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ABSTRACT
Local outlier techniques are known to be effective for detecting out-
liers in skewed data, where subsets of the data exhibit diverse distri-
bution properties. However, existing methods are not well equipped
to support modern high-velocity data streams due to the high com-
plexity detection algorithms and their volatility to data updates. To
tackle these shortcomings, we propose new local outlier semantics
that leverage kernel density estimation (KDE) to effectively detect
local outliers from streaming data. A strategy to continuously detect
top-N KDE-based local outliers over streams is also designed, called
KELOS – the first linear time complexity streaming local outlier
detection approach. The first innovation of KELOS is the abstract
kernel center-based KDE (aKDE) model. aKDE accurately while
efficiently estimates the data density at each point – essential ingredi-
ent for local outlier detection. This is based on the observation that a
cluster of points close to each other tend to have a similar influence
on a target point’s density estimation when used as kernel centers.
These points thus can be represented by one abstract kernel center.
Next, the KELOS’s inlier pruning strategy early prunes points that
have no chance to become top-N outliers. This empowers KELOS
to skip the computation of the data density and then the outlier status
for every data point. Together aKDE and the inlier pruning strat-
egy eliminate the performance bottleneck of streaming local outlier
detection. The experimental evaluation demonstrates that KELOS
is up to 3 orders of magnitude faster than existing solutions, while
still being highly effective in detecting local outliers from streaming
data.

1 INTRODUCTION
Motivation. The growth of digital devices coupled with their ever-
increasing capabilities to generate and transmit live data presents an
exciting new opportunity for real time data analytics. As the volume
and velocity of data streams continue to grow, automated discovery
of insights in such streaming data is critical. In particular, finding
outliers in streaming data is a fundamental task in many online appli-
cations ranging from fraud detection, network intrusion monitoring
to system fault analysis. In general, outliers are data points situated
away from the majority of the points in the data space. For example,
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a transaction of a credit card in a physical location far away from
where it has normally been used may indicate fraud. Over 15.4
million U.S residents were victims of such fraud in 2016 according
to [3]. On the other hand, as more transactions take place in this
new location, the previous transaction may appear legitimate as it
begins to conform to the increasingly expected behavior exemplified
by the new data. Thus, in streaming environments, it is critical to
design a mechanism to efficiently identify outliers by monitoring the
statistical properties of the data as it changes over time.
State-of-the-Art. To satisfy this need, several methods [17, 18]
have been proposed in recent years that leverage the concept of
local outlier [6] to detect outliers from data streams. The local
outlier notion is based on the observation that real world datasets
tend to be skewed, where different subspaces of the data exhibit
different distribution properties. It is thus often more meaningful to
decide on the outlier status of a point based on its difference from
the points in its local neighborhood as opposed to using a global
density [8] or frequency [5] cutoff threshold to detect outliers [9].
More specifically, a point x is considered to be a local outlier if
the data density at x is low relative to that at the points in x’s local
neighborhood.

Unfortunately, existing streaming local outlier solutions [17, 18]
are not scalable to high volume data streams. The root cause is
that they measure the data density at each point x based on the
point’s distance to its k nearest neighbors (kNN). Unfortunately,
kNN is very sensitive to data updates, meaning that the insertion
or removal of even a small number of points can cause the kNN of
many points in the dataset to be updated. Since the complexity of the
kNN search [6] is quadratic in the number of the points, significant
resources may be wasted on a large number of unnecessary kNN
re-computations. Therefore, those approaches suffer from a high
response time when handling high-speed streams. For example, it
takes [17, 18] 10 minutes to process just 100k tuples as shown by
their experiments.

Intuitively, kernel density estimation (KDE) [22], an established
probability density approximation method, could be leveraged for
estimating the data density at each point [14, 20, 23]. Unlike kNN-
based density estimation that is sensitive to data changes, KDE esti-
mates data density based on the statistical properties of the dataset.
Therefore, it tends to be more robust to gradual data changes and
thus a better fit for streaming environments. However, surprisingly,
to date no method has been proposed that utilizes KDE to tackle the
local outlier detection problem for data streams.
Challenges. Effectively leveraging KDE in the streaming context
comes with challenges. Similar to kNN search, the complexity of
KDE is quadratic in the number of points [22]. While the compu-
tational costs can be reduced by running the density estimation on
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kernel centers sampled from the input dataset, sampling leads to a
trade-off between accuracy and efficiency. Although a low sampling
rate can dramatically reduce the computational complexity, one must
be cautious because the estimated data density at each point may
be inaccurate due to an insufficient number of kernel centers. On
the other hand, a higher sampling rate will certainly lead to a better
estimation of the data density. However, the computational costs of
KDE increase quadratically with more kernel centers. With a large
number of kernel centers, KDE would be at risk of becoming too
costly to satisfy the stringent response time requirements of stream-
ing applications. Due to this accuracy versus efficiency trade-off,
to the best of our knowledge, no method has successfully adapted
KDE to function efficiently on streaming data to date.

1. Stream Clustering

Abstract Kernel Centers

Streaming Data
2. Inlier Pruning

Lower
Bound

Upper 
Bound

3. Outlier Score Calculation

Outliers

Previous WindowCurrent Window

Figure 1: An illustration of KELOS approach.

