
Scalable Distance-Based Outlier Detection over
High-Volume Data Streams

Lei Cao *, Di Yangt, Qingyang Wang*, Yanwei Yu+, Jiayuan Wang*, Elke A. Rundensteiner*
*Worcester Polytechnic Institute, Worcester, MA USA

(lcao, wangqy,jwang 1 ,rundenst)@cs.wpi.edu
t Oracle Corporation, Nashua, NH USA

di. yang@oracle.com
+University of Science and Technology Beijing, Beijing, China

yuyanwei0530@126.com

Abstract-The discovery of distance-based outliers from huge
volumes of streaming data is critical for modern applications
ranging from credit card fraud detection to moving object
monitoring. In this work, we propose the first general framework
to handle the three major classes of distance-based outliers
in streaming environments, including the traditional distance
threshold based and the nearest-neighbor-based definitions. Our
LEAP framework encompasses two general optimization princi
ples applicable across all three outlier types. First, our "mini
mal probing" principle uses a lightweight probing operation to
gather minimal yet sufficient evidence for outlier detection. This
principle overturns the state-of-the-art methodology that requires
routinely conducting expensive complete neighborhood searches
to identify outliers. Second, our "lifespan-aware prioritization"
principle leverages the temporal relationships among stream data
points to prioritize the processing order among them during the
probing process. Guided by these two principles, we design an
outlier detection strategy which is proven to be optimal in CPU
costs needed to determine the outlier status of any data point
during its entire life. Our comprehensive experimental studies,
using both synthetic as well as real streaming data, demonstrate
that our methods are 3 orders of magnitude faster than state-of
the-art methods for a rich diversity of scenarios tested yet scale
to high dimensional streaming data.

I. INTRODUCTION

Motivation. In recent years, both the number of mobile
devices, such as smart phones, pads, and RFID equipment,
and their capabilities of generating and transmitting live data
have grown rapidly. As the volume and speed of data streams
advance to new levels, discovering precious knowledge hidden
in this data has become more critical than ever before.

Important insights extractable from such data sources are
abnormal phenomena. Many modern applications, including
credit card fraud detection, network intrusion prevention, and
stock investment tactical planning, rely on finding abnormal
phenomena in data streams. The basic notion of capturing
abnormal phenomena in data can be traced back to initial
work by Hawkins [1], which introduced the core principle still
deployed for characterizing outliers within a set of data points.
That is, the greater the distance of a data point to its neighbors,
the more likely it is an outlier. Based on this foundation
three main variations of distance-based outlier definitions have
emerged in the literature:

• oi/:;�) outlier: Outliers are data points with fewer than
k neighbors in the database, where a neighbor is a data

978-1-4799-2555-1114/$31.00 © 2014 IEEE 76

point that is within a distance R [2] I.

• ok�:2 outlier: Outliers are the n data points with the
highest distance values to their respective kth nearest
neighbor among all data points in the database [3].

• Ok��;) outlier: Outliers are the n data points with the
highest average distance to their respective k nearest
neighbors [4].

Each of these three definitions has been shown to have
its own scope of applicability, effectively supporting certain
classes of applications [3], [5], [4]. In general, oi;;�) outlier
performs well in applications in which it is known apriori that
an explicit behavior difference R (or a distance measure R)
is critical, while ok�:2 and Ok��;) work better in situations
when such a fixed threshold is either not available or is
changing over time.

For example, when seeking short-term investment oppor
tunities in the stock market, investors may look for the outlier
stocks whose behavior significantly differ from that of the ma
jority of their peer stocks. Such abnormal stocks typically are
either the hot spots or the forgotten treasure in the market. Both
of them may correspond to potentially excellent investment
opportunities. More specifically, given two stocks sl and s2 an
investor may define a distance function to measure their differ
ence, e.g., considering both their stock price change percentage
and their company profit change percentage. Any two stocks
that have the similar company profit performance but 200%
difference in price change percentage will have a difference
score d(sl, s2) = l(sl.price_gain% -s2.price_gain%)
(sl.pmfiCgain% -s2.pmfiCgain%)I = 2. For this applica
tion, if the investor is confident that 2 is a good threshold to
indicate that two stocks behave significantly different enough,
she can use the Ot�;�) definition to find outlier stocks that
are abnormal enough with 2 as the distance threshold R for
neighbor search. However, if such a threshold is not known,
alternatively she could utilize the ok�:2 or Ok��;) outlier
definitions to find the top abnormal stocks.

In this work we thus set out to design a framework that can
handle the general problem of distance-based outlier detection
in streaming environments, while delivering highly scalable
solutions for all three major outlier types.

1 In the original definition introduced by [2] k represents the percentage of
data points. In this work we follow the definition adopted by all streaming
outlier work.

ICDE Conference 2014

Limitations of the State-of-the-Art. The problem of
detecting distance-based outliers in static datasets has been
extensively studied in the literature [2], [3], [4], [5]. More
recently, researchers started to look at the problem in streaming
environments [6], [7]. Specifically [6] proposed a solution for
detecting oi::;�) outliers in count-based sliding windows. [7]
improves upon this solution [6] by now supporting Ot�;:';
outliers in time-based sliding windows. Both solutions leverage
the overlap of sliding windows and thus avoid huge overhead
wasted on recomputing-from-scratch at each window.

However, these existing techniques [6], [7] didn't explore
the optimization opportunities enabled by the two critical
insights below. First, they didn't exploit the fact that outliers
by nature only constitute a small portion of the general stream
data population (otherwise they wouldn't be called outliers
after all). Thus, the outlier detection algorithms should ideally
concentrate their resource utilization on strictly serving these
minority outlier candidates, rather than on computing and
recording neighborhoods for the general and much larger
stream population. Second, the existing techniques do not take
advantage of the temporal relationships among stream data
points, i.e., who will survive longer in the future windows.
As our experiments demonstrate, processing the data points
in an intelligent time-aware order helps us to minimize the
computation required for acquiring new evidence for outlier
detection, achieving several orders of magnitude speed up.

Without these important optimization opportunities, the
existing techniques [6], [7] cannot handle high-speed streams
in real-time, say 1M tuples per second as our experiments
will confirm. Yet such huge volume streams are increasingly
common in modern streaming applications. As an example the
US stocks market continuously receives around 1M transaction
requests per second [8]. Also, existing techniques [6], [7]
focused exclusively on the first simpler outlier type, namely
oi::;�) outlier. No existing work provides a general solution
for all major types of distance-based outliers for data streams.

Proposed Solution. In this work, we present a general
framework for optimizing distance-based outlier detection in
high volume data streams covering all three major distance-
b d I· d fi . . O(k,R) O(k,n) d O (k,n) UT . ase out ler e mtlOns, threh ' kmax an kavg . vve In-
vestigate the optimization opportunities missed by the state-of
the-art strategies and derive two core optimization principles.

First, we present the minimal probing principle that takes
advantage of the rarity property of outliers. Unlike existing
techniques [6], [7], [9], which rely on routinely conducting
expensive range queries to search through the complete neigh
borhoods of all stream data points, our strategy is to minimize
both the frequency of the neighbor probing operation as well as
the actual computation cycles consumed by each search. More
specifically, we only initiate the neighbor probing process for a
data point when it is absolutely necessary. Second, our probing
operation stops as soon as it has acquired the minimally needed
evidence to identify outliers. This principle frees our proposed
algorithms from having to conduct the rather expensive com
plete neighbor searches, such as a full range query search.
Thus it saves extensive system resources otherwise dedicated
to identifying and maintaining non-essential neighbor relation
ships among stream data points.

Second we propose the lifespan-aware prioritization prin
ciple. This principle utilizes the insight that the data points
that arrived later in the window are guaranteed to have a more

77

decisive impact on the outlier detection process compared to
earlier ones. This is so because the younger a data point Pi
is, the longer its neighbor relationships (if any) with other
points will persist into the future. Since the key task for the
outlier detection process is to eliminate any guaranteed inliers,
namely those with sufficient neighbors, identifying enough
longer lasting neighbor relationships is likely to eliminate the
need for further probing for those shorter lasting ones. As we
will show this principle guarantees that we always find the
most useful neighbor relationships for outlier detection.

By exploiting these two core principles, we have designed
a highly scalable outlier detection framework called LEAP.
Our theoretical analysis proves that LEAP is optimal in CPU
resource consumption to determine the outlier status of any
data point during its entire life.

As our experimental results reveal (Sec. VII), we succeed
to drive down the CPU costs by over three orders of magnitude,
making the outlier detection algorithms fast enough to become
practical in the truly high speed realm for exploring big data
streams with high dimensions.

