Evaluation of Processing Time with Multi-
dimensional Datasets

ate D-TOLF on the SDSS dataset (8-dimensions) and the

TIGER dataset (4-dimensions).

Fig. 10(b) showcases the results on the eight dimensional

SDSS dataset. DTOLF is around 4 times and 2 times faster

than DDLOF and DD-Early respectively in total processing

time. With the correlation-aware partitioning and CPrune

strategies presented in Sec. IV, DTOLF is effective in multi-

dimensional datasets. The performance gain of DTOLF can

be explained by the use of smaller number of partitions and

large cells that are critical to effectively identify the points

guaranteed to be not Top-N outliers.

Similarly, DTOLF is around 2 times faster than both

DDLOF and DD-Early on the TIGER dataset as shown in

Fig. 10(a). In summary, our experiments on the SDSS dataset

and TIGER dataset demonstrate that our DTOLF approach

efficiently support datasets with varying dimensions.

E. Evaluation of Duplication Rate

Next we evaluate the duplication rates of all 3 algorithms

using the same data and setting as in Sec. V-B. Since the

duplication rates are identical for both DDLOF and DD-

Early methods, we only show DDLOF.

Fig. 9 shows the results on the OpenStreetMap datasets.

DDLOF has consistently higher duplication rate than

DTOLF − up to 20 on the 2T dataset. This is expected,

although DDLOF is able to acquire a relatively small sup-

porting area for each partition by utilizing the “local” k-
distance generated in the core partition kNN search phase

(Sec. II-B), the DTOLF further reduces the number of

support points by removing the safe-to-eliminate points as

explained in Sec. III.

F. Evaluation of the Impact of Varying Parameters

We next evaluate the influence of the number of neighbors

k and the number of outliers n. We use OpenStreetMap

North America dataset (800 million records).

Varying Parameter k. Fig. 8(a) presents the results of

varying the LOF input parameter k from 1 to 100. DTOLF
outperforms alternatives up to 5 times in total processing

time. As k increases, the costs of the kNN search will also

increase and hence the overall processing time. However the

processing time of DTOLF increases slower than DDLOF
and DD-Early. Therefore the larger k is, the more DTOLF

wins. This is so because as k increases, more kNN informa-

tion will be written out to HDFS for each point. With the safe

elimination strategy, points that are neither within the Top-n

LOF list nor other partitions support points are completely

removed from the process by the end of the kNN search

phase - thus saving more communication and disk IO costs.

Varying Parameter n. Fig. 8(b) shows the total processing

time when varying the input parameter n, that is, the number

of outliers. N is varied from 10 to 10,000. DTOLF beats

DDLOF and DD-Early in all cases up to 5 fold. Further, the

processing time of DTOLF increases slightly as n increases.

This indicates that the pruning and indexing of DTOLF are

still very effective with large n. The processing time of

DDLOF and DD-Early is stable when n increases. Although

the sorting phase becomes more expensive as n increases,

the costs of the sorting phase are minor compared to the

LOF score computation costs.

836

VI. RELATED WORK

LOF. Breunig et al. [5] proposed the notion of local

outliers in contrast to global distance-based outliers [13],

[17]. They defined a degree of outlierness based on the

density of a point relative to its neighbors, the so called

Local Outlier Factor (LOF). LOF has been shown to provide

better accuracy in anomaly detection compared to global

methods [14].
Top-N LOF. The concept of Top-N LOF outliers was

introduced in [12]. The proposed (centralized) detection

algorithm finds the Top-N LOF outliers without having to

first compute the LOF score for each point. However, it

requires an expensive preprocessing step − shown to be

ineffective in handling large datasets. The recently proposed

multi-granularity pruning strategy [19] further prune points

guaranteed to not be Top-N outliers, yet it being a central

strategy still cannot scale to terabyte level datasets.
Distributed LOF Computation. In [18], a distributed

LOF computation approach, called DLOF, was designed. As

described in Sec. II-B, DLOF computes the LOF score of

each point in a fully distributed fashion. It can be leveraged

to support Top-N LOF outlier by first computing the LOF

scores for all points and ranking the points based on their

LOF scores. However, as shown in our experiments, this

takes days to process terabyte level datasets and hence

cannot meet the response time requirement of modern outlier

detection applications. This is caused by having to conduct

the expensive LOF computation on each point.
Distributed kNN-based Outlier Detection. Distributed

algorithms have been proposed for kNN-based outlier se-

mantics. In these semantics, the outliers are the n points

that have the largest k nearest neighbor distances.
In [3], Angiulli et al. utilized a solving set of points

sampled from the original dataset to approximate whether

a given point p is an outlier by comparing p to only the

elements in this sample set. This method provides an approx-

imate result, whereas we instead focus on providing an exact

solution for the Top-N LOF outlier problem. Furthermore,

[3] requires the solving set to be broadcasted to each node.