Proposed Solution. In this work, we propose a scalable KDE-based
strategy (Fig. 1) for detecting top-N local outliers over streams, or in
short KELOS. KELOS provides the first practical solution for local
outlier detection on streaming data. Our key contributions are given
below.
• New KDE-based semantics are proposed for the continuous detec-
tion of the top promising outliers from data streams. This establishes
a foundation for the design of a scalable streaming local outlier
detection method.
• A notion of the abstract kernel center is introduced to solve the
accuracy versus efficiency trade-off of KDE. This leverages the ob-
servation that kernel centers close to each other tend to have a similar
strength of influence on the densities at other points. These nearby
points thus can be clustered together and considered as one abstract
kernel center weighted by the amount of data it represents. Com-
pared to the traditional sampling-based KDE, our strategy achieves
higher accuracy in density estimation using much fewer kernel cen-
ters. This in turn speeds up the quadratic complexity process of
local density estimation. This notion of abstract kernel centers by
itself could be applied to a much broader class of density estimation
related stream mining tasks beyond local outlier detection.

• An inlier pruning strategy. Unlike existing techniques [17, 18],
which detect outliers by computing the data density and then the
outlierness score for every data point, KELOS quickly prunes the
vast majority of the data points that have no chance to become out-
liers. The more expensive KDE method itself is only used thereafter
to evaluate the remaining much smaller number of potential outlier
candidates.
• Putting these optimizations together, we obtain the first linear
time complexity streaming local outlier detection approach that
outperforms the state-of-the-arts by up to 3 orders of magnitudes in
speed confirmed by our experiments on real world datasets.

2 PRELIMINARIES
2.1 Local Outlier
Given a point xi , it is a local outlier if the data density at xi (e.g.
inverse of average distances to its kNN) is significantly lower than
the densities at xi ’s neighbors.
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Figure 2: Local outlier detection using local densities.

As illustrated in Fig. 2, although the densities at x1 and x2 are
both low, the density at x1 is quite different than the densities at the
locations of its neighbors. However, the densities at the neighbors
of x2 is similar to x2. Therefore, x1 is more likely to be an outlier
than x2 due to its relatively low density in contrast to those at its
neighbors. Therefore, conceptually measuring a point xi ’s status of
being a local outlier corresponds to the two-steps:
(1)Estimate the density at xi and the densities at its neighbors;
(2)Compute the outlierness score of xi based on the deviation of the
density at xi in contrast to those at its neighbors.

2.2 Kernel Density Estimation
Gaussian Kernel Gaussian Kernel

(a) Bandwidth h = 0.1

Gaussian Kernel Gaussian Kernel

(b) Bandwidth h = 0.3

Figure 3: An example of univariate kernel density estimator using
Gaussian kernel with different bandwidth.
Kernel density estimation (KDE) is a non-parametric method to
estimate the probability density function (PDF) of a dataset X =
{x1, · · · ,xn }. Given a point xi , the kernel density estimator of X
computes how likely xi is drawn from X . This computed probability
can be interpreted as the “data density” at xi in X .
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The density at xi in X is:

f̃ (xi ) =
1
m

m∑
j=1

Kh (|xi − kc j |). (1)

Kernel Centers. kc j ∈ KC where 1 ≤ j ≤ m are called the kernel
centers in the estimator. Typically, kc j is a point sampled from X .
The selected set of kernel centers must be sufficient to represent
the data distribution of X [22]. Each kernel center kc j carries a
kernel function Kh . The density contribution by a kernel center
kc j is calculated based upon the distance from kc j to the target
point xi . The density at xi is estimated by the average density
contribution by all kernel centers. For example, in Fig. 3(a), there
are 7 kernel centers. Each of them carries a kernel function (red
dashed curve). The shape of the overall density function across all
kernels is represented by the blue solid line. Given a dataset X with
n points and m kernel centers, the time complexity of computing the
densities of all xi ∈ X is O(nm).
Kernel Function. A wide range of kernel functions can be used in
kernel density estimation [22]. The most commonly used ones are
the Gaussian and Epanechnikov kernel functions [9]. In this study,
we adopt the Gaussian kernel:

Kдauss (u) =
1

(
√
2π )h

e
(− 12

u2

h2 ), (2)

where u represents the distance from a kernel center kc j to the target
point xi and h is an important smoothing factor, called bandwidth.
The bandwidth controls the smoothness of the shape of the estimated
density function. The greater the value h, the smoother the shape
of the density function f̃ . As shown in Figs. 3(a) and (b), using
the same set of kernel centers but different bandwidth values, the
estimated PDFs (the blue lines) are significant different from each
other. Therefore, an appropriate bandwidth is critical to the accuracy
of the density estimation.
Balloon Kernel. In Balloon kernel, when estimating the density at
a target point xi , only the k nearest kernel centers of xi denoted as
kNN(xi ,KC) are utilized in the estimator. This provides each point xi
a customized kernel density estimator that adapts to the distribution
characteristics of xi ’s surrounding area, hence also called local
density. Therefore, Balloon kernel fits the local outlier that detects
outliers based on the local distribution properties as shown in [20].

f̃b (xi ) =
1
k

k∑
j=1

Kh (|xi − kc j |) where kc j ∈ kNN(xi ,KC). (3)

3 PROPOSED OUTLIER SEMANTICS
Next we propose semantics of KDE-based streaming local outliers.
We first introduce the notion of top-N local outliers that captures
the most extreme outliers in the input dataset. We then apply this
concept to sliding windows to characterize outliers in data streams.

3.1 Top-N KDE-based Local Outliers
We first define our new outlierness measure, KDE-based local
outlierness measure (KLOME).

Definition 3.1. KLOME. Given a set of data points X = {x1,
· · · , xn} and a set of kernel centers KC = {kc1, · · · , kcm }, the
KLOME score of a target point xi ∈ X is defined as KLOME(xi ) =
z−score(f̃b(xi), {f̃b(kcj) | ∀kcj ∈ kNN(xi,KC)}).

