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ABSTRACT
In this work, we present the� rst distributed solution for the Local
Outlier Factor (LOF) method – a popular outlier detection technique
shown to be very e�ective for datasets with skewed distributions.
As datasets increase radically in size, highly scalable LOF algo-
rithms leveraging modern distributed infrastructures are required.
This poses signi�cant challenges due to the complexity of the LOF
de�nition, and a lack of access to the entire dataset at any individual
compute machine. Our solution features a distributed LOF pipeline
framework, called DLOF. Each stage of the LOF computation is
conducted in a fully distributed fashion by leveraging our invari-
ant observation for intermediate value management. Furthermore,
we propose a data assignment strategy which ensures that each
machine is self-su�cient in all stages of the LOF pipeline, while
minimizing the number of data replicas. Based on the convergence
property derived from analyzing this strategy in the context of real
world datasets, we introduce a number of data-driven optimization
strategies. These strategies not only minimize the computation
costs within each stage, but also eliminate unnecessary communi-
cation costs by aggressively pushing the LOF computation into the
early stages of the DLOF pipeline. Our comprehensive experimental
study using both real and synthetic datasets con�rms the e�ciency
and scalability of our approach to terabyte level data.
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1 INTRODUCTION
Motivation. Outlier detection is recognized as an important data
mining technique [3]. It plays a crucial role in many wide-ranging
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applications including credit fraud prevention, network intru-
sion detection, stock investment, tactical planning, and disastrous
weather forecasting. Outlier detection facilitates the discovery of
abnormal phenomena that may exist in the data, namely values
that deviate signi�cantly from a common trend in the data [12].

One popular outlier detection method, the Local Outlier Factor
(LOF) [7], addresses challenges caused when data is skewed and
outliers may have very di�erent characteristics across data regions.
Traditional outlier detection techniques such as distance [14] and
neighbor-based methods [5] tend to fail in such cases, because they
assume that the input dataset exhibits a uniform distribution. Thus
they detect outliers based on the absolute density of each point (the
distance to its neighbors). LOF is able to better detect outliers in
real world datasets which tend to be skewed [18], outperforming
other algorithms in a broad range of applications [3, 15].

LOF is a complex multi-phase technique. It detects outliers by
identifying unusual phenomena in relation to other data observa-
tions around them. Speci�cally, a point p is considered to be an
outlier if its local density signi�cantly di�ers from the local density
of its k nearest neighbors (kNN). To determine this, a number of
intermediate values must be computed for p and its kNN. The k-
distance and reachability distance values are used to compute the
local reachability density (LRD) of each point, and in turn this is
used to compute an outlierness score for p, denoted as the LOF score.

Unfortunately, the centralized LOF algorithm [7] can no longer
satisfy the stringent response time requirements of modern appli-
cations, especially now that the data itself is inherently becoming
more distributed. Therefore, the development of distributed solu-
tions for LOF is no longer an option, but a necessity. Nevertheless,
to the best of our knowledge, no distributed LOF work has been pro-
posed. In this work we focus on designing LOF algorithms that are
inherently parallel and work in virtually any distributed computing
paradigm. This helps assure ease of adoption by others on popular
open-source distributed infrastructures such as MapReduce [1] and
Spark [10].

Challenges. Designing an e�cient distributed LOF approach is
challenging because of the complex de�nition of LOF. In particular,
we observe that the LOF score of each single point p is determined
by many points, namely its k nearest neighbors (kNN), its kNN’s
kNN, and its kNN’s kNN’s kNN � in total k + k2 + k3 points. In a
distributed system with a shared nothing architecture, the input
dataset must be partitioned and sent to di�erent machines. To
identify for each point p all the points upon which it depends for
LOF computation and send them all to the same machine appears to
be a sheer impossibility. It e�ectively requires us to solve the LOF
problem before we can even begin to identify an ideal partition.
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One option to reduce the complexity of distributed LOF compu-
tation is to calculate LOF in a step by step manner. That is,�rst
only the kNN of each point are calculated and materialized. Then,
the kNN values are used in two successive steps to compute the
LRD and LOF values respectively. For each of these steps, the in-
termediate values would need to be updated for the next step of
computation. In a centralized environment such data can be indexed
in a global database table and e�ciently accessed and updated. In a
shared-nothing architecture common for modern distributed sys-
tems, even if it were possible to e�ciently compute the kNN of each
data point, no global table exists that can accommodate this huge
amount of data nor support continuous access and update by many
machines. Therefore an e�ective distributed mechanism must be
designed to manage these intermediate values stored across the
compute cluster.

Proposed Approach. In this work, we propose the� rst dis-
tributed LOF computation solution, called DLOF. As foundation, we
�rst design a distributed LOF framework that conducts each step
of the LOF computation in a highly distributed fashion. The DLOF
framework is built on the critical invariant observation. Namely,
in the LOF computation process of point p, although each step
requires di�erent types of intermediate values, these values are
always associated with a �xed set of data points. Leveraging this
observation, our support-aware assignment strategy ensures the
input data and required intermediate values are co-located on the
same machine in the computation pipeline.

Second, we propose a data-driven approach named DDLOF to
bound the support points, or potential kNN, of the core points in
each data partition Pi . DDLOF e�ectively minimizes the number of
support points that introduce data duplication, while still guarantee-
ing the correctness of kNN search. DDLOF defeats the commonly
accepted understanding in the literature that e�cient distributed
algorithms should complete the analytics task in as few rounds as
possible [2]. It instead adopts a multi-round strategy that decom-
poses kNN search into multiple rounds, providing an opportunity
to dynamically bound each partition using data-driven insights
detected during the search process itself. DDLOF reduces the data
duplication rate from more than 20x the size of the original dataset
in the state-of-the-art approach to 1.

