
Sharing-Aware Outlier Analytics over High-Volume Data
Streams

Lei Cao†, Jiayuan Wang‡, Elke A. Rundensteiner‡
†IBM T.J. Watson Research Center Yorktown Heights, NY 10598, USA

‡Worcester Polytechnic Institute Worcester, MA 01609, USA
caolei@us.ibm.com, jwang1|rundenst@cs.wpi.edu

ABSTRACT
Real-time analytics of anomalous phenomena on streaming data
typically relies on processing a large variety of continuous outlier
detection requests, each configured with different parameter set-
tings. The processing of such complex outlier analytics workloads
is resource consuming due to the algorithmic complexity of the out-
lier mining process. In this work we propose a sharing-aware multi-
query execution strategy for outlier detection on data streams called
SOP. A key insight of SOP is to transform the problem of handling
a multi-query outlier analytics workload into a single-query skyline
computation problem. We prove that the output of the skyline com-
putation process corresponds to the minimal information needed
for determining the outlier status of any point in the stream. Based
on this new formulation, we design a customized skyline algorithm
called K-SKY that leverages the domination relationships among
the streaming data points to minimize the number of data points
that must be evaluated for supporting multi-query outlier detection.
Based on this K-SKY algorithm, our SOP solution achieves mini-
mal utilization of both computational and memory resources for the
processing of these complex outlier analytics workload. Our exper-
imental study demonstrates that SOP consistently outperforms the
state-of-art solutions by three orders of magnitude in CPU time,
while only consuming 5% of their memory footprint � a clear win-
win. Furthermore, SOP is shown to scale to large workloads com-
posed of thousands of parameterized queries.

Keywords
Outlier;Stream;Multi-query

1. INTRODUCTION
Motivation. Nowadays, high-speed data-intensive stream moni-

toring applications ranging from credit card fraud detection, net-
work intrusion prevention, stock investment tactical planning to
telephone fraud detection [16] necessitate the extraction of outliers
from huge volumes of stream data in a near real-time fashion.

In recent years distance-based outlier methods [12, 18, 2, 5] have
been widely adopted for the detection of outliers in high volume
stream data due to their simplicity and insensitivity to concept drift.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c� 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882920

The distance-based outlier model initially proposed in [12] origi-
nates from the basic notion of capturing abnormal phenomena in
data which can be traced back to the seminal work by Hawkins
[10]. In [10] Hawkins states that outliers can be identified based
on assessing the similarity among points in a dataset. More specif-
ically an outlier is an object O with fewer than k neighbors in the
dataset D, where a neighbor is defined to be any other object in D
that is within a distance range r from object O.

To discover abnormal phenomena from streaming data using this
model of distance-based outliers, a set of input parameters have to
be specified by the analyst. For example, when monitoring the po-
tential credit fraud in bank transaction streams, analysts may look
for unusual transactions whose values in recent days significantly
differ from those of the majority of transactions made by peers at
similar income levels. To detect such outliers utilizing the distance-
based outlier technique, several parameter values have to be appro-
priately set. These include the r parameter that defines the notion of
significance in transaction value dissimilarity and the k parameter
that determines the majority of the peer transactions. In addition
sliding window semantics [3] need to be applied to ensure that the
outliers are continuously detected based on the most recent portion
of the input stream only. Out-of-date information, such as the bank
transactions made a long time ago, are typically no longer relevant
for the interpretation of the recent outlier detection results. Thus
they should be purged from the active stream window. Therefore
the sliding window specific parameters, such as the window size
and the slide size, also have to be specified by the analyst.

A stream outlier detection system may need to handle a large
number of such parameterized queries for a variety of reasons.
First, multiple analysts monitoring the same input stream may sub-
mit their outlier search requests with different parameter settings.
In the credit fraud monitoring application, with a number of an-
alysts monitoring the same bank transaction stream [16] � each
may customize their outlier search requests by tuning their param-
eter settings using their personalized interpretation of abnormity.
Even a single data analyst may submit multiple queries with dis-
tinct parameter settings, because determining apriori the most ef-
fective input parameters is difficult � if not impossible � especially
when faced with an unknown or widely fluctuating input stream. In
streaming environments, the continuous nature of streaming data
emphasizes the necessity of supplying the most appropriate input
parameters settings early on. Otherwise, the opportunity to accu-
rately discover outliers in the segment of the stream gone by may be
permanently lost. Furthermore, each analyst may provide their own
personalized understanding of how large the “most recent” portion
of the data to be considered is essential. Hence they may submit
multiple outlier detection requests with different window related

527

parameter settings ranging from a short-term minute long view to a
long-term weekly or even monthly perspective.

For these plethora of reasons, a large number of outlier detec-
tion queries with different pattern and window related parameter
settings may simultaneously need to be processed by the system.
Thus, a stream processing system must be able to accommodate a
large outlier analytics workload composed of hundreds or more of
requests covering many, if not all, major parameter settings of an
outlier query, and thus striving to capture the most valuable outliers
in the stream.

Limitations of the State-of-the-Art. Although efforts have been
made in developing efficient algorithms for distance-based outlier
detection on data streams [7, 13, 1], these algorithms focus on han-
dling one single outlier request with a fixed parameter setting. The
simultaneous execution of multiple requests with varying pattern
and window specific parameters remains largely unexplored.

Unfortunately LEAP [7], the state-of-the-art solution for han-
dling a single outlier detection request over data streams, is not
sufficient when applied to a large analytics workload composed of
hundreds or more of such requests. This is caused by the high
demand on both computational and memory resources to support
each query in the workload independently. Our experiments con-
firm that LEAP indeed cannot meet the real time responsiveness
requirements when handing a large workload (Sec. 6). It takes
around 100 seconds to support a medium size workload (hundred
queries) on a medium speed data stream (100KB per second).

While [13] also focuses on distance-based outlier detection for a
single parameter setting, it also discusses an initial multiple outlier
query solution. However this work is limited in that it only con-
siders queries for a variation of pattern-specific parameters. The
window-specific parameters are completely overlooked. Even for
this pattern-specific parameter case, [13] continuous to rely on con-
ducting routinely expensive range query searches that acquire all
possible neighbors for all queries. Yet as already shown in [7],
such range-query based solutions struggle to handle even one sin-
gle outlier request when dealing with high volume streams [16].

Challenges. To handle a large workload composed of hundreds
or even thousands of outlier requests over data streams in real time,
effective processing strategies must be devised that cleverly shared
the system resources.

This is complicated by the fact that requests with different pa-
rameter settings may cause totally different outliers to be identified.
First, given a data point p, the evidence needed to prove its outlier
status, i.e., whether it is an outlier or an inlier, with respect to dis-
tinct outlier interpretations (parameter settings) can differ. Clearly,
variations in pattern-specific parameters lead to distinct criteria in
defining the affinity among data points. Furthermore, due to varia-
tions in window-specific parameters even the data subpopulation of
the data stream each query is posed against can differ dramatically.

Our Proposed SOP Approach. In this work we propose a inno-
vative approach, called SOP, that efficiently handles an outlier an-
alytics workload composed of a large number of outlier detection
requests with arbitrary parameter settings, while still guaranteeing
that each data point is processed only once.

As foundation of our solution we make the important observa-
tion that a workload composed of multiple outlier requests with
arbitrary parameter settings can be correctly answered by directly
utilizing one single skyband query [17] � a generalization of the
well known skyline concept. Better yet we prove that given one
data point, the skyband points discovered by the skyband query are
the minimal yet sufficient evidence required to prove its outlier sta-
tus with respect to all outlier queries in the workload.

Second, we design a customized skyband query algorithm called

K-SKY that leverages the unique domination relationships among
the streaming data points that presents their relative importance to
the detection of outliers. We prove that K-SKY is guaranteed to
discover all skyband points by examining only the minimal number
of data points. Furthermore by prioritizing the processing order of
the data points in the stream based on their arrival time, K-SKY nat-
urally takes advantage of the common data populations among the
data points covered by the active windows of queries with distinct
window-specific parameters. This way redundant skyband point
computations are eliminated. In short our K-SKY algorithm is op-
timal in minimizing the number of data points evaluated when pro-
cessing an outlier analytics workload.

Based on the K-SKY algorithm our integrated strategy called
SOP (Sharing-Aware Outlier Processing) achieves full sharing of
both CPU computations and memory utilization for the processing
of a workload of outlier queries. Computation-wise, in each ac-
tive window, SOP only requires a single pass through the batch of
new data points. That is, for each point we run one single skyband
query to answer all queries in the workload. Memory-wise, SOP
integrates all skyband points into a single compact data structure
called LSKY. This assures that only one single copy of the neigh-
bors shared across all queries is maintained.

Our experimental studies on real data streams demonstrate that
SOP successfully drives down the CPU costs by over three orders
of magnitude with significantly less memory utilization compared
to [13, 7] for a rich diversity of scenarios. Furthermore, it is the
only known method that scales to huge workloads composed of
thousands of outlier requests.

Contributions. Our contributions include:
1) Our SOP framework is the first to tackle the problem of shared

execution of multiple outlier requests with arbitrary pattern and
window specific parameters in the stream context.

2) The key innovation of SOP is to transform the multi-query
outlier problem into a single-query skyband problem. The output
of the skyband query is proven to be minimal yet sufficient for de-
termining the outlier status of each point for any parameter setting
on the workload.

3) Our customized skyband algorithm is tuned to process outlier
requests with diverse parameter settings. K-SKY is proven to be
optimal in the number of points being evaluated.

4) Leveraging the commonality and dominance among the data
populations, we are able to utilize one specific skyband query to
support multiple queries with varying window specific parameters.
By this full sharing is achieved across the query windows.

5) Our extensive experiments demonstrate that SOP routinely
achieves three orders of magnitude or more speed up over the state-
of-the-art methods [13, 7].

2. PROBLEM DEFINITION
Distance-Based Outliers in Sliding Windows. We first review the
notion of distance-based outliers [12]. We use the term data point
or point to refer to a multi-dimensional tuple in a data stream. The
function dist(p

i

, p
j

) denotes the distance between data points p
i

and p
j

. Distance-based outlier detection uses a range threshold r to
define the neighbor relationship between any two points p

i

and p
j

.