Here z-score(s, S) = (s - S)/σS [27] indicates how many standard
deviations an value s is above or below the mean of a set of values
S . In this definition, KLOME(xi ) measures how different the local
density at xi is from the average local density at xi ’s nearest kernel
centers denoted as kNN(xi,KC). A negative KLOME score of a
target point xi indicates that the local density at xi is smaller than the
local densities at its neighbors’ locations. The smaller the KLOME
score of a point xi is, the larger the possibility that xi is an outlier.

The key property of our KLOME semantics is that the density
at xi is compared against the densities at its kNN in the kernel
center set KC (kNN(xi,KC)) instead of its actual kNN in the dataset.
The intuition is as below. The kernel centers sufficient to recover
the distribution of the original dataset can well capture every local
phenomenon. The density at xi is estimated based on its location
relative to the selected kernel centers kc j ∈ kNN(xi,KC). Naturally
kc j can serve as the local neighbor of xi in the density deviation
computation of xi (z-score). In other words, kNN(xi,KC) effectively
models the local neighborhood of a point xi .

Next, we define the concept of top-N KDE-based local outlier:

Definition 3.2. Given a set of data points X = {x1, · · · ,xn } and
a count threshold N . The top-N KDE-based local outliers are
a set of N data points, denoted by Top-KLOME(X ,N ) such that
∀xi ∈ Top-KLOME(X ,N ) and ∀x j ∈ X \ Top-KLOME(X ,N ),
KLOME(xi ) ≤ KLOME(x j ).

3.2 Local Outlier Detection in Sliding Window
We work with periodic sliding window semantics commonly adopted
to model a finite substream of interest from the otherwise infinite
data stream [4]. Such semantics can be either time or count-based.
Each data point xi has an associated time stamp denoted by xi .time.
The window size and slide size of a stream S are denoted as S .win
and S .slide correspondingly. Each windowWc has a starting time
Wc .Tstar t and an ending time Wc .Tend = Wc .Tstart + S.win. Period-
ically the current windowWc slides, causingWc .Tstar t andWc .Tend
to increase by S .slide respectively. For count-based windows, a fixed
number (count) of data points corresponds to the window size S .win.
Accordingly S .slide is also measured by number of data points. SWc

denotes the set of data points falling into the current window Wc .
The local outliers are then always detected in the current active win-
dowWc . An outlier in the current window might turn into an inlier
in the next window.

Next, we define the problem of continuously detecting Top-
KLOME(X ,N ) over sliding windows:

Definition 3.3. Given a stream S , a window size S .win, a
slide size S .slide, and an integer N , continuously compute
Top-KLOME(SWc ,N ) over sliding windows.

Next, we introduce our KELOS approach for supporting the new
semantics. KELOS contains two components: density estimator and
outlier detector. Given a point xi , the density estimator efficiently
computes the density at xi using the abstract kernel center concept
(Sec. 4). The outlier detector first uses an inlier pruning strategy
to prune the points that are guaranteed to be not outliers. Then it
detects outliers from the remaining outlier candidates using their
densities computed by the density estimator (Sec. 5).
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4 DENSITY ESTIMATOR
In this section, we propose our abstract kernel center-based KDE
strategy (aKDE). It solves the problem of accurately yet efficiently
estimating the density at a given point. In contrast to the tradi-
tional sampling-based KDE approach [22], our density estimation is
performed on top of a set of clusters (Fig. 1) that succinctly summa-
rize the distribution characteristics of the dataset. This approach is
inspired by our abstract kernel center observation below.
Abstract Kernel Center Observation. In KDE, the density at a
given point xi is determined by the additive influences of the kernel
centers, while the influence from one center kc j is determined by
the distance between kc j and xi . The centers close to each other
tend to have similar influence on the target point xi . Using them
redundantly instead of representing them as a whole perplexes the
density estimation by unnecessarily enlarging the center space. To
obtain succinct while informative representatives as kernel centers,
KELOS first performs a lightweight clustering that only groups
extremely close points together. The centroid of the cluster weighted
by the cluster’s data cardinality, called abstract kernel center (AKC)
is then selected as a kernel center to perform density estimation.

Fig. 4(b) shows an example estimation using the abstract kernel
centers. The original 7 points in Fig. 3(a) are abstracted into three
clusters. The estimations (blue line) in Fig. 4(b) with 3 centers and
Fig. 4(a) using all 7 points as kernel centers are similar.

Gaussian Kernel Gaussian Kernel

(a) All points as kernel centers

Gaussian Kernel

(b) Abstract kernel centers

Figure 4: Local kernel density estimator.

On the performance side, real world data sets tend to be skewed.
Therefore, typically most points can be clustered into a small num-
ber of tight clusters. Correspondingly, the number of the abstract
kernel centers tends to be much smaller than the number of sampled
kernel centers that would be sufficient to represent the overall data
distribution of the dataset. Since the bottleneck of local density
estimation is on the computation of the k nearest kernel centers for
each to be estimated point xi , the small number of abstract kernel
centers promises to reduce the complexity of the successive density
estimation process.

Furthermore, the abstract kernel centers allow us to use a small
k while establishing a diversified neighborhood – hence a compre-
hensive density estimator for each point. This not only reduces the
complexity of the kNN search and kernel density computation, but
also alleviates the problem of selecting an appropriate k. Since the
abstract kernel centers representing data clusters are more stable
than sampled individual points in terms of their statistical properties,
our selected k by such method would be more robust to the continu-
ously changing stream data. Next, we formally define the concept of
abstract kernel centers.