Moreover, based on the crucial convergence observation, we suc-
ceed to further enhance DDLOF by introducing our early termina-
tion strategy, henceforth called DDLOF-Early. Instead of calculating
the LOF score step by step, DDLOF-Early aggressively pushes the
LOF computation into the early stage of the pipeline and completes
the LOF computation of any point as early as possible. Eliminating
the points that have succeeded to acquire its LOF at the earliest
possible stage of the DLOF process reduces both communication
and computation costs. Therefore DDLOF-Early succeeds to scale
the LOF technique to the true big data realm.

Contributions. The key contributions of this work include:
• We propose the�rst distributed LOF approach inherently par-

allel and deployable on virtually any distributed infrastructure.
•We design a multi-step pipeline framework called DLOF that

by leveraging our invariant observation computes LOF scores in a
highly distributed fashion.

• Our data-driven strategy DDLOF e�ectively minimizes the
number of support points using insights derived from the multi-
phase search process itself.

• Driven by the convergence observation, we optimize the DDLOF
solution by aggressively applying an early termination mechanism
to reduce the communication and computation costs.

• Experiments demonstrate the e�ectiveness of our proposed
optimization strategies and the scalability to terabyte level datasets.

2 PRELIMINARIES
Local Outlier Factor (LOF) [7] introduces the notion of local outliers
based on the observation that di�erent portions of a dataset may
exhibit very di�erent characteristics. It is thus often more mean-
ingful to decide on the outlier status of a point based on the points
in its neighborhood, rather than some strict global criteria. LOF
depends on a single parameter k which indicates the number of
nearest neighbors to consider.

De�nition 2.1. The k-distance of a point p 2 D is the distance
d(p, q) between p and a point q 2 D such that for at least k points
q0 2 D � p, d(p, q0)  d(p, q) and for at most k-1 points q0 2 D,
d(p, q0) < d(p, q).

The k points closest to p are the k-nearest neighbors (kNN) of p,
and k-distance of p is the distance to its kth nearest neighbor.

!"#$%&'()*+ ,-.-!"#$%&'()*+ ,

!"#$%&'()*+ ,

Figure 1: LOF de�nition

De�nition 2.2. Given points p, q 2 D where q 2 kNN (p), the
Reachability Distance of p w.r.t. q is de�ned as:

reach-dist(p,q) =max(k-distance(q),d(p,q)).
If one of p’s kNN q is far from p, then the reach-dist between

them is simply their actual distance. As shown in Fig. 1, the reach-
dist(p,q1) is the actual distance betweenp and q1. On the other hand,
if q is close to p, then the reach-dist between them is the k-distance
of q. The red line in Fig. 1 shows the reach-dist(p,q2), which is the
k-distance of q2. The reachability distance introduces a smoothing
factor for a stable estimation of the local density of p.

De�nition 2.3. Given points p, q 2 D, where q 2 kNN (p), the Lo-
cal Reachability Density (LRD) of p is de�ned as:

LRD(p) = 1/
 Õ
q2knn(p)

reach-dist(p,q)

kk-neighborhoodk

!
.

The local reachability density LRD(p) is the inverse of the average
reachability distance of p to its neighbors. LRD values of each point
and its neighbors are then used to compute LOF.
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De�nition 2.4. Given points p, q 2 D, where q 2 kNN (p), the Lo-
cal Outlier Factor (LOF) of p is de�ned as:

LOF (p) =
 Õ

q2knn(p)

LRD(q)
LRD(p)

kk- neighborhoodk

!
.

Informally, LOF(p) is the ratio of the average density of p’s neigh-
bors to the density ofp. LOF scores close to 1 indicate “inlier” points,
and the higher the LOF score, the more the point is considered to
be an outlier. As shown in Fig. 1, p is considered to be a local outlier
since the density of p is much smaller than the average density of
p’s neighbors.

3 DISTRIBUTED LOF FRAMEWORK
As described in Sec. 2, the LOF score of p is determined by its
kNN q, its kNN’s kNN q0, and its kNN’s kNN’s kNN q00 � in total
k + k2 + k3 points. These points, essential for detecting the LOF
status of p, are called the support points of p. Within each ma-
chine in the compute cluster, data is distributed among machines
according to some partitioning criteria, and only part of the dataset
can then be accessed locally. There is thus a high chance that the
support points of p are not available locally. Calculating the LOF
score of p may thus require access to data assigned to numerous
di�erent machines.

However, popular distributed infrastructures such as MapReduce
[8] and Spark [10] do not allow machines unrestricted pairwise
exchange of data. Intuitively this problem could be solved if we
could design a partitioning mechanism which assigns p and all
its support points to the same machine. Unfortunately, given
datasets exhibiting di�erent distribution characteristics throughout,
it is di�cult to predict the distance between p and its kNN. In a
dense region, p might be close to its kNN, while in a sparse area
the distance between p and its kNN could be very large. Worst
yet, to compute the LOF score of p, we not only have to predict
the location of its direct kNN, but also that of its indirect kNN (its
kNN’s kNN and so on). This is extremely di�cult if not impossible.
Moreover, this would introduce extremely high data duplication as
support points need to be copied to many machines.
Proposed Step by Step Processing Pipeline. To tackle this com-
plexity, we introduce our Distributed LOF framework, DLOF, that
adopts a step by step conceptual processing pipeline for LOF com-
putation. It is logically a 3-step pipeline composed of: Step 1:
K-distance Computation. By Def. 2.1, the kNN and k-distance of
each point are calculated and materialized as intermediate values;
Step 2: LRD Computation. By Def. 2.2 the reachability distances of
each point p to its kNN q are computed using the k-distances of p
and q from step 1. At the same time, the LRD value of p, the average
reachability distance of p to its kNN q, can be naturally derived and
materialized; Step 3: LOF Computation. LRD values materialized
in the second step are utilized to compute the�nal LOF scores.
Intermediate Value Management. In these three steps, each
point requires access not only to its corresponding intermediate
values, but also those associated with numerous other points. These
intermediate values have to be�rst updated, maintained, and then
made available to other points in the next step of the computation.
It is important to note that this augmented data is now bigger than