Definition 1. Two points p
i

and p
j

in a dataset D are said to
be neighbors if dist(p

i

, p
j

)  r with r a range threshold.

The function nn(p
i

, r) represents the number of neighbors a
data point p

i

has within range r.

528

Definition 2. Distance-based Outlier. Given a distance
threshold r and a count threshold k(k > 0), a data point p

i

is re-
garded as an outlier in dataset D if nn(p

i

, r) < k .

Distance-based outlier detection only works for data sets for which
an appropriate distance function can be defined. While this is straight-
forward for numerical attributes, textual or categorical attributes
would typically have to be transformed into numerical attributes
using existing methods in the literature [19].

We use q
i

(r
i

, k
i

) to denote the outlier detection query q
i

with r
i

and k
i

the range and count thresholds respectively.
We focus on periodic sliding window semantics as proposed by

CQL [3] and widely used in the literature [13, 7]. Such semantics
can be either time or count-based. In both cases, each query q

i

has
a window size q

i

.win (either a time interval or a tuple count) and
a slide size q

i

.slide . For time-based windows each window W
c

of q
i

has a starting time W
c

.T
start

and an ending time W
c

.T
end

= W
c

.T
start

+ Q .win . Periodically the current window W
c

slides,
causing W

c

.T
start

and W
c

.T
end

to increase by q
i

.slide . For count-
based windows, a fixed number (count) of data points corresponds
to the window size q

i

.win . The window slides after the arrival of
q
i

.slide new data points. The arrival time of point p is denoted as
p.time . If W

c

.T
start

 p.time <W
c

.T
end

, p falls into W
c

.
Outliers will be generated based on the points that fall into the

current window W
c

, also called the population of W
c

. A point p
in W

c

might have a different outlier status (outlier or inlier) in the
next window W

c+1 if it is still alive in W
c+1, since each window

has a different population.

Definition 3. Distance-Based Outlier Detection In Sliding Win-
dows. Given a stream S, a streaming distance-based outlier detec-
tion query q

i

(r
i

, k
i

,win
i

, slide
i

), q
i

continuously detects and out-
puts the outliers in the current window W

c

after the window slides
from the previous to the current window W

c

.

Multiple Outlier Detection Optimization. Outlier detection re-
quests on the same input stream can have arbitrary settings on all
four parameters r, k, win, and slide. The set of outlier requests q

i

that must be concurrently processed is denoted as query group Q.
Each query q

i

in Q is called a member query of Q. Our goal is to
minimize both the processing time and the memory space needed
to answer all queries in a large outlier analytics workload.

3. VARYING THE DISTANCE-BASED OUT-
LIER PARAMETERS

In this section we first introduce our transformation of processing
a workload composed of queries with varying r but fixed k param-
eters into a skyband query. Then we present our K-SKY algorithm
that supports such skyband query with optimality. Next we extend
K-SKY to handle outlier detection queries with arbitrary k and r
parameters. In this section we assume all queries share the same
sliding window parameters win and slide.

3.1 K-SKY: Varying Parameter - r
Given a query group Q with varying r but fixed k parameters, the

goal is to design an approach that supports all member queries in
Q with each point p of data stream S processed only once in each
current window W

c

. The key insight here is that given such a query
group Q and one data point p in current window W

c

of stream S,
the output of one single customized K -skyband query is sufficient
yet necessary to determine the outlier status of p with respect to all
queries in Q.

3.1.1 From Multi-Query Outlier Workloads to Single
Query Skyband Processing

K -skyband query is a generalization of the well known skyline
concept. As defined in [17] a K -skyband query reports all points
that are dominated by no more than K points. The case K = 0 cor-
responds to a conventional skyline. The key idea underlying this
skyline concept is to define the domination relationship between
any two data points. As a simple example consider a dataset D
composed of n one dimensional data points, namely n distinct val-
ues {p

1

, p
2

, p
3

, ..., p
n

}. Assume the domination relationship be-
tween any pair of data points p

i

and p
j

(1  i , j  n) is defined
as p

i

dominates p
j

if p
i

> p
j

. Then the K -skyband (K=2) query
on dataset D returns the top-3 largest points in D: {p

max

, p
max�1

,
p
max�2

}. p
max�2

is dominated by the two data points p
max

and
p
max�1

, while all other data points in D are dominated by at least
these three top-3 points of D.

To map our problem of determining the outlier status of a given
point p to the K -skyband problem, we have to similarly define
the domination relationship between any pair of data points in the
dataset D

Wc , i.e., the population of the current window W
c

. The
key observation here is that given any two points p

i

and p
j

, two
key factors, namely their relative arrival time and the distance to
the point p under evaluation, determine whether p

i

is more impor-
tant than p

j

in terms of evaluating the outlier status of p.
Let us introduce a query group Q used in the remainder of this

section. Assume we have a query group Q: {q1(r1),q2(r2),...,qm(r
m

),
q
m+1(rm+1), ..., q

n

(r
n

)} 1, where r
m

represents the r parameter
of query q

m

. The r parameter of q1, q2,...,q
n

monotonically in-
creases, that is, r1 < r2 < ... < r

m

< r
m+1 < ... < r

n

.
Distance Dimension. In distance-based outlier definition (Def.

2), points in a dataset D are classified either as outliers or inliers.
Thus, the process of identifying outliers in D is equivalent to the
process of finding and eliminating inliers from it. By Def. 2, p is
guaranteed to be an inlier once k neighbors are acquired in D. Given
two points p

i

and p
j

, assume dist(p
i

, p) < r
m

< dist(p
j

, p) <
r
m+1. Then p

i

is the neighbor of p with respect to query subset
Q

i

= {q
m

, ...,q
n

}, while p
j

is the neighbor of p only with respect
to query subset Q

j

= {q
m+1, ...,q

n

}. Q
i

� Q
j

. In other words p
i

satisfies the neighbor requirement of more queries than p
j

. For the
evaluation of p, p

i

is more important than p
j

, because p
i

makes the
outlier status of p closer to be determined with respect to all queries
in Q than p

j

. In this perspective p
i

dominates p
j

.
On the other hand, assume r

m

< dist(p
i

, p) < dist(p
j

, p) <
r
m+1. Then p

i

and p
j

are both neighbors of p for the same set of
queries {q

m+1, ..., q
n

}. In this scenario p
i

and p
j

equally affect
the outlier status of p although dist(p

i

, p) 6= dist(p
j

, p). Based on
this observation we now are ready to re-define the distance function
dist(p, p

i

) so to normalize the distance between data points. The
original distance function is denoted as dist

o

(p, p
i

) instead.

Definition 4. Given a query group Q: {q
1

(r
1

), q
2

(r
2

), ..., q
m

(r
m

),
q
m+1

(r
m+1

), ..., q
n

(r
n

)} with r
1

< r
2

< ... < r
m

< r
m+1

< ... < r
n

,
dist(p, p

i

) = m + 1 if r
m

< dist
o

(p, p
i

) r
m+1

for 0  m  n
with r0 defined as -1 and r

n+1 defined as 1.

By Def. 4, dist(p
i

, p) = dist(p
j

, p) if r
m

< dist
o

(p
i

, p) <
dist

o

(p
j

, p) < r
m+1. This new normalized distance calculated us-

ing Def. 4 now accurately represents the importance of each data
point to p.
1For the ease of readability, we only list those parameters in
the query notation q

i

(r , k ,win, slide) that vary. In this case
(k ,win, slide) would be removed from q

i

, since only parameter
r is a variable.

529

Time Dimension. In the streaming context the presence of the
time dimension further complicates matters. In particular we can-
not simply claim that one data point p

i

closer to p impacts the status
of p more than the other points. Instead the arrival time of the data
points also has to be taken into consideration. A point p

i

that ar-
rived later in the window may have a more decisive impact on the
outlier examination process compared to an earlier arriving p

j

even
if p

i

is not closer to p than p
j

. This is so because the younger a data
point p

i

is, the longer its neighbor relationships (if any) with p will
persist into the future.

Domination Relationship. We now define the domination rela-
tionship between the pair of points in dataset D

Wc that takes both
the distance and time dimensions into consideration.

Definition 5. Domination Relationship. Given a query group
Q: {q

1

(r
1

), q
2

(r
2

), ..., q
m

(r
m

), q
m+1

(r
m+1

), ..., q
n

(r
n

)} with
r
1

< r
2

< ... < r
m

< r
m+1

< ... < r
n

, point p
i

dominates p
j

with
respect to point p if: (1) p

i

.time > p
j

.time; (2) dist(p, p
i

) 
dist(p, p

j

) (p
i

, p
j

2D
W

c

� p) and p 2D
W

c

; (3) dist(p, p
i

)  n ,
with dist() the normalized distance of Q defined in Def. 4.

In other words, given a data point p
i

, p
i

dominates another point
p
j

only if p
i

expires later than p
j

from window W
c

(Condition 1)
and it is not further away from p than p

j

(Condition 2). The third
condition in the domination rule filters out any data point p

i

that is
not a neighbor of p for any query in Q. As otherwise this p

i

would
never be influencing the outlier status of p.

Based on the domination relationship defined in Def. 5, the out-
lier status of p with respect to all queries in Q can now be cor-
rectly answered based on the skyband points delivered by one sin-
gle (k � 1)-skyband query denoted as Qs , namely the K -skyband
query with K specified as k-1 2.

Lemma 1. Given a query group Q, for any data point p, the
output of the skyband query Qs corresponding to Q, denoted as S

p

,
is sufficient and necessary to continuously determine the outlier
status of p with respect to all queries in Q.

While the formal proof of Lemma 1 can be found in Appendix
A, below we sketch the key ideas of the proof.

Sufficiency. The sufficiency of this mapping is based on two
observations, namely the KNN observation and the K-distance ob-
servation as explained below.

