
Scalable Top-n Local Outlier Detection
Yizhou Yan∗

Computer Science
Worcester Polytechnic Institute

Worcester, MA, USA
yyan2@cs.wpi.edu

Lei Cao∗
CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
lcao@csail.mit.edu

Elke A. Rundensteiner
Computer Science

Worcester Polytechnic Institute
Worcester, MA, USA
rundenst@cs.wpi.edu

ABSTRACT
Local Outlier Factor (LOF) method that labels all points with their
respective LOF scores to indicate their status is known to be very ef-
fective for identifying outliers in datasets with a skewed distribution.
Since outliers by de�nition are the absolute minority in a dataset,
the concept of Top-N local outlier was proposed to discover the n
points with the largest LOF scores. The detection of the Top-N local
outliers is prohibitively expensive, since it requires huge number of
high complexity k-nearest neighbor (kNN) searches. In this work,
we present the� rst scalable Top-N local outlier detection approach
called TOLF. The key innovation of TOLF is a multi-granularity
pruning strategy that quickly prunes most points from the set of
potential outlier candidates without computing their exact LOF
scores or even without conducting any kNN search for them. Our
customized density-aware indexing structure not only e�ectively
supports the pruning strategy, but also accelerates the kNN search.
Our extensive experimental evaluation on OpenStreetMap, SDSS,
and TIGER datasets demonstrates the e�ectiveness of TOLF � up
to 35 times faster than the state-of-the-art methods.

KEYWORDS
Local Outlier Factor; Top-N; Pruning Strategy

ACM Reference format:
Yizhou Yan, Lei Cao, and Elke A. Rundensteiner. 2017. Scalable Top-n Local
Outlier Detection. In Proceedings of KDD ’17, Halifax, NS, Canada, August
13-17, 2017, 10 pages.
https://doi.org/10.1145/3097983.3098191

1 INTRODUCTION
Motivation. Outlier detection is an important data mining tech-
nique [3] that discovers abnormal phenomena, namely values that
deviate signi�cantly from the common occurrence of values in the
data [12]. Outlier detection is critical for applications from credit
fraud prevention, network intrusion detection, stock investment
planning, to disastrous weather forecasting.

∗Authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098191

Local Outlier Factor (LOF) [6] is one of the most popular outlier
detection methods that addresses challenges caused by data skew-
ness. Namely, in a skewed dataset, outliers in one portion of the
data may have very di�erent characteristics compared to those in
other data regions. Therefore the outlier detection methods such
as distance [14] and neighbor-based techniques [4] tend to fail, be-
cause they classify points as outliers by applying one global criteria
on all data uniformly regardless of their surrounding neighborhood.
LOF instead utilizes the relative density of each point in relation
to its local neighbors to detect outliers. Since the relative density
automatically re�ects the local data distribution, LOF is very ef-
fective at handing skewed datasets. Since real world datasets tend
to be skewed [18], LOF has been shown to be superior to other
algorithms in detecting outliers for a broad range of applications
[3, 16].
State-of-the-Art. The popular LOF method [6] generates an out-
lierness score (LOF score) for each point in the dataset. This process
is rather expensive because it requires k nearest neighbors (kNN)
search for each point. A variation of LOF called Top-n LOF was
proposed [13] that only returns to the users the n points with largest
LOF scores. This leverages the insight that points with highest LOF
scores are the most extreme outliers and thus of great importance
to the application. Second, by its very de�nition, applications tend
to be interested in only the top worst o�enders, i.e., top few points
with highest outlier scores. Any analyst will never be able to exam-
ine the LOF scores of all or even a large percentage of any truly big
dataset.

However as con�rmed in its experiments, the Top-n LOF al-
gorithm introduced in [13] takes thousands seconds to handle a
synthetic dataset smaller than 1M. Clearly it cannot scale to large
datasets. Therefore, the development of highly scalable solutions
for Top-n LOF is urgent.

Proposed TOLF Approach. In this work, we propose the�rst
scalable Top-n LOF approach, called TOLF, that e�ciently detects
local outliers in large datasets. TOLF features a detection method
that successfully discovers the Top-n LOF outliers without having
to� rst compute the LOF score for each input point. It is based on a
multi-granularity pruning strategy that quickly locates and thus
prunes the points having no chance to be in the Top-n outlier list.
The key insight of our strategy is that by partitioning the data into
regular shaped cells with a carefully designed size, a cell at its coarse
granularity that contains more than k points can be immediately
pruned without any further computation. If a cell cannot be pruned
in its entirety, then the pruning is conducted at the individual point
level within the cell’s point population based on an e�cient LOF
score upper bound estimationmechanism.Moreover, to fully exploit
the power of the multi-granularity pruning strategy on skewed
datasets, we design a data-driven mechanism that automatically

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1235

adapts the generation of the cells to the data distribution. As a
bonus, a data density-aware index structure is constructed for free
that signi�cantly accelerates the kNN search and LOF computation
process for points that could not be pruned.

Contributions. The key contributions of this work include:
• We propose the �rst Top-n LOF approach scalable to large

datasets.
• Our multi-granularity pruning strategy core to TOLF quickly

excludes most of the points from the outlier candidate set without
computing their LOF scores or even running any kNN search for
them.

• We design a data-driven cell generation strategy as well as
the density-aware indexing mechanism that together ensure the
e�ectiveness of the pruning strategy and of the kNN search on
datasets with diverse distributions.

• Experiments on real OpenStreetMap, SDSS and TIGER datasets
demonstrate that TOLF outperforms the state-of-the-art up to 35
times in processing time.

