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ABSTRACT
The detection of abnormal moving objects over high-volume trajec-
tory streams is critical for real time applications ranging from mil-
itary surveillance to transportation management. Yet this problem
remains largely unexplored. In this work, we first propose classes
of novel trajectory outlier definitions that model the anomalous be-
havior of moving objects for a large range of real time applications.
Our theoretical analysis and empirical study on the Beijing Taxi and
GMTI (Ground Moving Target Indicator) datasets demonstrate its
effectiveness in capturing abnormal moving objects. Furthermore
we propose a general strategy for efficiently detecting the new out-
lier classes. It features three fundamental optimization principles
designed to minimize the detection costs. Our comprehensive ex-
perimental studies demonstrate that our proposed strategy drives
the detection costs 100-fold down into practical realm for applica-
tions producing high volume trajectory streams to utilize.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

Keywords
Outlier, Moving Object, Trajectory Stream

1. INTRODUCTION
Motivation. In recent years, the location-acquisition devices like

GPS, smart phone, and RFID have become prevalent. These de-
vices, monitoring the motion of vehicles, people, goods, services,
and animals, are producing massive-volume high-speed trajectory
streams. Many applications from traffic management [5], security
surveillance [2], scientific studies [13], to mobile social networks
[18] rely on continuously discovering abnormal objects in such tra-
jectory streams to deliver critical decisions within an actionable
time.
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In security surveillance systems, a visitor at a miliary base will
be considered as an outlier and thus a potential safety threat if he
does not obey the strict order to stay together with his designated
group members. In traffic management systems a taxi driver will be
classified as an outlier in terms of his erratic behavior if he keeps
changing lanes and switching his neighboring travel companions.
Potentially this may help flag speeding, drunk driving, or other er-
ratic behaviors of concern.

Similarly, if considering the price, volume, or gains of stocks at
a particular time point as coordinates in a multi-dimensional space,
then real time stock quotes can be modeled as a trajectory stream.
Its analysts may reveal recent promising stocks by detecting the
outlier stocks whose performance trajectories dramatically deviate
from those of other stocks in the same industry.

Challenges. In all the applications described above, outliers can
be characterized as moving objects that behave differently from the
majority in trajectory streams. Despite the importance of continu-
ously detecting such types of outliers, to the best of our knowledge,
this problem has not previously been considered in the literature.

In the streaming context Bu et al. [2] defined when to consider a
trajectory segment of a single moving object to be an outlier, while
our work instead focuses on a much more complicated problem,
namely locating outlier objects in the trajectory stream populated
with massive scale moving objects. In [2] a given trajectory is di-
vided into equal sized segments. A segment is said to be abnormal
if it is not similar to a group of segments adjacent to it in time. The
effectiveness of this definition is based on the local continuity ob-
servation. Namely one moving object usually is expected to behave
consistently within a short time interval. However in our context
whether one moving object is an outlier or not depends on its re-
lationship with other objects. The moving patterns of a large set
of objects are more complex and dynamic than one single object’s
path and hence cannot be modeled by the local continuity property.
Therefore this definition cannot be applied to our problem.

In static spatio-temporal (time series) databases, a trajectory is
said to be an outlier if it does not show the global characteristics of
the majority of the trajectories in the overall database [8, 11]. Since
all trajectories are known apriori, these techniques rely on expen-
sive offline pre-processing. Normally they first mine all frequent
patterns to build a model of global characteristics of the dataset. In
the second phase the model is then used to classify each trajectory
as being either an outlier or not. However in unbounded continuous
trajectory streams where concept drift consistently arises, using one
single (pre-computed) model to continuously detect outliers would
inevitably lead to inaccurate results, while periodically rebuilding
the global model can be prohibitively expensive for real time stream
trajectory outlier detection due to the modeling costs.
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Therefore to effectively identify abnormal objects in trajectory
streams, new semantics have to be defined to satisfy the require-
ment of streaming trajectory outlier detection. First, lightweight
metrics suitable to identify outliers in place of complicated statisti-
cal models are desirable. These metrics must capture the key char-
acteristics of moving objects. Second, given the dynamic nature of
stream trajectories this definition should be robust to concept drift
and amenable to swiftly evicting obsolete models of outlierness.

Furthermore, if such a lightweight yet effective outlier definition
could be found, we must be able to process this detection seman-
tics to assure we can extract real time insights from high volume
trajectory stream data, such as the streams of surveillance, stocks,
or traffic. Thus strategies must be designed to efficiently discover
the stream trajectory outliers online as stream data passes by.

Proposed Solution. In this paper, we propose new trajectory
outlier definitions by introducing the notion of “trajectory neigh-
bor” to measure the similarity among different trajectories. Unlike
the traditional neighbor definition [8] which simply considers the
physical distance among two objects at a given point of time, the
trajectory neighbor concept captures the key properties of stream
trajectories. Namely it not only considers the spatial proximity of
trajectory objects, but also takes the duration of the spatial similar-
ity across time into account.

Furthermore our analysis of realtime trajectory applications re-
veals that applications vary in their particular synchronization re-
quirements with respect to the neighbor relationships among mul-
tiple trajectories. We thus propose two variants of the trajectory
neighbor concept with different synchronization regulations that fa-
cilitate users to customize the semantics via controlled parameters.
By measuring the Precision and Recall on the GMTI [3] and Taxi
[16, 17] data, our empirical study confirms that the new definitions
successfully model the deviating behavior that characterizes out-
liers in a rich variety of trajectory stream applications.

Moreover we design a comprehensive strategy to efficiently de-
tect these new outlier types over high volume trajectory streams,
called the minimal examination (MEX) framework.

The MEX framework integrates three fundamental optimization
principles that apply to both neighbor-based outlier definitions. First,
given a trajectory Tri , the minimal support examination principle
guides MEX to always acquire only the minimal yet sufficient set
of neighbor evidence called minimal support. The key insight is
to stop immediately once the outlier status of Tri has been proven.
Second, MEX leverages the temporal relationships among trajec-
tory points to prioritize the processing order among points during
the neighbor search process. This principle, called time-aware ex-
amination, guarantees that we find the relationships most useful for
outlier detection. Furthermore MEX establishes the lifetime con-
cept signaling the furthest window up to which we can predict the
status of Tri based on current trajectory evidence. This enables
MEX to transform the periodical per-window based outlier detec-
tion process into a lifetime-triggered detection process. Our exper-
imental studies on the Taxi data show that MEX can successfully
handle up to one million moving objects per second on a standard
desktop, rendering trajectory outlier detection practical in massive-
scale moving object streams.

Contributions. The main contributions of this paper include:
1) We propose novel neighbor-based trajectory outlier definitions
which are theoretically shown to successfully model the abnormal
behavior of moving objects in the trajectory stream. 2) We de-
sign incremental algorithms for trajectory outlier detection which
leverage the overlap of sliding windows. Our complexity analysis
highlights the need for more sophisticated techniques. 3) We thus
propose the minimal examination (MEX) framework equipped with

three core optimization principles. 4) We propose efficient algo-
rithms for the new trajectory outlier definitions based on the MEX
framework, successfully driving the detection costs 100-fold down.
5) Our empirical study using GMTI and Taxi datasets demonstrate
the robust Precision and Recall of our new proposed definitions.