Contributions. Our contributions include:

1) We present the first result on efficiently supporting
the major distance-based outlier classes. In particular neither
the Ok';;,:� nor the Ok��;) outliers had been handled in the
streaming outlier detection literature before.

2) We propose the minimal probing optimization principle,
which frees detection algorithms from the burden experienced
by the state-of-the-art methodologies of having to routinely
conduct range query searches [6], [9], [7].

3) We introduce the lifespan-aware prioritization principle,
which guides the outlier detection algorithms to probe neigh
bors for stream data points in a time-aware manner to minimize
the frequency of probing operation.

4) We integrate these two principles into a general frame
work called LEAP, which is proven to be optimal in terms of
the CPU costs for determining the outlier status of each point.

5) Our experimental studies based on real and synthetic
data show that our proposed algorithms achieve three orders
of magnitude performance gain compared to the state-of-the
art techniques in a rich variety of scenarios.

II. RELATED WORK

Distance-based Outliers on Static Data. The Ot�;:)
definition of distance-based outliers was first introduced by
Knorr and Ng [2] for static datasets. They describe two
detection algorithms. The cell-based algorithm, exponential in
the number of data dimensions, is not scalable for high dimen
sional datasets. The index-based algorithm (using an R-tree or
k-d tree) is shown to be non-competitive for three dimensional
datasets and up if index building costs are considered. This
implies that such relatively expensive indexing would not fit
well in our streaming data scenario, because worst yet the
index would have to be continuously re-built.

The kNN-based outlier definition was first introduced for
static data in [3]. As they show for three dimensional datasets,
their index-based (R*-tree) algorithm already performs worse
than their partition-based algorithm even after excluding the
index building costs. [5] proposes the Orca algorithm which
outperforms the predecessor partition-based algorithm [3] with

randomization and a simple pruning strategy. Orca scales well
to high dimensional dataset. For this reason in this work we
now adapt Orca to the streaming context and then use it as
baseline to compare our framework against.

Density-Based Outliers on Static Data. Like distance
based outliers density-based outlier detection is a particular
category of neighbor-based outlier detection techniques. They
assign an outlier score to any given point by measuring
the density relative to its local neighborhood restricted by
a pre-defined threshold [10], [11]. Therefore density-based
outliers are regarded as "local outliers". However distance
based outlier detection instead takes a global view of dataset
and marks each point as either outlier or inlier with respect to
some user defined global parameters. Furthermore, both [10]
and [II] only handle static datasets without taking the potential
data update into account. Therefore the techniques proposed in
[10] and [11] cannot be applied to solve our problem, namely
detecting distance-based outliers on streaming data.

Distance-based Outliers on Streaming Data. With the
emergence of digital devices generating data streams, out
liers on streaming data have recently been studied [6], [7],
[9]. However existing work [6], [7], [9] only considers the
simpler distance-threshold variation of distance-based outliers.
The processing of the more popular kNN-based variants [3]
remains unsolved in the streaming context. Next we further
elaborate on the existing results on this first outlier type.

In [9], given a data point Pi, it pre-computes the number of
neighbors of Pi for each future window that Pi will participate
in. It improves CPU performance at the expense of a huge
memory overhead by pre-discounting the effect of expired
data points for each and every future window in advance. Our
work not only improves the CPU efficiency by three orders of
magnitude, but also reduces the memory consumption.

[6] analyzes the expiration time of all neighbors of a point
gathered by a range query. Then they use the expiration time
of the neighbors to locate safe inliers, namely any point Pi
with more than k neighbors which have arrived after Pi.

[7] further outperforms [6] and [9] by integrating the safe
inlier concept of [6] into an event queue, so that it can
efficiently schedule the necessary checks that have to be made
when points expire. However it still relies on full range query
searches to process newly arriving points. Therefore it fails to
respond in real time when applied to high velocity streaming
data targeted by our effort. In our work by exploiting the
minimal probing and lifespan-aware prioritization principles,
we succeed to avoid the full range query searches, thereby
satisfying the performance requirements of modern streaming
applications. Furthermore the above algorithms ignore index
ing, while in our work we also investigate whether streaming
outlier detection can benefit from indexing.

Outliers on Sensor Data. In [12] an interesting online
technique is proposed to detect outliers in streaming sensor
data. First, it utilizes a kernel density estimator to model the
distribution of the sensor data. Then given a point Pi, the
number of its neighbors is estimated by the density distribution
function f(Pi). Therefore [12] is able to quickly approximate
whether Pi is a Ot�;�) outlier. However the approximation na
ture determines that it cannot be directly applied to our context
of computing exact distance-based outliers. Furthermore [12]
only considers the oi�;�) definition of distance-based outlier.
The more popular kNN based definitions are not discussed.

78

Stream Clustering. The clustering definition most closely
related to distance-based outliers is density-based clustering
[9]. It puts adjacent points that have enough neighbors into
the same cluster. This problem has been shown to be more
expensive than distance-based outlier detection [9], because
due to the inter-dependence among the data points the cluster
structure is more complex to detect and update than the
individual outlier points.

Most other clustering or summarization methods [13] in
stead focus on discovering accumulative statistical features
of the stream. They do not specifically identify neighbor
relationships among individual points, which is the key for
distance-based outlier detection. Thus they are not directly
applicable to our problem of distance-based outliers.

Yet in principle the general idea of micro-clusters or
summaries [13] could potentially be exploited to eliminate
points from dense areas that cannot be outliers. Clearly one
could only eliminate points in dense areas as outlier candidates
if the cell (micro-cluster) is small enough such that all points
in the cell are neighbors with each other. However having such
small cells tends to be not practical in streaming data with high
dimensions, potentially requiring us to dynamically maintain
too many cells (exponentially increasing with dimensions) and
thus causing overwhelming costs.

III. PROBLEM FORMALIZATION

A. Definitions of Distance-Based Outliers

Below we formally define the three major distance-based
outlier variations. We use the term "data point" or "point"
to refer to a multi-dimensional tuple in the data stream. The
function d (Pi, Pj) denotes the distance between a pair of points

Pi andpj.
Definition 1: Given a dataset D, a distance threshold R

(R 2: 0), and a count threshold k (k 2: 1), a distance

threshold outlier denoted by O:h�s in D is a data point Pi
if there exist fewer than k data points whose distance to Pi is
no larger than R in D.

Next both Ok�;; and Ok��n) outliers are defined based
on the well-known notion of .

il
k-nearest neighbors (kNN)".

Given a data point Pi and its kth-nearest neighbor Pj, d (Pi, Pj)
is called the kNN maximum distance of Pi denoted as
Dkmax (Pi), while the average distance to all its k-nearest
neighbors is called the kNN average distance of Pi denoted
as Dkav9(Pi)'

Definition 2: Given input parameters k (k 2: 1) and n (n 2:
1), a point Pi is a kNN maximum distance outlier denoted
by Ok�;; in D if at most n-I other points Pj exist with 1 ::;
j ::; n -1 in D such that Dkmax (Pj) > Dkmax (Pi).

Definition 3: Given input parameters k (k 2: 1) and n (n 2:
1), a soint Pi is a kNN average distance outlier denoted
by Ok��;) s in D if at most n-l other points Pj exist with
1::; j ::; n -1 in D such that DkaV9(pj) > DkaV9(Pi).

B. Distance-Based Outlier Detection in Sliding Windows

We work with periodic sliding window semantics as pro
posed by CQL [14] for defining the substream of interest from
the otherwise infinite data stream. Such semantics can be either
time or count-based. Each query Q has a fixed window size

Q. win and slide Q. slide. For time-based windows each win
dow We of Q has a starting time We. Tstart and an ending time
We' Tend= We' Tstart+Q . win. Periodically the current window We slides, causing We. Tstart and We. Tend to increase by
Q . slide. For count-based windows, a fixed number (count)
of data points corresponds to the window size Q. win. The
window slides after the arrival of Q. slide new data points.

Outliers will be generated based on the points that fall into
the current window We, namely the population of We. A point

Pi in We might have different outlier status (outlier or inlier)
in the next window We+1 if it is still alive in We+1, since each
window has a different population. Now we define the stream
outlier detection problem we tackle.

Definition 4: Distance-Based Outlier Detection In Slid
ing Windows: Given a stream S, a streaming distance-based

I· d
.

Q
.

h O(k,R) O (k,n) O(k,n) out ler etectlOn query WIt thres ' kmax ' or kavg
definition defined in Def. 1, 2, or 3, with window size as Q. wzn

and slide size as Q . slide, Q continuously detects and outputs
the outliers in the current window We when the window slides.

