
Scalable Distance-Based Outlier Detection over 
High-Volume Data Streams 

Lei Cao *, Di Yangt, Qingyang Wang*, Yanwei Yu+, Jiayuan Wang*, Elke A. Rundensteiner* 
*Worcester Polytechnic Institute, Worcester, MA USA 

(lcao, wangqy,jwang 1 ,rundenst)@cs.wpi.edu 
t Oracle Corporation, Nashua, NH USA 

di. yang@oracle.com 
+University of Science and Technology Beijing, Beijing, China 

yuyanwei0530@126.com 

Abstract-The discovery of distance-based outliers from huge 
volumes of streaming data is critical for modern applications 
ranging from credit card fraud detection to moving object 
monitoring. In this work, we propose the first general framework 
to handle the three major classes of distance-based outliers 
in streaming environments, including the traditional distance­
threshold based and the nearest-neighbor-based definitions. Our 
LEAP framework encompasses two general optimization princi­
ples applicable across all three outlier types. First, our "mini­
mal probing" principle uses a lightweight probing operation to 
gather minimal yet sufficient evidence for outlier detection. This 
principle overturns the state-of-the-art methodology that requires 
routinely conducting expensive complete neighborhood searches 
to identify outliers. Second, our "lifespan-aware prioritization" 
principle leverages the temporal relationships among stream data 
points to prioritize the processing order among them during the 
probing process. Guided by these two principles, we design an 
outlier detection strategy which is proven to be optimal in CPU 
costs needed to determine the outlier status of any data point 
during its entire life. Our comprehensive experimental studies, 
using both synthetic as well as real streaming data, demonstrate 
that our methods are 3 orders of magnitude faster than state-of­
the-art methods for a rich diversity of scenarios tested yet scale 
to high dimensional streaming data. 

I. INTRODUCTION 

Motivation. In recent years, both the number of mobile 
devices, such as smart phones, pads, and RFID equipment, 
and their capabilities of generating and transmitting live data 
have grown rapidly. As the volume and speed of data streams 
advance to new levels, discovering precious knowledge hidden 
in this data has become more critical than ever before. 

Important insights extractable from such data sources are 
abnormal phenomena. Many modern applications, including 
credit card fraud detection, network intrusion prevention, and 
stock investment tactical planning, rely on finding abnormal 
phenomena in data streams. The basic notion of capturing 
abnormal phenomena in data can be traced back to initial 
work by Hawkins [1], which introduced the core principle still 
deployed for characterizing outliers within a set of data points. 
That is, the greater the distance of a data point to its neighbors, 
the more likely it is an outlier. Based on this foundation 
three main variations of distance-based outlier definitions have 
emerged in the literature: 

• oi/:;�) outlier: Outliers are data points with fewer than 
k neighbors in the database, where a neighbor is a data 
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point that is within a distance R [2] I. 

• ok�:2 outlier: Outliers are the n data points with the 
highest distance values to their respective kth nearest 
neighbor among all data points in the database [3]. 

• Ok��;) outlier: Outliers are the n data points with the 
highest average distance to their respective k nearest 
neighbors [4]. 

Each of these three definitions has been shown to have 
its own scope of applicability, effectively supporting certain 
classes of applications [3], [5], [4]. In general, oi;;�) outlier 
performs well in applications in which it is known apriori that 
an explicit behavior difference R (or a distance measure R) 
is critical, while ok�:2 and Ok��;) work better in situations 
when such a fixed threshold is either not available or is 
changing over time. 

For example, when seeking short-term investment oppor­
tunities in the stock market, investors may look for the outlier 
stocks whose behavior significantly differ from that of the ma­
jority of their peer stocks. Such abnormal stocks typically are 
either the hot spots or the forgotten treasure in the market. Both 
of them may correspond to potentially excellent investment 
opportunities. More specifically, given two stocks sl and s2 an 
investor may define a distance function to measure their differ­
ence, e.g., considering both their stock price change percentage 
and their company profit change percentage. Any two stocks 
that have the similar company profit performance but 200% 
difference in price change percentage will have a difference 
score d(sl, s2) = l(sl.price_gain% -s2.price_gain%) 
(sl.pmfiCgain% -s2.pmfiCgain%)I = 2. For this applica­
tion, if the investor is confident that 2 is a good threshold to 
indicate that two stocks behave significantly different enough, 
she can use the Ot�;�) definition to find outlier stocks that 
are abnormal enough with 2 as the distance threshold R for 
neighbor search. However, if such a threshold is not known, 
alternatively she could utilize the ok�:2 or Ok��;) outlier 
definitions to find the top abnormal stocks. 

In this work we thus set out to design a framework that can 
handle the general problem of distance-based outlier detection 
in streaming environments, while delivering highly scalable 
solutions for all three major outlier types. 

1 In the original definition introduced by [2] k represents the percentage of 
data points. In this work we follow the definition adopted by all streaming 
outlier work. 
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Limitations of the State-of-the-Art. The problem of 
detecting distance-based outliers in static datasets has been 
extensively studied in the literature [2], [3], [4], [5]. More 
recently, researchers started to look at the problem in streaming 
environments [6], [7]. Specifically [6] proposed a solution for 
detecting oi::;�) outliers in count-based sliding windows. [7] 
improves upon this solution [6] by now supporting Ot�;:'; 
outliers in time-based sliding windows. Both solutions leverage 
the overlap of sliding windows and thus avoid huge overhead 
wasted on recomputing-from-scratch at each window. 

However, these existing techniques [6], [7] didn't explore 
the optimization opportunities enabled by the two critical 
insights below. First, they didn't exploit the fact that outliers 
by nature only constitute a small portion of the general stream 
data population (otherwise they wouldn't be called outliers 
after all). Thus, the outlier detection algorithms should ideally 
concentrate their resource utilization on strictly serving these 
minority outlier candidates, rather than on computing and 
recording neighborhoods for the general and much larger 
stream population. Second, the existing techniques do not take 
advantage of the temporal relationships among stream data 
points, i.e., who will survive longer in the future windows. 
As our experiments demonstrate, processing the data points 
in an intelligent time-aware order helps us to minimize the 
computation required for acquiring new evidence for outlier 
detection, achieving several orders of magnitude speed up. 

Without these important optimization opportunities, the 
existing techniques [6], [7] cannot handle high-speed streams 
in real-time, say 1M tuples per second as our experiments 
will confirm. Yet such huge volume streams are increasingly 
common in modern streaming applications. As an example the 
US stocks market continuously receives around 1M transaction 
requests per second [8]. Also, existing techniques [6], [7] 
focused exclusively on the first simpler outlier type, namely 
oi::;�) outlier. No existing work provides a general solution 
for all major types of distance-based outliers for data streams. 

Proposed Solution. In this work, we present a general 
framework for optimizing distance-based outlier detection in 
high volume data streams covering all three major distance-
b d I· d fi . . O(k,R) O(k,n) d O (k,n) UT . ase out ler e mtlOns, threh ' kmax an kavg . vve In-
vestigate the optimization opportunities missed by the state-of­
the-art strategies and derive two core optimization principles. 

First, we present the minimal probing principle that takes 
advantage of the rarity property of outliers. Unlike existing 
techniques [6], [7], [9], which rely on routinely conducting 
expensive range queries to search through the complete neigh­
borhoods of all stream data points, our strategy is to minimize 
both the frequency of the neighbor probing operation as well as 
the actual computation cycles consumed by each search. More 
specifically, we only initiate the neighbor probing process for a 
data point when it is absolutely necessary. Second, our probing 
operation stops as soon as it has acquired the minimally needed 
evidence to identify outliers. This principle frees our proposed 
algorithms from having to conduct the rather expensive com­
plete neighbor searches, such as a full range query search. 
Thus it saves extensive system resources otherwise dedicated 
to identifying and maintaining non-essential neighbor relation­
ships among stream data points. 

Second we propose the lifespan-aware prioritization prin­
ciple. This principle utilizes the insight that the data points 
that arrived later in the window are guaranteed to have a more 
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decisive impact on the outlier detection process compared to 
earlier ones. This is so because the younger a data point Pi 
is, the longer its neighbor relationships (if any) with other 
points will persist into the future. Since the key task for the 
outlier detection process is to eliminate any guaranteed inliers, 
namely those with sufficient neighbors, identifying enough 
longer lasting neighbor relationships is likely to eliminate the 
need for further probing for those shorter lasting ones. As we 
will show this principle guarantees that we always find the 
most useful neighbor relationships for outlier detection. 