the initial raw data itself. Given a big dataset, it is not feasible to
store the intermediate values of all points in one single machine
nor to support concurrent access by many machines. Instead, the
intermediate values have to be stored across and updated by many
di�erent machines. An e�ective intermediate data management
mechanism must not only guarantee the correctness of updates
performed simultaneously by multiple writers, but also e�ciently
support retrieval requests by many di�erent readers. Otherwise
locating and retrieving these intermediate values would risk being
as expensive as re-calculating them from scratch. DLOF e�ectively
solves the intermediate value management problem based on our
invariant observation below.
InvariantObservation. In the LOF computation process of a point
p, although each step requires di�erent types of intermediate values,
these intermediate values are only related to the direct kNN of p.
More speci�cally, to calculate the LRD value of p, we only need the
k-distance of each of its kNN. Similarly when calculating the LOF
score of p, only the LRD of each of its kNN is required. Therefore
although eventually the LOF score of p is determined by both its
direct kNN and indirect kNN, in the step-by-step LOF computation
pipeline, p only needs to directly access the intermediate values of its
direct kNN in each step. Given a point p, as long as the intermediate
values associated with the kNN of p are correctly updated and
passed to the machine that p is assigned to in the next step, the LOF
score of p can be correctly computed without having to be aware of
its indirect kNN.
Support-aware Assignment Strategy. Our DLOF framework
leverages the above invariant observation by employing a support-
aware assignment strategy to solve the intermediate data manage-
ment problem. The strategy assigns two roles to each point which
imply certain responsibilities. One role comes with “write access”,
responsible for the update of the intermediate values, while the
other role requires only “read-only” access to distribute interme-
diate values across consumers. This separation of concerns makes
the complex problem of distributed intermediate data management
tractable.

Suppose the original input dataset D has been partitioned into
a set of disjoint data partitions. The support-aware assignment
strategy assigns two di�erent roles, namely the core point and
the support point role, to each point p based on its relationship to
di�erent data partitions. p is called a core point of a partition Pi
if p falls into Pi . Each point p is the core point of one and only one
partition. Furthermore, pmay be needed by other partitions Pj , Pi
as a support point when p could potentially be a nearest-neighbor
of some core point in Pj based on our invariant observation. We
note that p could be a support point of multiple partitions. As shown
in Fig. 2, p1 is a core point of P1, while being a support point of P2.
Then p1 has P1 as its core partition and P2 as its support partition.

After deciding upon the roles for each point p, our support-aware
assignment strategy assigns each p to both its core partition and
its many support partitions. This is called the assignment plan of p.
By this, the core points of each partition will be grouped together
along with all their support points into the same partition. DLOF
can now conduct the� rst step of the LOF computation process
to calculate the kNN and k-distance of the core points of each
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Figure 2: Support-aware Assignment Strategy

partition in parallel since each core point is now co-located with all
its potential neighboring points in the same partition.

At the end of this step, each machine will enrich the core points
with their intermediate values: its kNN, k-distances and the IDs of
their core and support partitions, which correspond to the assign-
ment plan. Results are spilled out to the local disk as shown in Fig.
2. Although a point p serves two roles and potentially many copies
of p have been produced, only in its core point role would p need
to be “enriched” (updated) in each step. For this reason, each point
is correctly updated by exactly one machine.

In the next step of the LRD computation, the system will again
retrieve each (now enriched) core point and assign it to both its
core partition and support partitions based on the same assignment
plan that has already been made available and encoded with each
point in the last step. In other words, the assignment plan e�ectively
serves as a distributed index to read back all support points for LRD
computation of core points. Furthermore, when points are retrieved
to serve as core or support points, they are being replicated from
the just updated core points only. Therefore all support points of
p have their associated kNN and k-distances values computed in
the last step. By Def. 2.3, p is now guaranteed to have su�cient
information needed to calculate its LRD value.

The same process is repeated in the� nal step of DLOF. Each of
the three steps of the LOF computation process, including the read
and update of the intermediate results, is fully distributed.

4 DATA-DRIVEN DISTRIBUTED LOF
As shown in Sec. 3, the key of DLOF is to produce an assignment
plan that, for any point p, determines both its core partition and
its support partitions. This is equivalent to de�ning a supporting
area for each partition Pi , denoted as Pi .suppArea. All points falling
into the supporting area are potentially the kNN of at least one
point of partition Pi . In Fig. 2, the area highlighted in gray rep-
resents the supporting area of partition P2. Now the problem of
producing an assignment plan is mapped into the problem of parti-
tioning data into disjoint partitions and then de�ning the boundary
of the supporting area for each partition, namely support-aware
partitioning.

The key challenge is how to determine an e�ective boundary
of the supporting area for each partition. Ideally the supporting
area should be as small as possible to limit the points which must
be duplicated and transmitted multiple times to other partitions

as support points. A large number of support points introduce
heavy communication costs which often, if not always, are the
dominant costs of a distributed approach [2]. Therefore we model
the e�ectiveness of a support-aware partitioning method using the
notion of a “Duplication Rate”, which refers to the average number
of replicas that must be created for each input data point.

De�nition 4.1. Given a dataset D and a distributed algorithm A
for computing LOF scores for all points in D, the duplication rate
dr(D,A) = |Rec(D,A) |� |D |

|D | , where | D | represents the cardinality of
D and | Rec(D,A) | the cardinality of the data records produced by
the partitioning of Algorithm A.