2. NEIGHBOR-BASED TRAJECTORY OUT-
LIER DETECTION

2.1 Notations
We denote the set of n moving objects as MO = {o1 , o2 , . . . , on},

where oi is the moving object with id = i. The multi-dimensional
data point pji produced by the moving object oi at time tj is called
a trajectory point of Tri. We assume a minimal time interval at
which objects produce events as trajectory points. We utilize the
term “timebin” to refer to this smallest time granularity. The tra-
jectory of a moving object oi is thus an infinite sequence of tra-
jectory points produced at timebins {t1 , t2 , . . . , tj , . . .}, denoted
as Tri={p1i , p2i , . . . pji , . . .}. In this work a moving object is not
limited to an object equipped with location-acquisition device. In-
stead it is an abstraction of any object that continuously observes
distinct events along time. Correspondingly the trajectory point
is not necessarily only a spatial position, but could be any multi-
dimensional coordinate where each dimension corresponds to one
of the domains of the attributes of an object’s observation.

We define a trajectory stream S of n moving objects in MO as
an infinite sequence of trajectory points ordered by timebins S
= {p11p12 . . . p1n, p21p

2
2 . . . p

2
n, . . . , pi1p

i
2 . . . p

i
n, . . .}. Trajectory

points pi
1p

i
2 . . . pi

n are said to fall into the same timebin i in the
stream S.

In this work, we use the periodic sliding window semantics as
proposed by CQL [1] to define a finite sub-stream of an infinite tra-
jectory data stream. In particular, a query Q specifies a fixed win-
dow size w and slide size s for time-based windows, while count-
based windows can similarly be defined. Each window W has a
starting time W.Tstart and an ending time W.Tend = W.Tstart +
w−1. The population of the current window Wc of S consists of all
points whose timebin falls into Wc. It is the finite subsequence of
the trajectory stream S: {ptc−w+1

1 ptc−w+1
2 . . . ptc−w+1

n , ptc−w+2
1

ptc−w+2
2 . . . ptc−w+2

n , . . . , ptc
1 ptc

2 . . . ptc
n }, where tc is the current

timebin. Periodically the current window Wc slides, causing W.Tstart

and W.Tend to increase by s timebins. Henceforth a trajectory Tri
refers to a set of trajectory points produced by one moving object
oi throughout a window Wj .

We use the function dist(pj
m , pj

n) to denote the distance between
two trajectory points pjm and pjn at the same timebin j. Without loss
of generality, we utilize Euclidean distance as the distance measure,
though any other distance measure could equally be plugged in.

Definition 1. (Point Neighbor). For two trajectory points pjm
and pjn in the same timebin tj , if dist(pj

m , pj
n) ≤ d , we say that pjm

is a point neighbor of pjn, with d a given distance threshold.

For point pjn, all point neighbors of pjn at timebin tj w.r.t. the dis-
tance threshold d comprise the Point Neighbor Set of pjn, denoted
as PN (pj

n , d).

Definition 2. (Trajectory Neighbor). In window W , trajectory
Trm is called a trajectory neighbor of Trn w.r.t. the given timebin
count threshold thrt, iff there exist at least thrt timebins in W such
that pm is a point neighbor of pn at each of these thrt timebins
with point neighbor as per Def. 1.
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The set of trajectory neighbors of a trajectory Trn in the window
Wc, w.r.t. distance threshold d and timebin count threshold thrt is
denoted as TN (Trn , d , thrt).

2.2 Trajectory Outlier Definitions

2.2.1 Point-Neighbor Based Trajectory Outlier

Definition 3. Given a distance threshold d, a neighbor count
threshold k, and timebin count threshold thrt, a trajectory Tri in
the window W is called a point-neighbor based trajectory outlier,
or in short, PN-Outlier, if |T | < thrt, where T = {tj | |PN (Tri , tj , d)|
≥ k , tj ∈ [W .TStart ,W .TEnd ]}. Otherwise Tri is a PN-Inlier.
Any timebin tj with |PN(pji , d)| ≥ k is called a neighboring time-
bin of Tri.

This PN-Outlier is based on whether a trajectory has a suffi-
cient number of neighboring timebins throughout the window. In-
tuitively, a normal inlier trajectory has a sufficient number of mov-
ing objects in its vicinity for most of the time, i.e., for at least thrt
timebins. That is, such inliers are in a crowd in at least thrt time-
bins. On the other hand, a trajectory is said to be an outlier if most
of the time it differs from other objects in a significant fashion.

Example 1. See example of Def. 3 in Fig. 1. Suppose k = 2,
thrt = 4. The trajectory Tr3 only has two neighboring timebins
{t1, t4}, for which Tr3 has more than k point neighbors. Thus
|T | < 4. So Tr3 is a PN-Outlier. All other trajectories have at
least thrt neighboring timebins, hence are PN-Inliers.

Applications. PN-Outlier effectively models the notion of out-
liers prevalent in many real time applications. For example in the
security surveillance, foreign personnel may be considered as po-
tentially unsafe if he separates out from others for too much of the
time during his visit. In a marathon race a runner who runs alone
without any other competitors around him for long stretches of time
might be considered as suffering from some physical discomfort
and possibly needing medical assistance, or should be checked for
possible cheating by taking shortcuts.

t1 t2 t3 t4 t5 t6

Tr1
Tr2
Tr3

Tr4
Tr5
Tr6
Tr7

Figure 1: 7 trajectories in a window Wc with size w = 6. Small
circle represents a trajectory point. Dashed oval indicates pair-
wise point neighbors. PN -Outlier: Tr3. PN -Inliers: Tr1,
Tr2, Tr4, Tr5,Tr6, and Tr7.

2.2.2 Trajectory-Neighbor Based Trajectory Outlier

Definition 4. Given a distance threshold d, a neighbor count
threshold k, and timebin count threshold thrt, a trajectory Tri
in the window W is a trajectory-neighbor based trajectory outlier,
or in short, TN-Outlier, if |TN (Tri , d , thrt)| < k in W. Otherwise
the trajectory Tri is a TN-Inlier.

This TN-Outlier definition classifies a trajectory Tri as outlier if
it does not have a sufficient number of trajectory neighbors through-
out the window W . Put differently, there are not enough other ob-
jects in the dataset that consistently behave similarly to Tri within
the observed time period W .

Example 2. Consider the trajectories in Fig. 2. Suppose k =
2, thrt = 4. Then Tr4 is a TN-Outlier having no trajectory neigh-
bor. Tr1 and Tr2 are trajectory neighbors of each other by Def.
2, because they are point neighbors at all 6 timebins. Tr1, Tr2,
and Tr7 are pairwise trajectory neighbors, because all three tra-
jectories meet at at least 4 timebins. Since Tr1, Tr2 and Tr7 each
have k (2) trajectory neighbors, they are TN-Inliers. Tr3 has two
trajectory neighbors Tr5 and Tr6. Thus Tr3 is a TN-Inlier.

t1 t2 t3 t4 t5 t6

Tr1Tr2
Tr3
Tr4
Tr5
Tr6

Tr7

Figure 2: 7 trajectories in a window with size w=6, k = 2, thrt =
4. TN-Outlier: Tr4; TN-Inlier: Tr1, Tr2, Tr3, Tr5, Tr6, Tr7.