Symbol
Pi
Pi .t s
p·i.life
We
o\�' {)

O(k,n)

O�k,n)
kava

D,,"m,ax
D,avg
MESI
LEAP
P·i.evill

Description
the i-th data point
the timestamp of Pi
the lifespan of Pi
the current window of a stream

Distance-Threshold Outliers

kNN Maximum Distance Outliers

kNN Average Distance Outliers

kNN Maximum Distance

kNN Average Distance
Minimal Evidence Set for Inlier
Lifespan-Aware Probing Operation
Lifespan-Aware Evidence structure of Pi

TABLE I: Frequently Used Symbols.

IV. A GENERIC OUTLIER DETECTION
FRAMEWORK

We now introduce our scalable framework called LEAP,
capable of continuously processing distance-based outliers
with low CPU and memory resource utilization. LEAP is built
on two fundamental optimization principles namely minimal
probing and lifespan-aware prioritization as described below.

A. Theoretical Foundation

In all distance-based outlier definitions, points in a dataset
D are classified either as outliers or inliers. Thus, the process
of identifying outliers in D is equivalent to the process of
eliminating inliers from it. In fact, initially, each point Pi in the
dataset is a potential outlier candidate, until one has acquired
enough evidence to show that Pi is an inlier. For example, in
the process of identifying oi���l outliers, until finding that Pi
has at least k neighbors and thus qualifies as inlier, Pi cannot
be safely removed from the outlier candidate set.

This fact leads us to an important observation. That is,
to identify whether a point Pi is a distance-based outlier in
a dataset D, one may not need the distance between Pi to
every other point in D. Instead, a potentially small subset of
points will be sufficient to prove that Pi is an inlier. Also due
to the rarity of outliers, the majority of points in the dataset
could be labeled as inliers in this way by collecting only a
small amount of information. To describe the least amount of

79

information needed to prove p;'s inlier status we define the
concept of Minimal Evidence Set for Inlier (MESI).

Definition 5: Given an outlier query and a dataset D,
the MESI set for a data point Pi E D is a dataset M
such that M � D, if the distance set DistSet (M, Pi) =
{d(Pl,Pi),d(p2,Pi), ... ,d(Pn,Pi)1 Pj(1�j�n) EM} is suf
ficient to label Pi as an inlier, and there does not exist
any M' � D such that I M'I < IMI and DistSet(M', Pi) =
{d(Pl' Pi), d(P2' Pi), ... , d(Pm' Pi)IPj(1�j�m) EM'} is suffi
cient to label Pi as an inlier.

The size of MESI for a point Pi is usually much smaller
than the size of p;'s complete neighborhood. For example, for
O�;�) outlier, the MESI for any point Pi is composed of any
k points that are within R distance from Pi. Thus its size is
k. In general, this input parameter k is much smaller than
the average number of neighbors each point may have in R
distance range. Otherwise the outliers detected with fewer than
k neighbors would not considered to be abnormal phenomena
in the dataset. The cardinality of MESI for a point Pi in the
kNN outlier definitions is also bounded by a constant value k as
we will show in Sec. VI. This observation guides us to propose
the Minimal Probing optimization principle (Sec. IV-B).

Although MESI is sufficient to prove a point's inlier status
in the current window, unlike in static environments, locating
more neighbors beyond MESI for a given point may be ben
eficial in streaming environments. These additional neighbors
may help us to determine the status of this point in future
windows. Thus, we now extend the concept of MESI in a
static dataset to MESI in a sequence of stream windows. In
particular, we define the concept of Minimal Evidence Set
for Inlier in a Window Sequence as below.

Definition 6: Given a streaming outlier detection query
Q and all points in the current window We, denoted by
Dwc' MESI(w,-c+x) for Pi in a window sequence from Wc
to We+x, is a dataset M with M � Dwc' if the distance set
DistSet (M, Pi)={ d(Pl' Pi), d(P2' Pi), ... , d(Pn, Pi)IPj(1 �j�n)
E M} is sufficient to label Pi as an inlier in
windows We to We+x, and there does not exist any
M' � Dwc with IM'I < IMI and DistSet (M', Pi)
{d(Pl' Pi), d(P2' Pi), ... , d(Pm, Pi) Ipj(1 �j�m) EM'} is
sufficient to label Pi as an inlier in windows We to We+x.

In other words, the MESI(wc,e+x) for a point Pi is a
minimal subset of the current window popUlation DWe that
provides sufficient evidence to prove that Pi is an inlier in
windows We to We+x, regardless of the characteristics of the
future incoming stream. This is possible because by analyzing
the time stamp of a point Pi and the query window (the slide
and window sizes), we can determine the number of windows
that Pi will survive in. For example, for a point Pi that just
arrived with the latest slide in the current window We, if we
found k points within R distance from Pi that arrived when

Pi did, then these k points form MESI(wc,c+x) for Pi , where We+x is the last window in which Pi will be alive. This is
because these points will be accompanying Pi as its neighbors
until Pi expires. We are now ready to define the concept of
Life Time Minimal Evidence Set for Inlier.

Definition 7: MESI(We,e x) for Pi is a life time MESI of
Pi, denoted as MESIlt, if We+x is the last window in which
Pi participates before its expiration.

A MES1lt for Pi is an ideal evidence set because it
proves the inlier identity of Pi during its entire remaining

life, hence named safe inlier. It eliminates the need for any
future maintenance effort on Pi for the potential detection of
its outlier status. Acquiring the MES1lt with minimal CPU
costs is the key objective for outlier detection in streaming
windows. This insight inspires us to propose the Lifespan
Aware Prioritization optimization principle in Sec. IV-C.

B. Minimal Probing Principle

As elaborated in Sec. II, all state-of-the-art techniques [6],
[9], [7] rely on complete neighborhood searches to identify
outliers. In this work, we abandon this methodology and
instead present an optimization principle referred to as minimal
probing. The key idea is that we no longer conduct complete
neighborhood searches, such as range query searches, but
instead use a lightweight operation called probing.

Definition 8: Given a point Pi in the current window We,
probing is an operation that evaluates the distance between Pi
and other points in We until either the MESI for Pi in We is
acquired or p;'s entire neighborhood has been evaluated.

The goal of probing for a point Pi is the discovery of
a MESI for Pi in the current window rather than its com
plete neighbor set. Therefore probing is fundamentally more
efficient compared to a complete neighborhood search, as it
significantly reduces the number of data points that need to be
evaluated.

Furthermore, the minimal probing principle guides us to
intelligently use this lightweight probing operation so to
maximize the system resource savings. The idea is to carefully
extract and then to organize the evidence gathered during each
probing process, and furthermore to reuse it whenever possible
to avoid repeated probing process.

For all three outlier definitions, with the probing only
applied in two situations as explained below we can guarantee
the correctness of the query. First, each new point Pi that just
arrived in the query window needs a probing to figure out
its status in the current window. Second, an existing point Pi
without a valid MESI in the new window needs a probing to
re-evaluate its status.

In the first situation, for a newly arriving point Pi the
probing operation has to be conducted from scratch to search
for the needed evidence of Pi.

However this is not the case in the second situation. For a
point Pi two conditions can lead to the absence of its MESI.
First, Pi had been classified as an outlier in the previous
window. Therefore no MESI has so far been acquired. Second,
Pi lost its prior MESI when the stream slides to the current
window We and expired points are removed from We. In both
cases, the known MESI evidence about Pi which survived
the stream data expiration can still contribute to simplify this
probing operation. Rather than searching for a new MESI from
scratch, the probing operation instead only acquires enough
new evidence to prepare the MESI for Pi for the window We.

Therefore although the goal for probing is to acquire MESI
for Pi in the current window, the collected evidence provides
us with much richer information than just proving p;'s current
status. The method of organizing the MESI to facilitate the
fully reuse of the evidence gathered by probing is discussed
in Sec. IV-D.

As conclusion, the minimal probing principle uses a
lightweight probing process to replace the expensive complete

80

neighbor search. It guides us to fully exploit all evidence
gathered during the probing process and thus to minimize the
costs of each probing process.

C. Lifespan-Aware Prioritization Principle

Next we propose our second optimization principle termed
Lifespan-Aware Prioritization. By utilizing the lifespan in
formation of data points this principle further optimizes the
probing operation to always discover the best MESI.

Lifespan of MESI. As mentioned in Sec. IV-A, the MESI
of a point Pi in the current window as a whole may serve as
the MESI of Pi in a sequence of future windows. The number
of windows in which a MESI can survive, termed the lifespan
of MESI, relies on how many windows each point Pj in this
MESI can survive, also termed the lifespan of point Pj. In
the sliding window scenario, the lifespan of a point Pi can be
determined as follows.