The goal of support-aware partitioning thus is to minimize the
duplication rate while ensuring the correctness of LOF computa-
tion. In [17] a pivot-based method for kNN join is proposed that
partitions the input points based on their distances to a set of se-
lected pivots. It then utilizes these distances to predict a bound on
the support points for each partition such that a kNN search can
subsequently be completed in a single map-reduce job.

This method bounds the support points conservatively, based
on the furthest possible kNN of all points in a partition. This corre-
sponds to a safe but worst case estimation, leading to a large number
of replicas and in turn a high duplication rate larger than 20. As our
experimental studies on real data demonstrate, the lost opportunity
cost outweighs the bene�t gained from [17] forcing the kNN search
to be conducted in a single map-reduce job. Adapting this pivot-
based approach to our DLOF framework, our experiments con�rm
the pivot-DLOF approach cannot even handle datasets larger than
1G (Sec. 6).

Based on the above analysis, we now propose an alternative
approach DDLOF (Data-Driven Distributed LOF) that signi�cantly
reduces the duplication rate. It succeeds to achieve our important
milestone to scale LOF to terabyte level datasets. DDLOF consists of
two components, namely Equal-cardinality Partitioning and Data-
Driven kNN Search.

The equal-cardinality partitioning of DDLOF partitions the
domain space of D into n disjoint grid partitions Pi such that
P1 [ P2 [ ... [ Pn = D. Each grid partition contains a similar num-
ber of data points, in spite of having di�erent grid sizes. This ensures
the balanced workload across di�erent machines.

De�nition 4.2. A grid partition Pi is a d-dimensional rectangle
Pi = (P1i , P

2
i , ...,P

d
i ), where P

m
i denotes an interval [lmi ,h

m
i ] repre-

senting the domain range of Pi along dimensionm and 1  m  d .

Data-driven kNN search is the key component of DDLOF. It
no longer aims to complete the kNN search within one single map-
reduce job. Instead it utilizes one step without data duplication to
gain insights from the kNN search process itself. These insights
are then leveraged to dynamically determine the upper bound k-
distance for each partition in the next step. This method is based
on two key ideas. One, in the� rst step of kNN search, the local
k-distance of each pi in the core partition Pi can be acquired. As
we will show later this distance is su�cient to determine whether
pi can locally determine its kNN in Pi without needing to examine
any remote support point. Two, if support points are still required,
the local k-distance can aid us as a data-driven guide to determine
pi ’s supporting area. In practice we found the local k-distance is
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aways close to the� nal k-distance. Therefore the supporting area
generated by utilizing the local k-distance tends to be much smaller
than the supporting area of the pivot-based method bounded by
worst case estimation [17]. This leads to a 20-fold reduction in the
duplication rate. With a low duplication rate and balanced workload,
DDLOF now scales to dataset sizes in the terabytes as con�rmed in
our experiments (Sec. 6.4).

4.1 Data-Driven kNN Search
The data-driven kNN search is decomposed into two parts, namely
a separate core partition and supporting area kNN search.
Core Partition kNN Search. The� rst phase performs an initial
kNN search within each local grid partition. For each core point
pi , the k closest points in Pi - the so called “local kNN” of pi - are
found. Since the “actual k-distance” of pi discovered in the whole
dataset D cannot be larger than its local k-distance, the actual kNN
of pi are guaranteed to be located at most local k-distance away
from pi . Intuitively if point pi is in the middle of partition Pi , very
possibly its actual kNN may not fall outside of the partition (Fig.
3(a)). However, if pi is at the edge of Pi , its actual kNN may fall in
adjacent partitions. In this case the local kNN of pi might not be its
actual kNN.

Fig. 3(b) depicts a point pi in Pi and a circular area with radius r,
which is determined by the local k-distance of pi . This circle bounds
the distance from pi to its local kNN. We can see that a su�cient
supporting area for partition Pi must cover the area of the circle
which falls outside of partition Pi . This can be accomplished by
extending the boundaries of Pi in each dimension to form partition
P̂i that includes Pi and its supporting area illustrated by the area
shown in grey. It is obvious that any point outside this gray area
is at least r far away from pi and thus cannot be in the kNN of
pi . Given a point pj in partition Pj , to determine whether pj is a
support point of pi , we need to be able to examine whether pj falls
in P̂i .

Next we illustrate how to decide the boundaries of area P̂i utiliz-
ing a two dimensional grid partition Pi shown in Fig. 3(b), without
loss of generality. Each dimension of Pi has two boundaries corre-
sponding to the lowest and highest values on this dimension. Here
we utilize l1i and h

1
i to denote the two boundaries on the� rst dimen-

sion of Pi . In order for P̂i to cover the supporting area determined
by the local k-distance of pi , two (denoted as h1i and l

2
i ) out of its

four boundaries of the original core partition Pi are extended. Since
the circle does not overlap the other two boundaries (l1i and h2i )
of the partition, they do not need to be extended. The extended
boundaries have the following property: the shortest distance from
point pi to any extended boundary is identical to r. This distance
can be divided into two pieces. Take boundary l2i as an example.
The distance from point pi to the extended boundary of P̂i can be
treated as the sum of the distance from point pi to boundary l2i and
the extended distance Ext(l2i ) (de�ne in Def. 4.3).

De�nition 4.3. Suppose the local k-distance of pi 2 Pi is r. Then
the extended distance of pi is Ext(x) = max{0, r� dist(pi, x)}
where dist(pi, x) denotes the smallest distance from pi to boundary
x of Pi .

!"#$%&#''

(a)

!"#$%&#''

(b)

Figure 3: DDLOF: Supporting Area.

Extended distances describe how much further the boundaries
of the original partition Pi have to be expanded to form the bound-
aries for the new partition P̂i augmented with the supporting area.
Lemma 4.4 shows how to utilize it to determine boundaries of P̂i .