Unlike the PN-Outlier definition (Def. 3), TN-Outlier concept
does not care about whether a given trajectory has a sufficient num-
ber of neighboring timebins, rather the granularity of similarity
is instead at the level of complete trajectories and their relation-
ship with Tri. Thus although Tr4 has four neighboring timebins
(≥ thrt), it is still a TN-Outlier as we have shown above.

Applications. TN-Outlier definition fits many real life appli-
cations. Consider traffic management applications [15] where we
expect most drivers to drive consistently in lockstep with neigh-
boring cars on a highway, for instance in the same or in adjacent
lanes. Deviating from the majority of other cars may indicate that
the drivers change their neighbors frequently due to speeding (too
fast) or drunk driving (too slow) and thus never stay long enough at
similar speed with other cars. Similarly in the stock sticker stream,
stocks in the same industry tend to exhibit similar trends. Therefore
a stock whose performance consistently deviates from that of other
stocks in the same industry will be considered as a TN-Outlier, even
if at many timebins some stocks (each time different ones) happen
to be its neighbors.

2.2.3 Effectiveness Analysis
Now we analyze the effectiveness of our proposed definitions.

Due to space restriction in this work we only focus on PN-Outlier.
A similar analysis could be applied to TN-Outlier.

Although no single outlier definition effectively models all real
world scenarios, the general notion of what constitutes an outlier
was first introduced by Hawkins in [7]. An observation is said to be
outlier if it statistically deviates so much from other observations as
to arouse suspicion that it was generated by a different mechanism.

Next we establish a statistical model for trajectory outliers. It
relies on the strong assumption that the stream data consistently
follows a particular distribution. In reality we may not know the
distribution of a given stream. Worst yet it may change its distri-
bution at any moment, while computing the statistical model peri-
odically would be highly inefficient. However idealistically it still
provides a solid baseline to contrast our definition that rests upon
zero assumption.

To facilitate analysis, let us consider the scenario where each tra-
jectory point set Di composed of all trajectory points at any time-
bin ti follows the normal distribution N (μ, σ2 ). A trajectory point
Trij is considered as an outlier point in Di if it lies 3 or more stan-
dard deviation σ from the mean μ [4]. Correspondingly given a
trajectory Trj with W trajectory points in a window, the proba-
bility of Trj having m of W outlier trajectory points will follow
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the binomial distribution Bin(m|W , μ′) with μ′ representing the
probability of a given trajectory point Trij to be an outlier point
in Di. Then statistically trajectories can be considered as outliers
if they contain more than Wμ′+ 3

√
Wμ′(1 − μ′) outlier points.

Here Wμ′ is the expectation of Bin, while Wμ′(1 − μ′) is the
variance of Bin. We denote this definition as Defstat .

Now we show the effectiveness of PN-Outlier by proving the
following lemma.

Lemma 1. Trajectory Trj is an outlier according to Defstat iff
Trj is a PN-Outlier with d = 0.13σ, k = 0.0012W, thrt = 0 .9972W

−3
√

0 .0028 (1 − 0 .0028 )W .

Lemma 1 shows that our lightweight PN-Outlier definition will
indeed produce the identical outliers that Defstat had produced if
the stream is normal distributed for a given set of statistical deter-
mined parameters.

PROOF. We use probabilities to represent the number of points
lying in a d-neighborhood. Specifically, the probability p is k

W
=

0.0012 that the distance between 2 randomly sampled points s1 and
s2 from Di is less than or equal to d. s1 and s2 can be considered to
be random variables following normal distribution N (μ, σ2 ). Then
we define z1 = s1−μ

σ
and z2 = s2−μ

σ
as standard normal variables.

That is, z1 , z2 ∼ N (0 , 1 ). Given d = 0.13σ, p = 0.0012, we get:
Pr(|s1 − s2 | ≤ 0 .13σ) ≤ 0 .0012 ⇔Pr(s1 − 0 .13σ ≤ s2 ≤

s1 + 0 .13σ) ≤ 0 .0012 ⇔Pr(z1 − 0 .13 ≤ z2 ≤ z1 + 0 .13 ) ≤
0 .0012 .

Using the normal distribution table [4] we get z1 ≤ −3 .0 or
z1 ≥ 3 .0 ⇔ s1 ≤ μ− 3σ or s1 ≤ μ+ 3σ. This proves that an
outlier timebin ti of trajectory Trj in PN-Outlier definition is an
outlier point of Di in Defstat .

Next, by Defstat the probability of s1 being an outlier point
will be Pr(z1 ≤ −3 .0 )+ Pr(z1 ≥ 3 .0 ) = 2Pr(z1 ≥ 3 .0 ) = 2
(1 − Pr(z1 ≤ 3 .0 )) = 0 .0028 . In other words, the mean of Bin
μ′ = 0.0028. Therefore the expectation of Bin E [m] = 0 .0028W .
Its variance var [m] = 0 .0028 (1 − 0 .0028 )W . By Defstat tra-

jectory Trj will be an outlier if it has more than E [m] + 3
√

var [m]

outlier points. Since E [m] + 3
√

var [m] = W − thrt , this is
equivalent to the condition of PN-Outlier with thrt as the minimum
number of neighboring timebins for Trj to be an inlier.

3. THE BASIC OUTLIER DETECTOR
Given a trajectory stream S and the semantics of PN-Outlier or

TN-Outlier, we need to design algorithms to continuously detect
and output the trajectory outliers in each window Wc. For this
we now design the INC algorithm which detects both classes of
outliers in a unified way. It first utilizes range queries to search for
all point neighbors of each trajectory Tri at each timebin. Then
the acquired point neighbors are used as evidence to validate the
status of Tri. Furthermore INC leverages the fact that in sliding
window streams adjacent windows overlap with each other. By
cleverly maintaining the already known neighbor relationships, the
INC algorithm successfully eliminates any redundant range query
search at the previously examined timebins, resulting in saving in
system resources.

We first introduce the data structures that enable the INC algo-
rithm to extensively reuse the already recognized neighbor-related
information. We use DBTr to denote the set of all trajectories in
the current window Wc. To support PN-Outlier detection, each tra-
jectory Tri maintains a list Tri.tlist, which stores the IDs of its
neighboring timebins in Wc. For TN-Outlier detection, we need to
track the trajectory neighbors of Tri to evaluate whether Tri has

a sufficient number of trajectory neighbors. Therefore a neighbor
table, denoted as Tri.NT , is maintained by each trajectory Tri,
which records information about all trajectories having at least one
point neighbor with Tri in the current window (see Fig. 4). Each
record in the neighbor table Tri.NT is a < key, valueList >
pair, where key denotes the identifier of Tri’s neighboring trajec-
tory Trj , and valueList corresponds to the list of timebins during
which Tri and Trj are point neighbors.

Using an example-driven approach, we now describe how the
INC algorithm detects the two outlier classes with the assistance of
the just introduced Tri.tlist and Tri.NT structures. Fig. 3 shows
6 trajectories in two consecutive sliding windows with window size
w = 4 and slide size s = 1. Given a query Q with k = 2 and
thrt = 3. Fig. 4 illustrates how the INC algorithm incrementally
processes Tr1 and Tr5.