Lemma I: Given the slide size Q.slide of a query Q and
the starting time of the current window We. Tstart , the lifespan
Pi . life of a data point Pi in We with time stamp Pi' ts is
calculated by po. hFe = I p;. ts- We' T,'art l2 indicating that po ' J' I __ Q.shde ' ,
will participate in windows We to We+p;.lije-l.

Hence given Lemma 1 the lifespan of a MESI can be
decided as below.

Lemma 2: Given a MESI of Pi in the current win
dow We denoted as MESI(Pi), the lifespan of MESI(Pi)
MESI(Pi).life = min{pj.life I Pj E MESI(Pi)}.

By Def. 6 MESI(Pi) is a MESI(we.,+MESI(p)hJe_l)
of Pi covering the window sequence from We to We,e+MESI(p;).lije-l. As introduced in Sec. IV-B, among the
existing points in window We only those without their MESI
covering the new window We+1 must conduct probing to re
evaluate their status. Therefore, the longer a window sequence
a MESI covers, the fewer probing processes are needed for
this point. Naturally the MESI with largest lifespan will be the
best MESI. Henceforth quickly deriving the best MESI of each
point is critical for minimizing the probing frequency and in
turn saving CPU resources.

Next we analyze how we can further optimize our probing
process to always acquire the best MESI, but without sacri
ficing its efficiency. On the one hand, the probing process for
Pi should acquire the best MESI of Pi. On the other hand,
we want the probing process must stay lightweight, so that
it stops immediately once it has gotten the MESI of Pi in
the current window. Our solution is to leverage the lifespan
theory of MESI in Lemma 2 to prioritize the order in which
the probing operation processes the data points.

Definition 9: Lifespan-aware Prioritization: During the
probing process of Pi, if two data points Pj and Pk have
the same probability to be in the MESI of Pi for the current
window, we always evaluate Pj first, if pj.life > Pk.life.

Since the succeeding points Pj that arrived after Pi do not
expire earlier than Pi, their influence will persist during the
entire life of Pi. Therefore any such Pj contributes equally to Pi
in terms of determining p;'s outlier status, although they may
have different lifespans. Therefore we can treat all succeeding
points of Pi as if they all had the same lifespan, namely a
lifespan larger than p;'s.

2For count-based windows, Piots and We. Tstart are sequence numbers
indicating the arrival positions of data points in a stream.

D. Lifespan-Aware Probing Operation

The above lifespan-aware prioritization principle together
with the minimal probing notion implies an optimized probing
operation termed L.if!ispan-!1ware E.robing operation or LEAP.
LEAP represents the core operation of our framework.

Definition 10: Assume window We is composed of k
slides denoted as Si, (1 ::; i ::; k). Si arrives earlier than SHI.
Given a point Pi in We, LEAP is a probing that evaluates the
status of Pi by testing other points in the Sk, Sk-l, ... order.

Intuitively we can see that LEAP is guaranteed to produce
the best MESI. In sliding window streams the data points
are naturally ordered by their arrival time and expire in a
predictable order. Hence the lifespan of any point can be
precisely calculated. By Lemma 1, points in a particular slide
share the same lifespan, while points in different slides have
distinct lifespans. Later arriving slides have longer lasting
lifespans. By conducting the search with a later arriving slide
first order, the points with a larger lifespan will always be
tested first. Therefore given a point Pi, LEAP will produce
a MES1 composed of the evidence with the largest lifespan,
that is the best MESI. Furthermore LEAP stops immediately
as soon as a MESI is acquired. Thus it is as lightweight as an
ordinary probing operation.

The information collected in the probing process of Pi
needs to be carefully selected and kept to minimize the costs of
the future probing for Pi (Sec. IV-B). The information shown
to be valuable and termed potential evidence, is organized as a
general lifespan-aware evidence structure denoted as Pi' evi [].

Definition 11: The lifespan-aware evidence for a data
point Pi (Pi· evi []) represents an ordered list of potential
evidence of Pi in the current window We with each entry of
Pi. evi [] corresponding to a set of data points with the same
lifespan, where the ordering is determined by the lifespan.

Fig. 1 : Sharing of the lifetime proximity measure

As shown in Fig.l the storage of the evi [] structure of a
particular window Wi with 4 slides can be abstracted as a two
dimensional matrix Mi. The element MdSx][Sy] represents
a linear data structure which contains the Syth entries of all
points in slide Sx' This abstract structure explicitly illustrates
that our lifespan-aware evidence infrastructure is extremely
conclusive to handle the stream evolution. When the window
slides from Wi to WH1, by moving the elements bounded in
the dash rectangles one unit up to the top left corner of Mi, it
can be easily transformed into lIifi+! of Wi+! only by having
to conduct the computation for the elements within the new
slide S5.

Space Complexity Analysis. The storage of the evi []
structure has a worst case space requirement O(nr) with r
as the ratio of the Q. win over Q.slide and n as the number

81

of unsafe inliers and outliers. In fact this structure can be
further compressed to its half size due to the observation that
p/s succeeding neighbors contribute equally to Pi in terms of
determining p/s status, even if they have different lifespan (as
stated in Section IV-C). Therefore the entries representing its
succeeding neighbors can be merged with the final number of
entries at most being equal to its lifespan.

The precise data structure specific to each outlier type will
be introduced in Sec. V and VI.

E. Optimality of LEAP

The LEAP operation, when continuously applied to deter
mine the outlier status of a data point Pi until its expiration, is
shown to be optimal in CPU resources consumed for all three
outlier definitions.

Theorem 4.1: Given a point Pi in current window We and
function f(Pi, We, Pr s) indicating the CPU costs required by
a search strategy Prs to evaluate the outlier status of Pi. Then

e+life-l c+life-l
L !(Pi, Wj, LEAP)::; L !(Pi, Wj, Prs) with
j=c j=c

life denoting the lifespan of Pi.
Proof: We first establish a prerequisite. Given a data point

Pi LEAP takes the same CPU cost to acquire a member of
MESI for Pi as any other search strategy Prs takes. We denote
this cost as ern. This prerequisite is justified as follows.

First, given a stream S with an unknown distribution, then
each point in We has the equal chance to be in the MESI of Pi.
Thus in average any Prs will test the same number of points,
hence the same costs to acquire a member of MESI for Pi.

Second, LEAP is orthogonal to indexing. The both opti
mization principles of LEAP aim to minimize the frequency
of neighbor searches, while indexing instead focuses on accel
erating the search of each single neighbor by reducing the
neighbor search space. Therefore LEAP is able to exploit
whatever indexing methods ever invented or possibly coming
up with in the future.

Then we prove Theorem 4.1 using Math Induction.
c c

(1) First we prove L !(Pi, Wj, LEAP) ::; L !(Pi, Wj, Prs). j=c j=c
LEAP immediately stops once it acquires the complete

MESI for Pi. We use 1 M ESI(Pi) 1 to denote the cardinality
of MESI. Hence f(Pi,Wj, LEAP) = 1 MESI(Pi) 1 * em. For
any other probing strategy Prs the cost! (Pi, Wj, Prs) = x *
em. By Def. 5, MESI is the minimal information needed to
prove p/s status. Hence 1 MESI(Pi) I::; x. Therefore

e
L f(p·i, Wj, LEAP) = f(p·i, We, LEAP) =1 MESI(Pi) 1 *Cm
j=c

e
::; X * Cm = f(pi, We, Prs) = L f(Pi, Wj , Prs).

j=c

(2) Then our induction step from n to n+ 1 is:
n n i f L f(Pi , Wj, LEAP) ::; L f(Pi , Wj, Prs), then

j=c j=c
n+l n+l
L f(Pi , Wj , LEAP) ::; L f(Pi, Wj , Prs) withn < c + lif e - 2
j=c j=c

(I)

(2)

5, 52 5, 54

�-----'--.-I ._. I'--,;,P i��.-r. �. ---,IWc+2IPC20:: . I - It .-
........ _

Preceding next Succeeding first New probing

Fig. 2: We Fig. 3: Wc+2

Given the costs C s LEAP reaps in savings to process Pi
from We through Wn compared to Prs, we can prove Eq. 2 as
follows. When the stream slides from Wn to Wn+!, the costs
LEAP takes to ensure the status of Pi are guaranteed to be not
Cs larger than the costs Prs takes.