L����4.4. Given a d-dimensional rectangular partition Pi =
(P1i , P

2
i , ...,P

d
i ), where P

m
i represents an interval [lmi ,h

m
i ] along di-

mension m, suppose the local k-distance of pi 2 Pi = r, then the
actual kNN of pi , kNN (pi), is guaranteed to be discovered in
P̂i = (P̂1i , P̂

2
i , ..., P̂

d
i ). Here P̂

m
i denotes an interval [l̂mi , ĥ

m
i ], where

l̂mi = lmi � Ext(l
m
i ) and ĥmi = hmi + Ext(h

m
i ).

P����. To prove Lemma 4.4, we� rst prove that for any given
point pj < P̂i , dist(pj , pi) > r . Here we denote the domain value of
pj as pj(p1j , p

2
j , ..., p

d
j ). If pj < P̂i , then there must exist a dimension

m that pmj > ĥmi or pmj < l̂mi holds.
Suppose pmj > ĥmi = hmi + Ext(h

m
i ). Since dist(pj , pi) �

|pmj � p
m
i |, then dist(pj , pi) > hmi + Ext(h

m
i ) � p

m
i =

(hmi � p
m
i ) + Ext(h

m
i ) = dist(pmi , h

m
i ) + Ext(hmi ) (1).

If dist(pmi , h
m
i ) � r , then dist(pj , pi) > r according to Equation

(1). If dist(pmi , h
m
i ) < r then dist(pj , pi) > dist(pmi , h

m
i )+ Ext(h

m
i )= r

based on the de�nition of the extended distance. Therefore in either
case dist(pj , pi) > r holds.

The condition of pmj < l̂mi can be proven in a similar way. Due
to space restrictions, we omit the proof here.

Since for any point pj < P̂i dist(pj , pi) � r , then any point pj out
of P̂i will not be kNN of pi , because there are at least k other points
(local kNN of pi ) closer to pi than pj . Lemma 4.4 is proven. ⇤

The corollary below sketches how to utilize Lemma 4.4 to deter-
mine whether the local k-distance of pi is its actual k-distance.

C��������4.5. If Ext(lmi ) = Ext(hmi ) = 0 for anym 2 {1, 2, ..., d},
then the local k-distance of pi is guaranteed to be its actual k-
distance.

Once we have acquired the individual supporting areas for each
point pi in partition Pi , it is trivial to derive the supporting area of
the overall partition Pi that covers the kNN for all points in Pi . This
area adopts the maximum hmi of each partition P̂i as the�nal hmi
and the minimum lmi of each partition P̂i as the�nal lmi . Since our
skew-aware partitioning makes each partition Pi roughly uniform,
most of the points have a similar local k-distance. Therefore we
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Algorithm 1 Core Partition kNN Search.
1: function C���KNNS�����(��� k)
2: for pi 2v-list 2 Pi do
3: pi .kNNs= SearchKNN(pi ,v-list,k)
4: pi .kdistance=max(dist(pi .kNN,pi ))
5: pi .supBound = CalcSupportBound(pi ,pi .kdistance))
6: if pi .supBound==0 then
7: pi .type= ’Y’ . Can� nd actual kNN
8: else
9: pi .type= ’N’ . needs update kNN
10: supportBound(Pi ) = max(supportBound(Pi ),

pi .supBound)

expect that the supporting area of the whole partition Pi is not
much larger than the supporting areas of individual points.

Algorithm 1 shows the procedure of this core partition kNN
search. At� rst, each point searches for its local kNN within the
local core partition Pi and gets its local k-distance (Lines 3-4). Then
the supporting area of each point is bounded by applying Lemma
4.4. The supporting area of Pi is acquired as the spatial max-union
of the supporting areas of all points (Line 10). In the meantime,
each point is classi�ed as either being able to� nd its actual kNN by
applying Corollary 4.5 or not (Lines 6-9). Finally, the “local” kNN
as well as the point’s kNN status (actual kNN found) are attached
to each point and written out to HDFS. Given a point p, it will be
assigned to partition Pi as a support point if p falls in the augmented
partition P̂i but not in the original Pi . Therefore in this task the
assignment plan of each point can be naturally derived as the input
of the supporting area kNN search task.
Supporting Area kNN Search. The supporting area kNN search
corresponds to the k-distance computation step of the DLOF frame-
work. As explained in Sec. 3, each point p is assigned to both its
own partition as core point and to several partitions as a support
point based on the assignment plan generated by the core partition
kNN search. The previously computed local kNN attached to each
core point are fully reused. In other words, the supporting area
kNN search will only be conducted on those points that have not
yet fully acquired their actual kNNs. If a core point pi does not have
its actual kNN, the local kNN of pi will be parsed and stored in a
priority queue tempKNN (pi). The points in this structure are sorted
in descending order by their distances to pi . Then only the sup-
port points will be searched. If one support point ps of pi is closer
to pi than at least one point in tempKNN (pi), ps is inserted into
tempKNN (pi), and the top point removed. This process proceeds
until all support points are examined. Then the remaining points
in tempKNN (pi) correspond to the actual kNN of pi . This way, any
duplicate kNN search between a core partition and a supporting
area search is completely avoided.
Overall Process of DDLOF. As shown in Fig. 4 DDLOF contains
four phases, namely preprocessing, k-distance computation, LRD
computation and LOF computation that can be realized in� ve map-
reduce jobs. The preprocessing phase� rst utilizes one map-reduce
job to divide the domain space into equal cardinality grid partitions.
Then the k-distance computation phase is composed of two map-
reduce jobs corresponding to the core partition and supporting

Figure 4: Overall Process of Data-driven DLOF

area kNN searches respectively (Sec. 4.1). In the core partition
kNN search job, each mapper assigns points to the corresponding
partitions based on the grid partitions generated in the previous job.
No support point is produced in this job. Each reducer computes for
each point its local k-distance which is then utilized to generate the
support-aware assignment plan (Algorithm 1). In the supporting
area kNN search job, each mapper reads in the points and generates
partitions containing both core and support points based on the
assignment plan. In this stage, each reducer then computes the
�nal kNN for the points which did not acquire their actual kNN
during the earlier core partition kNN search. After that, the LRD
computation phase is conducted in onemap-reduce job. Eachmapper
reads in and assigns points to the corresponding partitions based
on the assignment plan embedded within each point. Then each
reducer conducts the LRD computation. The�nal LOF computation
phase follows a similar process computing LOF scores from LRD
values.