Data Structure Initialization. Given the trajectory dataset in
the first window W1, INC first utilizes a range query operation
to search for point neighbors of Tr1 at timebin t1. The distance
threshold d is used as the range. As shown in Fig. 3(a), Tr1 does
not have any point neighbor. So both Tr1.NT and Tr1.tlist are
null. Tr5 instead acquires one point neighbor p12 at timebin 1.
So the record < Tr2, [t1] > is created for p12 and inserted into
Tr5.NT as shown in Fig. 10(a). Since only one point neigh-
bor is acquired (<k), timebin t1 is not a neighboring timebin of
Tr5. Tr5.tlist thus is null. Similarly INC proceeds to detect point
neighbors using a range query and updates the data structures at
each time bin. After timebin t4 is processed, the final neighboring
information for W1 is established as shown in Fig. 4(c).

Trajectory Outlier Detection. Then using Tri.tlist and Tri.NT
INC can quickly detect both classes of trajectory outliers. As shown
in Fig. 3(a), Tr1 and Tr5 can be immediately identified as PN-
Outliers, because the cardinality of Tr1.tlist and Tr5.tlist (� of
neighboring timebins) is smaller than thrt (3) respectively.

Similarly the TN-Outliers can be detected based on the neighbor
table Tri.NT . Tr1 is a TN-Outlier because it does not have any
trajectory neighbor in Tr1.NT . For that we only need to exam-
ine Tri.NT to find the trajectories having no less than thrt point
neighbors with Tri. Tr5 however is not a TN-Outlier, because
it has two trajectory neighbors {Tr2, T r6} (k = 2) according to
Tr5.NT .

t1 t2 t3 t4

Tr1

Tr2

Tr3
Tr4

Tr5

Tr6

(a) Window W1

t5t2 t3 t4

Tr1

Tr2

Tr3
Tr4

Tr5

Tr6

(b) Window W2
Figure 3: An example of two consecutive windows

Data Structure Update. After the new timebin t5 arrives, the
window slides from W1 to W2 (Fig. 3(b)). Since timebin t1 has
expired, all information of t1 will be removed from Tri.NT and
Tri.tlist. The INC algorithm only needs to detect the point neigh-
bors for each trajectory Tri at the new timebin t5. This again is
done by a range query search. The corresponding data structures
are then updated (see Fig. 4(d)).

Outlier re-examination. Then the status of all the trajectories
will be re-examined by again checking the Tri.tlist and Tri.NT
structures. In the new window W2, Tr1 is still a PN-Outlier. How-
ever Tr5 has evolved into a PN-Inlier, because Tr5 acquires an
new neighboring timebin at t5. Thus now |Tr5.tlist| = thrt (3).
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neighbors Timebins
null null

Tr1.NT

Tr1.Tlist
null

neighbors Timebins
Tr2 t1

Tr5.NT

Tr5.Tlist
null

(a) Timebin t1

neighbors Timebins
null null

Tr1.NT

Tr1.Tlist
null

neighbors Timebins
Tr2 t1, t2

Tr5.NT

Tr5.Tlist
t2

Tr3 t2
Tr4 t2
Tr6 t2

(b) Timebin t2

neighbors Timebins
Tr2 t4

Tr1.NT

Tr1.Tlist
t4

neighbors Timebins
Tr2 t1, t2, t3

Tr5.NT

Tr5.Tlist
t2, t3

Tr3 t4
Tr4 t4

Tr3 t2, t3
Tr4 t2, t3
Tr6 t2, t3, t4

(c) Timebin t4

neighbors Timebins
Tr2 t4

Tr1.NT

Tr1.Tlist
t4

neighbors Timebins
Tr2 t1, t2,t3,t5

Tr5.NT

Tr5.Tlist
t2, t3, t5

Tr3 t4
Tr4 t4

Tr3 t2, t3, t5
Tr4 t2, t3, t5
Tr6 t2, t3, t4Tr6 t5

(d) Timebin t5

Figure 4: Data structures of INC algorithm

Tr1 is still reported as a TN-Outlier in W2, because it still has
no trajectory neighbor. Tr5 remains a TN-Inlier, since it has four
trajectory neighbors as shown in Tr5.NT of Fig. 4(d).

Complexity Analysis. The INC algorithm detects both types of
outliers by first running a range query search for each trajectory at
each new timebin. The complexity is O(n2 ). Then INC detects
PN-Outlier by checking the cardinality of each Tri.tlist. The cost
is O(n). So the overall complexity of PN-Outlier detection is dom-
inated by the range query whose complexity is O(n2 ).

TN-Outlier detection is much more expensive than PN-Outlier
due to the extra cost of having to traverse the neighbor table Tri.NT
to discover trajectory neighbors. Its worst case complexity is O(n2 ).
Therefore the overall complexity of TN-Outlier detection is deter-
mined by both the range query search and the lookup of the full
neighbor relationship produced by range query.

4. OPTIMIZED DETECTION FRAMEWORK
Although the INC algorithm for the current window detection

fully reuses the neighbor relationships collected in the previous
window, it still incurs high computational costs when the num-
ber (n) of the trajectories is large. This performance bottleneck
is driven due to the O(n2 ) complexity of the expensive neighbor
range query search and the corresponding neighbor lookup opera-
tion as shown in the complexity analysis above. To further drive
down the CPU and memory costs, we now present our minimal
examination (MEX) optimized framework. By proposing three
innovative optimization principles, namely minimal support exam-
ination, time-aware examination, and lifetime-triggered detection,
the MEX framework thoroughly eliminates the performance bottle-
neck of the INC algorithm caused by its “range query search first,
outlier examination next” strategy.

4.1 Key Observations
Each trajectory in a window W is eventually reported as either

outlier or inlier. A trajectory will be labeled as inlier if sufficient
neighbor evidence has been acquired for this object. This fact leads
to an important observation. That is, to identify whether a trajec-
tory is a neighbor-based inlier, we may not need to find out all its
neighbor information. Instead a potentially small subset of the full
neighbor evidence often can be sufficient to prove that it is an in-
lier. Similarly a small subset of the non-neighbor evidence might
also in some cases found to be sufficient to classify a trajectory as
an outlier. To characterize the least amount of information needed
to prove Tri’s status we define the concept of Minimal Support.

Definition 5. (Minimal Support). Given a stream trajectory
outlier detection query Q and a trajectory set DBTr in a window
Wc, for a trajectory Tri ∈ DBTr , if the evidence pair (TR,T )
composed of trajectory points and timebins with (TR = {Tr1 , . . .Trx ,
. . .Trm |Trx ∈ DBTr (1 ≤ x ≤ m)}, T = {t1 , . . . tj . . . tn |tj ∈
[Wc .TStart ,Wc .TEnd ](1 ≤ j ≤ n)}) is sufficient to validate that
Tri is either inlier or outlier, and for any subset TR′ ⊆ TR and
T ′ ⊆ T , the pair (TR′, T ′) is not sufficient to prove Tri’s status,
then (TR, T ) is a minimal support of Tri in Wc.