KNN Observation. First, Qs always returns the k nearest neigh-
bors of p as part of the skyband points. The k nearest neighbors of
p denoted as kNN (p) are k points in D

W

c

that do not have larger
distance to p than any other point in D

W

c

. The proof of this obser-
vation is intuitive. Given any point p

i

2 kNN (p), at most k � 1
points in D

W

c

are closer to p than p
i

. By the domination relation-
ship defined in Def. 5, at most k � 1 points in D

W

c

dominate p
i

.
Therefore p

i

is a skyband point of our skyband query Qs .
K-distance Observation. Second, once kNN (p) is discovered,

the outlier status of p with respect to each query in Q can be de-
termined by examining the distance between p and its kth-nearest
neighbor called k -distance(p). If r

m

< k-distance(p)  r
m+1,

then p is guaranteed to be an outlier for queries {q1,q2,...,q
m

} and
an inlier for queries {q

m+1,...,q
n

}.
Justifying this observation is straightforward. If k-distance(p) 

r
m+1, then all points in kNN (p) are neighbors of p for queries

{q
m+1,...,q

n

}. Therefore p is an inlier for such queries. On the
other hands, since k-distance(p) > r

m

, p does not have k neighbors
for queries {q1,q2,...,q

m

}. Otherwise the points in kNN (p) would
not be the k nearest points to p in D

W

c

. Thus p is an outlier to
queries {q1,q2,...,q

m

}.
2For simplicity this notation does not reflect p and k � 1 .

Stream

p1:

<t1,2>

p2:

<t2,3>

p3:

<t3,2>

p4:

<t4,1>

p5:

<t5,1>

p6:

<t6,4>

p7:

<t7,3>

p8:

<t8,2>

p6:

<t6,4>

p7:

<t7,3>

p8:

<t8,2>

p5:

<t5,1>

p10:

<t10,5>

p11:

<t11,6>

p12:

<t12,4>

p9:

<t9,4>

Wc

Wc+1

Figure 1: Sliding window stream

Next we illustrate these two observations with an example.

Example 1. Given a query group Q: {q1(1),q2(2),q3(3)} with
the k parameter set as 3 and the dataset D

Wc composed of points
p
i

represented in the arrival time and distance space (< t
i

, d
i

>):
{p1 :< t1, 2 >,p2 :< t2, 3 >, p3 :< t3, 2 > ,p4 :< t4, 1 >, p5 :<
t5, 1 >, p6 :< t6, 4 >, p7 :< t7, 3 >, p8 :< t8, 2 > } as shown
in Fig. 1. Here t

i

indicates the arrival time of p
i

(t1 < t2 <...
<t8) and d

i

indicates the distance of p
i

to p. The (k � 1)-skyband
query Qs with k = 3 will return {p4 :< t4, 1 >, p5 :< t5, 1 >,
< p7 : t7, 3 >, < p8 : t8, 2 >} as the skyband points in window
W

c

. A subset of this result, namely {p4 :< t4, 1 >, p5 :< t5, 1 >,
p8 :< t8, 2 >} is the kNN of p. The k-distance of p thus is 2. By the
k-distance observation we can correctly derive the outlier status of
p. Namely p is an outlier for q1, while being an inlier for q2 and
q3.

Necessity. Note in the above example since the skyband point
p
7

:< t
7

, 3 > is not in the kNN(p) set of W
c

, p7 is not utilized
to evaluate p in W

c

. However p7 arrived later than p4 and p5 in
kNN(p). Potentially it might still benefit the evaluation of p in the
future windows.

As shown in Fig. 1 when the window slides from W
c

to W
c+1,

< t
4

, 1 > will expire. Since all new arrivals p
i

({p9, p10, p11,
p12}) in W

c+1 are far from p, namely dist(p, p
i

) > 3 , now p7
will be in kNN(p) = {< t5, 1 >, < t7, 3 >, < t8, 2 >} of W

c+1.
As the third nearest neighbor of p, the distance between p7 and p
dist(p

7

, p) = 3 will be utilized to determine the outlier status of
p. Now p is an outlier for q1 and q2, while being an inlier only for
q3.

3.1.2 The K-SKY Algorithm
Although the traditional K-skyband algorithms could be applied

to support our Qs query [17, 21], we now design a customized al-
gorithm called K-SKY that more efficiently supports the multiple
outlier detection queries compared to existing algorithms [17, 21].
K-SKY encompasses two optimization principles, namely time-
aware prioritization and least examination, that leverage the unique
properties of the domination relationship among the streaming points
shown in our outlier detection context. K-SKY is proven to be op-
timal in minimizing the number of data points to be evaluated in
the skyband point discovery process.

Time-Aware Prioritization Principle. Given a data point p
i

only two attributes are considered in the domination relationship of
our skyband problem, namely the distance to a certain point p and
the arrival time of p

i

as defined in Def. 5. Furthermore, in slid-
ing window streams the data points are naturally ordered by their
arrival time. In other words, all data points can effectively been
considered to be sorted on their arrival time attribute upon arrival.
Therefore K-SKY effectively only needs to consider one attribute
(distance to p) in the skyband point discovery process. By the def-
inition of the domination relationship, later arrivals will never be
dominated by the earlier arrivals. Leveraging this property we pri-
oritize the order in which the K-SKY algorithm processes the data
points. More specifically K-SKY always conducts the search with
a later arriving data points first order. By this if one data point is not
dominated by more than k points in the distance attribute and thus
considered to be a skyband point, then it is not necessary to eval-

530

uate it again. This is so, because it will be guaranteed to never be
dominated by other points evaluated later. Thus all skyband points
can be discovered in one pass over the data set.

Better yet, given a data point p
i

with dist(p
i

, p) no larger than
the smallest r value r1 in Q, if p

i

has already been dominated by
k points when evaluated, K-SKY can be terminated immediately.
This is so because all remaining (unevaluated) points would be
dominated by at least these k points that dominate p

i

. Therefore
K-SKY can safely terminate without even examining all points.

Least Examination Principle. Second, in the sliding window
context, the K-SKY search is applied in two situations. First, any
new point p that just arrived in the current window W

c

needs K-
SKY to figure out its skyband points in the current window. Sec-
ond, an existing point p needs K-SKY to update its skyband points
when the stream slides to the current window W

c

. In the first situa-
tion, for a newly arriving point p, K-SKY has to be conducted from
scratch to search for the needed information of p. Instead in the
second situation the key observation here is that given the skyband
points of the window W

c�1, to acquire the skyband data points of
a new window W

c

, only a small fraction of data points in W
c

need
to be evaluated, namely the new arrivals and the unexpired skyband
points of W

c�1.
This is so because any existing data point p

i

in W
c

could not
possibly be a skyband point in window W

c

if p
i

is not also a sky-
band point in W

c�1. If p
i

is not listed in the skybandPoints set of
W

c�1, p
i

must be dominated by at least k data points p
j

in skyband-
Points. By the domination rule defined in Def. 5, if p

j

dominates
p
i

, p
j

.time > p
i

.time . This indicates p
j

would not expire earlier
than p

i

. If p
i

is still valid in window W
c

, p
j

would also remain
valid. Therefore in W

c

, p
i

could not possibly be a skyband point,
since it is still dominated by at least k data points.

Algorithm 1 K-SKY(p,W
c

.plist ,p.skyband ,Q)
Output: skybandPoints //the k-1-skyband point set
1: if p.skyband == NULL then
2: W

c

.input = W

c

.plist ; // New point;search from scratch
3: else
4: expireSkyband(p.skyband)
5: W

c

.input = p.skyband + W

c

.pList.new ; //Old point; search in new
arrivals and unexpired skyband points

6: end if
7: for each pi 2 W

c

.input from W

c

.input.tail to W

c

.plist.head do
8: d = dist(p, p

i

);
9: if (TRUE == pi.skyEvaluate(d,skybandPoints, Q)) then
10: p.updateOutlierStatus(Q);
11: else
12: if d  Q.rmin then
13: break;
14: end if
15: end if
16: end for

K-SKY Algorithm. Next we show how K-SKY detects the (k-
1)-skyband points in each window W

c

. The skyband is computed
every time when the window moves. In other words, the K-SKY
algorithm is called after we receive a batch of new points based on
the slide size. As shown in Alg. 1, the points of window W

c

are
stored in a list structure W

c

.plist . When the streaming data arrives,
the later arrivals are appended at the tail of W

c

.plist . Therefore the
points in W

c

.plist are naturally ordered by their arrival time. If p
is a new point of W

c

, then the search has to be conducted from
scratch (Lines 1,2). Otherwise based on our Least Examination
optimization principle K-SKY only search in the new arrivals and
the unexpired skyband points of p (Lines 3-5).

Then guided by our time-aware prioritization optimization prin-
ciple, K-SKY evaluates the data points of the input list W

c

.plist
in the order from tail to head, i.e., via a “last come, first served”

order (Line 7). After calculating the distance between p and some
data point p

i

, K-SKY evaluates whether p
i

is dominated by at least
k already discovered skyband candidate points. If not, p

i

will be
inserted into the candidate point set skybandPoints (Line 9). Other-
wise if p

i

is not a skyband point and dist(p
i

, p) is not larger than
the smallest r parameter r

1

in Q, K-SKY terminates (Lines 12,13).
This is so because again by our time-aware prioritization principle,
the remaining points does not have chance to be skyband points.

Leveraging the time-aware prioritization and least examination
optimization principles, K-SKY is able to discover all skyband points
by scanning the data set at most once. In other words, K-SKY is
a one pass algorithm. Furthermore, it may terminate without even
seeing all data points. We now show that it is optimal in minimizing
the number of points being evaluated in the execution process.

Lemma 2. Optimality. K-SKY correctly discovers the (k-1)-
skyband points in window W

c

by examining only the minimum
number of data points.

The proof of Lemma 2 can be found in Appendix B.
The skyEvaluate Algorithm. The complexity of K-SKY relies

on the number of points being evaluated and on the cost of eval-
uating each point, that is, the cost to determine whether a given
point p

i

is a skyband point or not. This decision is computed
by the subroutine skyEvaluate of K-SKY. Since the number of
points examined by K-SKY has already been proven to be mini-
mal, the reduction of the second cost per point is now critical for
high-performance of K-SKY. For this we must design an efficient
skyEvaluate algorithm.