By exploiting these two core principles, we have designed 
a highly scalable outlier detection framework called LEAP. 
Our theoretical analysis proves that LEAP is optimal in CPU 
resource consumption to determine the outlier status of any 
data point during its entire life. 

As our experimental results reveal (Sec. VII), we succeed 
to drive down the CPU costs by over three orders of magnitude, 
making the outlier detection algorithms fast enough to become 
practical in the truly high speed realm for exploring big data 
streams with high dimensions. 

Contributions. Our contributions include: 

1) We present the first result on efficiently supporting 
the major distance-based outlier classes. In particular neither 
the Ok';;,:� nor the Ok��;) outliers had been handled in the 
streaming outlier detection literature before. 

2) We propose the minimal probing optimization principle, 
which frees detection algorithms from the burden experienced 
by the state-of-the-art methodologies of having to routinely 
conduct range query searches [6], [9], [7]. 

3) We introduce the lifespan-aware prioritization principle, 
which guides the outlier detection algorithms to probe neigh­
bors for stream data points in a time-aware manner to minimize 
the frequency of probing operation. 

4) We integrate these two principles into a general frame­
work called LEAP, which is proven to be optimal in terms of 
the CPU costs for determining the outlier status of each point. 

5) Our experimental studies based on real and synthetic 
data show that our proposed algorithms achieve three orders 
of magnitude performance gain compared to the state-of-the­
art techniques in a rich variety of scenarios. 

II. RELATED WORK 

Distance-based Outliers on Static Data. The Ot�;:) 
definition of distance-based outliers was first introduced by 
Knorr and Ng [2] for static datasets. They describe two 
detection algorithms. The cell-based algorithm, exponential in 
the number of data dimensions, is not scalable for high dimen­
sional datasets. The index-based algorithm (using an R-tree or 
k-d tree) is shown to be non-competitive for three dimensional 
datasets and up if index building costs are considered. This 
implies that such relatively expensive indexing would not fit 
well in our streaming data scenario, because worst yet the 
index would have to be continuously re-built. 

The kNN-based outlier definition was first introduced for 
static data in [3]. As they show for three dimensional datasets, 
their index-based (R*-tree) algorithm already performs worse 
than their partition-based algorithm even after excluding the 
index building costs. [5] proposes the Orca algorithm which 
outperforms the predecessor partition-based algorithm [3] with 



randomization and a simple pruning strategy. Orca scales well 
to high dimensional dataset. For this reason in this work we 
now adapt Orca to the streaming context and then use it as 
baseline to compare our framework against. 

Density-Based Outliers on Static Data. Like distance­
based outliers density-based outlier detection is a particular 
category of neighbor-based outlier detection techniques. They 
assign an outlier score to any given point by measuring 
the density relative to its local neighborhood restricted by 
a pre-defined threshold [10], [11]. Therefore density-based 
outliers are regarded as "local outliers". However distance­
based outlier detection instead takes a global view of dataset 
and marks each point as either outlier or inlier with respect to 
some user defined global parameters. Furthermore, both [10] 
and [II] only handle static datasets without taking the potential 
data update into account. Therefore the techniques proposed in 
[10] and [11] cannot be applied to solve our problem, namely 
detecting distance-based outliers on streaming data. 

Distance-based Outliers on Streaming Data. With the 
emergence of digital devices generating data streams, out­
liers on streaming data have recently been studied [6], [7], 
[9]. However existing work [6], [7], [9] only considers the 
simpler distance-threshold variation of distance-based outliers. 
The processing of the more popular kNN-based variants [3] 
remains unsolved in the streaming context. Next we further 
elaborate on the existing results on this first outlier type. 

In [9], given a data point Pi, it pre-computes the number of 
neighbors of Pi for each future window that Pi will participate 
in. It improves CPU performance at the expense of a huge 
memory overhead by pre-discounting the effect of expired 
data points for each and every future window in advance. Our 
work not only improves the CPU efficiency by three orders of 
magnitude, but also reduces the memory consumption. 

[6] analyzes the expiration time of all neighbors of a point 
gathered by a range query. Then they use the expiration time 
of the neighbors to locate safe inliers, namely any point Pi 
with more than k neighbors which have arrived after Pi. 

[7] further outperforms [6] and [9] by integrating the safe 
inlier concept of [6] into an event queue, so that it can 
efficiently schedule the necessary checks that have to be made 
when points expire. However it still relies on full range query 
searches to process newly arriving points. Therefore it fails to 
respond in real time when applied to high velocity streaming 
data targeted by our effort. In our work by exploiting the 
minimal probing and lifespan-aware prioritization principles, 
we succeed to avoid the full range query searches, thereby 
satisfying the performance requirements of modern streaming 
applications. Furthermore the above algorithms ignore index­
ing, while in our work we also investigate whether streaming 
outlier detection can benefit from indexing. 

Outliers on Sensor Data. In [12] an interesting online 
technique is proposed to detect outliers in streaming sensor 
data. First, it utilizes a kernel density estimator to model the 
distribution of the sensor data. Then given a point Pi, the 
number of its neighbors is estimated by the density distribution 
function f(Pi ). Therefore [12] is able to quickly approximate 
whether Pi is a Ot�;�) outlier. However the approximation na­
ture determines that it cannot be directly applied to our context 
of computing exact distance-based outliers. Furthermore [12] 
only considers the oi�;�) definition of distance-based outlier. 
The more popular kNN based definitions are not discussed. 
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Stream Clustering. The clustering definition most closely 
related to distance-based outliers is density-based clustering 
[9]. It puts adjacent points that have enough neighbors into 
the same cluster. This problem has been shown to be more 
expensive than distance-based outlier detection [9], because 
due to the inter-dependence among the data points the cluster 
structure is more complex to detect and update than the 
individual outlier points. 

Most other clustering or summarization methods [13] in­
stead focus on discovering accumulative statistical features 
of the stream. They do not specifically identify neighbor 
relationships among individual points, which is the key for 
distance-based outlier detection. Thus they are not directly 
applicable to our problem of distance-based outliers. 

Yet in principle the general idea of micro-clusters or 
summaries [13] could potentially be exploited to eliminate 
points from dense areas that cannot be outliers. Clearly one 
could only eliminate points in dense areas as outlier candidates 
if the cell (micro-cluster) is small enough such that all points 
in the cell are neighbors with each other. However having such 
small cells tends to be not practical in streaming data with high 
dimensions, potentially requiring us to dynamically maintain 
too many cells (exponentially increasing with dimensions) and 
thus causing overwhelming costs. 

III. PROBLEM FORMALIZATION 

A. Definitions of Distance-Based Outliers 

Below we formally define the three major distance-based 
outlier variations. We use the term "data point" or "point" 
to refer to a multi-dimensional tuple in the data stream. The 
function d (Pi, Pj) denotes the distance between a pair of points 

Pi andpj. 
Definition 1: Given a dataset D, a distance threshold R 

(R 2: 0), and a count threshold k (k 2: 1), a distance­

threshold outlier denoted by O:h�s in D is a data point Pi 
if there exist fewer than k data points whose distance to Pi is 
no larger than R in D. 

Next both Ok�;; and Ok��n) outliers are defined based 
on the well-known notion of .

il
k-nearest neighbors (kNN)". 

Given a data point Pi and its kth-nearest neighbor Pj, d (Pi, Pj) 
is called the kNN maximum distance of Pi denoted as 
Dkmax (Pi ), while the average distance to all its k-nearest 
neighbors is called the kNN average distance of Pi denoted 
as Dkav9(Pi )' 

Definition 2: Given input parameters k (k 2: 1) and n (n 2: 
1), a point Pi is a kNN maximum distance outlier denoted 
by Ok�;; in D if at most n-I other points Pj exist with 1 ::; 
j ::; n -1 in D such that Dkmax (Pj) > Dkmax (Pi ). 

Definition 3: Given input parameters k (k 2: 1) and n (n 2: 
1), a soint Pi is a kNN average distance outlier denoted 
by Ok��;) s in D if at most n-l other points Pj exist with 
1::; j ::; n -1 in D such that DkaV9(pj) > DkaV9(Pi). 