5 DATA-DRIVEN DLOF WITH EARLY
TERMINATION

As shown in Fig. 5(a), based on the DLOF framework proposed in
Sec. 3, DDLOF must transmit all core points as well as their respec-
tive support points throughout three phases of the LOF process
�ow. As our experiments in Sec. 6 con�rm, even with the signi�-
cant improvement of the duplication rate in DDLOF, it still incurs
high communication costs, especially when handling large datasets.
Unfortunately, often, if not always, the communication costs are
the dominant costs of a distributed approach [2]. Therefore it is
critical to minimize these communication costs.

To accomplish this, we now enhance our DDLOF method with
an early termination strategy, henceforth called DDLOF-Early. The
key idea of DDLOF-Early is that instead of computing LOF scores
by strictly following the LOF pipeline, we now aim to complete
the computation process at the individual point granularity level
instead of in unison synchronized among all points. Put di�erently,
we aggressively push the LOF score computation into the earliest
step possible. The points that have already acquired their respective
LOF scores and do not serve a support point role for any partition
are eliminated from the process� ow. This reduces the communica-
tion costs as well as the intermediate value maintenance I/O costs
due to reduced data transmission rates.
Convergence Observation. The e�ectiveness of DDLOF-Early
rests upon our convergence observation on the LOF score computa-
tion. Namely, given a grid partition, most of the points can compute
their LOF scores without the assistance of any support point.

First, we observe that although in theory the kNN de�nition does
not satisfy the commutative nor transitive property, in practice data
points tend to be neighbors of each other. That is, if a point A is
in the kNN set of a point B, then B tends to be in the kNN set of
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point A, although this is not theoretically guaranteed. Furthermore,
although the LOF score of point p depends on both direct and
indirect kNN of p as shown in Sec. 3, layers of related points tend
to converge to a small region within grid partition P instead of
being spread across the entire domain space, since data points tend
to be neighbors of each other. In practice, only a relatively small
number of data points located at the edge of each partition need
access to points in other partitions. This is empirically con�rmed
by our experiments on a rich variety of real world datasets (Sec. 6).
For example, in the Massachusetts portion of the OpenStreetMap
dataset which contains 30 million records, 98.6% of data points can
compute their exact LOF scores without any support from other
partitions.

Core Point: Got LOF Core Point: No LOF

Data
Flow

Compute Kdistance Compute LRD Compute LOF

Output 
LOF

Support Point

Data
Flow

(a) Framework for DDLOF

Output LOF

Data 
Flow

Data 
Flow

Output LOF

Compute Kdistance Compute LRD Compute LOF

Output 
LOF

Early LOF Computation

Data Point Pruning
Core Point: Got LOF Core Point: No LOF Support Point

(b) Framework for DDLOF-Prune

Figure 5: Comparison of DDLOF and DDLOF-Prune

As shown in Fig. 5(b), DDLOF-Early incorporates two new op-
timization methods compared to the original DDLOF approach,
namely, (1) early LOF computation and (2) data point pruning. These
two techniques can be seamlessly plugged into each step of the
DDLOF method (Sec. 4), including the core partition kNN search,
supporting area kNN search, and the LRD computation stage (the
reduce phase of the corresponding map-reduce job).
Early LOFComputation. In the core partitionkNN search, points
are classi�ed into one of two states - either with or without their
actual kNN (k-distance) by applying Corollary 4.5. The early LOF
computation is conducted only on points that have already acquired
their actual k-distances (those with kNN complete status) as shown
in Algorithm 2. All points of this status (Lines 4-5) are maintained in
a “GotKdist” list. Given such a “ready” point p, we then evaluate if p
can also acquire its LRD value locally by checking if all p’s kNN are
also in the “GotKdist” list. If so, p’s LRD value will be computed, and
p inserted into another list “GotLrd” (Lines 10-11). Then a similar
evaluation and computation process will be conducted for the�nal

Algorithm 2 Early LOF Computation
1: k number of nearest neighbors
2: function E����LOFC����������(��� ������������,��

����[p1,. . . , pm])
3: for pi 2v-list do
4: if hasTrueKNNs(pi ) then
5: GotKdist.add(pi )
6: else
7: pi .type = “NONE”
8: for pi 2GotKdist do
9: if CanCalLRD(pi ,GotKdist) then
10: pi .lrd = CalLRD(pi ,GotKdist)
11: GotLrd.add(pi )
12: else
13: pi .type = “KNN”
14: for pi 2GotLrd do
15: if CanCalLOF(pi ,GotLrd) then
16: pi .lof = CalLOF(pi ,GotLrd)
17: pi .type = “LOF”
18: else
19: pi .type = “LRD”

LOF score computation. Points that have acquired their LOF score
will be marked as “completed”.
Data Point Pruning. Although this early LOF computation de-
termines the LOF score of a point p as early as possible, p cannot
simply be eliminated from the distributed LOF pipeline even if p
has already acquired its own LOF score. Instead, p might still be
required in the LOF computation of other points for two reasons.
First, p in partition Pi may be one of the kNN of some adjacent
point q that is also in Pi and has not yet acquired its LOF value.
Second, p may be a support point of any other partition Pj . In the
�rst case, since both p and q are located in the same partition and
therefore on the single machine, we can easily check whether q is
marked as “completed”. In the second case, in the LOF computation
process� ow each core point p constantly maintains a list of par-
titions sup-list for which it is a support point. Therefore this case
can be evaluated by checking whether the sup-list attached to p is
empty.