This is not scalable to big datasets.
Bhaduri et al. [4] developed a distributed algorithm on a

ring overlay network architecture with m machines. Their

algorithm passes data blocks around the ring - allowing

the computation of neighbors to proceed in parallel. Along

the way, each point’s neighbor information is updated and

distributed across all nodes. For this, a central node is

utilized to maintain and update the top-n points with the

largest k nearest neighbor distances. Their strategies, such as

checking the test blocks in a round robin fashion (requiring

m iterations), is clearly not practical for shared nothing

infrastructures. Furthermore, shared nothing infrastructures

such as MapReduce do not feature such a central node.

VII. CONCLUSION

Top-N Local Outlier Factor semantics (LOF) is shown

to be very effective in detecting outliers [12]. However

existing centralized techniques cannot scale to terabyte level

datasets. In this work, we propose the first distributed Top-N

LOF outlier detection approach called DTOLF. Innovations

include a safe elimination strategy that completely eliminates

the points that have no chance to be the Top-N outlier set

from the distributed computation process and correlation-

aware partitioning and pruning that scale DTOLF to multi-

dimensional datasets by leveraging the correlations among

attributes of the datasets. Our experimental evaluation on

OpenStreetMap, TIGER, and SDSS datasets demonstrate

the scalability and efficiency of DTOLF - up to 10 times

faster than the alternative approaches in handling datasets at

terabyte scale.

REFERENCES

[1] Apache hadoop. https://hadoop.apache.org/, 2015.
[2] C. C. Aggarwal. Outlier Analysis: Second Edition. Springer, 2017.
[3] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. Distributed strategies

for mining outliers in large data sets. IEEE Trans. Knowl. Data Eng.,
25(7):1520–1532, 2013.

[4] K. Bhaduri, B. L. Matthews, and C. R. Giannella. Algorithms for
speeding up distance-based outlier detection. In SIGKDD, pages 859–
867. ACM, 2011.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying
Density-based Local Outliers. In SIGMOD, SIGMOD ’00, pages 93–
104, New York, NY, USA, 2000. ACM.

[6] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková,
E. Schubert, I. Assent, and M. E. Houle. On the evaluation of
unsupervised outlier detection: measures, datasets, and an empirical
study. Data Mining and Knowledge Discovery, 4(30):891–927, 2016.

[7] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In ICDE, pages 1352–1363. IEEE, 2015.

[8] K. S. D. et.al. The sdss-iv extended baryon oscillation spectroscopic
survey: Overview and early data. The Astronomical Journal, 151(2):44,
2016.

[9] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12–18, 2008.

[10] D. M. Hawkins. Identification of Outliers. Springer, 1980.
[11] C. Ji, T. Dong, Y. Li, Y. Shen, K. Li, W. Qiu, W. Qu, and M. Guo.

Inverted Grid-Based kNN Query Processing with MapReduce. In
ChinaGrid Annual Conference (ChinaGrid), 2012 Seventh, pages 25–
32, Sept. 2012.

[12] W. Jin, A. K. Tung, and J. Han. Mining top-n local outliers in large
databases. In SIGKDD, pages 293–298. ACM, 2001.

[13] E. M. Knox and R. T. Ng. Algorithms for mining distance-based
outliers in large datasets. In VLDB, pages 392–403, 1998.

[14] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava. A
comparative study of anomaly detection schemes in network intrusion
detection. In SDM, pages 25–36. SIAM, 2003.

[15] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k nearest
neighbor joins using mapreduce. Proceedings of the VLDB Endowment,
5(10):1016–1027, 2012.

[16] G. H. Orair, C. H. C. Teixeira, Y. Wang, W. M. Jr., and S. Parthasarathy.
Distance-based outlier detection: Consolidation and renewed bearing.
PVLDB, 3(2):1469–1480, 2010.

[17] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for
mining outliers from large data sets. In SIGMOD, pages 427–438, 2000.

[18] Y. Yan, L. Cao, C. Kuhlman, and E. Rundensteiner. Distributed local
outlier detection in big data. In SIGKDD, pages 1225–1234. ACM,
2017.

[19] Y. Yan, L. Cao, and E. Rundensteiner. Scalable top-n local outlier
detection. In SIGKDD, pages 1235–1244. ACM, 2017.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In NSDI,
pages 15–28, 2012.

[21] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large data
in mapreduce. In EDBT, pages 38–49, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