Algorithm 2 skyEvaluate(d,skybandPoints, Q)
Output: isSkyband; //Boolean: skyband point or not
1: layer = skybandPoints.getLayer(d);
2: count = 0;
3: for i =1; i++; i  layer do
4: count += skybandPoints.layerCount(i);
5: end for
6: if count  k - 1 then
7: skybandPoints.map(pi);
8: return true;
9: else
10: return false;
11: end if

First we introduce the core data structure of the K-SKY algo-
rithm called LSky. LSky is a layered data structure that stores the
skyband points acquired in the execution process of K-SKY. It plays
a critical role in assisting skyEvaluate to effectively determine
whether a point p

i

is a skyband point.
In LSky, skyband points are organized into a layered two dimen-

sional structure that preserves the order among the skyband points
in both the distance and the time dimensions. As shown in Fig. 2,
the points in each layer have the same distance to point p based on
the normalized distance function in Def. 4. The points in the upper
layer always have a smaller distance to p than the points in lower
layers. Furthermore, in each layer the points are ordered based on
their arrival time with the earliest arrival being at the head. By this,
skyband points can be quickly expired when the window slides for-
ward in time.

As shown in Fig. 2, given a data point p
i

, skyEvaluate first cal-
culates which layer it belongs to (Line 1). More specifically, given
a query group Q: {q

1

(r
1

), q
2

(r
2

) ,..., q
m

(r
m

), q
m+1

(r
m+1

) ,...,
q
n

(r
n

) } with r1 < r2 < ... < r
m

< r
m+1 < ... < r

n

, a point p
i

should be mapped to the layer corresponding to r
m

(bucket B
m

) if
r
m�1 < dist(p, p

i

) r
m

. This can be done in logarithmic time in
the number of buckets using a binary search.

531

Next, skyEvaluate evaluates whether a point p
i

is a skyband
point. Since K-SKY processes data points in the “last come, first
served” order, a point p

i

to be inserted into LSky is guaranteed to
be dominated by the points falling in the same layer with p

i

and the
points within its upper layers. If in total there are fewer than k such
points in LSky when p

i

is processed, then p
i

will be a skyband
point (Lines 6 - 8). This can be easily determined by explicitly
maintaining the cardinality of each layer (Lines 3 - 5).

Points

Buckets

p1:

<t1,2>

p2:

<t2,3>

p3:

<t3,2>

p4:

<t4,1>

p5:

<t5,1>

p6:

<t6,4>

p7:

<t7,3>

p8:

<t8,2>

B1 d≤ 1

B2 1<d≤2

B3 2<d≤3

Stream

Process order
!"# $"%%"&

Figure 2: Skyband Point Search With LSky
Next we utilize an example to demonstrate how K-SKY detects

the skyband points with the assistance of the LSky structure.

Example 2. Given the stream and the queries in Example 1,
point p

8

is processed first by K-SKY as shown in Fig. 2. Since 1
< dist(p, p

8

) = 2  2 , by Def. 4, p8 is hashed into bucket B2.
The next point processed by K-SKY is p7. Correspondingly p7 is
inserted into bucket B3 because 2 < dist(p, p

7

) = 3  3 . Point
p6 will be excluded from the skybandPoints set immediately since
dist(p, p

6

) = 4 is greater than the largest r parameter in query
group Q. Points p5 and p4 instead will be inserted into bucket
B1. By Def. 4, p3, p2, and p1 should be hashed into buckets B2,
B3, and B2 correspondingly. However all of them are excluded
from the LSky structure, since they are dominated by at least 3 data
points. For example when we hash p3 into bucket B2, there are
already 2 points in B1 and 1 point in B2. Therefore p3 is dominated
by 3 points and thus it is not a skyband point. In this example the
skyband points are {< t4, 1 >, < t5, 1 >, < t7, 3 >, < t8, 2 >}.

Complexity Analysis. With the assistance of the LSky structure
the overall complexity of K-SKY is O(LB) with L the number
of the points examined in K-SKY and B the number of the lay-
ers (buckets) visited when evaluating whether a point is a skyband
point. We have already proven that K-SKY is optimal in L. Now let
us assume that the points are uniformly distributed among all lay-
ers of LSky , then on average B equals to |r|

2 , where |r | represents
the number of unique r parameter values in query group Q. Given
a window with |W | data points, the complexity of processing the
whole window therefore is O(|W |L |r|

2

).

3.2 Handling Various K and R Parameters
We now relax our problem to consider varying not only k but

also r parameters. One simple approach to handle a set of outlier
detection queries with arbitrary pattern related parameters k and r
would be to divide this workload into groups, each of which con-
tains queries with the identical k parameter value. This then would
simplify our problem into a multi-skyband query problem with only
the k parameter varying. Intuitively our problem then could be han-
dled by directly applying K-SKY on each group of queries. How-
ever this solution requires the independent identification and main-
tenance of the skyband points for each group of queries. Since a
large number of skyband points are likely to be shared across these
skyband queries, this naive solution inevitably leads to significant
wastage of CPU and memory resources. We now tackle this short-
coming.

3.2.1 Sharing-Aware Multi-Skyband Solution
Next we propose a sharing-aware solution that efficiently solves

this multi-skyband query problem. By maintaining the skyband
points in one integrated LSky structure, given a point p

i

, only one
single skyband point evaluation operation is required to correctly
answer all skyband queries. This way we assure that multiple sky-
band queries are supported by K-SKY, while still guaranteeing that
each data point is evaluated exactly only once.

Given a query group Q, Q is partitioned into sub-groups Q
j

:
{(r

1

, k
j

), (r
2

, k
j

), ..., (r
n

, k
j

)} (1  j  max , k1 <k2 ... <k
max

,
r1 < r2 ... < r

n

). The member queries in each sub-group Q
j

share
the same k parameter value (k

j

). Therefore each Q
j

corresponds
to one skyband query Qs

j

.
The key idea here is that our K-SKY algorithm can handle any

number of skyband queries with distinct k parameter values with
only some slight adjustment in the criteria used to determine whether
a point p

i

is a skyband point of at least one Qs

j

.

Definition 6. Skyband Point Rule. p
i

is a skyband point if:
(1) p

i

is hashed into some bucket B
m

;

(2) k
0

=
mP

j=1

| B
j

|< k
max

; and

(3) dist(p,p
i

) max{r
n

ofQ
j

| 8k
j

> k
0
}.

The first two conditions in Def. 6 correspond to the examination
rule of the single query case except for replacing the k parameter
of the single query with k

max

(the largest k parameter value in Q).
However not all points satisfying these two conditions would be in
the skyband point set. Now p

i

is dominated by k
0

points. By the
definition of k-skyband query, p

i

would not be a skyband point of
query Qs

j

unless k
0

is smaller than the k parameter k
j

of queries in
Qj (the query sub-group corresponding to Qs

j

). Furthermore, any
point p

i

will be discarded by query Qs

j

if dist(p, p
i

) is larger than
r
n

of Qj by the domination relationship defined in Def. 5. The
above two conditions are captured by Condition 3 in Def. 6.

Optimality. Based on the discussion of our time-aware priori-
tization optimization principle it can be easily shown that K-SKY
discovers all skyband points of multiple skyband queries in one
pass over the data set. Here we provide the intuition. The process-
ing order of K-SKY guarantees that the points added to skyband-
Points during the execution of K-SKY would not be replaced later.
Therefore similar to the case of processing a single skyband query,
K-SKY correctly discovers the (k-1)-skyband points for all sky-
band queries with only the minimum number of points evaluated.

Complexity Analysis. Similar to handling a single skyband
query, the complexity of K-SKY handling multiple skyband queries
is determined by the number of the points being evaluated (L) and
the number of the layers (B) that exist in LSky . Given a window
with |W | data points, the complexity of processing the whole win-
dow therefore is O(|W |LB).

3.2.2 Outlier Detection With K-SKY
After acquiring the skyband points, these points then can be uti-

lized to determine the outlier status of p with respect to each mem-
ber query in Q. For example, this can be done by first calculating
the k -distance of p with respect to each query sub-group Q

j

and
then applying the k-distance observation (Sec. 3.1.1). However the
key observation here is that to determine the status of p, this extra
process is superfluous. In fact, we observe that the outlier status of
p can be naturally derived as part of the skyband point discovery
process as explained below.

Inlier Rule. Suppose we have a query sub-group Q
j

: {q
1

(r
1

, k
j

),
q
2

(r
2

, k
j

), ..., q
m

(r
m

, k
j

), q
m+1

(r
m+1

, k
j

), ..., q
n

(r
n

, k
j

)}. When

532

evaluating whether p
i

is a skyband point, if point p
i

is found to
be dominated by k

j

� 1 points and mapped into bucket B
m

of
LSky, then p is guaranteed to be an inlier for a subset of queries
in Q

j

: {q
m

, q
m+1

, ..., q
n

}. This is so because all points dominat-
ing p

i

are as close as p
i

to p. Since p
i

is mapped to bucket B
m

,
dist(p

i

, p)  r
m

. Therefore p
i

along with all points dominating p
i

(in total k
j

points) are neighbors of p for {q
m

, q
m+1

, ..., q
n

}. By
the outlier definition in Def. 2, p is thus an inlier for these queries.

As shown inliers are naturally recognized during the process of
evaluating whether a point is a skyband point without introducing
any extra overhead. This logic can be seamlessly applied in K-SKY
(see Line 11 in Alg. 1) to mark p as inlier for the corresponding
queries. Eventually p will be reported as outlier for those queries
that do not mark p as inlier after K-SKY terminates.
Safe Inlier in Sliding Stream Windows. Furthermore, given a
point p its outlier status might not always need to be evaluated in
each window and against every query in Q. Potentially skyband
points discovered in the current window might provide sufficient
evidence to prove that p is an inlier during its entire remaining life
for a particular subset of queries in Q, regardless of the character-
istics of the future incoming stream. In this case, we would name
p a guaranteed safe inlier with respect to a query subset Q

safe

of
query group Q. This property arises due to the time order relation-
ship among stream data points.

Safe Inlier Condition. We observe that p is guaranteed to be a
safe inlier if the point p

i

that triggers the above inlier rule arrives
later than p. By the domination relationship definition in Def. 5, for
each of the k

j

� 1 points p
j

that dominate p
i

, p
j

.time > p
i

.time
> p.time . In other words, all k

j

neighbors of p would have arrived
later than p and in turn would not expire before p. Therefore the
neighbor relationship between p and p

i

persists during the entire
life of p. p is thus a safe inlier.