LEAP will be more expensive than Prs only if more ele
ments expire in Lm(Pi) (the MESI for Pi produced by LEAP)
than in Pr;'(Pi) (the evidence produced by Prs). Suppose
r more elements expire in Lm (Pi) than in Pr;' (Pi). ThIS
means that in Prm(Pi) of Wn, there are at least r members
younger than the

s
oldest member of Lm(pi)' However in the

first window We, the oldest member of Pr;'(Pi) is at least
as old as the oldest member of Lm(pi)' To achieve this, Prs
must have acquired at least r more MESI members than LEAP,
because LEAP always tests the points with larger lifespans
first. However to re-establish the MESI of Pi in Wn+l, LEAP
only has to acquire exactly r more MESI members than Prs.

(3) By steps (1) and (2), Theorem 4.1 is proven . •

V. S TRATEGIES FOR
DISTANCE- THRESHOLD OUTLIERS

We now apply our framework to distance-threshold out
liers.

MESI and Lifespan-Aware Evidence. By Def. 1 once
acquiring k neighbors, a point Pi can be safely declared as
an inlier. Therefore the MESI for Pi is a data set that contains
exactly k neighbors. As the window slides, all other data points
examined so far besides its unexpired MESI members have no
chance to ever be in the MESIs of Pi. Therefore only keeping
the k neighbors in the MESI is sufficient to avoid any distance
re-computation for Pi. Furthermore to determine the status of
Pi, we only need the number of its neighbors rather than who
its exact neighbors are. Therefore the Lifespan-Aware Evidence
structure of Pi (Pi. evi []) for distance-threshold outliers is
simply a list of counts, each list entry corresponding to the
number of MESI members (neighbors) of Pi in a particular
slide.

Thresh LEAP. Based on the above MESI and Lifespan
Aware Evidence structure we present a customized algorithm
Thresh_LEAP (Alg. 1) for Ot�;�) outlier detection. Whe� a
new window We arrives, Thresh_LEAP starts by evaluatlOg
each new arrival Pi that had not been in We-l by simply
calling the LEAP operation (Alg. 2). Here we explain step by
step using an example how LEAP works.

Algorithm 1 Thresh_LEAP(We)
1 : for each Pi E We. sncw do
2: LEAP(Pi,We);
3: end for
4: for each Pi E We' SeXPtriggered do
5: expireEvidence(p.i);
6: LEAP(Pi, Pi.skippedPoints(We));
7: end for

82

Algorithm 2 LEAP(Pi,We)
Input: Data point Pi, Dataset We IIData points in the current window
Output: Bool isOutlier IIOutlier status of Pi
1 : Bool IsOutlier = false;
2: if (NULL == Pi.evi[]) then
3: buildSuccEvidence(pi);
4: end if
5: for each q E Pi.succPoint(Wc) do
6: if (true = = pi.islnNeighborhood(q)) then
7 : Pi .updateSuccEvidence();
8 : if (true = = pi.isMESIAcquired()) then
9 : P i .isSafe = true;
10 : return isOutlier;
1 1 : end if
12 : end if
1 3 : end for
14 : while Pi.precSlides # NULL do
15: slide = getSlideWithLargestLifespan(pi.precSlides(Wc));
16 : Pi.buildPrecEvidence(slide);
1 7 : for each q E slide do
1 8 : i f (true = = pi.islnNeighborhood(q)) then
1 9 : P·i .updatePrecEvidence(slide);
20: if (true == pi.isMESIAcquired()) then
2 1 : slide.updateTriggeredList(p.i);
22: return isOutlier;
23: end if
24: end if
25 : end for
26: end while
27 : isOutlier = true;
28: return isOutlier;

Example 1: We use an example query Q with k = 5
and a fixed R with the ratio of Q. win over Q . slide as 4 to
explain how LEAP handles the new data points. As shown in
Fig. 2, window We is divided into four slides. Given a new
data point Pi LEAP first tests its succeeding data points (Line
5). At the same time the first entry of Pi. evi[1 is established
as (5suce:0) which represents the number of Pi'S succeeding
neighbors (Line 3). Once a neighbor is acquired , we update the
succeeding entry of Pi. evi[1 (Line 7), and check whether its
MESI has been achieved (Line 8). By testing all its succeeding
data points in this window, Pi finds three neighbors. However,
it still did not acquire its MESI. Then it has to turn back and
proceed to probe its preceding slides (Line 14). The slide with
the largest lifespan is tested first (Line 15). In this case it is 52.
Correspondingly a new entry (52:0) is created and appended
to Pi.evi[1 (Line 16). The search is terminated after Pi gets
its fifth neighbor which completes the MESI for Pi (Line 20).
Pi is labeled as unsafe inlier. 52 is being remembered as the
triggering slide of Pi, meaning that the expiration of 82 might
lead to a status transformation of Pi. To indicate this check
Pi is inserted into the triggered outlier candidate list of 52,
namely 52. triggered (Line 21). The Pi' evi [1 at this point is
< (52 : 2), (5suee : 3) >.

After the new arrivals have been all processed,
Thresh_LEAP proceeds to process the unexpired points from
We-l that remain in We. Clearly the evil 1 has already been
previously established for them. However not all unexpired
points need to be re-evaluated. As shown in Alg.1 (Line 4),
only the points in 5exp . triggered list are re-examined by the
LEAP operation with 5exp denoting the most recently expIred
slide. For example, when the stream evolves from We to We+!
the expiration of 81 would not trigger the examination of Pi,
because Pi is not in 51. triggered. Only the departure of 82
will trigger the process of checking the status migration of Pi
(Fig. 3).

Example 2: We still use Pi of Example 1 to explain the
above re-evaluation procedure. For We+2, Thresh_LEAP first
updates the Pi. evi[1 to (5suee:3) by removing entry (52:2)

(Line 5, Alg. 1). Then the LEAP operation is activated again on
the new slide S5 which was skipped while Sl expired (Line 6,
Alg. 1). The MESI is filled up again after finding the two newly
arriving neighbors in S5. Its Pi. evi [] is updated to (Ssucc :5).
Now Pi has five MESI members which did not arrive earlier
than Pi. Therefore Pi achieves its life time MESI MESI/t. Now
Pi is guaranteed to never become an outlier again and thus is
marked as safe inlier (Line 9, Alg. 2). Thus at this point the
Pi. evi [] can be safely purged altogether.

As shown in this example it is extremely efficient to
determine the status of Pi with the assistance of Pi. evi []
structure. When the window slides from We+! to We+2 , its
leftmost most side S2 entry will be pruned from Pi. evi [] . Then
by summing up the alive entries (in this case this would be
only one entry Ssucc), the LEAP operation continues to be
aware of the current status of Pi. To acquire the new status of
Pi, it proceeds to test the new data points from S5 until p;'s
MESI is again established.

V I. S TRATEGIES FOR kNN OUTLIERS

MESI for kNN Outliers. We now demonstrate how we
apply our framework to detect kNN outliers. We use Alg.3
to introduce the MESI for kNN outliers. By Def. 2 of Ok�:;
outliers, Alg. 3 outputs the top-n outliers in a window We.
Such a set called outliersSet in Line 1 is maintained during
the search process. Let D!:nrr;::::x be the shortest distance between
any data point in outliersSet seen so far and its kth nearest
neighbor (Line 2). Assume that for a given point Pi we are
processing its distance to its kth-nearest neighbor (Dkmax (Pi)
(Lines 4 to 6). Since Dkmax (Pi) monotonically decreases as
we process more points, the current value is an upper-bound
on its eventual value. If the current value becomes smaller than
D!:nrr;::::x , then Pi cannot be an outlier (Lines 7 to 9). Therefore
the MESI for Pi is acquired, which is its kNN in the data
points seen so far (neighbors(Pi»' These points are so-called
the temporary kNN of Pi.

If D kmax (Pi) is larger than the cutoff threshold D !:nrr;::::x , Pi
will be an outlier candidate. Both the outliersSet and D!:ni::::x
will be updated (Lines 12-16). As more points are processed,
more extreme outliers will be found. The top-n outliers will
be finalized after all data points have been processed.

1 : outliersSet = 0; lithe top-n outliers set
2: D�:�x = 0;
3 : for each Pi E We do
4 : for each Pj E We - Pi do
5 : lleighbors(Pil = nearest(pi,lleighbors(p.;) + Pj , k);
6: Dkmax (Pi) = maxDist(p·i , neighbors(p.i));
7 : i f « I neighbors (Pi) 1 = = k) /\ (D kmax (Pi) :c; D�::�X)) then
8 : Pi .outlierCandidate = false;
9 : break;
10 : end if
I I : end for
12 : i f (false # p·i.outlierCandidate) then
1 3 : outliersSet = topOutliers(outliers + Pi , Il);
14 : i f (I outliersSet 1 = = n) then
1 5 : Dkmax = min(Dkmax (p) - V p . in neiahbors) '
16 : end if�n

t t b '

1 7 : end if
1 8 : end for

By replacing the Dkmax (Pi) with Dkavg (Pi) and D!:nrr;::::x
with D���g the same rule can be applied to Ok��;) outlier.