Definition 4.1. Given a stream window SWc = {x1, · · · ,xn},
the abstract kernel centers of SWc are a set of pairs AKC(SWc )
= {〈cc1 , |c1 |〉, · · · , 〈ccm , |cm |〉}, where cci (1 ≤ i ≤ m) corresponds
to the centroid of the respective data cluster ci and |ci | the number
of points in ci . Here

⋃m
i=1 ci = SWc and ∀i, j, i , j ci ∩ c j = ∅.

Weighted Kernel Density Estimator. Intuitively, each abstract ker-
nel center represents the centroid of a cluster of points close to each
other along with the data cardinality of this cluster. Utilizing these
abstract kernel centers, we construct a weighted kernel density es-
timator [11], where the kernel centers correspond to the centroids
in AKC(SWc ) (the first component of AKC) and the weight cor-
responds to the cardinality of the data cluster represented by the
centroid (the second component). Therefore, the weighted kernel
density estimator reflects the distribution characteristics of the entire
dataset by utilizing only a small number of kernel centers. The
formula is shown below:

f̃AKC(SWc )(xi ) =
k∑
j=1

ω(cc j )Kh (|xi − cc j |), (4)

where
ω(cc j ) =

|c j |∑k
m=1 |cm |

, (5)

and ccm ∈ kNN(xi ,AKC(SWc )). Here f̃AKC(SWc )(xi ) in Eq. 4 cor-
responds to a weighted product kernel estimator that computes the
local density at xi and kNN(xi ,AKC(SWc )) corresponds to the k
nearest centroids of xi in the abstract kernel centers.
Bandwidth Estimation. One additional step required to make the
weighted kernel density estimator work is to establish an appropriate
bandwidth for the product kernel. Here we show that the rule-
of-thumb strategy [21] (Eq. 6) can be efficiently applied here by
leveraging the abstract kernel centers.

h = 1.06σk−1/(d+1). (6)

In Eq. 6, d denotes the data dimension. σ denotes the weighted
standard deviation of the kernel centers computed by:

σ =

√√√ k∑
m=1

ω(ccm )(ccm − µ)2, (7)

where

µ =

∑k
m=1 ω(ccm )ccm

k
, (8)

and ccm ∈ kNN(xi ,AKC(SWc )).
Effectiveness. Our aKDE builds robust density estimator based on
the observation that real world datasets typically can be represented
by tight data clusters because of the skewness of the data distribution.
This is confirmed by our experiments. If a dataset is uniformly
distributed, sampling-based KDE is effective as well.
Efficiency. The time complexity of KDE is O(nm), with n is number
of data points and m is the number of kernel centers. Since aKDE
dramatically reduces the number of kernel centers, it significantly
speeds up the KDE computation. On the other hand, data clustering
introduces extra computation overhead. In this work we apply the
low complexity Micro clustering [2] strategy that processes each
point only once. This overhead is significantly outweighed by the
saved KDE computation costs. Therefore, overall aKDE is much
faster than the traditional KDE – as shown in Sec. 6.2.
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Stream Clustering. Next we briefly introduce the Micro clustering
algorithm. Once a new data point x arrives, the algorithm first finds
its nearest cluster according to the distance of x to all the centroids.
If the distance from x to its nearest cluster ci denoted as dist(x, cci )
is smaller than a radius threshold θ , x is inserted into ci . On the
other hand, if dist(x, cci ) > θ , a new cluster will be created. During
this process, the centroid of each cluster which is needed by aKDE,
is also efficiently generated by continuously maintaining the linear
sum of the points by dimensions. For the details please refer to [2].
Tuning Radius Threshold θ . Micro-clustering utilizes the radius
threshold θ to make sure only the extremely similar points fall into
the same cluster and produce tight clusters. The smaller the θ is,
the tighter the formed clusters are. However, as shown in Fig. 9 of
Sec. 6.4, although small θ achieves high accuracy in density estima-
tion, it also slows down the overall speed of KELOS. Therefore, it
is important to find an appropriate θ threshold that can balance the
speed and the accuracy. Instead of trying to acquire an optimal θ
value at the beginning by exploring some expensive preprocessing,
in streaming context we recommend that the θ threshold could be
dynamically adapted to the optimal value. More specifically, one
can start by initializing the system using a relatively small θ value to
ensure the accuracy of the results. Then the θ value can be gradually
adjusted to larger values as the data stream evolves as long as the ac-
curacy is still reasonably good. If concept drift occurs when stream
data evolves, the θ is adjusted again using the same principle.

5 OUTLIER DETECTOR
Our outlier detector fully utilizes the data clusters produced for
aKDE by leveraging our stable density observation described below.
Stable Density Observation. Data points in a tight cluster are close
to each other. Therefore, they tend to share the same kernel centers
and have similar local densities. By the definition of local outliers,
the outlierness score of a point x depends on the relative density at
x in contrast to those at its neighbors. Therefore, these points tend
to have similar outlierness scores. Since outliers only correspond to
small subset of points with the highest outlierness scores, it is likely
that most of the data clusters do not contain any outlier.

Assume we have a method to approximate the highest (upper
bound) and lowest (lower bound) outlierness scores for the points in
each data cluster. Using these bounds, the data clusters that have no
chance to contain any outlier can be quickly identified and pruned
from outlier candidate set without any further investigation. More
specifically, if the upper bound outlierness score of a data cluster ci
is smaller than the lower bound outlierness score of a data cluster c j ,
then the whole ci can be pruned (under the trivial premise that c j has
at least N points). This is so because there are at least N points in
the dataset whose outlierness scores are larger than any point in ci .