The above structure of minimal support provides the minimal
amount of evidence for identifying both inliers and outliers. This
minimal support concept guides us to propose the minimal support
examination principle (Sec. 4.2.1) to optimize the trajectory outlier
detection process, in particular to reduce the neighbor search and
lookup costs related to the range queries.

We also observe that the minimal support is not unique for a tra-
jectory in each window. That is, several distinct minimal support
sets may exist because the definition of the outlier only imposes a
constraint on the neighbor evidence count, but not on which partic-
ular neighbor evidence must be utilized.

Next we introduce the second optimization principle, namely
Predicted Support in Lemma 2. This principle guide our MEX
framework to discover the best minimal support for each trajectory.

Lemma 2. Predicted Support: Given a stream trajectory out-
lier detection query Q, if the evidence pair (TR, T ) is a minimal
support of trajectory Tri in Wc as per Def. 5, then (TR, T ) is also
a minimal support of Tri in the subsequent windows from Wc+1 to
Wc+x, where Wc+x.Tstart=Min(T ) and Min(T ) represents the
minimal timebin in T .

PROOF. By Defs. 3 and 4, the criteria we can use to determine
the status of a trajectory Tri remains constant in each window.
Therefore as the stream slides to a new window Wc+1, if no el-
ement of a minimal support set MS of Tri expires, MS is still suf-
ficient to determine the status of Tri in Wc+1. Since Wc+x is the
last window in which all elements of MS are guaranteed to survive,
(TR, T ) is still a minimal support for Tri in the windows from
Wc+1 to Wc+x.

Lemma 2 reveals two promising opportunities for optimizing
stream trajectory outlier detection.

First, the status of Tri can be predicted in certain future windows
without first having to observe all data points of these windows.
This insight inspires us to introduce the lifetime-trigged detection
optimization principle in Sec. 4.2.3.

Second the more windows a minimal support of Tri covers, the
less re-evaluation effort will be needed for Tri. Therefore acquir-
ing the minimal support covering the longest window sequence
with minimal CPU costs is critical for stream trajectory outlier de-
tection. This observation guides us to propose the time-aware ex-
amination optimization as highlighted in Sec. 4.2.2.

4.2 Optimization Principles
Based on the above minimal support and predicted support ob-

servations, we now are ready to propose three fundamental princi-
ples for optimizing the stream trajectory outlier detection process.

4.2.1 Minimal Support Examination Optimization
Leveraging the minimal support observation (Def. 5) the mini-

mal support examination (MSE) principle eliminates the complete
and thus expensive point neighbor search for each trajectory adopted
by the INC algorithm.
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PRINCIPLE 1. Given a trajectory outlier detection query Q and
the trajectory set DBTr of window Wc, when evaluating a trajec-
tory Tri ∈ DBTr , the minimal support examination principle
suggests that the status determination process of Tri can be termi-
nated as soon as k neighbors have been found.

This principle aims to prove the status of a given trajectory Tri
by only discovering a small subset of its neighbors instead of search-
ing through its complete neighborhood to classify all points. As
shown in Corollaries 1 and 2, this principle is equally applicable
to both PN-Outlier and TN-Outlier detection, although they each
have different concepts of neighbor respectively.

Corollary 1. Given a PN-Outlier detection query Q in window
Wc, a timebin tj can be safely classified as a neighboring timebin
of Tri if k point neighbors have been acquired for Tri at tj .

Corollary 2. Given a TN-Outlier detection query Q in window
Wc, a trajectory Tri can be safely classified as a TN-Inlier if k
trajectory neighbors have been identified for Tri.

The proof of Corollaries 1 and 2 directly follows the definition of
neighboring timebin (Def. 3) and TN -Inlier (Def. 4) respectively.

The MSE principle enables us to design a lightweight neighbor
search operation called Examining to replace range query.

Definition 6. Given a trajectory Tri in the window Wc, exam-
ining is an operation that evaluates the distance between the tra-
jectory points of Tri and the corresponding points of other trajec-
tories until either k neighbors (either point or trajectory neighbors)
are acquired or Tri’s entire neighborhood has been evaluated.

Since the neighbor-count threshold k is much smaller than the
average number of the neighbors we expect each trajectory may
have, this examining operation is fundamentally more efficient than
the full range query search.

4.2.2 Time-aware Examination Optimization
Our second optimization principle, called the time-aware exami-

nation (TAE) further optimizes the process of acquiring the timebin
set T of the minimal support pair (TR, T ).

PRINCIPLE 2. Time-aware Examination: Given the detection
query Q and a trajectory Tri in the current window Wc, the exam-
ining operation should identify the neighbor evidence for trajectory
Tri from the most recent to the earlier un-evaluated timebins until
either neighbor evidence is found at thrt timebins or non-neighbor
evidence are identified at (w − thrt + 1) timebins.

The TAE principle has two implications. First, the examining
operation should evaluate the un-evaluated timebins in the latest
time first order. Second, TAE provides the criteria for the exam-
ining operation to terminate the neighboring timebin search pro-
cess. Similar to the MSE principle, TAE can equally be applied to
PN -Outlier and TN -Outlier.

For a PN -Outlier detection query w.r.t parameters (d, k, thrt),
the status of a trajectory Tri can be determined once either of the
termination conditions shown in the following lemmas is reached.

Lemma 3. Given a PN -Outlier detection query Q, if a tra-
jectory Tri has already acquired t neighboring timebins in the cur-
rent window Wc, then Tri is an PN -Inlier in Wc as well as in the
subsequent (tl-Wc.TStart) windows, where tl is the oldest neigh-
boring timebin acquired by Tri.

PROOF. First, by Def. 3, Tri is a PN -Inlier in Wc. Second,
∀ timebin tj ∈ T , tj ≥ tl. Therefore the minimal timebin in
T (Min(T)) equals to tl. By Lemma 2, Tri thus is also a PN -
Inlier in the subsequent windows from Wc+1 to Wc+x, where
Wc+x.TStart = tl. Therefore, Tri is guaranteed to be a PN -
Inlier in the next (tl-Wc.TStart) windows.

However, the status of Tri after window Wc+x (after tl expires)
is uncertain because the remaining evidence (k-1 neighboring time-
bins) is no longer sufficient to prove its status. Therefore, tl is the
furthest foreseeable timebin until which the status of Tri is guar-
anteed to be certain. We call tl the closed time of Tri to be a
PN-Inlier.

Similarly the TAE principle is effective on the TN -Outlier (Lemma
4).

Lemma 4. Given a TN -Outlier detection query Q, if Tri has
already acquired thrt neighboring timebins with a given trajectory
Trm in the current window Wc, then Tri and Trm are guaran-
teed to be trajectory neighbors in Wc and in the subsequent (tl-
Wc.Tstart) windows, where tl is their oldest neighboring timebins.

For Lemma 4, timebin tl is called the closed time of Tri to be
trajectory neighbor of Trm. Due to space restriction, the proof is
omitted here.

In summary, TAE aims to not only find the minimal timebin set
sufficient to determine the trajectory’s status, but also guarantees
that the identified evidence is reused for the longest subsequent
number of windows. Together the TAE and MSE principles guide
the examining operation to effectively gather the optimal minimal
support for each trajectory rather than conducting expensive and
wasteful range query searches.