Evaluating the above safe inlier condition in K-SKY is straight-
forward. Namely when monitors the satisfaction of the inlier rule
(Line 11 in Alg. 1), we also compare the arrival order of p

i

and p.
Once p is determined to be a safe inlier, it is no longer neces-

sary to evaluate p for Q
safe

: {q
m

, q
m+1

, ..., q
n

} in any future win-
dow. Thus the discovery of safe inliers can significantly improve
the CPU and memory efficiency of K-SKY.

Next we demonstrate with an example how K-SKY determines
whether a given point p is an outlier with respect to query group Q.

Example 3. Given two query groups QG1 and QG2 in Fig. 3,
on stream in Fig. 4 we demonstrate how K-SKY supports outlier
detection queries with varying k and r parameters. As shown in
Fig. 4, p8 is processed first and hashed to bucket B2 of LSky. p7
is processed next and inserted into bucket B3. p7 is dominated
by one point in B2. In other words, p7 is dominated by k

1

� 1
points, where k1 is the k parameter of QG1. By the inlier rule
this may cause p to be recognized as inlier for some queries in
QG1. By comparing dist(p, p

7

) against the r parameters in QG1,
p is confirmed to be inlier for queries < k

1

, r
3

> and < k
1

, r
4

>,
since dist(p, p

7

)  r
3

< r
4

. Then K-SKY proceeds to hash p6
into bucket B4. p6 is dominated by two points p7 and p8. This
triggers the inlier status check for queries in QG2 (k2 = 3). Since
dist(p, p

6

)  r
4

, p is inlier for query < k
2

, r
4

>. Next p5 is pro-
cessed and inserted into bucket B1. When K-SKY processes p4, p4
is dominated by 2 (k2�1) points. Furthermore, dist(p, p

4

)  r
min

of QG2 (r2 = 2). By the termination condition of K-SKY, QG2 (k2
= 3) is terminated now, since all queries in QG2 classify p as inlier.
Next p3 will be excluded from LSky, since p3 (in B3) is dominated
by four points and therefore is not a skyband point for any query
group. After p2 is evaluated, there are two points p2 and p5 in B1

whose distance to p is not larger than r
min

= r1 = 1 of QG1 (k1

r

k
r1= 1 r2 = 2 r3=3 r4=4

k1 = 2 X X X

k2 = 3 X X X

QG1

QG2

Figure 3: Queries with varying k and r parameters

Points

Buckets

p1:

<t1,2>

p2:

<t2,1>

p3:

<t3,3>

p4:

<t4,2>

p5:

<t5,1>

p6:

<t6,4>

p7:

<t7,3>

p8:

<t8,2>

B1 d≤ 1

B2 1<d≤2

B3 2<d≤3

B4 3<d≤4

Stream

<k1,r3>
<k1,r4>

inlier

<k2,r4>

inlier

!"#$

%&'()*+%&

!",$

%&'()*+%&

!"#$%&'(")

*+"#',,

Figure 4: K-SKY for multiple queries

= 2). This satisfies the termination condition of QG1. In turn p is
classified as inlier by all queries in QG1. This leads to the termi-
nation of the outlier status evaluation process for point p, because
both query groups have been completed. The earliest arrival p1 is
not evaluated.

The Overall Outlier Detection Approach. The overall process
of utilizing the K-SKY algorithm to continuously detect outliers
from the sliding window stream is shown in Alg. 3.

Algorithm 3 detectOutlier(W
c

.plist ,Q)
Output: outliers; //the outlier sets
1: for each p 2 W

c

.plist do
2: if (IsSafeInlier(p) == TRUE) then
3: break;
4: else
5: K-SKY(p,W

c

.plist ,p.skyband ,Q);
6: Qin = markInlierStatus(p, Q);
7: markSafeInlier(p, Q);
8: if Q - Qin 6= ; then
9: insertOutlier(outliers,p,Q - Qin);
10: end if
11: end if
12: end for

Given a point p in the current window W
c

, Alg. 3 first checks
whether p is a safe inlier (Line 2). The K-SKY algorithm will only
execute on the points that are not marked as safe inliers (Lines 4,
5). Then based on the output of K-SKY, we mark p as inlier for
the corresponding queries Q

in

(Line 6). The safe inlier status of p
will also be updated (Line 7). Finally p is inserted into the output
set outliers if not all queries in Q classify p as inlier (Lines 8 - 10).
Each element in the outlier set records one point p along with the
member queries q

i

2 Q - Q
in

that classify p as outlier.

4. VARYING SLIDING WINDOW PARAM-
ETERS

Next, we study the case that the window parameters can vary.
The key observation here is that such multiple queries can be sup-
ported by utilizing one single customized skyband query. There-
fore full sharing of both CPU and memory resources is achieved
over sliding windows.

533

4.1 Varying the Window Parameter - Win
Here we first examine the scenario when the window sizes vary,

while the slide size remains stable. Therefore all queries slide to a
new window at the same time. In other words, they are synchro-
nized. All queries require output at exactly the same moment, i.e.,
at time W

c

.end in Fig. 5. This observation leads to an impor-
tant characteristic. Given a query group Q with member queries
having the same slide size but arbitrary window sizes, Q can be
supported with one skyband query with respect to q

max

denoted
as qs

max

, namely the member query with largest window in Q as
in Fig. 5. Intuitively this is so because the largest window covers
all smaller windows. Therefore skyband points discovered in the
largest window can be utilized to answer all queries in the group.

Therefore by employing the K-SKY algorithm and collecting the
skyband points for this special skyband query qs

max

, this outlier
query group Q can be correctly answered with each point p in the
data stream S evaluated only once in each window that contains p.

Wc.end

q1.Wc.start

q2.Wc.start

q3.Wc.start

qmax.Wc.start ! !!!!

outlier
inlier

!

Succeeding neighbor

common points

Figure 5: Queries with varying window sides

As shown in Sec. 3.1.2, K-SKY gives more preference to the
points arriving later than the points arriving earlier. That is, K-
SKY always processes the later arrivals first. On the other hand the
later arrivals in the stream happen to be the common points among
the data populations covered by the current windows of different
queries (Fig. 5). Therefore K-SKY naturally leverages the data
commonality among the windows of distinct queries. Redundant
computations during the skyband point discovery process are elim-
inated.

Outlier Status Evaluation. After K-SKY terminates, as shown
in Sec. 3.1.2, the outlier status of p 2 q

max

.D
W

c

with respect to
q
max

has already been determined. If q
max

marks p as outlier,
then p is guaranteed to be an outlier for any other query q

i

in Q .
Therefore it is not necessary to evaluate the outlier status of q

i

any-
more. However this is not the case if p instead is marked as an
inlier for q

max

. This is so because the neighbors of a particular q
i

are only a subset of the neighbor set of q
max

. Even if q
max

has
acquired enough neighbors to prove the inlier status of p, this does
not guarantee that p has enough neighbors for other queries with
smaller windows. Therefore an extra outlier status evaluation step
is necessary for other member queries q

i

in Q besides q
max

. For-
tunately, as we demonstrate below, to determine the outlier status
of p with respect to the member queries in Q, it is not necessary to
examine all points in qs

max

.skyband .

Lemma 3. Given a query group Q: {q
1

, q
2

, ..., q
m

, q
m+1

, ...,,
q
max

} (q
1

.win < q
2

.win < ... < q
max

.win), p is an outlier for
queries {q

1

, q
2

, ..., q
m

}, if q
m+1

.W
c

.start < p
old

.time < q
m

.W
c

.
start , where p

old

is the oldest point in qs

max

.skyband .

The formal proof of Lemma 3 can be found in Appendix C.

By Lemma 3 when p is an inlier of q
max

, to determine the outlier
status of p with respect to all other queries in Q we only need to
evaluate one single skyband point p

old

, namely the last skyband
point acquired exactly when K-SKY terminates. This is achieved
by locating the query q

m

with largest window size whose current
window W

c

has not started yet at the time when p
old

arrives. As
shown in Fig. 5, queries q1 and q2 are outliers, because the oldest
neighbor of p, namely p

old

arrived earlier than the start time of the
windows of q1 and q2.

Let us assume the queries in Q are ordered by their window sizes.
In that case, the delimiter query q

m

can be located in O(log | Q |)
time with a binary search style algorithm.

Safe Inlier. A point p declared as inlier by query q
max

is not
necessarily an inlier for all queries in Q. However this is not the
case when p is a safe inlier. Once p is confirmed as a safe inlier by
q
max

, p is guaranteed to be a safe inlier for all queries in Q.
Since all queries in Q have the same slide size, their current win-

dow W
c

ends at the same time point. Therefore all queries in Q
share the same succeeding points of p in W

c

, namely the points
arriving later than p, but earlier than the end of the window as de-
picted in Fig. 5. This indicates that the k succeeding neighbors of
p discovered by q

max

are shared by all queries. Hence p is a safe
inlier with respect to all queries in Q.

Based on this Safe-For-All property, once p is determined by K-
SKY to be a safe inlier of q

max

, p can also be declared to be a safe
inlier for all queries without requiring any further evaluation. It is
then safe to exclude p from further evaluation in any future window.
Therefore significant CPU and memory resources are saved.

In summary, we conclude that we only need to detect and main-
tain the skyband points for one single skyband query with respect
to the outlier query with the largest window size. This then is suf-
ficient to answer all outlier queries in the query group. Clearly, full
sharing is achieved.

4.2 Varying the Slide Parameter
Next, we consider the case where all queries have the same win-

dow size, while their slide sizes vary. Unlike the previous varying
window size case, these queries are not synchronized. That is, their
windows move at a different pace. Therefore no stable relationship
holds across the data populations covered by the active windows
with respect to different queries. In other words there is no such
query whose active window continuously contains the windows of
other queries. Therefore the above strategy supporting queries with
various window sizes does not handle this case. However indepen-
dently generating output for this set of queries at different moments
is not practical for large volume streams.

To solve this problem, given a query group Q, we build a single
swift query q

sft

that correctly answers all member queries of Q.
Q

sft

has the same window size as all member queries in Q , while
its slide size is set as the greatest common divisor on the slide sizes
of all the queries in Q.