Leveraging this observation, we now design an efficient local
outlier detection strategy. The overall process is given in Alg. 1. We
first rank and then prune data clusters based on their upper and lower
KLOME score bounds. As shown in Sec. 3.1, a small KLOME score
indicates large outlier possibility. Therefore, the upper KLOME
bound corresponds to the lower outlierness score bound. Similarly,
the lower KLOME bound corresponds to the upper outlierness score
bound. Therefore, if the lower KLOME bound of a cluster ci is
higher than the upper KLOME bound of another cluster c j , all points
in ci can be pruned immediately. Only the clusters with a small lower

Algorithm 1 : Top-N Outlier Computation.

Input: Clusters C.
Output: Top-N Outliers.

1: Pr ior ityQueue<Cluster> P of size N /*by upperbound in
ascending order*/

2: P ← first N in C
3: for rest of the cluster c in C do
4: if KLOMElow (c) > KLOMEup (P .peek ) then
5: prune c
6: else if KLOMEup (c) < KLOMElow (P .peek ) then
7: P .poll & P .add(c)
8: else
9: P .add(c)

10: Pr ior ityQueue<Data> R of size N /*by KLOME in as-
cending order*/

11: for cluster c in P do
12: for data d in c do
13: compute KLOME of d
14: R.add(d )
15: return R

KLOME bound (large outlierness score upper bound) are subject to
further investigation. The densities and KLOME scores at the data
point-level are computed only for the data points in these remaining
clusters. Finally, the top-N results are selected among these points
by maintaining their KLOME scores in a priority queue.

5.1 Bounding the KLOME Scores
Next, we present an efficient strategy to establish the upper and
lower KLOME bounds for each given data cluster.
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Figure 5: An example of lower KLOME bound.

By Def. 3.1, the KLOME score of a point xi corresponds to z-
score( f̃ (xi ), S), where S refers to the local densities at xi ’s kernel
centers. Since the points in the same cluster ci typically share the
same kernel centers, the data point xmin ∈ ci with the minimal
density determines the lower bound KLOME score of the entire
cluster ci . Similarly the upper bound is determined by the point
xmax with the maximal density. Obviously it is not practical to
figure out the lower/upper bound by computing the densities at all
points and thereafter finding xmin and xmax .
Lower bound. We now show that by utilizing the statistical property
of each data cluster – more specifically the radius, the bounds can be
derived in constant time. Here we use the lower bound as example
to demonstrate our solution (Fig. 5).

LEMMA 5.1. Given a data cluster ci , its k nearest kernel centers
{cc1 , · · · , cck } and the data point xmin which has the minimum
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density among all points in ci , f̃min (ci ) ≤ f̃ (xmin ), where f̃min (ci )
=
∑k
j=1 ω(cc j )Kh (|cci − cc j | + r ). Here r is the radius of ci and cci

is the centroid of ci .

PROOF. The density contribution Kh (|xi − cc j |) is inversely pro-
portional to the distance between the evaluated point xi and the
kernel center cc j . The longer the distance, the smaller the density
contribution is from the kernel center. The radius r of a cluster ci
is the distance from ci ’s centroid cci to the furthest possible points
in ci . The longest possible distance from a kernel center cc j to any
point in ci is denoted as dc = |cci − cc j | + r . The distance from cc1
to xmin is denoted as dx = |cc j − xmin |. dc ≥ dx by the triangle
inequality. Therefore Kh (dx ) ≤ Kh (dc ). This holds for any kernel
center cc j . Therefore f̃min (ci ) =

∑k
j=1 ω(cc j )Kh (|cc j − cci | + r ) ≤

f̃ (xmin ). �

Intuitively, the density at a data point is measured by the summa-
tion of the density contributions of all relevant kernel centers. The
summation of the density contribution from each kernel center cc j to
the point x j that is the point furthest to cc j in ci is guaranteed to be
smaller or equal to the density at point xmin . This is so because the
distance from xmin to each kernel center cc j cannot be larger than
the distance between cc j and x j .

According to Lemma 5.1, given the radius of a data cluster ci and
its k nearest kernel centers cc1 · · · cck , the lower KLOME bound
of cluster ci is computed as:

KLOMElow (ci ) = z-score( f̃min (ci ), { f̃ (cc1 ) · · · f̃ (cck )}). (9)
Upper Bound. Similarly, we can show that the maximal local
density at a cluster ci , denoted by f̃max (ci ), can be obtained based
on the shortest distance from each kernel center to the points in ci .

f̃max (ci ) =
k∑
j=1

ω(cc j )Kh (|cc j − cci | − r ). (10)

Accordingly, the upper KLOME bound of each cluster ci
KLOMEup(ci) is derived based on f̃max (ci ).

KLOMEup (ci ) = z-score( f̃max (ci ), { f̃ (cc1 ) · · · f̃ (cck )}). (11)

5.2 The Efficient Maintenance of the Meta Data
Radius of the Cluster. As the clusters are continuously constructed
along time, the radius of each cluster needed by our inlier pruning
strategy must also be continuously generated. Since the radius is
defined as the distance from the centroid cci to its furthest point in
cluster ci , the radius changes whenever the centroid changes. All
points in ci then have to be re-scanned to find the point “furthest”
from the new centroid. This, being computational expensive, is not
acceptable in online applications. Next we introduce a strategy to
efficiently generate the radius based on Lemma 5.2.