B. Distance-Based Outlier Detection in Sliding Windows 

We work with periodic sliding window semantics as pro­
posed by CQL [14] for defining the substream of interest from 
the otherwise infinite data stream. Such semantics can be either 
time or count-based. Each query Q has a fixed window size 



Q. win and slide Q. slide. For time-based windows each win­
dow We of Q has a starting time We. Tstart and an ending time 
We' Tend= We' Tstart+Q . win. Periodically the current window We slides, causing We. Tstart and We. Tend to increase by 
Q . slide. For count-based windows, a fixed number (count) 
of data points corresponds to the window size Q. win. The 
window slides after the arrival of Q. slide new data points. 

Outliers will be generated based on the points that fall into 
the current window We, namely the population of We. A point 

Pi in We might have different outlier status (outlier or inlier) 
in the next window We+1 if it is still alive in We+1, since each 
window has a different population. Now we define the stream 
outlier detection problem we tackle. 

Definition 4: Distance-Based Outlier Detection In Slid­
ing Windows: Given a stream S, a streaming distance-based 

I· d 
. 

Q 
. 

h O(k,R) O (k,n) O(k,n) out ler etectlOn query WIt thres ' kmax ' or kavg 
definition defined in Def. 1, 2, or 3, with window size as Q. wzn 

and slide size as Q . slide, Q continuously detects and outputs 
the outliers in the current window We when the window slides. 

Symbol 
Pi 
Pi .t s  
p·i.life 
We 
o\�' {) 

O(k,n) 

O�k,n) 
kava 

D,,"m,ax 
D,avg 
MESI 
LEAP 
P·i.evill 

Description 
the i-th data point 
the timestamp of Pi 
the lifespan of Pi 
the current window of a stream 

Distance-Threshold Outliers 

kNN Maximum Distance Outliers 

kNN Average Distance Outliers 

kNN Maximum Distance 

kNN Average Distance 
Minimal Evidence Set for Inlier 
Lifespan-Aware Probing Operation 
Lifespan-Aware Evidence structure of Pi 

TABLE I:  Frequently Used Symbols. 

IV. A GENERIC OUTLIER DETECTION 
FRAMEWORK 

We now introduce our scalable framework called LEAP, 
capable of continuously processing distance-based outliers 
with low CPU and memory resource utilization. LEAP is built 
on two fundamental optimization principles namely minimal 
probing and lifespan-aware prioritization as described below. 

A. Theoretical Foundation 

In all distance-based outlier definitions, points in a dataset 
D are classified either as outliers or inliers. Thus, the process 
of identifying outliers in D is equivalent to the process of 
eliminating inliers from it. In fact, initially, each point Pi in the 
dataset is a potential outlier candidate, until one has acquired 
enough evidence to show that Pi is an inlier. For example, in 
the process of identifying oi���l outliers, until finding that Pi 
has at least k neighbors and thus qualifies as inlier, Pi cannot 
be safely removed from the outlier candidate set. 

This fact leads us to an important observation. That is, 
to identify whether a point Pi is a distance-based outlier in 
a dataset D, one may not need the distance between Pi to 
every other point in D. Instead, a potentially small subset of 
points will be sufficient to prove that Pi is an inlier. Also due 
to the rarity of outliers, the majority of points in the dataset 
could be labeled as inliers in this way by collecting only a 
small amount of information. To describe the least amount of 
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information needed to prove p;'s inlier status we define the 
concept of Minimal Evidence Set for Inlier (MESI). 

Definition 5: Given an outlier query and a dataset D, 
the MESI set for a data point Pi E D is a dataset M 
such that M � D, if the distance set DistSet (M, Pi) = 
{d(Pl,Pi ),d(p2,Pi ), ... ,d(Pn,Pi)1 Pj(1�j�n) EM} is suf­
ficient to label Pi as an inlier, and there does not exist 
any M' � D such that I M'I < IMI and DistSet(M', Pi) = 
{d(Pl' Pi ), d(P2' Pi ), ... , d(Pm' Pi)IPj(1�j�m) EM'} is suffi­
cient to label Pi as an inlier. 

The size of MESI for a point Pi is usually much smaller 
than the size of p;'s complete neighborhood. For example, for 
O�;�) outlier, the MESI for any point Pi is composed of any 
k points that are within R distance from Pi. Thus its size is 
k. In general, this input parameter k is much smaller than 
the average number of neighbors each point may have in R 
distance range. Otherwise the outliers detected with fewer than 
k neighbors would not considered to be abnormal phenomena 
in the dataset. The cardinality of MESI for a point Pi in the 
kNN outlier definitions is also bounded by a constant value k as 
we will show in Sec. VI. This observation guides us to propose 
the Minimal Probing optimization principle (Sec. IV-B). 

Although MESI is sufficient to prove a point's inlier status 
in the current window, unlike in static environments, locating 
more neighbors beyond MESI for a given point may be ben­
eficial in streaming environments. These additional neighbors 
may help us to determine the status of this point in future 
windows. Thus, we now extend the concept of MESI in a 
static dataset to MESI in a sequence of stream windows. In 
particular, we define the concept of Minimal Evidence Set 
for Inlier in a Window Sequence as below. 

Definition 6: Given a streaming outlier detection query 
Q and all points in the current window We, denoted by 
Dwc' MESI(w,-c+x) for Pi in a window sequence from Wc 
to We+x, is a dataset M with M � Dwc' if the distance set 
DistSet (M, Pi )={ d(Pl' Pi), d(P2' Pi), ... , d(Pn, Pi )IPj(1 �j�n) 
E M} is sufficient to label Pi as an inlier in 
windows We to We+x, and there does not exist any 
M' � Dwc with IM'I < IMI and DistSet (M', Pi ) 
{d(Pl' Pi ), d(P2' Pi ), ... , d(Pm, Pi) Ipj(1 �j�m) EM'} is 
sufficient to label Pi as an inlier in windows We to We+x. 

In other words, the MESI( wc,e+x) for a point Pi is a 
minimal subset of the current window popUlation DWe that 
provides sufficient evidence to prove that Pi is an inlier in 
windows We to We+x, regardless of the characteristics of the 
future incoming stream. This is possible because by analyzing 
the time stamp of a point Pi and the query window (the slide 
and window sizes), we can determine the number of windows 
that Pi will survive in. For example, for a point Pi that just 
arrived with the latest slide in the current window We, if we 
found k points within R distance from Pi that arrived when 

Pi did, then these k points form MESI( wc,c+x) for Pi , where We+x is the last window in which Pi will be alive. This is 
because these points will be accompanying Pi as its neighbors 
until Pi expires. We are now ready to define the concept of 
Life Time Minimal Evidence Set for Inlier. 

Definition 7: MESI( We,e x) for Pi is a life time MESI of 
Pi, denoted as MESIlt, if We+x is the last window in which 
Pi participates before its expiration. 

A MES1lt for Pi is an ideal evidence set because it 
proves the inlier identity of Pi during its entire remaining 



life, hence named safe inlier. It eliminates the need for any 
future maintenance effort on Pi for the potential detection of 
its outlier status. Acquiring the MES1lt with minimal CPU 
costs is the key objective for outlier detection in streaming 
windows. This insight inspires us to propose the Lifespan­
Aware Prioritization optimization principle in Sec. IV-C. 

B. Minimal Probing Principle 

As elaborated in Sec. II, all state-of-the-art techniques [6], 
[9], [7] rely on complete neighborhood searches to identify 
outliers. In this work, we abandon this methodology and 
instead present an optimization principle referred to as minimal 
probing. The key idea is that we no longer conduct complete 
neighborhood searches, such as range query searches, but 
instead use a lightweight operation called probing. 

Definition 8: Given a point Pi in the current window We, 
probing is an operation that evaluates the distance between Pi 
and other points in We until either the MESI for Pi in We is 
acquired or p;'s entire neighborhood has been evaluated. 

The goal of probing for a point Pi is the discovery of 
a MESI for Pi in the current window rather than its com­
plete neighbor set. Therefore probing is fundamentally more 
efficient compared to a complete neighborhood search, as it 
significantly reduces the number of data points that need to be 
evaluated. 

Furthermore, the minimal probing principle guides us to 
intelligently use this lightweight probing operation so to 
maximize the system resource savings. The idea is to carefully 
extract and then to organize the evidence gathered during each 
probing process, and furthermore to reuse it whenever possible 
to avoid repeated probing process. 

For all three outlier definitions, with the probing only 
applied in two situations as explained below we can guarantee 
the correctness of the query. First, each new point Pi that just 
arrived in the query window needs a probing to figure out 
its status in the current window. Second, an existing point Pi 
without a valid MESI in the new window needs a probing to 
re-evaluate its status. 