Intuitively by definition of the greatest common divisor, 8q
i

2
Q, we have q

i

.slide mod q
sft

= 0. Therefore at any time t
j

when
q
i

2 Q produces an outlier result q
i

.outlier , q
sft

would also be
producing result q

sft

.outlier . Furthermore, since q
i

.win = q
sft

.win ,
the points covered by the window of q

i

and q
sft

would be identical
at t

j

. Therefore at any t
j

q
i

.outlier = q
sft

.outlier . Hence Q
sft

is
sufficient to represent all queries in Q.

Therefore a query group Q with varying slide sides can be sup-
ported by one special skyband query with respect to this special
outlier query q

sft

. It is straightforward to determine at runtime
when to output the outlier detection results and what query the out-

534

put corresponds to by tracking for each query when the window
slides.

Safe Inlier. Although potentially q
sft

slides its window more
frequently than any q

i

in Q, this swift query solution does wastes
neither CPU nor memory resources. This is because q

sft

is able to
discover safe inliers and to terminate the outlier detection process
at the earliest possible moment. This observation relies on the Safe
For All property of q

sft

similar to q
max

in the varying window size
case. Namely given a point p, if p is recognized as a safe inlier for
the swift query q

sft

, then p is a safe inlier for all q
i

2 Q. Next we
briefly justify this observation.

We use succ(p, q) to denotes the points arriving later than p in
the current window W

c

of query q. The safe-for-all property fol-
lows immediately from the fact that in any future window succ(p, q

sft

)

is a subset of succ(p, q
i

) for any query q
i

2 Q. This is so because
in any future window when query q

i

is scheduled to produce outlier
status for p, all points succeeding to p in the current window of q

sft

will not expire (since p has not expired). Furthermore, q
i

will also
get some additional new points into the future window.

Since q
sft

is potentially scheduled more frequently than any query
in Q, the safe inliers will be discovered quicker.q

sft

is able to dis-
cover and prune the safe inliers earlier than any query in Q. There-
fore CPU and memory resources are saved.

In conclusion, this swift query solution achieves full sharing by
utilizing only one single skyband query to answer all member queries
in Q. Furthermore safe inliers are also discovered and discarded
earlier than any actual member query, leading to additional saving
in CPU and memory resources.

4.3 Varying Both Win and Slide Parameters
We now describe our solution for the case when both window

parameters, namely win and slide, vary. This solution is a straight-
forward combination of the techniques introduced in the last two
sections. In particular, we simply build one single swift query that
has the largest window size among all member queries and its slide
size as the greatest common divisor of the slide sizes of all member
queries. A specific skyband query with respect to this single swift
query will then be employed to collect skyband points, namely the
evidence to prove the outlier status of a given point p. Similar to
the varying slide size case the timing when each query is required
to produce output is determined at runtime (see Sec. 4.2). Then
Lemma 3 introduced in Sec. 4.1 is applied to decide the outlier
status of each point for the queries requiring output based on the
results of the swift skyband query. In short, this case of arbitrary
window and slide sizes can be regarded as an arbitrary window size
case with a fixed slide size whose value is the greatest common di-
visor of the slide sizes of all member queries.

5. VARYING ALL PARAMETER SETTINGS
Finally, we consider the most general case with arbitrary pat-

tern and window-specific parameters. Although sharing among a
group of totally arbitrary queries appears hard at first sight, we
now demonstrate that this problem can be tackled utilizing the sky-
band query technique. This is possible, because as shown in Sec.
4.3, the skyband query technique designed for processing the out-
lier analytics workloads with varying pattern-specific parameters
can be leveraged to answer multiple queries with arbitrary window-
specific parameters.

SOP Outlier Detection Framework. As depicted in Fig. 6,
SOP first employs a query parser to divide the queries in a query
group Q into sub-groups Q

i

based on their k parameters. Queries
with the same k parameter are grouped into one sub-group Q

i

. The
queries in each sub-group Q

i

are then sorted based on their r pa-

Figure 6: SOP Framework
rameters. The queries with same r parameters are further sorted
based on their window sizes. Then the query parser will create one
skyband query Qs

i

for each outlier query sub-group Q
i

. Its window
size is set as the the largest window size among the member queries
in Q

i

. Its slide size is then set as the greatest common divisor of
the slide sizes of the member queries.

After the query parser transforms the outlier detection queries
into the skyband queries, the K-SKY algorithm for multiple sky-
band queries introduced in Sec. 3.2 will be applied to detect the
skyband points. Then the outlier status evaluator determines the
outlier status of each data point with respect to the outlier queries
using the inlier rule introduced in Sec. 3.2.2.

Similar to the varying window sizes case if a data point p is clas-
sified as an outlier for the queries in some sub-group Q

i

, then p is
guaranteed to be an outlier for all queries in Q

i

no matter what their
window sizes are. On the other hand if p is declared to be an inlier
for some queries, Lemma 3 has to be applied to evaluate whether p
is indeed an inlier for these queries by checking their window sizes
as shown in Sec. 4.1.

Once the outlier status of p is determined for certain queries, the
query scheduler determines whether it is time to output the outliers
for these queries based on their slide sizes (per Sec. 4.2).

Conclusion. Computation-wise, SOP only requires a single pass
through new data points, each collecting the minimum evidence to
prove its outlier status with respect to all queries. Memory-wise,
the evidence which proves the outlier status of each data point with
respect to multiple queries is maintained only once. In short, SOP
achieves full sharing for multiple distance-based outlier queries
over sliding windows in terms of both CPU and memory resources.

6. PERFORMANCE EVALUATION

6.1 Experimental Methodology
We conducted experiments on a PC with 3.4G HZ Intel i7 pro-

cessor and 6GB memory, running Windows 7 OS. All algorithms
are implemented in JAVA on HP CHAOS stream engine [8].

Real Data Sources. We use the Stock Trading Traces Data
(STT) [11]. It has one million transaction records throughout the
trading hours of one day. All data has the same format of name,
transId, time, volume, price, and type.

Synthetic Data. We also implement a data generator to cre-
ate a dataset containing 100M points. This dataset is composed of
Gaussian distributed data points as inlier candidates and uniform
distributed ones as outliers. The outliers are randomly distributed
in each time segment of the data stream.

Alternative Algorithms. We compare our proposed SOP al-
gorithm with the two state-of-the-art solutions from the literature
[13, 7]. Since MCOD [13] does not support variations in window-
specific parameters, we have extended MCOD by inserting our

535

10 100 500 1000
101

102

103

104

105

106

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

10 100 500 1000
200

300

400

500

600

700

800

900

1000

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (log scale)

Figure 7: Varying r values for queries on synthetic dataset

10 100 500 1000
101

102

103

104

105

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

10 100 500 1000
0

100

200

300

400

500

600

700

800

900

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (log scale)

Figure 8: Varying k values for queries on synthetic dataset

window-specific techniques into MCOD. We now use this enhanced
algorithm to compare against SOP. In addition, we also compare
our sharing strategy against the state-of-the-art single query strat-
egy LEAP [7]. Multiple queries are supported by applying LEAP
independently to process each query in the query group.

Metrics. We measure two metrics common for stream systems,
namely the average processing time (CPU time) per window and
the peak memory consumption (MEM). The CPU time per win-
dow corresponds to the total amount of system time resources used
to process the queries on the data in one window. The consumed
memory metric corresponds to the memory required to store the in-
formation for each active object (i.e. the skyband points) and the
outliers of all queries in the current window. All results are col-
lected and calculated at the unit of one window at a time. Then
they are averaged over all windows processed in the given experi-
ments. All experiments are reported using the count-based window,
with time-based window processing achieving similar results.

We also conduct scalability tests to validate the performance of
the proposed algorithms with an increasing number of queries in
the workload.

All in all our study covers important combinations of the four
query parameters. They range from varying one specific parameter
only at a time to the more general cases of varying all 4 of them
among the queries populating the workload as shown in Table 1.
The varying ranges of the parameters are listed in Table 2.

Workload Pattern Window
R K W S

(A) arbitrary fixed fixed fixed
(B) fixed arbitrary fixed fixed
(C) arbitrary arbitrary fixed fixed
(D) fixed fixed arbitrary fixed
(E) fixed fixed fixed arbitrary
(F) fixed fixed arbitrary arbitrary
(G) arbitrary arbitrary arbitrary arbitrary

Table 1: Combinations of different workloads

Type Name Value
Pattern K [30,1500)

R [200,2000)
Window W [1Ks,500Ks)

S [50s,50Ks)

Table 2: The ranges of the parameters

6.2 Varying Pattern Specific Parameters
Our general methodology is to prepare four workloads with 10,

100, 500, 1000 queries respectively by randomly choosing the val-
ues of the pattern-specific parameters in a range for each query,
while fixing the window-specific parameters. The synthetic dataset

0.010.1 1 5
x 104

101

102

103

104

105

106

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

0.010.1 1 5
x 104

0

500

1000

1500

2000

2500

3000

3500

4000

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (log scale)

Figure 13: Varying K, R, W and S values on synthetic dataset

is utilized in this set of experiments to make sure the outlier rate is
small (< 5%) when varying the k and r parameters.

Arbitrary R Case. In the first experiment, we evaluate the per-
formance of our SOP compared with the state-of-the-art MCOD
[13] and LEAP [7] when only varying parameter r. We fix the win-
dow size to 10K, slide size to 0.5K and k parameter value to 30,
while r is randomly selected in the range from 200 to 2000.

As shown in Fig. 7(a), SOP significantly outperforms MCOD
and LEAP up to 3 orders of magnitude in CPU time. By mapping
the multiple outlier query problem to the skyband query problem,
SOP only needs to collect minimum information to prove the out-
lier status of each data point with respect to all queries. Instead,
MCOD relies on routinely conducting a range query to detect out-
liers. That is, in each case it will compare each data point with all
the other data points in each window and collect all the points sat-
isfying the neighbor condition of any user query. On the other hand
LEAP repeatedly detects outliers for each query from scratch. Its
CPU performance thus degrades quickly as the number of queries
increases. We thus confirm that the CPU efficiency of both MCOD
and LEAP is significantly worse than that of SOP.

SOP is also superior in memory usage as shown in Fig. 7(b).
This is because in each window given a data point p, MCOD keeps
all data points satisfying the neighbor conditions of p with respect
to any query. SOP instead determines that it is not necessary for the
evaluation of the outlier status of p. On the other hand, LEAP, with-
out leveraging the sharing opportunities across multiple queries,
maintains the neighbors of each point independently for each query.