In all other cases, p can be eliminated from the process� ow.
Therefore this pruning strategy signi�cantly reduces the communi-
cation costs as con�rmed by our experiments in Sec. 6.4.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup & Methodologies
Experimental Infrastructure. All experiments are conducted
on a Hadoop cluster with one master node and 24 slave nodes.
Each node consists of 16 core AMD 3.0GHz processors, 32GB
RAM, 250GB disk. Nodes are interconnected with 1Gbps Eth-
ernet. Each server runs Hadoop 2.4.1. Each node is con�g-
ured with up to 4 map and 4 reduce tasks running concur-
rently, sort bu�er size set to 1GB, and replication factor 3.
All code used in the experiments is made available at GitHub:
https://github.com/yizhouyan/DDLOFOptimized.
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Datasets.We evaluate our proposed methods on two real-world
datasets: OpenStreetMap [11] and SDSS [9]. OpenStreetMap, one
of the largest real datasets publicly available, contains geolocation
data from all over the world and has been used in other similar
research work [17, 20]. Each row in this dataset represents an object
like a building or road. To evaluate the robustness of our methods
for diverse data sizes, we construct hierarchical datasets of di�erent
sizes: Partial Massachusetts (3 million records), Massachusetts (30
million records), Northeast of America (80 million records), North
America (0.8 billion records), up to the whole planet (3 billion).

The OpenStreetMap data for the entire planet contains more
than 500GB of data. To evaluate how our proposed methods per-
form on terabyte level data we generate two datasets 1TB and
2TB respectively based on the OpenStreetMap dataset. More specif-
ically, we generate the 2TB dataset by moving each point verti-
cally, horizontally, and also along both directions to create three
replicas. That is, given a two dimensional point p(x, y) where
0  x  dx 0  y  dy , three replicas p0(x + dx , y),p00(x, y + dy)
and p000(x + dx , y + dy) are generated. Then the 1TB dataset (6
billion records) is generated by extracting half of data in half of
the domain from the 2TB dataset (12 billion records). In our experi-
ment two attributes are utilized, namely longitude and latitude for
distance computation.

Sloan Digital Sky Survey (SDSS) dataset [9] is one of the largest
astronomical catalogs publicly accessible. The thirteenth release
of SDSS data utilized in our experiments contains more than 1
billion records and 3.4TB. In this experiment we extract the eight
numerical attributes including ID, Right Ascension, Declination,
three Unit Vectors, Galactic longitude and Galactic latitude. The
size of the extracted dataset is 240GB.

Metrics. First, wemeasure the total end-to-end execution time
elapsed between launching the program and receiving the results
� a common metric for the evaluation of distributed algorithms
[17, 20]. To provide more insight into potential bottlenecks, we
break down the total time into time spent on key phases of the
MapReduce work�ow, including preprocessing, k-distance calcula-
tion, LRD calculation, and LOF calculation. Second, we measure the
duplication rate of each method as de�ned in Def. 4.1.

Algorithms. We compare (1) baseline PDLOF : adapts the pivot-
based partitioning method in [17] to our DLOF framework; (2)
DDLOF : data-driven distributed LOF in Sec. 4; (3) DDLOF-Early:
data-driven distributed LOF with early termination in Sec. 5.

Experimental Methodology. We evaluate the e�ectiveness
and scalability of our algorithms. In all experiments, the same
kNN search algorithm is applied to eliminate the in�uence of the
various kNN search algorithms and indexing mechanisms. The
input parameter k of LOF is� xed as 6 which in [7] is shown to be
e�ective in capturing outliers. Based on our experimental tuning
we apply the most appropriate partition number to each algorithm
on each dataset.

6.2 Evaluation of Elapsed Execution Time
We evaluate the breakdown of the execution time of the three algo-
rithms using� ve OpenStreetMap datasets and the SDSS datatset.

OpenStreetMap Datasets. Fig. 6 shows the results on the Open-
StreetMap datasets. PDLOF is only able to process the Partial Mas-
sachusetts dataset. This is due to the high duplication rate of the
pivot-based approach producing some extremely large partitions
that cannot be accommodated by a single compute node. Our two
data-driven algorithmsDDLOF andDDLOF-Early scale to the Planet
� the whole OpenStreetMap dataset. This performance gain results
from the small duplication rate of their partitioning methods (Sec.
6.3), which signi�cantly reduces communication costs. It also re-
duces the computation costs of the kNN search, since each reducer
must only search for the kNN of its core points within a small area.

As for the two data-driven algorithms, although DDLOF is
slightly better on the total time consumption than DDLOF-Early
on the small Partial Massachusetts dataset, DDLOF-Early beats
DDLOF in all other cases as the dataset gets larger. Since these
two approaches share the same preprocessing phase, the di�erence
here comes from other phases, namely the k-distance, LRD and LOF
computation phases. DDLOF-Early is more expensive than DDLOF
during the k-distance phase, because it not only computes kNN, but
also aggressively computes the LOF scores whenever possible. How-
ever at the later LRD and LOF computation phase, DDLOF-Early
succeeds to outperforms DDLOF. It is up to three times faster in
total execution time, especially when the dataset scales to the whole
planet (Fig. 6(e)), because DDLOF-Early eliminates data points from
the work� ow that were able to acquire their LOF scores during the
inner kNN search. Therefore both communication and computation
costs are reduced.
SDSS Dataset. Tab. 1 demonstrates the results on the eight dimen-
sional SDSS dataset. Since the pivot-based algorithm cannot handle
a dataset of this size, Tab. 1 only shows the results of DDLOF and
DDLOF-Early. Similar to the OpenStreetMap data results, the pre-
processing and core partition kNN search phases take about the
same time, while DDLOF-Early signi�cantly outperforms DDLOF
in other phases. In total execution time, DDLOF-Early is 2 times
faster than DDLOF. This experiment shows that our data-driven
approach can scale to large datasets with eight dimensions.