LEMMA 5.2. Given a new centroid cci , the radius r of cluster

ci ≤ ru = 2
√∑d

l=1max{(vl − x lmin )2, (x
l
max −vl )2}, where vl is

the value cci at dimension l, xlmin and xlmax are the minimum and
maximum values of the points in ci at dimension l .

By Lemma 5.2 given an cluster ci , we can compute an upper
bound radius ru by maintaining the minimum (xlmin) and maximum
(xlmax ) values of the points in ci at each dimension l . Since updating

the minimum or maximum value per insertion or deletion takes
constant time, computing ru is very efficient. By replacing r with
ru , it is still guaranteed that no outlier will be erroneously pruned
by our inlier pruning strategy, because the upper and lower KLOME
bounds still hold. Due to space constraint, the proof is omitted here.
Pane-based meta data maintenance. The pane-based meta data
maintenance strategy [15] is utilized to effectively update the meta
data for each cluster as the window slides. Given the window
size S.win and slide size S.slide, a window can be divided into

S .win
дcd (S .win,S .sl ide) small panes where дcd refers to greatest com-
mon divisor. The meta data of a cluster ci is maintained at the pane
granularity instead of maintaining one meta data structure for the
whole window. Because the data points in the same pane arrive
and expire at the same slide pace, the meta data of the new window
can be quickly computed by aggregating the meta data structures
maintained for the unexpired panes as the window moves. Since
the meta data satisfies the additive property, the computation can be
done in constant time. In this way, no explicit operation is required
to handle the expiration of outdated data from the current window.

5.3 Time Complexity Analysis of KELOS
The complexity of the clustering comes from the nearest centroid
search. The complexity is O(mc) with m the number of new arrivals
and c the number of centroids. In the density estimation step, each
point has to find its k nearest kernel centers from the c centroids.
Therefore, in worst case the complexity is O(c) for each point. In
the outlier detection step, the cluster-based pruning takes O(c2).

One more pass is required for the remaining points to compute
the density and the outlierness score. Assuming the number of
remaining points is l , the density computation takes O(lc), while
the outlierness score computation takes O(l logN ), where O(logN )
comes from the priority queue operation for maintaining the top-N
outlierness score points. Therefore, the overall computation costs
for a batch of newly arriving data points is O(mc) + O(c2) + O(lc)
+ O(l logN ). In summary, the time complexity of our KDE based
outlier detection approach is linear in the number of points. Since
typically N � c � l � m, the complexity is dominated by the
clustering step.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup & Methodologies
In this section, we compare the effectiveness and efficiency of KE-
LOS against the state-of-art local outlier detection approaches. All
experiments are conducted on an Ubuntu server with 56 Intel(R)
Xeon(R) 2.60GHz cores and 512GB memory. Overall, our KELOS
is 2-3 orders of magnitude faster, and always as accurate or more
accurate than alternative approaches.
Datasets. We work with 3 labeled public datasets. The HTTP
dataset [1] contains in total 567,479 network connection records.
The labeled outliers correspond to different types of network intru-
sions including DOS, R2L, U2R, etc. Three numerical attributes,
namely duration, src bytes and dst bytes are utilized in our experi-
ments. The points in the HTTP dataset are ordered by their arrival
time. This makes it possible to create a data stream from this data
simply by enforcing a sliding window over time.

The Yahoo! Anomaly Dataset (YAD) [13] is considered as one of
the industry standards for outlier detection evaluation. It is composed
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of 4 distinct data sets. In this work we utilize Yahoo! A1 and Yahoo!
A2. Yahoo! A1 is based on the real production traffic to some of
the Yahoo! services. The anomalies are marked by Yahoo! domain
experts. Yahoo! A2 is a synthetic data set containing time-series
with random seasonality, trend and noise. Yahoo! A1 and Yahoo!
A2 contain 94,866 and 142,101 points. Each data point has three
attributes: timestamp, value, and label.
Comparative Methods. We compare KELOS against three base-
lines, namely LOF [6] , KDEOS [20] and KDEOS with sampling
(KDEOS S). LOF is the seminal and most popular local outlier de-
tection method. KDEOS leverages KDE in local density estimation
which is then used to compute an outlierness score for each point. In
KDEOS every data point in the input dataset is used as kernel center.
The sampling-based KDEOS (KDEOS S) instead only uses the data
points uniformly sampled from the input dataset as kernel centers.
Since all three baseline methods were designed for static datasets,
we adapt them to streaming by running them window by window.
All methods continuously return the N points with the highest out-
lierness scores as outliers in each window. Since their performance
bottleneck is the kNN search, we implemented the skyband stream
kNN search algorithm [25] to speed up the outlier detection process.
Efficiency Measures. We evaluate the end-to-end execution time.
Effectiveness Measures. We measure the effectiveness using the
Precision@N (P@N ) metric typical for the evaluation of outlier
detection techniques [7].

P@N =
# of True Outliers

N
. (12)

Intuitively, P@N measures the true positive of the detected top-N
outliers. An ideal P@N equals to 1, where all outliers are found
and no inlier is returned as result. Here we measure the P@N
metric window by window and report the average P@N over all
windows. To account for the skewed distribution of outliers over
different windows, we replace N with |O | in the P@N computation
for each window, where |O | corresponds to the total number of
labeled (ground truth) outliers falling in this window. Only the top-
|O | points out of the top-N outlier list are used in the evaluation.
Therefore, the P@|O | for n consecutive stream windows is:

P@|O | =
∑n
i=1 # of True Outliers in top-|O |i∑n

i=1 |O |i
, (13)

where |O |i denotes the number of true outliers in the ith window.