83

Lifespan-Aware Evidence. Unlike the Ot�;�) outlier for
kNN outliers, only recording MESI of Pi is not sufficient for
avoiding the distance re-computation whenever the status eval
uation is triggered. The non-MESI points could also contribute
to the MESls of future windows. For example, given a point
Pi whose MESI members all expire, if no arriving points are
close enough to Pi, the MESI of Pi in the next window must be
formed based on the points which have been evaluated before
but were not yet part of the MESI of Pi. In this case to avoid re
computation we would have to keep more information besides
the MESI of Pi in the current window. However keeping all
pre-computed distances is not practical.

Fortunately this is where our insight comes to the rescue.
Namely keeping the kNN corresponding to each unexpired
slide (or the temporary kNN for a slide not completely
evaluated) is sufficient to avoid re-computation. The global
kNN with respect to the unexpired data points seen so far is
guaranteed to be in the union of these local kNN sets. That is,
this global kNN can be easily derived by merging and sorting
the local kNN sets. We need to evaluate the distance between
Pi and new arrivals only if the kNN distance of this global kNN
is still larger than the cutoff threshold. Otherwise this global
kNN will remain to be the MESI of Pi in the new window.
In short, with this structure the distance re-computation is
completely eliminated. Therefore for kNN outliers Pi. evi []
is a list of data points (along with their distances to Pi)
sets, each corresponding to its kNN in each unexpired slide.
Since Pi. evi [] is compact, keeping it for each point does not
introduce prohibitive memory overload.

LEAP Operation for kNN Outliers. Given a point Pi,
LEAP first probes the points with larger lifespan. An entry
of Pi. evi [] is established to represent the kNN in its suc
ceeding points. If its MESI is not acquired by considering
its succeeding points, then the search will need to proceed
by processing the preceding points in decreasing order with
respect to their lifespans. During this process an entry is
created for each preceding slide. LEAP continues to evaluate
the distance between Pi and other data points in We until either
its temporary kNN distance is smaller than the cutoff threshold
(MESI is acquired) or all points of We have been tested.
Only in the latter case, the probing operation will return the
traditional full kNN of Pi. In this case both the top-n outliers
set outliersSet and the cutoff threshold will be updated. Due
to space restriction, the pseudo code is omitted here.

kNN Outliers Detection With LEAP (kNN_LEAP).
Alg. 4 shows how LEAP is utilized to detect kNN outliers
in a window We. kNN_LEAP first resets the top-n outlier
candidates set and the cutoff threshold (Lines 1 to 2). Then it
starts processing the unexpired data points, namely the points
that were already in window We- 1 (Line 3). Given a point Pi,
kNN_LEAP first purges the expired entry of Pi' evi [] . Then
it re-calculates its temporary kNN (Lines 4, 5) if its MESI
consists of expired data points (unsafe status). If its current
kNN distance (either the previous distance for a safe point or
the newly established one for an unsafe point) is larger than the
cutoff threshold, the LEAP operation for Pi will be triggered
again on the points skipped last time (Lines 7 to 11). Then
kNN_LEAP proceeds to process the new arriving data points
with the LEAP operation (Lines 13 to 15) until all new arrivals
are evaluated.

1 : D�:�x = 0; //Resel cUloff lhreshold
2: outliersSet = 0; //Resel lhe lop-n outliers sel
3: for each Pi E We.unExpired do
4 : i f (false = = Pi.isSafe) then
5 : expireEvidence(Pi);
6: end if
7 : i f (true = = isStilllnlier(pi)) then
8 : conlinue;
9 : else
10 : LEAP(p.; ,p.i.skippedPoinls(We));
1 1 : end if
12 : end for
1 3 : for each Pi E We.newArrival do
14 : LEAP(Pi,We);
1 5 : end for

V II. EXPERIMENTAL EVALUATION

A. Experiment Setup & Methodologies

All algorithms are implemented on the HP CHAOS Stream
Engine [15]. Experiments are performed on a PC with 3.0G
Hz CPU and 4GB memory, which runs Windows 7 OS.

Real Datasets. We use two real streaming datasets. The
Stock Trading Traces dataset (STT) [16] has one million
transaction records throughout the trading hours of a day.
The high dimensional Forest Cover (FC) dataset available at
the UCI KDD Archive (url:kdd.ics.uci.edu) also used by [7],
contains 581,012 records with 54 quantitative attributes.

Synthetic Datasets. We deploy a data generator to pro
duce streams with a controlled number of outliers and data
distribution types. Those datasets contain Gaussian distributed
data points as inlier candidates with uniform distributed noise.
Both the Gaussian distributed points and noise are randomly
distributed in each segment of the stream.

Metrics. We measure two metrics common for stream
systems, namely CPU time and peak memory consumption.
Each experiment evaluates 10,000 windows. Both metrics
are averaged over all windows. Although the experiments
are reported using count-based windows, time-based windows
provide similar results.

Alternative Algorithms. Our experiments focus on eval
uating the effectiveness of our both optimization principles,
namely minimal probing and lifespan-aware prioritization,
in detecting distance based outliers. For distance-threshold
outliers, we compare our algorithms Thresh_MinProbe and
Thresh_LEAP (Sec. V) against the state-of-the-art method
DUE [7] as introduced in Sec. II. 3 The Thresh_MinProbe
applies only the first principle. It essentially equals to DUE
enhanced with minimal probing. Thresh_LEAP instead utilizes
the LEAP framework which applies both principles. For kNN
outliers, no existing algorithms in the literature tackle this
type of outlier in the streaming context. Hence, we com
pare our kNN_MinProbe and kNN_LEAP algorithms against
kNN_BASIC which applies the static Orca algorithm [5] to
compute the top-n outliers from scratch for each window.
Similar to distance-threshold outliers, kNN_MinProbe applies
only Minimal Probing principle, while kNN_LEAP applies
both. Since these three methods all experience only a slight dif-
ference for ok�:2 and Ok:�;) outlier types, for space reasons,

we present the results for ok�:2 outliers only. To evaluate

3 In this work we chose to compare against DUE rather than the more
sophisticated MCOD algorithm of [7] , because in the experiments of [7] ,
MCOD does not show clear advantage over DUE in most o f the cases.

84

the effect of indexing, similar to [l7] we implement a hash
based grid index augmented with a time-aware mechanism
for efficiently evicting expiring data. We carefully tune the
granularity of the cells and equally apply the same best setting
to all compared algorithms. We denote each algorithm xx
augmented by this index by "xx-Index".

Methodology. We evaluate the performance of the pro
posed methods by varying the most important parameters.
Specifically, our experiments cover the three major cost factors,
namely stream velocity, volume, and outlier rate. We vary
the velocity of a data stream by varying the slide size from
0.5k to 50k while leaving all other settings constant.4 We
also measure scalability on high volume streams by varying
the window size w from lk to 200k. Similarly, we measure
how well these methods work for different outlier rates. For
the distance-threshold type, this means varying R, while for
kNN types varying n as defined in Sec. III. Both control
outliers from being rare (0.001 %) to being common in the
dataset (100%). Since this change also affects the density of
neighboring area for each data point, this experiment also
reflects data distribution variation in essence. We also measure
the scalability of our approach over data dimensionality by
varying dimensions from 2 to 40.

B. Evaluating Distance-Threshold Outliers

1) Varying Outlier Rates: We first analyze the effect of the
outlier rate f3 by varying f3 from 0.001 % to 100% with a fixed
slide size of 500 and window size of l OOK on synthetic data.
As shown in Fig. 4, our Thresh_MinProbe and Thresh_LEAP
are superior to DUE with respect to both CPU time and mem
ory usage. In particular, as outlier rate is smaller than 0.01 %
which is common in real life application [4], Thresh_MinProbe
shows a 10 times improvement over DUE while Thresh_LEAP
gains another 100 times improvement on this basis in terms
of CPU time. Thresh_MinProbe wins over DUE by applying
the probing operation, which stops immediately after acquiring
MESI rather than evaluates the complete neighborhood as
range query search does. Thresh_LEAP further outperforms
Thresh_MinProbe by applying the lifespan-aware prioritization
principle which enables probing operation to always produce
MESI with largest lifespan without introducing any additional
cost. This minimizes the frequency of conducting probing in
continuously evolving streams. The CPU time of all three
methods increases as f3 increases, because more computation
time is spent on verifying the larger number of outliers. Our
methods win for all outlier rates from 0.001 % to 100%. That
is, even in the extreme case when all data points are outliers,
the overhead introduced by our methods is still smaller than
DUE.