6.3 Evaluation of Duplication Rate
Next we evaluate the duplication rates of all 3 algorithms using the
same data and setting as in Sec. 6.2. Since the duplication rates are
identical for both data-driven methods, we only show DDLOF.

Fig. 7 shows the results on the OpenStreetMap datasets. PDLOF
has much higher duplication rate than DDLOF � up to 21 on a rela-
tively small dataset. This explains why PDLOF cannot even handle
the Massachusetts dataset (30 million records). DDLOF instead has
very low duplication rates � around 1 for all small datasets and
around 2 for the largest planet dataset. This is expected because
PDLOF bounds the supporting area based on worst case estima-
tion (Sec. 4), while our data-driven kNN search in DDLOF utilizes
the “local” k-distance generated in the core partition kNN search
to bound supporting areas (Sec. 4.1). This bound is much tighter
than the worst case upper bound of PDLOF. This explains DDLOF ’s
superiority. Moreover, DDLOF has a duplication rate slightly larger
than 1 even on the large eight dimensional SDSS dataset (Tab. 1),
while PDLOF methods fail on data at this scale.
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Figure 6: Evaluation of End-to-end Execution Time

Table 1: Experimental Results of DDLOF and DDLOF-Early (SDSS/1TB/2TB)

Methods Dataset End-to-end Execution Time Costs (sec) DuplicationPreprocessing Core-KNN Support-KNN LRD LOF Total
DD SDSS 464 7899 32059 7796 6598 54816 1.5863

DD-Early SDSS 464 8454 20245 404 385 29952 1.5863
DD 1T 1059 11076 56282 25371 23940 117728 2.0474

DD-Early 1T 1059 11987 31964 793 743 46546 2.0474
DD-Early 2T 1909 27824 61858 711 489 92791 2.1514
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Figure 7: Duplication Rate for
Varying Size of Datasets.

6.4 Scalability Evaluation
We utilize the 1TB and 2TB data described in Sec. 6.1 to evaluate
the scalability of DDLOF and DDLOF-Early to terabyte level data.
As shown in Tab. 1, although both algorithms scale to the 1TB
dataset, DDLOF-Early is three times faster than DDLOF. This is
due to the fact that the early termination strategies (Sec. 5) reduce
communication costs by eliminating points that already acquired
their LOF scores. In particular DDLOF-Early eliminates 71.3% (1T)
and 76.6% (2T) points after the core partition kNN search. However,
the DDLOF method fails on 2T dataset. In the core partition kNN
search phase, DDLOF enriches all core points with their local kNN
and spills this information out to HDFS. This produces extremely
large intermediate data that causes system failure due to network
congestion when traveling over the network during the shu�e
operation in the next phase. DDLOF-Early is able to handle this
2T dataset, since it does not maintain the kNN information for the
points which have already acquired their LOF scores.

7 RELATEDWORK
Distributed Outlier Detection. To the best of our knowledge, no
distributed LOF algorithm has been proposed to date. In [16], Lozano
and Acunna proposed a multi-process LOF algorithm on one single
machine. All processes share the disk and main memory and there-
fore can access any data in the dataset at any time. This way, the
processes can communicate with each other without introducing
high communication costs. Clearly this approach cannot be adapted

to popular shared-nothing distributed infrastructures targeted by
our work. Here, each compute node only has access to partial data
and communication costs are often dominant.

Bhaduri et al. [6], proposed a distributed solution for distance-
based outlier detection [19], which depends on nearest-neighbor
search. Their algorithm requires a ring overlay network architec-
ture wherein data blocks are passed around the ring allowing the
computation of neighbors to proceed in parallel. Along the way,
each point’s neighbor information is updated and distributed across
all nodes. A central node maintains and updates the top-n points
with the largest kNN distances. Their strategies are not applicable
to shared nothing infrastructures lacking a central node.
Other Related Distributed Analytics Techniques. In [17] a
pivot-based method is introduced for kNN-join to partition the
two to-be-joined datasets. Given a partition Pi in dataset D1 the
distances between the points and the corresponding pivots are
utilized to bound the partitions Pj in the other dataset D2 which
could possibly produce join results with Pi in D1. We adapt this
method as our baseline PDLOF approach by replacing its bounding
rule with our customized rule. However, as we demonstrate, this
method [17] cannot even handle 1GB dataset (Sec. 6.3) due to the
high duplication rate, while our DDLOF related methods work for
TB datasets.

In [4, 13], distributed approaches for density-based clustering and
spatial joins are introduced. These approaches employ the general
notion of “support” to ensure each machine can complete its task
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by replicating boundary points. Both problems have a proximity
threshold as input parameter that determines the boundary points.
In our more complex distributed LOF context, no such explicit user-
provided criteria exists for bounding the support points. Instead,
the support points have to be bounded dynamically by exploring
the data. Deriving a su�cient yet tight bound to determine the
support points for each partition is a unique challenge addressed
in our work.

8 CONCLUSION
In this work, we propose the� rst distributed solution for Local Out-
lier Factor semantics (LOF ) � a popular technique to detect outliers
in skewed data. Innovations include a step-by-step framework that
computes LOF scores in a fully distributed fashion, a data-driven
partitioning strategy to reduce the duplication rate from a rate of
20 down to 1, and an early termination mechanism to minimize
the communication costs. Our experimental evaluation shows the
e�ciency and scalability of our solution to terabyte datasets.
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