In the first situation, for a newly arriving point Pi the 
probing operation has to be conducted from scratch to search 
for the needed evidence of Pi. 

However this is not the case in the second situation. For a 
point Pi two conditions can lead to the absence of its MESI. 
First, Pi had been classified as an outlier in the previous 
window. Therefore no MESI has so far been acquired. Second, 
Pi lost its prior MESI when the stream slides to the current 
window We and expired points are removed from We. In both 
cases, the known MESI evidence about Pi which survived 
the stream data expiration can still contribute to simplify this 
probing operation. Rather than searching for a new MESI from 
scratch, the probing operation instead only acquires enough 
new evidence to prepare the MESI for Pi for the window We. 

Therefore although the goal for probing is to acquire MESI 
for Pi in the current window, the collected evidence provides 
us with much richer information than just proving p;'s current 
status. The method of organizing the MESI to facilitate the 
fully reuse of the evidence gathered by probing is discussed 
in Sec. IV-D. 

As conclusion, the minimal probing principle uses a 
lightweight probing process to replace the expensive complete 
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neighbor search. It guides us to fully exploit all evidence 
gathered during the probing process and thus to minimize the 
costs of each probing process. 

C. Lifespan-Aware Prioritization Principle 

Next we propose our second optimization principle termed 
Lifespan-Aware Prioritization. By utilizing the lifespan in­
formation of data points this principle further optimizes the 
probing operation to always discover the best MESI. 

Lifespan of MESI. As mentioned in Sec. IV-A, the MESI 
of a point Pi in the current window as a whole may serve as 
the MESI of Pi in a sequence of future windows. The number 
of windows in which a MESI can survive, termed the lifespan 
of MESI, relies on how many windows each point Pj in this 
MESI can survive, also termed the lifespan of point Pj. In 
the sliding window scenario, the lifespan of a point Pi can be 
determined as follows. 

Lemma I: Given the slide size Q.slide of a query Q and 
the starting time of the current window We. Tstart , the lifespan 
Pi . life of a data point Pi in We with time stamp Pi' ts is 
calculated by po. hFe = I p;. ts- We' T,'art l2 indicating that po ' J' I __ Q.shde ' , 
will participate in windows We to We+p;.lije-l. 

Hence given Lemma 1 the lifespan of a MESI can be 
decided as below. 

Lemma 2: Given a MESI of Pi in the current win­
dow We denoted as MESI(Pi), the lifespan of MESI(Pi) 
MESI(Pi).life = min{pj.life I Pj E MESI(Pi)}. 

By Def. 6 MESI(Pi) is a MESI(we.,+MESI(p)hJe_l) 
of Pi covering the window sequence from We to We,e+MESI(p;).lije-l. As introduced in Sec. IV-B, among the 
existing points in window We only those without their MESI 
covering the new window We+1 must conduct probing to re­
evaluate their status. Therefore, the longer a window sequence 
a MESI covers, the fewer probing processes are needed for 
this point. Naturally the MESI with largest lifespan will be the 
best MESI. Henceforth quickly deriving the best MESI of each 
point is critical for minimizing the probing frequency and in 
turn saving CPU resources. 

Next we analyze how we can further optimize our probing 
process to always acquire the best MESI, but without sacri­
ficing its efficiency. On the one hand, the probing process for 
Pi should acquire the best MESI of Pi. On the other hand, 
we want the probing process must stay lightweight, so that 
it stops immediately once it has gotten the MESI of Pi in 
the current window. Our solution is to leverage the lifespan 
theory of MESI in Lemma 2 to prioritize the order in which 
the probing operation processes the data points. 

Definition 9: Lifespan-aware Prioritization: During the 
probing process of Pi, if two data points Pj and Pk have 
the same probability to be in the MESI of Pi for the current 
window, we always evaluate Pj first, if pj.life > Pk.life. 

Since the succeeding points Pj that arrived after Pi do not 
expire earlier than Pi, their influence will persist during the 
entire life of Pi. Therefore any such Pj contributes equally to Pi 
in terms of determining p;'s outlier status, although they may 
have different lifespans. Therefore we can treat all succeeding 
points of Pi as if they all had the same lifespan, namely a 
lifespan larger than p;'s. 

2For count-based windows, Piots and We. Tstart are sequence numbers 
indicating the arrival positions of data points in a stream. 



D. Lifespan-Aware Probing Operation 

The above lifespan-aware prioritization principle together 
with the minimal probing notion implies an optimized probing 
operation termed L.if!ispan-!1ware E.robing operation or LEAP. 
LEAP represents the core operation of our framework. 

Definition 10: Assume window We is composed of k 
slides denoted as Si, (1 ::; i ::; k). Si arrives earlier than SHI. 
Given a point Pi in We, LEAP is a probing that evaluates the 
status of Pi by testing other points in the Sk, Sk-l, ... order. 

Intuitively we can see that LEAP is guaranteed to produce 
the best MESI. In sliding window streams the data points 
are naturally ordered by their arrival time and expire in a 
predictable order. Hence the lifespan of any point can be 
precisely calculated. By Lemma 1, points in a particular slide 
share the same lifespan, while points in different slides have 
distinct lifespans. Later arriving slides have longer lasting 
lifespans. By conducting the search with a later arriving slide 
first order, the points with a larger lifespan will always be 
tested first. Therefore given a point Pi, LEAP will produce 
a MES1 composed of the evidence with the largest lifespan, 
that is the best MESI. Furthermore LEAP stops immediately 
as soon as a MESI is acquired. Thus it is as lightweight as an 
ordinary probing operation. 

The information collected in the probing process of Pi 
needs to be carefully selected and kept to minimize the costs of 
the future probing for Pi (Sec. IV-B). The information shown 
to be valuable and termed potential evidence, is organized as a 
general lifespan-aware evidence structure denoted as Pi' evi [ ]. 

Definition 11: The lifespan-aware evidence for a data 
point Pi (Pi· evi []) represents an ordered list of potential 
evidence of Pi in the current window We with each entry of 
Pi. evi [ ] corresponding to a set of data points with the same 
lifespan, where the ordering is determined by the lifespan. 

Fig. 1 :  Sharing of the lifetime proximity measure 

As shown in Fig.l the storage of the evi [ ] structure of a 
particular window Wi with 4 slides can be abstracted as a two 
dimensional matrix Mi. The element MdSx][Sy] represents 
a linear data structure which contains the Syth entries of all 
points in slide Sx' This abstract structure explicitly illustrates 
that our lifespan-aware evidence infrastructure is extremely 
conclusive to handle the stream evolution. When the window 
slides from Wi to WH1, by moving the elements bounded in 
the dash rectangles one unit up to the top left corner of Mi, it 
can be easily transformed into lIifi+! of Wi+! only by having 
to conduct the computation for the elements within the new 
slide S5. 

Space Complexity Analysis. The storage of the evi [ ] 
structure has a worst case space requirement O( nr) with r 
as the ratio of the Q. win over Q.slide and n as the number 
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of unsafe inliers and outliers. In fact this structure can be 
further compressed to its half size due to the observation that 
p/s succeeding neighbors contribute equally to Pi in terms of 
determining p/s status, even if they have different lifespan (as 
stated in Section IV-C). Therefore the entries representing its 
succeeding neighbors can be merged with the final number of 
entries at most being equal to its lifespan. 

The precise data structure specific to each outlier type will 
be introduced in Sec. V and VI. 

E. Optimality of LEAP 

The LEAP operation, when continuously applied to deter­
mine the outlier status of a data point Pi until its expiration, is 
shown to be optimal in CPU resources consumed for all three 
outlier definitions. 

Theorem 4.1: Given a point Pi in current window We and 
function f( Pi, We, Pr s) indicating the CPU costs required by 
a search strategy Prs to evaluate the outlier status of Pi. Then 

e+life-l c+life-l 
L !(Pi, Wj, LEAP)::; L !(Pi, Wj, Prs ) with 
j=c j=c 

life denoting the lifespan of Pi. 
Proof: We first establish a prerequisite. Given a data point 

Pi LEAP takes the same CPU cost to acquire a member of 
MESI for Pi as any other search strategy Prs takes. We denote 
this cost as ern. This prerequisite is justified as follows. 

First, given a stream S with an unknown distribution, then 
each point in We has the equal chance to be in the MESI of Pi. 
Thus in average any Prs will test the same number of points, 
hence the same costs to acquire a member of MESI for Pi. 