6.2 Efficiency Evaluation
We evaluate the end-to-end execution time by varying the number of
neighbors k and the window size.
Number of Neighbors k. The k parameter defines the number of
neighbors to be considered in the computation of outlierness score
for each point. The radius threshold θ of KELOS for HTTP, Yahoo!
A1, and Yahoo! A2 are set as 0.095, 0.1 and 40. The window sizes
of HTTP, Yahoo! A1, and Yahoo! A2 are set as 6,000, 1,415, and
1,412 respectively. The sampling rates of KDEOS S is set as 10%
which is a relatively high sampling rate ensuring that KDEOS S
always has more than k kernel centers to use as k increases.

As shown in Fig. 6 (a), KELOS is about 2 orders of magnitude
faster than the alternatives. The line of KELOS stops at 800, because
KELOS uses cluster-based aKDE approach. The number of the ker-
nel centers is restricted by the number of the clusters. Similarly, the

line of KDEOS S stops at 1,000 due to the limited number of sam-
ples. Among these algorithms LOF and KDEOS are the slowest and
have the similar performance, because their time complexities are
both quadratic in the number of points in each window. KDEOS S is
much faster than KDEOS and LOF, because KDEOS S only utilizes
the sampled points as kernel centers. Searching for the k nearest
kernel centers from the sampled kernel center set is much faster than
searching among all points in each window. However, KDEOS S
is still at least 1 order of magnitude slower than KELOS on HTTP.
This is because in order to satisfy the accuracy requirement, the
number of the sampled kernel centers has to be large enough to
represent the distribution of the data stream. While the aKDE ap-
proach of KELOS only uses the centroid of each cluster as abstract
kernel center. Therefore, the number of the clusters tends to be much
smaller than the number of the sampled kernel centers. Furthermore,
KELOS effectively prunes most of the inliers without conducing the
expensive density estimation, while in contrast, KDEOS S has to
compute the outlierness score for each and every data point.

As shown in Fig. 6(b), although KDEOS S is faster than KELOS
on Yahoo! A1 due to the smaller population of the sampled kernel
centers, KELOS outperforms KDEOS S in the effectiveness mea-
surements (Fig. 8(b)). On average, KELOS keeps slightly more ker-
nel centers in the memory than KDEOS S for Yahoo! A2. However,
KELOS still outperforms KDEOS S on execution time because of
our inlier pruning strategy. In general, KELOS outperforms KDEOS
and LOF by 1-2 orders of magnitude on Yahoo! datasets.
Window Size. The radius threshold θ of KELOS and the sampling
rates of KDEOS S are set the same as the previous experiments. The
number of neighbors k is set as 100. As shown in Fig. 7, KELOS
consistently outperforms others except on Yahoo! A1 when the win-
dow size is extremely small. In that particular case, KELOS is slower
than KDEOS S because there are not many similar objects within
each small window resulting in relatively more abstract kernel cen-
ters than the sampled kernel centers in KDEOS S. However, under
this setting, KELOS achieves much better accuracy than KDEOS S.
Furthermore, as shown in Figs. 7(a) and (c) the execution time of
KELOS is stable as the window size increases. This confirms the
scalability of KELOS to large volume stream data.

6.3 Effectiveness Evaluation
Number of Neighbors k . The parameter settings are the same to
the efficiency evaluation when varying k. Table 1 shows the peak
P@|O | for each approach on each dataset. KELOS outperforms all
other approaches in all cases.

Fig. 8 further demonstrate the trend of P@|O | as k varies. Fig. 8(a)
shows the results on the HTTP dataset. For our KELOS, as k in-
creases, the P@|O | increases until k reaches 80. It then starts de-
creasing after k is larger than 100. Overall KDEOS, KDEOS S, and
LOF show the similar trend. Compared to KELOS they have to use a
much larger k to get relative high accuracy. Interestingly, KDEOS S
has similar P@|O | with KDEOS. This shows that sampling-based
KDE works well on large datasets.

The trends on the Yahoo! A1 and A2 datasets are different from
that on the HTTP dataset as shown in Fig. 8 (b) and (c). The P@|O |
continuously increases and gets stable after k reaches certain value.
Furthermore, we observe that KDEOS S works poor on Yahoo!
A1 dataset. The reason is that the Yahoo! A1 and A2 datasets are
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Figure 6: Execution time of varied number of neighbors k. Note the maximum k that each method can reach is different. For LOF, it
depends on the total number of data points. For KDE-based methods, it depends on the number of kernel centers available.
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(c) Yahoo! A2

Figure 7: Execution time on real datasets by varying window size.

�
���
���
���
���
���
���
���
���
���
�

�� ��� ���� �����

��
��
�

������ �� ���������

����� ����� ������� ���

(a) HTTP

�
���
���
���
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
�

������ �� ���������

����� ����� ������� ���

(b) Yahoo! A1

�
���
���
���
���
���
���
���
���

� � � � �� �� �� ��� ��� ��� ����

��
��
�

������ �� ���������

����� ����� ������� ���

(c) Yahoo! A2

Figure 8: P@|O | of varied number of neighbors k.

Table 1: Peak accuracies among various k.

P@|O| AP
HTTP Yahoo! A1 Yahoo! A2 HTTP Yahoo! A1 Yahoo! A2

LOF 87.06% 65.97% 75.11% 77.34% 69.16% 77.19% 
KDEOS 86.88% 64.17% 75.11% 76.06% 68.84% 76.95% 

KDEOS_S 87.43% 37.39% 74.89% 77.54% 36.43% 77.10% 
KELOS 93.40% 67.83% 75.75% 85.92% 69.64% 77.30% 

HTTP Yahoo! A1 Yahoo! A2
LOF 87.06% 65.97% 75.11% 

KDEOS 86.88% 64.17% 75.11% 
KDEOS_S 87.43% 37.39% 74.89% 

KELOS 93.40% 67.83% 75.75% 

relatively small. The samples drawn from small dataset often are not
sufficient to represent the distribution of the whole dataset.