4.2.3 Lifetime-triggered Detection Optimization
The above two principles focus on how to optimize each single

examining operation. To further reduce the computational costs, we
now introduce another optimization principle regarding to the mini-
mization of the examining frequency, termed lifetime-triggered de-
tection optimization (LTD).

First, we define the lifetime concept of a trajectory.

Definition 7. (Lifetime). Given a trajectory Tri in the current
window Wc, if Tri is guaranteed to keep its status (being inlier
or outlier) until timebin tlife (Wc.TStart ≤ tlife ≤ Wc.TEnd)
expires according to the identified evidence, then tlife is called the
lifetime of Tri in the current window Wc.

In other words the lifetime of Tri indicates the duration of its
current status (outlier or inlier).

Next we introduce a methodology for identifying the lifetime
of a given trajectory for each of the two neighbor-based trajectory
outlier definitions respectively.

Lemma 5. Given a trajectory Tri, the lifetime of Tri to be a
PN -inlier is the closed time of Tri in Wc.

PROOF. Lemma 5 can be easily proven by Lemmas 3. If Tri
is a PN -inlier, Tri will remain to be inlier until its close time
expires by Lemma 3.

Lemma 6. Given a trajectory Tri, the lifetime of Tri to be a
TN -inlier is min{Trj .closedTime|Trj ∈ TN }, where TN is the
trajectory neighbor set of Tri in Wc.

PROOF. Omitted due to space constrain.
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Figure 5: Architecture of MEX framework

Next we define the LTD optimization principle based on the
above lifetime concept.

PRINCIPLE 3. Lifetime-triggered Detection: Given a trajec-
tory Tri, the examining operation will be triggered on Tri if and
only if the lifetime of Tri holds with: Tri.life ≤ Wc.Tstart.

By the LTD principle, the status of a trajectory is re-examined
only when its lifetime expires. This effectively transforms the con-
tinuous query execution into lifetime-triggered execution. When-
ever a trajectory is being re-examined, the examining operation
which incorporates both MSE and TAE optimizations can be ex-
ploited to re-establish the minimal support in the new window. It
does so by only acquiring enough new evidence rather than build-
ing a new minimal support from scratch. We call this enhanced
examining operation lifetime-aware examining or in short LIFT.

4.3 Minimal Examination Framework
The high-level architecture of our MEX framework is depicted

in Fig. 5. Similar to the INC algorithm, the MEX framework uti-
lize the Tri.tlist and Tri.NT structures to store the meta-data.
Therefore it also leverages the overlap of the adjacent windows in
the sliding window stream.

Then the MEX framework continuously detects the trajectory
outliers by conducting the LIFT operation on each trajectory. Given
a trajectory Tri, the LIFT operation is not triggered if Wc.TStart <
Tri.lifetime. Once triggered, then LIFT employs both of the
MSE and TAE principles to establish the new minimal support.
The status and the lifetime of Tri are also updated based on the
new minimal support. Finally it outputs the outliers of the current
window. The detailed description of the algorithm specific to each
of the trajectory outlier definitions is described in the following
section.

5. MEX-BASED TRAJECTORY OUTLIER
DETECTION ALGORITHMS

5.1 The Optimized PN-Outlier Algorithm
Alg. 1 shows the optimized PN -Outlier detection algorithm

as extension of the MEX framework, named PN-Opt. For each tra-
jectory Tri, Tri.untlist maintains the unchecked timebins in the
current window, while Tri.ntlist and Tri.tlist correspond to the
lists of non-neighboring and neighboring timebins of Tri respec-
tively. The lifetime-triggered detection optimization is employed
first (line 1). That is, only the trajectories whose lifetime has ex-
pired are re-examined in the current window. For these triggered

Algorithm 1 PN-Opt algorithm(PN -Outlier detection using
MEX framework)

Input: Trajectory Set DBTr , the current window Wc, parameters: d, k and t.
Output: outliers
1: Get DBlt ← (Wc.TStart − 1).triggered;
2: for each Tri ∈ DBlt do
3: for each tj ∈ Tri.untlist from Wc.TEnd to head do
4: if (true == Tri .LIFT .MSEInHistory(tj )) then
5: Tri.ntlist.add(tj);

6: end if
7: if (true == Tri .LIFT .MSEInNewTrjaectory(tj )) then
8: Tri.tlist.add(tj);

9: else
10: Tri.ntlist.add(tj);

11: end if
12: Tri .LIFT .TAE()
13: end for
14: Tri.updateLifetime();
15: Lifetime.triggered.add(Tri);
16: end for

trajectories that must be examined, PN-Opt utilizes the MSE op-
timization principle to acquire new neighboring timbins (line 4).
More specifically PN-Opt first checks whether Tri can acquire k
point neighbors in the new timebin by searching through the tra-
jectories who have been neighbors with Tri in at least one other
timebin. The other remaining trajectory points will be tested only
if Tri still has not acquired k point neighbors (line 7). Then the
TAE principle will be utilized to determine whether the neighbor-
ing timebin search process should be terminated, namely whether
thrt timebins have been acquired in the new window (lines 3, 12).
Finally, the lifetime of Tri, utilized by the LTD principle to deter-
mine whether the status of Tri should be re-examined, is updated
(lines 14,15).

5.2 The Optimized TN-Outlier Algorithm

Algorithm 2 TN-Opt algorithm (TN -Outlier detection using
MEX framework)

Input: Trajectory Set DBTr , the current window Wc, parameters: d, k and t.
Output: Outliers
1: Get DBlt ← (Wc.TStart − 1).triggered;
2: for each Tri ∈ DBlt do
3: for each Trm ∈ Tr.NT.keys do
4: Tri .LIFT .TAE(Trm);
5: Tri .LIFT .MSE();
6: end for
7: if (false == Tri .getkNeighbors()) then
8: for each Trm ∈ (DBTr − Tr.NT.keys) do
9: Tri .LIFT .TAE(Trm);
10: Tri .LIFT .MSE();
11: end for
12: if (false == Tri .getkNeighbors()) then
13: Tri.status=‘outlier’;
14: end if
15: end if
16: Tri.updateLifetime();
17: Lifetime.triggered.add(Tri);
18: end for

Alg. 2 utilizes the MEX framework to solve the TN -Outlier
detection problem. Here, Tri.NT denotes the neighbor table of
Tri. Each element of Tri.NT contains three parts: tlist, ntlist, untlist.
untlist maintains the unchecked timebins between Tri and some
trajectory Trj , while ntlist and tlist are the lists of non-neighboring
and neighboring timebins between Tri and Trj . Similar to Alg. 1,
TN-Opt algorithm also employs the LTD first to check if the life-
time of Tri has expired (line 1). If so, then TN-Opt assesses the
status of Tri again.
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Figure 6: PN-Outlier (Taxi data)
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Figure 7: TN-Outlier (GMTI data)

12345678

8
9

10
11

12
13

14
15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11

kthr_t

P
re

ci
si

on

(a) Precision

1 2 3 4 5 6 7 8

8
9

10
11

12
13

14
15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11

k
thr_t

R
ec

al
l

(b) Recall

Figure 8: PN-Outlier (Taxi data)
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Figure 9: TN-Outlier (Taxi data)

TN-Opt first applies the TAE optimization principle (lines 4,9) to
test whether a given trajectory Trj is a trajectory neighbor of Tri.
Starting from the latest timebin, TN-Opt keeps testing the trajec-
tory points at the unchecked timebins in untlist between Tri and
Trj until point neighbors at t timebins are found. By the MSE
principle (lines 5, lines 10), the trajectory neighbor search process
stops immediately after Tri acquires sufficient (k) trajectory neigh-
bors or all the trajectories have been tested. Finally, the lifetime of
Tri is updated (lines 16,17).