Second, LEAP is orthogonal to indexing. The both opti­
mization principles of LEAP aim to minimize the frequency 
of neighbor searches, while indexing instead focuses on accel­
erating the search of each single neighbor by reducing the 
neighbor search space. Therefore LEAP is able to exploit 
whatever indexing methods ever invented or possibly coming 
up with in the future. 

Then we prove Theorem 4.1 using Math Induction. 
c c 

(1) First we prove L !(Pi, Wj, LEAP) ::; L !(Pi, Wj, Prs ). j=c j=c 
LEAP immediately stops once it acquires the complete 

MESI for Pi. We use 1 M ESI(Pi) 1 to denote the cardinality 
of MESI. Hence f(Pi,Wj, LEAP) = 1 MESI(Pi ) 1 * em. For 
any other probing strategy Prs the cost! (Pi, Wj, Prs ) = x * 
em. By Def. 5, MESI is the minimal information needed to 
prove p/s status. Hence 1 MESI(Pi) I::; x. Therefore 

e 
L f(p·i, Wj, LEAP) = f(p·i, We, LEAP) =1 MESI(Pi ) 1 *Cm 
j=c 

e 
::; X * Cm = f(pi, We, Prs) = L f(Pi, Wj , Prs). 

j=c 

(2) Then our induction step from n to n+ 1 is: 
n n i f L f(Pi , Wj, LEAP) ::; L f(Pi , Wj, Prs), then 

j=c j=c 
n+l n+l 
L f(Pi , Wj , LEAP) ::; L f(Pi, Wj , Prs) withn < c + lif e - 2 
j=c j=c 

(I) 

(2) 
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Given the costs C s LEAP reaps in savings to process Pi 
from We through Wn compared to Prs, we can prove Eq. 2 as 
follows. When the stream slides from Wn to Wn+!, the costs 
LEAP takes to ensure the status of Pi are guaranteed to be not 
Cs larger than the costs Prs takes. 

LEAP will be more expensive than Prs only if more ele­
ments expire in Lm(Pi) (the MESI for Pi produced by LEAP) 
than in Pr;'(Pi) (the evidence produced by Prs). Suppose 
r more elements expire in Lm (Pi) than in Pr;' (Pi). ThIS 
means that in Prm(Pi) of Wn, there are at least r members 
younger than the 

s
oldest member of Lm(pi)' However in the 

first window We, the oldest member of Pr;'(Pi) is at least 
as old as the oldest member of Lm(pi)' To achieve this, Prs 
must have acquired at least r more MESI members than LEAP, 
because LEAP always tests the points with larger lifespans 
first. However to re-establish the MESI of Pi in Wn+l, LEAP 
only has to acquire exactly r more MESI members than Prs. 

(3) By steps (1) and (2), Theorem 4.1 is proven . •  

V. S TRATEGIES FOR 
DISTANCE- THRESHOLD OUTLIERS 

We now apply our framework to distance-threshold out­
liers. 

MESI and Lifespan-Aware Evidence. By Def. 1 once 
acquiring k neighbors, a point Pi can be safely declared as 
an inlier. Therefore the MESI for Pi is a data set that contains 
exactly k neighbors. As the window slides, all other data points 
examined so far besides its unexpired MESI members have no 
chance to ever be in the MESIs of Pi. Therefore only keeping 
the k neighbors in the MESI is sufficient to avoid any distance 
re-computation for Pi. Furthermore to determine the status of 
Pi, we only need the number of its neighbors rather than who 
its exact neighbors are. Therefore the Lifespan-Aware Evidence 
structure of Pi (Pi. evi []) for distance-threshold outliers is 
simply a list of counts, each list entry corresponding to the 
number of MESI members (neighbors) of Pi in a particular 
slide. 

Thresh LEAP. Based on the above MESI and Lifespan­
Aware Evidence structure we present a customized algorithm 
Thresh_LEAP (Alg. 1) for Ot�;�) outlier detection. Whe� a 
new window We arrives, Thresh_LEAP starts by evaluatlOg 
each new arrival Pi that had not been in We-l by simply 
calling the LEAP operation (Alg. 2). Here we explain step by 
step using an example how LEAP works. 

Algorithm 1 Thresh_LEAP(We) 
1 :  for each Pi E We. sncw do 
2: LEAP(Pi,We); 
3: end for 
4: for each Pi E We' SeXPtriggered do 
5: expireEvidence(p.i); 
6: LEAP(Pi, Pi.skippedPoints(We)); 
7: end for 
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Algorithm 2 LEAP(Pi,We) 
Input: Data point Pi, Dataset We IIData points in the current window 
Output: Bool isOutlier IIOutlier status of Pi 
1 :  Bool IsOutlier = false; 
2: if (NULL == Pi.evi[ ]) then 
3: buildSuccEvidence(pi); 
4: end if 
5: for each q E Pi.succPoint(Wc) do 
6:  if  (true = =  pi.islnNeighborhood(q)) then 
7 :  Pi .updateSuccEvidence(); 
8 :  if  (true = =  pi.isMESIAcquired()) then 
9 :  P i  .isSafe = true; 
10 :  return isOutlier; 
1 1 :  end if 
12 :  end if 
1 3 :  end for 
14 :  while Pi.precSlides # NULL do 
15: slide = getSlideWithLargestLifespan(pi.precSlides(Wc)); 
16 :  Pi.buildPrecEvidence(slide); 
1 7 :  for each q E slide do 
1 8 :  i f  (true = =  pi.islnNeighborhood(q)) then 
1 9 :  P·i .updatePrecEvidence(slide); 
20: if (true == pi.isMESIAcquired()) then 
2 1 :  slide.updateTriggeredList(p.i); 
22: return isOutlier; 
23:  end if 
24: end if 
25 : end for 
26: end while 
27 : isOutlier = true; 
28:  return isOutlier; 

Example 1: We use an example query Q with k = 5 
and a fixed R with the ratio of Q. win over Q . slide as 4 to 
explain how LEAP handles the new data points. As shown in 
Fig. 2, window We is divided into four slides. Given a new 
data point Pi LEAP first tests its succeeding data points (Line 
5). At the same time the first entry of Pi. evi[ 1 is established 
as (5suce:0) which represents the number of Pi'S succeeding 
neighbors (Line 3). Once a neighbor is acquired , we update the 
succeeding entry of Pi. evi[ 1 (Line 7), and check whether its 
MESI has been achieved (Line 8). By testing all its succeeding 
data points in this window, Pi finds three neighbors. However, 
it still did not acquire its MESI. Then it has to turn back and 
proceed to probe its preceding slides (Line 14). The slide with 
the largest lifespan is tested first (Line 15). In this case it is 52. 
Correspondingly a new entry (52:0) is created and appended 
to Pi.evi[ 1 (Line 16). The search is terminated after Pi gets 
its fifth neighbor which completes the MESI for Pi (Line 20). 
Pi is labeled as unsafe inlier. 52 is being remembered as the 
triggering slide of Pi, meaning that the expiration of 82 might 
lead to a status transformation of Pi. To indicate this check 
Pi is inserted into the triggered outlier candidate list of 52, 
namely 52. triggered (Line 21). The Pi' evi [ 1 at this point is 
< (52 : 2), (5suee : 3) >. 

After the new arrivals have been all processed, 
Thresh_LEAP proceeds to process the unexpired points from 
We-l that remain in We. Clearly the evil 1 has already been 
previously established for them. However not all unexpired 
points need to be re-evaluated. As shown in Alg.1 (Line 4), 
only the points in 5exp . triggered list are re-examined by the 
LEAP operation with 5exp denoting the most recently expIred 
slide. For example, when the stream evolves from We to We+! 
the expiration of 81 would not trigger the examination of Pi, 
because Pi is not in 51. triggered. Only the departure of 82 
will trigger the process of checking the status migration of Pi 
(Fig. 3). 

Example 2: We still use Pi of Example 1 to explain the 
above re-evaluation procedure. For We+2, Thresh_LEAP first 
updates the Pi. evi[ 1 to (5suee:3) by removing entry (52:2) 



(Line 5, Alg. 1). Then the LEAP operation is activated again on 
the new slide S5 which was skipped while Sl expired (Line 6, 
Alg. 1). The MESI is filled up again after finding the two newly 
arriving neighbors in S5. Its Pi. evi [ ] is updated to (Ssucc :5). 
Now Pi has five MESI members which did not arrive earlier 
than Pi. Therefore Pi achieves its life time MESI MESI/t. Now 
Pi is guaranteed to never become an outlier again and thus is 
marked as safe inlier (Line 9, Alg. 2). Thus at this point the 
Pi. evi [ ] can be safely purged altogether. 