Arbitrary K Case. In this experiment, we analyze the perfor-
mance of SOP by varying k parameter values of the queries. We
use a fixed window size of 10K and a slide size of 0.5K. Parameter
r is fixed at 700. A value for k is randomly selected in the range
from 30 to 1500 for each query.

As shown in Fig. 8(a), similar to the case of varying r, the CPU
performance of SOP outperforms the other two alternatives up to 4
orders of magnitude. Since the case of varying k can be treated as
a special case of the case with arbitrary k and r values, this experi-
ment demonstrates the effectiveness of our K-Sky algorithm when
handling multiple skyband queries.

536

10 100 500 1000
100

101

102

103

104

105

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

10 100 500 1000
0

200

400

600

800

1000

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (log scale)

Figure 9: Varying k and r values on synthetic dataset

1 2 4 8
101

102

103

104

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) Same attribute

1 2 3 4
101

102

103

104

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(b) Different attributes

Figure 10: CPU (log scale): small workload

10 100 500 1000
101

102

103

104

105

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

10 100 500 1000
0

100

200

300

400

500

600

700

800

900

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (linear scale)

Figure 11: Varying Win for queries on STT dataset

10 100 500 1000
101

102

103

104

105

106

Number of Queries

C
PU

 T
im

e
(m

s)
 o

n
Lo

g
Sc

al
e

SOP
MCOD
LEAP

(a) CPU (log scale)

10 100 500 1000
0

200

400

600

800

1000

1200

Number of Queries

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SOP
MCOD
LEAP

(b) Memory (log scale)

Figure 12: Varying W and S values on STT dataset

The CPU resources utilized by SOP are very stable as the num-
ber of queries increases. This is because for each workload the k
value is randomly selected in the same range. In each workload at
least one of the randomly selected k is likely to get fairly close to
the upper ceiling value in the range. In other words the maximum k
in each workload is similar on average. Therefore this experiment
demonstrates that the performance of SOP relies on the largest k
value instead of on the number of queries in the workload. There-
fore SOP scales to a potentially huge workload composed of a large
number of queries. A similar trend can also be observed in memory
utilization as shown in Fig. 8(b).

Arbitrary K and R Case. In this experiment, we assess the
performance of the algorithms when varying both k and r. We fix
the window size to 10K, slide size to 0.5K, while the values for
both k and r are randomly generated in the range respectively from
30 to 1500 and from 200 to 2000 for each query.

Fig. 9 depicts the performance of the three algorithms in terms
of CPU costs and memory consumption. We observe that SOP
consistently outperforms MCOD and LEAP up to 3 orders of mag-
nitude. This confirms that K-SKY not only effectively shares the
computation among the queries with an identical k parameter, but
it also achieves full sharing across multiple skyband queries with
respect to different query groups with distinct k values. MCOD
instead solves this case by simulating an outlier query using the
largest k and smallest r values in the workload as its pattern pa-
rameters. Such a query can have much more restricted neighbor
requirements and in turn more expensive range queries than any of
the actual outlier queries. Huge CPU and memory resources may
be wasted compared to SOP.

Small Workload. In this set of experiments, we test the perfor-
mance of SOP when processing small workload. It is composed
of two experiments. In the first experiment, all queries utilize the
same set of attributes in the detection of outliers. We vary the size
of the workload by containing 1, 2, 4, 8 queries. Again it confirms
that SOP performs well even in this small workload case as shown
in Fig. 10(a). In particular when the workload contains only one
single query, SOP does not perform worse than the state-of-the-art

single query approach LEAP. This shows that no much extra over-
head is introduced by SOP.

Furthermore, we also evaluate the performance of SOP when
handling queries utilizing different set of attributes. In this exper-
iment, the queries are divided into 3 groups. The queries in the
same group utilize the same set of attributes. We vary the num-
ber of queries in each group from 1 to 4. To support such work-
load SOP is slightly extended using a simple divide and conquer
approach. As depicted in Fig. 10(b) our extended SOP approach
continues to perform well. More specifically SOP is at least 150
times faster than MCOD and two times faster than LEAP even in
this small number of queries case.

6.3 Varying Window Specific Parameters
Next, we focus on workloads composed of 10, 100, 500, 1000

queries respectively for the case when varying window-specific pa-
rameters, while using a fixed pattern-specific parameter setting. In
this set of experiments the stock data [11] is utilized to evaluate
how our SOP solution performs when handling real datasets.

Arbitrary Win Case. In this experiment, we study the perfor-
mance of SOP for window sizes ranging from 1K to 500K. We fix
the slide size as 0.5K, r as 200, and k as 30.

As shown in Fig. 11, SOP features significantly better perfor-
mance on both CPU and memory consumption compared to MCOD
and LEAP. Since MCOD leverages the sharing opportunities across
the windows of multiple queries by adopting our swift query strat-
egy, its CPU and memory usage is relatively stable compared to
LEAP as the number of queries increases. However MCOD is still
outperformed by SOP by at least 2 orders of magnitude in CPU
time as shown in Fig. 11(a). This is because based on our safe-for-
all observation in Sec. 4.1, SOP terminates and excludes p from
any future evaluation process immediately once p is classified as
safe inlier by the skyband query corresponding to the outlier query
with the largest window size. As stated earlier, MCOD instead re-
lies on a range query to detect these outliers. Even if a data point is
recognized as safe inlier, this neighbor search continues completing
the comparisons with all other untouched data points. Therefore a
huge amount of CPU resources can be wasted.

537

Arbitrary Win and Slide Case. In this experiment, we investi-
gate the performance of SOP when varying both window-specific
parameters. We fix k as 30 and r as 200. The window and slide
sizes are arbitrarily selected for each query from the range of 1K to
500K and from 50 to 50K respectively.

As illustrated in Fig. 12, the average CPU time consumed by
SOP increases only from 28ms to 282ms (10 folds) as the number
of queries increases from 10 to 1000 (100 folds). This continues
to outperform the alternative algorithms by at least two orders of
magnitudes. Clearly, results shown in Fig. 12 demonstrate the ef-
fectiveness of the swift query strategy for handling arbitrary win
and arbitrary slide case.

6.4 Varying Pattern and Window Parameters
In this most general case, we prepare four workloads composed

of 100, 1000, 10,000, 50,000 queries respectively by varying all
window-specific and pattern-specific parameters.

We observe from Fig. 13(a) that similar to the cases of inde-
pendently varying pattern-specific parameters and window-specific
parameters SOP achieves tremendous gain in CPU utilization com-
pared to (augmented) MCOD and (the non-shared) LEAP. Fur-
thermore SOP shows excellent scalability in the cardinality of the
workload. As the number of queries rises from 1000 to the ex-
tremely large cardinality of 50,000 queries, the CPU costs of SOP
only increase from 32ms to 892ms. As the number of the queries
increases, the sharing opportunities among the given set of queries
also increase. Since SOP achieves full sharing across queries, it
effectively reduces the CPU burden caused by the huge workload.

The memory usage of SOP also consistently outperforms the al-
ternatives solutions as shown in Fig. 13(b). As previously stated,
the reason is that LEAP detects outliers on the same streaming data
for each query independently. Hence the memory consumed by the
workload queries accumulates as the number of queries grows. On
the other hand, MCOD always detects outliers by discovering and
maintaining all neighbors for each point. However, SOP only re-
quires minimal information to prove the outlier status of each point.
As a result, SOP effectively avoids the usage of unnecessary space
by purging redundant intermediate results. Therefore significant
memory utilization is reduced by SOP.

7. RELATED WORK
Distance-based Outliers on Streaming Data. With the emer-

gence of digital devices generating data streams, outliers on stream-
ing data are one type of anomalies recently studied [7, 13, 1]. Ex-
isting work [7, 13, 1] focuses primarily on processing a single out-
lier detection request. In particular [1] leverages the observation
that the neighbors p

i

of a point p that arrived after p do not expire
before p expires. They make a distinction between the preceding
neighbors of p, P

p

, i.e., those that will expire before p, and the suc-
ceeding neighbors of p, S

p

, those that will persist during the entire
lifetime of p. They first introduce the idea of a “safe inlier” as a
point p with � k succeeding neighbors.

[13] further improves on [1] by leveraging the safe inlier concept
of [1]. That is, it organizes the data points into a queue based on
the number of their succeeding neighbors, so that it can efficiently
schedule the necessary checks that have to be made when the win-
dow slides. However it still relies on full range query searches
to process the newly arriving points. Therefore it cannot provide
real time responsiveness when applied to high velocity streaming
data. Besides this single query technique, [13] also touches on sup-
porting multiple outlier detection queries for the case of varying
pattern-specific parameters. Given a data point p they first utilize
a range query to find all points that satisfy the neighbor condition

of all queries in the query group. Then a postprocessing step is ap-
plied to filter the unnecessary points from this large neighbor set to
reduce the maintenance costs. In our work by directly transform-
ing the multi-query outlier problem into the single query skyband
problem, we only collect the necessary evidence that is sufficient to
answer multiple outlier queries, therefore significantly outperform-
ing this method as confirmed in our experiments.

Due to a deeper understanding the temporal relationships among
stream data points, [7] overcomes the limitation of prior methods
[1, 13] of undertaking full range query searches by discovering as
early as possible safe inliers in the scan process. This allows it to
better satisfy the performance requirements of modern streaming
applications. However multiple outlier detection requests are not
supported in [7].

Outliers on Sensor Streams. [20] proposes an online technique
to detect outliers in sensor stream data. This work primarily focuses
on how to reduce the message transmission and in turn reduce the
power consumption of the sensors. First, it utilizes kernel den-
sity estimation to model the distribution of the sensor data. Then
given a point p, [20] approximates whether p is an outlier by es-
timating the number of its neighbors using the density distribution
function f (p). However unlike our work focusing on detecting ex-
act distance-based outliers, this approximation no longer assures
complete results. Furthermore, they only support a single outlier
detection query. No multi-query technique is discussed.

kNN Queries on Streams. Continuous kNN queries over slid-
ing windows have indeed been studied in [15, 6]. Both works use a
grid to index the stream data. To improve response time, they either
postpone the processing of the new points which are not likely to
be in kNN set [6] or eagerly pre-compute the possible kNN set for
each future window as new data arrives [15].