Thresh_MinProbe and Thresh_LEAP use on average
35% and 40% less memory than DUE. This is because
Thresh_MinProbe and Thresh_LEAP only store the neigh
bor count of each slide for outlier candidates, while DUE
maintains the actual neighbor relationships. Comparing against
Thresh_MinProbe, Thresh_LEAP maximally accelerates the
speed of discovering safe inliers. Since safe inlier introduces
zero memory overhead, Thresh_LEAP consumes less memory.

2) Varying Slide Sizes: Fig. 5 depicts the performance of
the three algorithms for varying slide sizes on synthetic data
when the outlier rate is fixed to 0.01 % and the window size

4Here we only present the results for distance-threshold outliers, since kNN
outliers are confirmed to be not sensitive to slide size.

(a) CPU (log scale)

� 800 o
53 600
:; 400

20'���---J
O. 0 1% 0 .01% 0 . 1% 1% 1 0% 1 00%

Outlier Rate

(b) Memory (linear scale)

Fig. 4: Varying Outlier Rates on Synthetic Dataset

1 0' ,------_-_-_-_

- + - Thresh_MinProbe
-e- Thresh_LEAP

1 0-21'�K ---c5�OKC------;;:' 00�K=�1 5�OK==20�'OK
Window Size

(a) CPU: STT (log scale)

250 ,------_-_-__ -
---,

200
co
6 150
i<' o
E 100
�

50K 150K 200K

(b) Memory: STT (linear scale)

Fig. 6: Varying Window Sizes on STT Real Dataset

to l OOk. Again Thresh_LEAP and Thresh_MinProbe clearly
outperform DUE in CPU time, reaching up to 15 times and
1350 times improvement than DUE for small slide sizes. This
is again due to the effectiveness of the LEAP operation as
explained in the previous section. As the slide size increases,
the processing time on each window increases accordingly.
The reason is obvious. The larger slide size introduces more
new data points, which in turn cost more CPU time to process.
The CPU time of DUE increases by 290 seconds when varying
the slide size from 0.5k to 50k, while Thresh_MinProbe and
Thresh_LEAP increase only by 130 and 10 seconds.

Again, our method is not only superior in CPU but also
in memory consumption. As the slide size increases, the
percentage of safe inliers over the whole window increases,
leading to less memory consumption for all three algorithms
to store information for unsafe inliers.

3) Varying Window Sizes: Next, we evaluate the effect
of varying window sizes w from 1k to 200k. We show the
results on real dataset STT with fixed k as 30, the outlier
rate 0.1%, and slide size 500. In Fig. 6(a)-(b), Thresh_LEAP
and Thresh_MinProbe outperform DUE in terms of both
CPU and memory. In all cases, the CPU time consumed by
Thresh_MinProbe is up to 1 order of magnitude smaller than
DUE. Thresh_LEAP further outperforms Thresh_MinProbe
by 2 orders of magnitude. As the window size increases,
all algorithms consume more CPU time. Thresh_LEAP and
Thresh_MinProbe take more CPU resources to process the trig
gered outlier candidates, while for DUE, larger window takes
the range query more time to search for neighbors for new
arrivals. Thresh_LEAP wins more against Thresh_MinProbe
in larger window. The reason is lifespan-aware prioritiza
tion enables probing operation to always acquire MESI with
largest lifespan. When window size increases, the potential

85

- + - Thresh_MinProbe
-e-Thresh_LEAP

1 0-11 O.5K 5K 10K 25K 50K
Slide Size

(a) CPU (log scale)

--Ir DUE
- + -Thresh_MinProbe
-e-Thresh_LEAP

50
01 O.5K 5K 10K 25K 50K

Slide Size

(b) Memory (linear scale)

Fig. 5: Varying Slide Sizes on Synthetic Dataset

- D- DUE
- + - Thresh_MinProbe
-e- Thresh_LEAP

l Oo L-;2�5 ---:;, 0C-----;20!.c===o!30��40
Number of Dimensions

(a) Synthetic dataset

1 0',------_-_-_-_

(b) FC cover real dataset

Fig. 7: Dimension Experiments

value of this lifespan increases, making this optimization even
more effective. As the window size increases, Thresh_LEAP
and Thresh_MinProbe still incur less memory consumption
compared to DUE since only DUE has to store the actual
neighbors.

4) Varying Dimensionality of Data: We evaluate the scal
ability of our algorithms on high dimensional data by varying
the number of dimensions from 2 to 40. We fix the window
size to l OOK, slide size to 5K, and outlier rate to 0.1 %. As
shown in Fig. 7(a), Thresh_MinProbe algorithm consistently
outperforms DUE around 15 fold in terms of CPU time,
while Thresh_LEAP further outperforms Thresh_MinProbe
around 35 fold. This is expected, since both our optimization
principles are orthogonal to the number of data dimensions.
The CPU costs of all three algorithms are near linear in the data
dimensionality, because the cost of the distance calculation be
tween two points is linear in the number of dimensions, while
distance calculation costs are the most significant fraction of
the overall outlier detection costs. This is the base price any
method has to pay.

We also evaluate the performance of our algorithm on real
life FC cover dataset (54 dimensions) by varying the slide size.
The results shown in Fig. 7(b) again confirm the effectiveness
of our approach to high dimensional datasets.

5) Effectiveness of Indexing: We compare all three al
gorithms against their corresponding indexed versions on
synthetic dataset with the number of dimensions varying
from 2 to 8. Other settings remain the same as in Sec.
VII-B4. As shown in Fig. 8(a), for the 2D and 4D cases,
indexing improves the performance of all algorithms. This
is as expected, because our both optimization principles are
orthogonal to indexing as shown in Sec IV-E. In the 2D
case with the help of the index, DUE reduces around 37

4
Number of Dimensions

(a) Synthetic dataset (b) STT real dataset

Fig. 8: Indexing Experiments

percent of their CPU costs, while Thresh_MinProbe and
Thresh_LEAP reduce 64 and 76 percent respectively. This is
because Thresh_LEAP and Thresh_MinProbe have different
stopping criteria for the neighbor search than DUE. Given a
data point Pi , Thresh_LEAP and Thresh_MinProbe first locate
and probe for neighbors in the cell that Pi falls in. This
cell can be located in constant time using the grid index.
Potentially Thresh_LEAP and Thresh_MinProbe will acquire
enough neighbors of Pi , and hence terminate after searching
through this single cell. On the other hand, DUE would not
stop its search until all neighbors of Pi are acquired. Therefore
it locates all cells which could contain the neighbors of Pi ,
leading to a larger cell lookup costs compared to Thresh_LEAP
and Thresh_MinProbe. Second, Thresh_MinProbe performs
worse than Thresh_LEAP because it triggers probing operation
more frequently and consequently introduce more expensive
cell lookup operations.

However, as the number of dimensions increases, the
number of the cells in the index to be examined also in
creases exponentially, leading to a significant increase of index
maintenance overhead. This overwhelms the performance gain
achieved by utilizing the grid index when the dimensions rise
up to 8. In the 8D case, DUE introduces 900ms on average
index maintenance costs per each slide which is much larger
than the 60ms saved for distance calculation. This condition
holds for all the algorithms. Thus, indexing performs well only
on low dimensional datasets as had previously been observed
for static data in the literature [2], [3].

As shown in Fig. 8(b), our experimental results on real
life STT dataset with varying slide size also confirms the
orthogonality of our approach to the indexing.

C. Evaluating KNN Outliers

1) Varying Outlier Rates: This experiment evaluates the
impact of varying outlier rates, namely varying n, on perfor
mance. We fix the window size at 10k and slide size at 1k,
while varying n from 10 to 300. Most practical applications
have a low outlier rate (below 1 %). Here we adopt outlier rates
ranging from 0.1 % to 3% as done in [7].

The CPU costs of all three algorithms increase as the
outlier rate increases because a major part of the computa
tion time is spent on processing the potential outliers. As
shown in Fig. 9, KNN_MinProbe and KNN_LEAP both
significantly outperform the baseline method KNN_BASIC.
In particular, KNN_MinProbe outperforms KNN_BASIC 2.5
fold. KNN_LEAP further outperforms KNN_MinProbe 6 fold.
The reason that KNN_MinProbe wins over KNN_BASIC

86

is that it exploits the minimal probing principle to reuse
the unexpired MESI members. Similar to distance-threshold
outlier, KNN_LEAP wins over KNN_MinProbe because it
searches for the MESI in an intelligent time-aware order. This
minimizes the probing frequency needed.