As shown in this example it is extremely efficient to 
determine the status of Pi with the assistance of Pi. evi [ ] 
structure. When the window slides from We+!  to We+2 ,  its 
leftmost most side S2 entry will be pruned from Pi. evi [ ] .  Then 
by summing up the alive entries (in this case this would be 
only one entry Ssucc), the LEAP operation continues to be 
aware of the current status of Pi. To acquire the new status of 
Pi, it proceeds to test the new data points from S5 until p;'s 
MESI is again established. 

V I. S TRATEGIES FOR kNN OUTLIERS 

MESI for kNN Outliers. We now demonstrate how we 
apply our framework to detect kNN outliers. We use Alg.3 
to introduce the MESI for kNN outliers. By Def. 2 of Ok�:; 
outliers, Alg. 3 outputs the top-n outliers in a window We. 
Such a set called outliersSet in Line 1 is maintained during 
the search process. Let D!:nrr;::::x be the shortest distance between 
any data point in outliersSet seen so far and its kth nearest 
neighbor (Line 2). Assume that for a given point Pi we are 
processing its distance to its kth-nearest neighbor (Dkmax (Pi ) 
(Lines 4 to 6). Since Dkmax (Pi) monotonically decreases as 
we process more points, the current value is an upper-bound 
on its eventual value. If the current value becomes smaller than 
D!:nrr;::::x , then Pi cannot be an outlier (Lines 7 to 9). Therefore 
the MESI for Pi is acquired, which is its kNN in the data 
points seen so far (neighbors(Pi»' These points are so-called 
the temporary kNN of Pi. 

If D kmax (Pi) is larger than the cutoff threshold D !:nrr;::::x , Pi 
will be an outlier candidate. Both the outliersSet and D!:ni::::x 
will be updated (Lines 12-16). As more points are processed, 
more extreme outliers will be found. The top-n outliers will 
be finalized after all data points have been processed. 

1 :  outliersSet = 0; lithe top-n outliers set 
2: D�:�x = 0; 
3 :  for each Pi E We do 
4 :  for each Pj E We - Pi do 
5 :  lleighbors(Pil = nearest(pi,lleighbors(p.; )  + Pj , k); 
6:  Dkmax (Pi ) = maxDist(p·i , neighbors(p.i)); 
7 :  i f  « I  neighbors (Pi ) 1 = =  k) /\ (D kmax (Pi ) :c; D�::�X )) then 
8 :  Pi .outlierCandidate = false; 
9 :  break; 
10 :  end if 
I I :  end for 
12 :  i f  (false # p·i.outlierCandidate) then 
1 3 :  outliersSet = topOutliers(outliers + Pi , Il); 
14 :  i f  ( I  outliersSet 1 = =  n)  then 
1 5 :  Dkmax = min(Dkmax (p ) - V p . in neiahbors) ' 
16 :  end if�n 

t t b ' 

1 7 :  end if 
1 8 :  end for 

By replacing the Dkmax (Pi ) with Dkavg (Pi ) and D!:nrr;::::x 
with D���g the same rule can be applied to Ok��; ) outlier. 
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Lifespan-Aware Evidence. Unlike the Ot�;�) outlier for 
kNN outliers, only recording MESI of Pi is not sufficient for 
avoiding the distance re-computation whenever the status eval­
uation is triggered. The non-MESI points could also contribute 
to the MESls of future windows. For example, given a point 
Pi whose MESI members all expire, if no arriving points are 
close enough to Pi, the MESI of Pi in the next window must be 
formed based on the points which have been evaluated before 
but were not yet part of the MESI of Pi. In this case to avoid re­
computation we would have to keep more information besides 
the MESI of Pi in the current window. However keeping all 
pre-computed distances is not practical. 

Fortunately this is where our insight comes to the rescue. 
Namely keeping the kNN corresponding to each unexpired 
slide (or the temporary kNN for a slide not completely 
evaluated) is sufficient to avoid re-computation. The global 
kNN with respect to the unexpired data points seen so far is 
guaranteed to be in the union of these local kNN sets. That is, 
this global kNN can be easily derived by merging and sorting 
the local kNN sets. We need to evaluate the distance between 
Pi and new arrivals only if the kNN distance of this global kNN 
is still larger than the cutoff threshold. Otherwise this global 
kNN will remain to be the MESI of Pi in the new window. 
In short, with this structure the distance re-computation is 
completely eliminated. Therefore for kNN outliers Pi. evi [ ] 
is a list of data points (along with their distances to Pi) 
sets, each corresponding to its kNN in each unexpired slide. 
Since Pi. evi [ ] is compact, keeping it for each point does not 
introduce prohibitive memory overload. 

LEAP Operation for kNN Outliers. Given a point Pi, 
LEAP first probes the points with larger lifespan. An entry 
of Pi. evi [] is established to represent the kNN in its suc­
ceeding points. If its MESI is not acquired by considering 
its succeeding points, then the search will need to proceed 
by processing the preceding points in decreasing order with 
respect to their lifespans. During this process an entry is 
created for each preceding slide. LEAP continues to evaluate 
the distance between Pi and other data points in We until either 
its temporary kNN distance is smaller than the cutoff threshold 
(MESI is acquired) or all points of We have been tested. 
Only in the latter case, the probing operation will return the 
traditional full kNN of Pi. In this case both the top-n outliers 
set outliersSet and the cutoff threshold will be updated. Due 
to space restriction, the pseudo code is omitted here. 

kNN Outliers Detection With LEAP (kNN_LEAP). 
Alg. 4 shows how LEAP is utilized to detect kNN outliers 
in a window We. kNN_LEAP first resets the top-n outlier 
candidates set and the cutoff threshold (Lines 1 to 2). Then it 
starts processing the unexpired data points, namely the points 
that were already in window We- 1  (Line 3). Given a point Pi, 
kNN_LEAP first purges the expired entry of Pi' evi [ ] .  Then 
it re-calculates its temporary kNN (Lines 4, 5) if its MESI 
consists of expired data points (unsafe status). If its current 
kNN distance (either the previous distance for a safe point or 
the newly established one for an unsafe point) is larger than the 
cutoff threshold, the LEAP operation for Pi will be triggered 
again on the points skipped last time (Lines 7 to 11). Then 
kNN_LEAP proceeds to process the new arriving data points 
with the LEAP operation (Lines 13 to 15) until all new arrivals 
are evaluated. 



1 :  D�:�x = 0; //Resel cUloff lhreshold 
2: outliersSet = 0; //Resel lhe lop-n outliers sel 
3: for each Pi E We.unExpired do 
4 :  i f  (false = =  Pi.isSafe) then 
5 :  expireEvidence(Pi); 
6: end if 
7 :  i f  (true = =  isStilllnlier(pi)) then 
8 :  conlinue; 
9 :  else 
10 :  LEAP(p.; ,p.i.skippedPoinls(We)); 
1 1 :  end if 
12 :  end for 
1 3 :  for each Pi E We.newArrival do 
14 :  LEAP(Pi,We); 
1 5 :  end for 

V II. EXPERIMENTAL EVALUATION 

A. Experiment Setup & Methodologies 

All algorithms are implemented on the HP CHAOS Stream 
Engine [15]. Experiments are performed on a PC with 3.0G 
Hz CPU and 4GB memory, which runs Windows 7 OS. 

Real Datasets. We use two real streaming datasets. The 
Stock Trading Traces dataset (STT) [16] has one million 
transaction records throughout the trading hours of a day. 
The high dimensional Forest Cover (FC) dataset available at 
the UCI KDD Archive (url:kdd.ics.uci.edu) also used by [7], 
contains 581,012 records with 54 quantitative attributes. 

Synthetic Datasets. We deploy a data generator to pro­
duce streams with a controlled number of outliers and data 
distribution types. Those datasets contain Gaussian distributed 
data points as inlier candidates with uniform distributed noise. 
Both the Gaussian distributed points and noise are randomly 
distributed in each segment of the stream. 

Metrics. We measure two metrics common for stream 
systems, namely CPU time and peak memory consumption. 
Each experiment evaluates 10,000 windows. Both metrics 
are averaged over all windows. Although the experiments 
are reported using count-based windows, time-based windows 
provide similar results. 