However to determine the outlier status of p it is not necessary
to always discover the full kNN of p. Rather one algorithm should
stop evaluating p as long as any k neighbors of p have been discov-
ered. Therefore the use of the streaming kNN algorithm to con-
tinuously detect outliers is not an efficient approach. Instead our
customized skyband algorithm K-SKY always discovers the mini-
mal information necessary to determine the outlier status of p.

General Multi-Query Optimization. Multiple query sharing
has been widely studied as a general optimization problem in stream-
ing environments. Previous research on sharing computations stud-
ied traditional SQL queries such as selection, join, and aggregation
[4, 9, 22, 14]. Their methods include rewriting queries to expose
common subexpressions, sharing indices, or segmenting input into
partitions and sharing partial results over the partitions. However
the key problem we address in this work, namely correctly answer-
ing multiple outlier detection queries by only collecting minimal
information, is different from the more general purpose optimiza-
tion effort required by the traditional SQL query sharing.

8. CONCLUSION
In this work, we present the first solution, called SOP, for effi-

cient shared processing of a large number of distance-based outlier
detection requests with diverse parameter instantiations over slid-
ing window streams. SOP requires only one single pass over the
data points to support a huge workload composed of a large num-
ber of outlier detection requests with arbitrary input settings for all
pattern and window specific parameters. Our experimental study
using both real and synthetic streaming datasets confirms that for
the rich diversity of tested scenarios SOP outperforms the alter-
natives on average three orders of magnitude in CPU time, while
using only 5 % memory space of its counterparts.

538

9. REFERENCES
[1] F. Angiulli and F. Fassetti. Distance-based outlier queries in

data streams: the novel task and algorithms. Data Min.
Knowl. Discov., 20(2):290–324, 2010.

[2] F. Angiulli and C. Pizzuti. Fast outlier detection in high
dimensional spaces. In PKDD, pages 15–26, 2002.

[3] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language. VLDB J., 15(2):121–142, 2006.

[4] A. Arasu and J. Widom. Resource sharing in continuous
sliding-window aggregates. In VLDB, pages 336–347, 2004.

[5] S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a simple
pruning rule. In KDD, pages 29–38, 2003.

[6] C. Böhm, B. C. Ooi, C. Plant, and Y. Yan. Efficiently
processing continuous k-nn queries on data streams. In
ICDE, pages 156–165, 2007.

[7] L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A.
Rundensteiner. Scalable distance-based outlier detection over
high-volume data streams. In ICDE, pages 76–87, 2014.

[8] C. Gupta, S. Wang, I. Ari, M. C. Hao, U. Dayal, A. Mehta,
M. Marwah, and R. K. Sharma. Chaos: A data stream
analysis architecture for enterprise applications. In CEC,
pages 33–40, 2009.

[9] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.
Elmagarmid. Scheduling for shared window joins over data
streams. In VLDB, pages 297–308, 2003.

[10] D. M. Hawkins. Identification of Outliers. Springer, 1980.
[11] I. INETATS. Stock trade traces. http://www.inetats.com/.
[12] E. M. Knorr and R. T. Ng. Algorithms for mining

distance-based outliers in large datasets. In VLDB, pages
392–403, 1998.

[13] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas,
and Y. Manolopoulos. Continuous monitoring of
distance-based outliers over data streams. In ICDE, pages
135–146, 2011.

[14] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly
sharing for streamed aggregation. In SIGMOD Conference,
pages 623–634, 2006.

[15] K. Mouratidis and D. Papadias. Continuous nearest neighbor
queries over sliding windows. IEEE Trans. Knowl. Data
Eng., 19(6):789–803, 2007.

[16] A. Nazaruk and M. Rauchman. Big data in capital markets.
In SIGMOD Conference, pages 917–918, 2013.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[18] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. In
SIGMOD Conference, pages 427–438, 2000.

[19] G. E. Rosario, E. A. Rundensteiner, D. C. Brown, and M. O.
Ward. Mapping nominal values to numbers for effective
visualization. In InfoVis, pages 113–120, 2003.

[20] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier detection in
sensor data using non-parametric models. In VLDB, pages
187–198, 2006.

[21] Y. Tao and D. Papadias. Maintaining sliding window
skylines on data streams. IEEE Trans. Knowl. Data Eng.,
18(2):377–391, 2006.

[22] S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar.
State-slice: New paradigm of multi-query optimization of

window-based stream queries. In VLDB, pages 619–630,
2006.

APPENDIX
A. PROOF OF PROBLEM MAPPING

Lemma 1. Given a query group Q, for any data point p, the
output of Qs , denoted as S

p

, is sufficient and necessary to contin-
uously determine the outlier status of p with respect to all queries
in Q, where Qs represents the (k � 1)-skyband query with respect
to p with k as the neighbor threshold parameter defined in Q.
Proof. “)” we prove the sufficiency by showing that Qs always
returns the k nearest neighbors of p kNN(p) 3 as part of the sky-
band points. Assume the data points in D have been partitioned
into t subsets S1, S2, ..., S

t

. Each subset S
i

contains all data
points with the same distance to p. Assume here that the subsets
S1, S2 ,..., S

t

are sorted in an ascending order by their distance to p.
Assume | S

1

| + | S
2

| +, ...,+ | S
x

|< k and | S
1

| + | S
2

| +
...+ | S

x

| + | S
x+1

|� k . All data points in S
1

[S
2

[... [S
x

along with (k - (| S
1

| + | S
2

| +, ...,+ | S
x

|)) data points with
largest timestamp in S

x+1

will be returned by Qs , since by the
domination rule in Def. 5 they are dominated by at most k -1 data
points. These k data points satisfy the kNN (p) definition, since no
other data point is closer towards p than they are. Then by the k-
distance observation, kNN(p) is sufficient to prove the outlier status
of p with respect to Q. The sufficiency is proven.

“(” By contradiction. Given a point p
i

(p
i

2 S
p

- kNN(p)), al-
though by the k-distance observation, S

p

- {p
i

} is still sufficient to
determine the status of p in the current window W

c

, potentially p
may be erroneously evaluated in the future window W

c+x

. Assume
that when the stream evolves to w

c+x

, all points in S
r

arriving ear-
lier than p

i

have expired. If all points p
j

arriving after W
c

are far
from p (dist(p, p

j

) > r
i

), p
i

should now be in kNN(p). Since the
outlier status of p is determined by kNN(p), to correctly determine
the outlier status of p in any future window, p

i

has to be kept. The
necessity is proven. ⌅

B. OPTIMALITY PROOF OF K-SKY
Lemma 2. K-SKY correctly discovers the (k-1)-skyband points

in window W
c

by examining only the minimum number of data
points.
Proof. We prove Lemma 2 by showing that: (1) Any point inserted
to skybandPoints during the execution of K-SKY is guaranteed to
be a true (k-1)-skyband point; (2)No data point that could not be a
(k-1)-skyband point is examined during the execution of K-SKY.

Proof of (1). In K-SKY the later arrivals are always evaluated
earlier than the earlier arrivals. Therefore any point p

i

already
added into skybandPoints has a larger timestamp than any point
p
j

remaining to be evaluated. That is, p
j

.time < p
i

.time . By the
domination rule defined in Def. 5, p

j

cannot dominate p
i

. There-
fore p

i

would not be replaced by any point evaluated later. Condi-
tion (1) holds.

Proof of (2). Proof in two steps. First, K-SKY stops immedi-
ately once the termination condition is satisfied. Namely K-SKY
terminates immediately once one point p

i

is dominated by k points
if the distance between p

i

and p is not larger than the smallest r
parameter r

min

in Q. Therefore the remaining points that will not
be in skybandPoints are not evaluated.

Second, we prove any data point evaluated during the execution
of K-SKY is potentially a (k-1)-skyband point. Data point p

i

is
evaluated by K-SKY if and only if the termination condition has
3This kNN is based on the normalized distance function.

539

not yet been satisfied. In other words when p
i

was evaluated, at
most k - 1 data points p

j

with dist(p,p
j

)  r
min

existed at that
time. Therefore p

i

should be listed in skybandPoints if dist(p,p
i

)
 r

min

. That is, if we were not to consider p
i

, then potentially an
incorrect skyband point set may be reported. Furthermore, in K-
SKY if p 2W

c

is an point that survived the stream data expiration,
only the new arrivals in W

c

and its unexpired unexpired skyband
points in last window W

c�1

will be examined. By our least exam-
ination optimization principle these points are the only points that
will appear in the skyband point set of the new window W

c

. This
confirms that any point evaluated by K-SKY is indeed necessary to
guarantee the correctness of the Qs query. ⌅

C. PROOF OF LEMMA 3
Lemma 3. Given a query group Q: {q

1

, q
2

, ..., q
m

, q
m+1

, ...,,

q
max

} (q
1

.win < q
2

.win, < ..., < q
max

.win), p is an outlier for
queries {q

1

, q
2

, ..., q
m

}, if q
m+1

.W
c

.start < p
old

.time < q
m

.W
c

.start ,
where p

old

is the oldest point in qs

max

.skyband .
Proof. qs

max

is a special skyband query with respect to the single
outlier query q

max

(k , r). Since p is an inlier with respect to q
max

,
the skyband set qs

max

.skyband contains k neighbors of p. p
old

is
dominated by k -1 points in qs

max

.skyband , because p
old

.time <
p
i

.time (8p
i

2 qs
max

.skyband). Since
q
m+1

.W
c

.start < p
old

.time < q
m

.W
c

.start , p
old

falls in the cur-
rent window W

c

of {q
m+1

, ..., q
max

}, but is out of the W
c

of
{q

1

, q
2

, ..., q
m

}. Therefore p has at most k - 1 neighbors in qs

max

.
skyband for {q

1

, q
2

, ..., q
m

}. Furthermore, any point p
j

out of
qs

max

.skyband cannot be a neighbor of p for {q
1

, q
2

, ..., q
m

} in
their current window W

c

. Otherwise p
old

would also be dominated
by p

j

. Hence it would in total be dominated by k points. This
contradicts the fact that p

old

is a skyband point of qs

max

. ⌅

540