The memory consumption of KNN_MinProbe is a little
more than KNN_LEAP, while KNN_BASIC consumes less.
This is as expected, because the first two need to maintain
a similar kNN metadata structure per slide to reuse it in
the next window. KNN_LEAP consumes less memory than
KNN_MinProbe since it reduces the demand for acquiring new
MESI members. The memory consumption is stable even with
increasing outlier rates, making this a practical compromise
for the tremendous gain achieved in CPU resources.

2) Varying Window Sizes: Here, we use the real dataset
to evaluate the impact of varying window sizes. We fix the
slide size at 200 and n at 100, while varying the window
size from 1k to 40k. As depicted in Fig. 10, the CPU costs
of all algorithms rise as the window size increases. Yet our
best solution KNN_LEAP consistently utilizes the least CPU
time and exhibits the slowest increase in CPU consumption.
KNN_LEAP and KNN_MinProbe are about 8 and 2 times
faster than KNN_BASIC at w = 1k case and up to 15 and 3
times faster when w reaches 40k. For a fixed outlier rate, a
larger window size results in a larger number of inliers and a
wider lifespan range. Both factors are key for our framework
to outperform the full kNN query search.

The memory consumption also scales with the window
size. For KNN_LEAP and KNN_MinProbe, when the window
size increases 40 times, the overhead only increases by about
2 fold. The reason is that the lifespan-aware evidence structure
shares more lifetime proximity as the window size increases.
This helps our approaches to achieve more compact storage.

3) Varying Dimensionality of Data: Fig. 11(a) demon
strates the CPU costs of all three algorithms as the num
ber of dimensions increases from 2 up to 40. We fix win
dow size at 10k, outlier rate at 1 %, and slide size at 500.
KNN_MinProbe and KNN_LEAP outperform KNN_BASIC
even more as the dimension number increases. In 2D case, the
KNN_MinProbe and KNN_LEAP outperform KNN_BASIC
by 2.5 and 12 times respectively, while in 40D case they
outperform KNN_BASIC by 4 and 20 times. This is because
minimal probing and lifespan-aware principle both minimize
the frequency of when the distance calculation has to be
deployed. Therefore, when the distance calculation itself con
stitutes an even large percentage of overall computation cost
with the increasing dimensions, they perform even better. In
conclusion, KNN_LEAP performs consistently well as the
number of data dimensions increases.

We also run experiment on real life dataset FC Cover by
varying slide size. The results shown in Fig. l1(b) again con
firm the effectiveness of LEAP to high dimensional datasets.

4) Effectiveness of Indexing: Fig. 12(a) shows that indexing
improves the CPU resource consumption of all three algo
rithms for low dimensional data « 4D), while it starts to
negatively impact the detection efficiency in higher dimen
sional cases. In the 8D case, indexing for the KNN_BASIC
method reduces the distance calculation cost by 3000ms, yet
costs 4500ms for maintaining the grid. A similar situation of
maintenance costs superseding any achievable gain holds for
our proposed algorithms. Therefore, the grid index benefits

1 5 ,----_--_-_------,

� 'a _ _ _ _ _

i!'
� I -El- KNN BASIC

- + - KNN=MinProbe

1 8�1·'::%----;C0.0;:5%:-----C'=%----C"'=='.-----:!3·%
Outlier Rate

(a) CPU (log scale)

� s -&- KNN LEAP

0.5% 1% 2%
Outlier Rate

(b) Memory (linear scale)

Fig. 9: Varying Outlier Rates on Synthetic Dataset

3%

1 0' ,----_--_-_--=""
..

- - + - - - - - + - - - - -

-e- KNN_BASIC
- + - KNN_MinProbe

l O' L,:--:Cs---C,:;:a _---c,;:;co--"-e-==�::=
N

-=LEA='�,O
Number of Dimensions

.. + .. KNN.MinProbe
-e-KNN.LEAP

1 ��5hK---;'�K---;'�K-=�'�.SK��SK
Slide Size

(a) Synthetic dataset (b) FC cover real dataset

Fig. 1 1 : Dimension Experiments

kNN outlier detection only when the data dimensions is rather
low (in our case, < 4).

As shown in Fig. 12(b) the other experiment by varying
slide size on real life STT data also confirms that our approach
could benefit from the indexing as the data dimension is low.

V III. CONCLUSION

Outlier detection for extracting abnormal phenomena from
huge-volumes of streaming data is an extremely important yet
difficult task. We propose two novel optimization principles,
namely "minimal probing" and "lifespan-aware prioritization"
to achieve scalable outlier detection. Our solution framework
incorporating these principles is the first unified methodology
to handle three types of distance-based outlier definition. It
is proven to be optimal for determining the outlier status of
data points. Our experimental evaluation with both real and
synthetic datasets shows that the proposed approaches are up
to 3 orders of magnitude faster than the state-of-the-art.

An interesting direction for future work is to leverage
modern distributed multi-core clusters of machines for further
improving the scalability of outlier detection.

ACKNOWLEDGEMENTS

This project is supported by NSF grants IIS-1018443
and IIS-0917017. Thanks also go to China government for
supporting Yanwei Yu half of the cost when visiting WPI.

REFERENCES

[1] D. M. Hawkins, Identification of Outliers. Springer, 1980.

[2] E. M. Knorr and R. T Ng, "Algorithms for mining distance-based
outliers in large datasets," in VLDB, 1998, pp. 392-403.

87

�
"
E
i=
:::l a. o

1 0' "", K---:c'O"'K---:020""K---:3=OK:-----::!'OK
Window Size

20K 30K
Window Size

'OK

(a) CPU: SIT (log scale) (b) Memory: STT (linear scale)

Fig. 10 : Varying Window Sizes on STT Real Dataset

,
Number of Dimensions

�
"
E
i= 1
:::l a. o

O.Sk 2.Sk S l ide S ize
5k

(a) Synthetic dataset (b) STT real dataset

Fig. 12 : Indexing Experiments

[3] S. Ramaswamy, R. Rastogi, and K. Shim, "Efficient algorithms for
mining outliers from large data sets," in SIGMOD Conference, 2000,
pp. 427-438.

[4] F Angiulli and C. Pizzuti, "Fast outlier detection in high dimensional
spaces," in PKDD, 2002, pp. 1 5-26 .

[5] S. D. Bay and M. Schwabacher, "Mining distance-based outliers in near
linear time with randomization and a simple pruning rule," in KDD,
2003, pp. 29-38 .

[6] F Angiulli and F Fassetti, "Distance-based outlier queries in data
streams : the novel task and algorithms," Data Min. Know!. Discov. ,
vol. 20, no. 2, pp. 290-324, 2010.

[7] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos, "Continuous monitoring of distance-based outliers
over data streams," in ICDE, 201 1 , pp. 1 35-146.

[8] A. Nazaruk and M. Rauchman, "Big data in capital markets," in
SIGMOD Conference, 20 1 3 , pp. 9 1 7-9 1 8 .

[9] D. Yang, E . Rundensteiner, and M . Ward, "Neighbor-based pattern
detection over streaming data," in EDBT, 2009, pp. 529-540.

[1 0] M. M. Breunig, H.-P. Kriegel, R. T Ng, and J. Sander, "Lof: Identifying
density-based local outliers," in SIGMOD Conference, 2000, pp. 93-
1 04 .

[1 1] S. Papadimitriou, H . Kitagawa, P. B. Gibbons, and C . Faloutsos, "Loci:
Fast outlier detection using the local correlation integral," in ICDE,
2003, pp. 3 1 5-326.

[1 2] S. Subramaniam, T Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, "Online outlier detection in sensor data using non
parametric models," in VLDB, 2006, pp. 1 87-198 .

[1 3] c. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for
clustering evolving data streams," in VLDB, 2003, pp. 8 1 -92.

[14] A. Arasu, S. Babu, and J. Widom, "The cql continuous query language,"
VLDB 1. , vol. 15 , no. 2, pp. 121-142, 2006.

[15] c. Gupta, S. Wang, I. Ari, M. C. Hao, U. Dayal, A. Mehta, M. Marwah,
and R. K. Sharma, "Chaos: A data stream analysis architecture for
enterprise applications," in CEC, 2009, pp. 33-40.

[1 6] I. INETATS., "Stock trade traces." http://www. inetats. coml.

[17] K. Mouratidis and D. Papadias, "Continuous nearest neighbor queries
over sliding windows," IEEE Trans. Know!. Data Eng. , vol. 19 , no. 6,
pp. 789-803, 2007 .