Alternative Algorithms. Our experiments focus on eval­
uating the effectiveness of our both optimization principles, 
namely minimal probing and lifespan-aware prioritization, 
in detecting distance based outliers. For distance-threshold 
outliers, we compare our algorithms Thresh_MinProbe and 
Thresh_LEAP (Sec. V) against the state-of-the-art method 
DUE [7] as introduced in Sec. II. 3 The Thresh_MinProbe 
applies only the first principle. It essentially equals to DUE 
enhanced with minimal probing. Thresh_LEAP instead utilizes 
the LEAP framework which applies both principles. For kNN 
outliers, no existing algorithms in the literature tackle this 
type of outlier in the streaming context. Hence, we com­
pare our kNN_MinProbe and kNN_LEAP algorithms against 
kNN_BASIC which applies the static Orca algorithm [5] to 
compute the top-n outliers from scratch for each window. 
Similar to distance-threshold outliers, kNN_MinProbe applies 
only Minimal Probing principle, while kNN_LEAP applies 
both. Since these three methods all experience only a slight dif-
ference for ok�:2 and Ok:�;) outlier types, for space reasons, 

we present the results for ok�:2 outliers only. To evaluate 

3 In this work we chose to compare against DUE rather than the more 
sophisticated MCOD algorithm of [7] , because in the experiments of [7] ,  
MCOD does not show clear advantage over DUE in most o f  the cases. 
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the effect of indexing, similar to [l7] we implement a hash­
based grid index augmented with a time-aware mechanism 
for efficiently evicting expiring data. We carefully tune the 
granularity of the cells and equally apply the same best setting 
to all compared algorithms. We denote each algorithm xx 
augmented by this index by "xx-Index". 

Methodology. We evaluate the performance of the pro­
posed methods by varying the most important parameters. 
Specifically, our experiments cover the three major cost factors, 
namely stream velocity, volume, and outlier rate. We vary 
the velocity of a data stream by varying the slide size from 
0.5k to 50k while leaving all other settings constant.4 We 
also measure scalability on high volume streams by varying 
the window size w from lk  to 200k. Similarly, we measure 
how well these methods work for different outlier rates. For 
the distance-threshold type, this means varying R, while for 
kNN types varying n as defined in Sec. III. Both control 
outliers from being rare (0.001 %) to being common in the 
dataset (100%). Since this change also affects the density of 
neighboring area for each data point, this experiment also 
reflects data distribution variation in essence. We also measure 
the scalability of our approach over data dimensionality by 
varying dimensions from 2 to 40. 

B. Evaluating Distance-Threshold Outliers 

1) Varying Outlier Rates: We first analyze the effect of the 
outlier rate f3 by varying f3 from 0.001 % to 100% with a fixed 
slide size of 500 and window size of l OOK on synthetic data. 
As shown in Fig. 4, our Thresh_MinProbe and Thresh_LEAP 
are superior to DUE with respect to both CPU time and mem­
ory usage. In particular, as outlier rate is smaller than 0.01 % 
which is common in real life application [4], Thresh_MinProbe 
shows a 10 times improvement over DUE while Thresh_LEAP 
gains another 100 times improvement on this basis in terms 
of CPU time. Thresh_MinProbe wins over DUE by applying 
the probing operation, which stops immediately after acquiring 
MESI rather than evaluates the complete neighborhood as 
range query search does. Thresh_LEAP further outperforms 
Thresh_MinProbe by applying the lifespan-aware prioritization 
principle which enables probing operation to always produce 
MESI with largest lifespan without introducing any additional 
cost. This minimizes the frequency of conducting probing in 
continuously evolving streams. The CPU time of all three 
methods increases as f3 increases, because more computation 
time is spent on verifying the larger number of outliers. Our 
methods win for all outlier rates from 0.001 % to 100%. That 
is, even in the extreme case when all data points are outliers, 
the overhead introduced by our methods is still smaller than 
DUE. 

Thresh_MinProbe and Thresh_LEAP use on average 
35% and 40% less memory than DUE. This is because 
Thresh_MinProbe and Thresh_LEAP only store the neigh­
bor count of each slide for outlier candidates, while DUE 
maintains the actual neighbor relationships. Comparing against 
Thresh_MinProbe, Thresh_LEAP maximally accelerates the 
speed of discovering safe inliers. Since safe inlier introduces 
zero memory overhead, Thresh_LEAP consumes less memory. 

2) Varying Slide Sizes: Fig. 5 depicts the performance of 
the three algorithms for varying slide sizes on synthetic data 
when the outlier rate is fixed to 0.01 % and the window size 

4Here we only present the results for distance-threshold outliers, since kNN 
outliers are confirmed to be not sensitive to slide size. 



(a) CPU (log scale) 

� 800 o 
53 600 
:; 400 

20'���---J 
O. 0 1% 0 .01% 0 . 1% 1% 1 0% 1 00% 

Outlier Rate 

(b) Memory (linear scale) 

Fig. 4: Varying Outlier Rates on Synthetic Dataset 

1 0' ,------_-_-_-_ 

- + - Thresh_MinProbe 
-e- Thresh_LEAP 

1 0-21'�K ---c5�OKC------;;:' 00�K=�1 5�OK==20�'OK 
Window Size 

(a) CPU: STT (log scale) 

250 ,------_-_-__ -
---, 

200 
co 
6 150 
i<' o 
E 100 
� 

50K 150K 200K 

(b) Memory: STT (linear scale) 
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to l OOk. Again Thresh_LEAP and Thresh_MinProbe clearly 
outperform DUE in CPU time, reaching up to 15 times and 
1350 times improvement than DUE for small slide sizes. This 
is again due to the effectiveness of the LEAP operation as 
explained in the previous section. As the slide size increases, 
the processing time on each window increases accordingly. 
The reason is obvious. The larger slide size introduces more 
new data points, which in turn cost more CPU time to process. 
The CPU time of DUE increases by 290 seconds when varying 
the slide size from 0.5k to 50k, while Thresh_MinProbe and 
Thresh_LEAP increase only by 130 and 10 seconds. 

Again, our method is not only superior in CPU but also 
in memory consumption. As the slide size increases, the 
percentage of safe inliers over the whole window increases, 
leading to less memory consumption for all three algorithms 
to store information for unsafe inliers. 

3) Varying Window Sizes: Next, we evaluate the effect 
of varying window sizes w from 1k to 200k. We show the 
results on real dataset STT with fixed k as 30, the outlier 
rate 0.1%, and slide size 500. In Fig. 6(a)-(b), Thresh_LEAP 
and Thresh_MinProbe outperform DUE in terms of both 
CPU and memory. In all cases, the CPU time consumed by 
Thresh_MinProbe is up to 1 order of magnitude smaller than 
DUE. Thresh_LEAP further outperforms Thresh_MinProbe 
by 2 orders of magnitude. As the window size increases, 
all algorithms consume more CPU time. Thresh_LEAP and 
Thresh_MinProbe take more CPU resources to process the trig­
gered outlier candidates, while for DUE, larger window takes 
the range query more time to search for neighbors for new 
arrivals. Thresh_LEAP wins more against Thresh_MinProbe 
in larger window. The reason is lifespan-aware prioritiza­
tion enables probing operation to always acquire MESI with 
largest lifespan. When window size increases, the potential 
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value of this lifespan increases, making this optimization even 
more effective. As the window size increases, Thresh_LEAP 
and Thresh_MinProbe still incur less memory consumption 
compared to DUE since only DUE has to store the actual 
neighbors. 

4) Varying Dimensionality of Data: We evaluate the scal­
ability of our algorithms on high dimensional data by varying 
the number of dimensions from 2 to 40. We fix the window 
size to l OOK, slide size to 5K, and outlier rate to 0.1 %. As 
shown in Fig. 7(a), Thresh_MinProbe algorithm consistently 
outperforms DUE around 15 fold in terms of CPU time, 
while Thresh_LEAP further outperforms Thresh_MinProbe 
around 35 fold. This is expected, since both our optimization 
principles are orthogonal to the number of data dimensions. 
The CPU costs of all three algorithms are near linear in the data 
dimensionality, because the cost of the distance calculation be­
tween two points is linear in the number of dimensions, while 
distance calculation costs are the most significant fraction of 
the overall outlier detection costs. This is the base price any 
method has to pay. 

We also evaluate the performance of our algorithm on real 
life FC cover dataset (54 dimensions) by varying the slide size. 
The results shown in Fig. 7(b) again confirm the effectiveness 
of our approach to high dimensional datasets. 