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
All algorithms are implemented in JAVA on CHAOS stream en-

gine [6]. Our experiments are performed on a PC with 3.4G Hz
Intel i7 processor and 6GB memory, which runs Windows 7 OS.

Real Datasets. We used two real streaming datasets. The Taxi
Dataset is the real GPS trajectory data generated by 10,357 taxis
in a period from Feb. 2 to Feb. 8, 2008 in Beijing [16] [17]. The
total number of points in this dataset is about 15 million. The av-
erage time interval between two points is around 177 seconds. To
model timebins, we interpolate the time granularity to 1 minute per
timebin. The GMTI (Ground Moving Target Indicator) dataset [3]
records the real-time trajectories of 150 moving objects gathered
by 24 different data ground stations or aircraft in 6 hours. It has
around 100,000 records regarding the information of vehicles and
helicopters moving in a certain geographic region. In our experi-
ment, we used all 14 dimensions of GMTI while detecting outliers
based on targets’ latitude and longitude.

Metrics & Measurements. We evaluate both the effectiveness
of our outlier definitions and the efficiency of our MEX outlier de-
tection algorithms.

For the effectiveness evaluation, we measure the quality of re-
ported outliers by Precision and Recall as follows:

Precision = |Ro∩Do |
|Do | , Recall = |Ro∩Do |

|Ro |
where Ro denotes the set of annotated outliers in a dataset, namely

the real outliers and Do the outliers detected by our algorithms.
For the efficiency evaluation, we measure two metrics common

for stream systems, namely CPU resources and memory consump-
tion. Experiments are conducted on 1,000 windows for the Taxi
dataset. Both metrics are averaged over all windows.

6.2 Effectiveness Evaluation
We evaluate the effectiveness of the new proposed outlier defini-

tions by measuring the precision and recall on the real GMTI and
taxi datasets. For the GMTI dataset, we use the outlier set man-
ually labeled by the experts familiar with the data as the ground
truth Ro. For the Taxi dataset the ground truth outlier set Ro is
instead produced by a user study. In this user study 100 sets of
trajectories were selected from the taxi dataset. Each set contains
10 trajectories with 30 consecutive 6-minutes window. We invited
50 users from both WPI and USTB. The users were divided into 5
groups, with 10 trajectory sets assigned to each group. The users
were asked to mark trajectories in each set that they believe are
most likely to be outliers. Each trajectory marked by at least 5
users is labeled as a “real” outlier.

We vary the thresholds k and thrt to investigate how Precision
and Recall are impacted. The d threshold is fixed as 200 meter for
GMTI data and 300 meter for Taxi data.

GMTI data. The results for GMTI data are shown in Figs. 6 and
7. From Figs. 6(a) and 7(a) the Precision of both PN-Outlier and
TN-Outlier is nearly 100% once the parameters k and thrt fall in a
rather large range. Fig. 7(b) shows that the Recall of TN-Outlier is
also good and robust. However the Recall of PN-Outlier (Fig. 6(b))
is much worse than TN-Outlier. In the GMTI dataset the moving
objects (soldiers) are divided into 3 military units. The members of
each unit are expected to operate in a team. If they do not continu-
ously operate together, they will be labeled as outliers even if they
happen to stay close to others at times. TN-Outlier perfectly covers
this scenario. However sometimes PN-Outlier might fail to locate
the soldier separated from his own unit, since PN-Outlier would
not classify an object as outlier if there are a sufficient number of
moving objects in its vicinity.

Taxi data. We also investigate the effectiveness of PN-Outlier
and TN-Outlier for the Taxi data. As shown in Figs. 8(a) and 8(b)
PN-Outlier shows nearly 100% Precision and Recall when the pa-
rameters k and thrt varies in a large range. However the Precision
of TN-Outlier is worse than PN-Outlier (Fig. 9(a)), although its
Recall is as good as PN-Outlier (Fig. 9(b)). In the user study the
users tend to classify a taxi as an outlier if it always moves alone.
Intuitively taxis do not necessarily move together with others as
a group. The behavior of a taxi driver will be considered as ab-
normal only if he always operates in areas that other drivers rarely
visit. This scenario fits PN-Outlier better than TN-Outlier, since
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Figure 10: Varying thrt on taxi data
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Figure 11: Varying k on taxi data

TN-Outlier tends to misclassify the taxis lack of consistent com-
panions as outliers.

In summary the above empirical study confirms the effective-
ness of our new proposed PN-Outlier and TN-Outlier definitions in
capturing the moving object outliers with only a very loose param-
eter setting requirement. Furthermore it shows that PN-Outlier and
TN-Outlier best cover distinct application categories with different
similarity requirement to be neighbors.

6.3 Efficiency Evaluation
Next we evaluate the efficiency of our outlier detection algo-

rithms using the Taxi data. The performance of MEX algorithms
is compared with the INC algorithms. We denote the INC solution
for PN -Outlier, TN -Outlier detection as PN-INC, TN-INC and
the MEX-based solution as PN-Opt and TN-Opt respectively. We
vary the most important parameters, to (1) assess the impact of our
MEX framework versus the INC baseline, (2) evaluate sensitivity
of parameter variations on each method.

6.3.1 Varying Timebin Count Threshold thrt

CPU Resources. First, we evaluate the effect of varying the
timebin count threshold thrt from 1 to the full window size. This
varies the definition from very relaxed (that is, one trajectory Tri
is inlier for instance if only in 1 of w timebins tri has the needed
neighbors) to very strict (Tri must have k neighbors in all w time-
bins to be considered an inlier). We fix the window size to 30, k
to 4, and d to 200 meters. As shown in Figs. 10, our MEX-based
algorithms are superior to the corresponding basic INC-based so-
lutions w.r.t the CPU time in all cases. In particular, PN-Opt is
117 times faster than PN-INC (Fig. 10(a)). When thrt is equal to
the full window, the outliers rates of the two definitions are at their
highest, namely 5% and 20% respectively. However, even in these
cases the optimized algorithms still outperform their corresponding
counterparts 31 and 5 fold.

We also notice that INC algorithms are not very sensitive to thrt,
since INC always tests all timebins of each trajectory. Whereas
by employing the TAE optimization principle (Sec. 4.2.2) MEX
significantly reduces the distance calculation by only acquiring the
minimal yet sufficient neighboring timebins.

Memory Resources. We see similar positive trends also for the
memory usage. That is, TN-Opt uses on average 21% of the mem-
ory consumed by its counterpart TN-INC algorithm. This can be
explained by the fact that the MEX framework only maintains k
trajectory neighbors for TN -Outlier, while the INC solution ag-
gressively stores all neighbor information. As expected, the mem-
ory consumption of TN-Opt increases as thrt increases, because
more neighboring timebins have to be maintained for each trajec-
tory neighbor as the required neighbor count thrt rises.