6.4 Parameter Tuning
In KELOS, the radius threshold θ defines the maximum possible
radius of the formed clusters, that is, the tightness of the clusters.
Since the effectiveness of our aKDE approach (Sec. 4) and the
pruning strategy (Sec. 4) rely on the tightness of the clusters, θ is
important for the accuracy of KELOS. In this set of experiments, we
vary θ from small to large on the large HTTP dataset that contains
multiple data clusters. As shown in Fig. 9 (a), when θ is at 0.1, the
P@|O | is at the peak. Then P@|O | of KELOS starts to decrease
gradually as θ increases. Large θ results in a small number of clusters
that have large radius. Potentially the centroid of a large radius
cluster might not precisely represent all points in the cluster. This
leads to inaccurate density estimation. Furthermore, a larger radius
causes looser upper and lower KLOME bound. This makes the inlier
pruning less effective. However, a smaller radius θ inevitably leads
a large number of clusters. This increases the computation costs of
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Figure 9: Varying radius threshold θ .

both stream clustering and the cluster-based aKDE method as shown
in Fig. 9 (b). Therefore, KELOS will achieve the best performance
when radius θ is set to the largest value that is still ‘small’ enough to
generate tight data clusters.

7 RELATED WORK
Local Outlier Factor. Local outlier detection has been extensively
studied in the literature since the introduction of the Local Outlier
Factor (LOF) semantics [6]. A detailed survey of LOF and its
variations can be found in [7]. The concept of local outlier, LOF
in particular, has been successfully applied in many applications
[7]. However, LOF requires kNN search for each and every data
point and needs multiple iterations over the entire dataset to compute
these LOF values. For this reason, to support continuously evolving
streaming data, [17] studied how to quickly find the points whose
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LOF scores are influenced by new arrivals or expired data to avoid
re-computing the LOF score for each point as the window slides.
However as the velocity of the stream increases, most of the points in
a window will be influenced. Therefore this approach does not scale
to high volume streaming data. In [18] an approximation approach
was designed to support LOF in streaming data that focuses on the
memory efficiency. However, the more important problem in stream
mining, namely the CPU efficiency, was overlooked, which now is
instead the focus of our work.
Efficient Kernel Density Estimation. Kernel density estimation is
considered as a quadratic process O(nm) with n the total number of
data points andm the number of kernel centers. Previous efforts have
been made to accelerate this process while still providing accurate
estimation, such as utilizing sampling [22]. [12, 26] designed a
method that incrementally maintains a small and fixed size of kernel
centers to perform density estimation over data streams. However,
to ensure the accuracy of density estimation over skewed dataset, the
sample size has to be large. Therefore it cannot solve the efficiency
problem of KDE in our context. [10] studied the density-based
classification problem. It proposed a pruning method that correctly
classifies the data without estimating the density for each point by
utilizing a user-defined density threshold. However, this pruning
method can not be applied to solve our problem, since a point with
low density is not necessarily an outlier based on the local outlier
semantics we target on.
Outlier Detection using KDE. For each point in the current window
of a sliding window stream, [23] utilizes KDE to approximate the
number of its neighbors within a certain range. This information is
then utilized to support distance-based outlier detection and LOCI
[16]. It directly applies off-the-shelf KDE method on each window.
No optimization technique is proposed to speed up KDE in the
streaming context. [14] is the first work that studied how to utilize
KDE to detect local outliers in static dataset. This later was improved
by [20] to be better aligned with LOF semantic. Each data point’s
density is estimated based upon the surrounding kernel centers only,
therefore called local density. Instead of considering outliers only
based on their density value, data points are measured based on
the density in contrast to their neighbors. However, this work does
not focus on improving the efficiency of KDE. Nor it considers
streaming data. As confirmed in our experiment (Sec. 6.2), it is
orders of magnitude slower than our KELOS.
Other Streaming Outlier Detection Approaches. LEAP [8] and
Macrobase [5] scale distance-based and statistical-based outlier de-
tection respectively to data streams. They rely on the absolute density
at each point to detect outliers, while we work on the local outlier
method which determines whether a point is an outlier based on the
density relative to its neighbors and tends to be more effective than
the absolute density-based methods [9]. Streaming HS-Trees [24]
detects outliers by using a classification forest containing a set of ran-
domly constructed trees. The points falling in the leafs that contain
small number of points are considered as outliers. Similar to [5, 8],
this method also relies on absolute density of each point to detect out-
liers. RS-Hash [19] proposed an efficient outlier detection approach
using sample-based hashing and ensemble. However, different from
our local outlier mining problem, it focuses on the problem of sub-
space outlier detection, that is, detecting outliers hidden in different
subspaces of a high dimensional dataset.

8 CONCLUSION
We present the first solution called KELOS for continuously moni-
toring top-N KDE-based local outliers over sliding window streams.
First, we propose the KLOME semantics, effective in measuring the
outlierness scores of streaming data. Second, continuous detection
strategy is devised that efficiently supports the KLOME semantics
by leveraging the key properties of KDE. Using real world datasets
we demonstrate that KELOS is 2-3 orders of magnitude faster than
the baselines, while being highly effective in detecting outliers from
data stream.
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