5) Effectiveness of Indexing: We compare all three al­
gorithms against their corresponding indexed versions on 
synthetic dataset with the number of dimensions varying 
from 2 to 8. Other settings remain the same as in Sec. 
VII-B4. As shown in Fig. 8(a), for the 2D and 4D cases, 
indexing improves the performance of all algorithms. This 
is as expected, because our both optimization principles are 
orthogonal to indexing as shown in Sec IV-E. In the 2D 
case with the help of the index, DUE reduces around 37 
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percent of their CPU costs, while Thresh_MinProbe and 
Thresh_LEAP reduce 64 and 76 percent respectively. This is 
because Thresh_LEAP and Thresh_MinProbe have different 
stopping criteria for the neighbor search than DUE. Given a 
data point Pi , Thresh_LEAP and Thresh_MinProbe first locate 
and probe for neighbors in the cell that Pi falls in. This 
cell can be located in constant time using the grid index. 
Potentially Thresh_LEAP and Thresh_MinProbe will acquire 
enough neighbors of Pi , and hence terminate after searching 
through this single cell. On the other hand, DUE would not 
stop its search until all neighbors of Pi are acquired. Therefore 
it locates all cells which could contain the neighbors of Pi , 
leading to a larger cell lookup costs compared to Thresh_LEAP 
and Thresh_MinProbe. Second, Thresh_MinProbe performs 
worse than Thresh_LEAP because it triggers probing operation 
more frequently and consequently introduce more expensive 
cell lookup operations. 

However, as the number of dimensions increases, the 
number of the cells in the index to be examined also in­
creases exponentially, leading to a significant increase of index 
maintenance overhead. This overwhelms the performance gain 
achieved by utilizing the grid index when the dimensions rise 
up to 8. In the 8D case, DUE introduces 900ms on average 
index maintenance costs per each slide which is much larger 
than the 60ms saved for distance calculation. This condition 
holds for all the algorithms. Thus, indexing performs well only 
on low dimensional datasets as had previously been observed 
for static data in the literature [2], [3]. 

As shown in Fig. 8(b), our experimental results on real 
life STT dataset with varying slide size also confirms the 
orthogonality of our approach to the indexing. 

C. Evaluating KNN Outliers 

1) Varying Outlier Rates: This experiment evaluates the 
impact of varying outlier rates, namely varying n, on perfor­
mance. We fix the window size at 10k and slide size at 1k, 
while varying n from 10 to 300. Most practical applications 
have a low outlier rate (below 1 %). Here we adopt outlier rates 
ranging from 0.1 % to 3% as done in [7]. 

The CPU costs of all three algorithms increase as the 
outlier rate increases because a major part of the computa­
tion time is spent on processing the potential outliers. As 
shown in Fig. 9, KNN_MinProbe and KNN_LEAP both 
significantly outperform the baseline method KNN_BASIC. 
In particular, KNN_MinProbe outperforms KNN_BASIC 2.5 
fold. KNN_LEAP further outperforms KNN_MinProbe 6 fold. 
The reason that KNN_MinProbe wins over KNN_BASIC 
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is that it exploits the minimal probing principle to reuse 
the unexpired MESI members. Similar to distance-threshold 
outlier, KNN_LEAP wins over KNN_MinProbe because it 
searches for the MESI in an intelligent time-aware order. This 
minimizes the probing frequency needed. 

The memory consumption of KNN_MinProbe is a little 
more than KNN_LEAP, while KNN_BASIC consumes less. 
This is as expected, because the first two need to maintain 
a similar kNN metadata structure per slide to reuse it in 
the next window. KNN_LEAP consumes less memory than 
KNN_MinProbe since it reduces the demand for acquiring new 
MESI members. The memory consumption is stable even with 
increasing outlier rates, making this a practical compromise 
for the tremendous gain achieved in CPU resources. 

2) Varying Window Sizes: Here, we use the real dataset 
to evaluate the impact of varying window sizes. We fix the 
slide size at 200 and n at 100, while varying the window 
size from 1k to 40k. As depicted in Fig. 10, the CPU costs 
of all algorithms rise as the window size increases. Yet our 
best solution KNN_LEAP consistently utilizes the least CPU 
time and exhibits the slowest increase in CPU consumption. 
KNN_LEAP and KNN_MinProbe are about 8 and 2 times 
faster than KNN_BASIC at w = 1k case and up to 15 and 3 
times faster when w reaches 40k. For a fixed outlier rate, a 
larger window size results in a larger number of inliers and a 
wider lifespan range. Both factors are key for our framework 
to outperform the full kNN query search. 

The memory consumption also scales with the window 
size. For KNN_LEAP and KNN_MinProbe, when the window 
size increases 40 times, the overhead only increases by about 
2 fold. The reason is that the lifespan-aware evidence structure 
shares more lifetime proximity as the window size increases. 
This helps our approaches to achieve more compact storage. 

3) Varying Dimensionality of Data: Fig. 11(a) demon­
strates the CPU costs of all three algorithms as the num­
ber of dimensions increases from 2 up to 40. We fix win­
dow size at 10k, outlier rate at 1 %, and slide size at 500. 
KNN_MinProbe and KNN_LEAP outperform KNN_BASIC 
even more as the dimension number increases. In 2D case, the 
KNN_MinProbe and KNN_LEAP outperform KNN_BASIC 
by 2.5 and 12 times respectively, while in 40D case they 
outperform KNN_BASIC by 4 and 20 times. This is because 
minimal probing and lifespan-aware principle both minimize 
the frequency of when the distance calculation has to be 
deployed. Therefore, when the distance calculation itself con­
stitutes an even large percentage of overall computation cost 
with the increasing dimensions, they perform even better. In 
conclusion, KNN_LEAP performs consistently well as the 
number of data dimensions increases. 

We also run experiment on real life dataset FC Cover by 
varying slide size. The results shown in Fig. l1(b) again con­
firm the effectiveness of LEAP to high dimensional datasets. 

4) Effectiveness of Indexing: Fig. 12(a) shows that indexing 
improves the CPU resource consumption of all three algo­
rithms for low dimensional data « 4D), while it starts to 
negatively impact the detection efficiency in higher dimen­
sional cases. In the 8D case, indexing for the KNN_BASIC 
method reduces the distance calculation cost by 3000ms, yet 
costs 4500ms for maintaining the grid. A similar situation of 
maintenance costs superseding any achievable gain holds for 
our proposed algorithms. Therefore, the grid index benefits 



1 5 ,----_--_-_------, 

� 'a _ _ _ _  _ 

i!' 
� I -El- KNN BASIC 

- + - KNN=MinProbe 

1 8�1·'::%----;C0.0;:5%:-----C'=%----C"'=='.-----:!3·% 
Outlier Rate 

(a) CPU (log scale) 

� s -&- KNN LEAP 

0.5% 1% 2% 
Outlier Rate 

(b) Memory (linear scale) 

Fig. 9: Varying Outlier Rates on Synthetic Dataset 

3% 

1 0' ,----_--_-_--="" 
.. 

- - + - - - - - + - - - - - ... .. .. 

-e- KNN_BASIC 
- + - KNN_MinProbe 

l O' L,:--:Cs---C,:;:a _---c,;:;co--"-e-==�::=
N

-=LEA='�,O 
Number of Dimensions 

.. + .. KNN.MinProbe 
-e-KNN.LEAP 

1 ��5hK---;'�K---;'�K-=�'�.SK��SK 
Slide Size 

(a) Synthetic dataset (b) FC cover real dataset 

Fig. 1 1 :  Dimension Experiments 

kNN outlier detection only when the data dimensions is rather 
low (in our case, < 4). 

As shown in Fig. 12(b) the other experiment by varying 
slide size on real life STT data also confirms that our approach 
could benefit from the indexing as the data dimension is low. 

V III. CONCLUSION 

Outlier detection for extracting abnormal phenomena from 
huge-volumes of streaming data is an extremely important yet 
difficult task. We propose two novel optimization principles, 
namely "minimal probing" and "lifespan-aware prioritization" 
to achieve scalable outlier detection. Our solution framework 
incorporating these principles is the first unified methodology 
to handle three types of distance-based outlier definition. It 
is proven to be optimal for determining the outlier status of 
data points. Our experimental evaluation with both real and 
synthetic datasets shows that the proposed approaches are up 
to 3 orders of magnitude faster than the state-of-the-art. 

An interesting direction for future work is to leverage 
modern distributed multi-core clusters of machines for further 
improving the scalability of outlier detection. 
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