As shown in Fig. 10(b), the memory usage of both PN-Opt and
PN-INC is very small. PN-Opt uses a little more memory than PN-
INC. For each trajectory Tri, PN-Opt stores the trajectories which
have point neighbors with Tri in the history to reduce the trajectory
search scope for acquiring new neighboring timebins. However this
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Figure 12: Varying number n of trajectories on taxi data

extra memory leads to huge gains in CPU processing resources (at
least 31 times faster than PN-INC).

6.3.2 Varying Neighbor Count Threshold k

Next we evaluate the performance of the four algorithms by vary-
ing the neighbor count threshold k from 4 to 100. To be classified
as an inlier the number of neighbors that a trajectory Tri needs to
discover increases from very few to a large number. That is, the
inlier criteria for any trajectory Tri changes from very relaxed to
strict. We fix the window size to 30, thrt to 15, and d to 200.

CPU Resources. Fig. 11(a) shows both MEX-based algorithms
clearly outperform their counterparts. The two MEX-based algo-
rithms save on average 91% and 56% of CPU time compared to the
corresponding INC solution. As k increases, the CPU time of the
MEX-based solutions increases linearly since more neighbors have
to be acquired to determine the status of a given trajectory. For the
INC-based solutions instead we observe no sensitivity for varying
k. This is because the INC-based solutions determine the status of
Tri always by first acquiring all neighbors with expensive com-
plete range query searches no matter how large k is. However, the
MEX-based solutions still outperform INC-based algorithms even
for the extreme case of k = 100. In this case the outlier rate is
extremely high, namely 90%, and thus unrealistic.

Memory Resources. TN-INC only uses on average 55% of the
memory compared to TN-INC (Fig. 11(b)). As k increases, they
need to store more trajectory neighbors. Thus their memory con-
sumption increases. As k increases to 100, TN-Opt uses more
memory than TN-INC. Again this is an unrealistic setting we do
not expect to see in practice, as surely 90% of all data would not be
considered as “exceptions” (outliers) but rather as the norm.

6.3.3 Varying Number of Trajectories n

We evaluate the scalability of our algorithms in the number of
trajectories they can simultaneously handle. In this experiment we
randomly select from 1k up to 10k trajectories from the Taxi data.
We fix the window size to 30, k to 4, thrt to 15. To eliminate the
effect of variations in the outlier rates, we stabilize the outlier rate in
all cases to around 4% by slightly adjusting the distance threshold
d from 200 to 300 meters.

CPU Resources. As shown in Fig. 12(a), the MEX algorithms
exhibit much better scalability than their INC-based counterparts.
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As the number of trajectories increases, as expected all algorithms
require more time to process more trajectories. However, the MEX
algorithms outperform the INC-based ones more and more as the
number of trajectories increases, because unlike the INC solution
MEX avoids expensive range queries for the needed searches.

CPU Resources. As shown in Fig. 12(b), the memory con-
sumption of all algorithms also increases as the number of trajecto-
ries increases, because more trajectory information must be stored.
However, TN-Opt saves more memory than TN-INC as n increases,
while the memory usage of PN-Opt remains consistently small.

7. RELATED WORK
Trajectory Outlier Detection in Static Datasets. Knorr et al.

[9] applied the distance-based outlier notion defined in [8] to spatio-
temporal data. It first extracted features from the trajectories al-
ready located in the database and mapped the trajectories into a
feature space. Then it relied on the distance in this feature space
to determine the relationships among the trajectories. The status of
each trajectory was evaluated and reported only once. This defini-
tion does not fit the requirement of streaming data. First the features
of the stream trajectories keep evolving. Therefore no stable feature
space exists. Furthermore the effect of the observed events keeps
fading. Therefore the outliers have to be continuously reported in
real time based on the latest events rather than reporting them only
once based one the whole trajectory database.

Li et al. [12] proposed a classification-based trajectory outlier
detection algorithm. In their algorithm, trajectories are represented
using discrete pattern fragments called motifs. The set of motifs
forms a feature space in which the trajectories are placed. Then a
rule-based classifier is trained to classify the trajectories into either
“normal” or “abnormal”. This algorithm cannot be adapted to the
streaming context since it requires an offline training stage and a
labeled training dataset to train the classifier.

Lee et al. [11] proposed a two-step trajectory outlier detection
approach. At the first step, each trajectory is partitioned into a
sequence of t-partitions. Within this set of t-partitions, outlying
t-partitions are determined based on distance or density based met-
rics. This work targets on a completely different problem, namely
to discover unusual sub-trajectories within one single trajectory. In-
stead we aim to locate abnormal moving objects.

Outlier detection over trajectory data streams. Bu et al. [2]
detected abnormal trajectory segments in the stream context with
the assumption that a stream trajectory is locally continuous. That
is, a trajectory is expected to behave consistently within a short
time interval. They use a base window to constrain the part of a
trajectory they are interested in into a trajectory segment. Then
whether a given trajectory segment is said to be anomalous or not
is based on the similarity to its own historical trajectory in a larger
window. Thus this method, focusing on identifying an outlying
trajectory segment of one particular moving object, cannot address
our problem, namely identifying suspicious moving objects signif-
icantly deviating from other synchronously moving objects.

Liu et al. [14] studied causal interaction detection in traffic data
streams. They first divide the city areas into regions. A graph
is built by mapping each region to a vertex. The trajectories are
then simplified into links connecting two corresponding regions.
This much smaller dataset, i.e., a graph of regions, enables them
to map their problem into frequent subgraph mining. That is, they
determine the anomalous links in each time frame by comparing
their load features of links in the graph (e.g., number of traversals)
with those of their temporal neighbors. This method focuses on
a totally different problem, namely discovering anomalous regions
rather than abnormal moving objects.

Trajectory clustering and pattern mining. Other domains of
mining moving object streams have been studied with clustering of
trajectory the closest to outlier detection. Lee et al. [10] presented
a clustering algorithm on discovering common sub-trajectories in
static trajectory databases. Trajectories are first partitioned into a
set of quasi-linear segments using the minimum description length
principle. Then the line segments are grouped by a density-based
clustering algorithm. Although this algorithm could potentially be
applied in a reverse direction to detect abnormal trajectory seg-
ment, it cannot solve our problem. First, the trajectory segments
falling in one cluster are not necessarily observed at the same time
period, while in trajectory stream to online detect abnormal mov-
ing objects only the “concurrent” behavior of the objects should be
considered. Second, our goal is to continuously detect abnormal
moving objects at real time rather than locate the unusual segments
of the trajectories known apriori.

8. CONCLUSIONS
In this work we focus on the detection of abnormal moving ob-

jects over massive-scale trajectory streams. After analyzing the
requirements of stream trajectory applications, we propose novel
neighbor-based trajectory outlier definitions. Our empirical study
on the GMTI and Taxi data shows that our definitions can effec-
tively capture moving object outliers in different scenarios. Fur-
thermore we design an optimized MEX strategy scalable to big data
trajectory streams to detect the new classes of outliers, rendering
moving object outliers detection practical in real time applications.
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