2 PRELIMINARIES: TOP-N LOF SEMANTICS
Local Outlier Factor (LOF) [6] introduces the notion of local outliers
important for many applications. More precisely, for each point
p, LOF computes the ratio between its local density and the local
density around its neighboring points. This ratio assigned to p as its
local outlier factor (LOF score) denotes its degree of outlierness. LOF
depends on a parameter k. For each point p in dataset D, k is used to
determine k-distance and neighborhood of p. The k points closest to
p are the k-nearest neighbors (kNN) of p, also called k-neighborhood
of p. k-distance of p is the distance to its kth nearest neighbor. The
LOF score below depends on the points in its k-neighborhood.

De�nition 2.1. The reachability distance of point p w.r.t. point
q is de�ned as:

reach-dist(p,q) = max {k-distance(q), dist(p,q)}

If one of the kNN ofp, say, q, is far fromp, the reach-dist between
them is simply their actual distance. On the other hand, if q is
close to p, the reach-dist between them is the k-distance of q. The
reachability distance, as a customized distance measure, introduces
a smoothing factor for a stable estimation of the local density of p.

De�nition 2.2. The local reachability density (LRD) of a point
p is the inverse of the average reachability distance of p’s kNN
de�ned by:

LRD(p) = 1/[
Õ
q2Knn(p) reach � dist(p,q)
kk-neighborhoodk]

Essentially, the LRD of a point p is an estimation of the den-
sity at point p by analyzing the k-distance of the points in its
k-neighborhood. Based on LRD, LOF is de�ned as follows.

De�nition 2.3. The LOF score of a point p is de�ned by:

LOF (p) =
Õ
q2kNN (p)

LRD(q)
LRD(p)

kk-neighborhoodk
Intuitively, LOF scores close to 1 indicate “inlier” points. The

higher the LOF score, the more the point is considered to be an
outlier.

Finally, we de�ne the semantics of Top-n LOF detection.

De�nition 2.4. Given the input parameters k and n, the outliers
O of a dataset D are a subset O ⇢ D with cardinality n, where for
any p 2 O and any q 2 O - D, LOF(p) � LOF(q).

3 TOLF: TOP-N LOF DETECTION APPROACH
The key ideas of TOLF are inspired by the cuto� threshold observa-
tion as shown below.

Cuto� Threshold Observation. To detect the Top-n outliers,
it is not necessary to conduct a two step process, namely �rst to
compute the LOF score for each point and then second to sort the
points based on their LOF scores. Instead the TOP-n outliers can
be directly acquired in one step as described below.

Since there will be at most n top outliers, during the computation
process TOLF maintains an outlier candidate set C with n highest
scored outliers seen so far. The elements in C are sorted based on
their scores. The score of the smallest point pn in C is used as a
cuto� threshold ct. Then given a new point q, if q’s score is smaller
than the threshold ct, q cannot be in the Top-n list and therefore
is discarded immediately. On the other hand, if q’s score is larger
than ct, q is inserted into C. The nth point pn is then replaced with
the current smallest scored point in C. ct is updated accordingly.
As more points are processed, larger scored points will be found.
The top-n outlier set will be �nalized after all points have been
processed.

Our observation here is that given a new point q, to prove it is
not a Top-n outlier, we do not have to know its exact LOF score. In-
stead if we could e�ciently estimate that the LOF score of q will be
smaller than the given threshold ct, then q is guaranteed to not be
an outlier. Therefore we conclude that this q could be safely pruned
without computing its exact LOF score. Since most points are inliers
with small LOF scores, this way most points in the dataset could
be quickly pruned. This would enable the outlier detection algo-
rithm to concentrate its precious resources on precisely conducting
the LOF computation for the much smaller number of potential
outlier candidates, rather than spending resources on computing
and recording LOF scores for the general and much larger data
population. Consequently the Top-n outlier detection process will
be signi�cantly sped up due to this pruning process.

Inspired by this cuto� threshold observation, we now propose
themulti-granularity pruning strategy that e�ectively yet e�ciently
prunes the inlier points. Moreover, we design a data-driven mecha-
nism that by partitioning data based on its distribution characteris-
tics dynamically adapts the pruning strategy to skewed data.

The multi-granularity pruning strategy consists of two pruning
stages. At the �rst stage, inlier points are pruned at the group granu-
larity without conducting any kNN search, named CPrune pruning
(Sec. 3.2). Points that cannot be pruned by CPrune will go through
the next pruning stage at the individual point granularity, namely
point-based pruning, in short PPrune. Both pruning methods are
based on the quick estimation of the upper bound of a point’s LOF
score, namely the largest possible LOF score of the point.

3.1 LOF Score Upper Bound
We �rst given the theorem (Theorem 3.1) introduced in [6] that
de�nes the LOF score upper bound for a given point.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1236

Given a point p, let directmax (p) denote the maximum reachabil-
ity distance between p and p’s k nearest neighbors, i.e.,

directmax (p) =max{reach � dist(p,q)|q 2 kNN (p)} (1)
To generalize this de�nition to p’s kNN q, let indirectmin(p) de-
note the minimum reachability distance betweenq andq’s kNN, i.e.,

indirectmin (p) =min{reach � dist(q,o) | q 2 kNN (p)
and o 2 kNN (q)} (2)

.

T������ 3.1. Upper bound on LOF. Given a point p 2 D, the
LOF score of p can be bounded by

LOF(p) U (p) = directmax (p)
indirectmin(p)

(3)

Intuitively the LOF score of p is determined by the ratio of the
average reachability distance of p to its neighbors q denoted as
avg_reach(p, q) and the average reachability distance of q to q’s
neighbors o denoted as avg_reach(q, o). Since directmax (p) repre-
sents the largest reachability distance of p to q and indirectmin(p)
represents the smallest reachability distance of q to o, replac-
ing avg_reach(p, q) and avg_reach(q, o) with directmax (p) and
indirectmin(p) respectively is guaranteed to acquire a value larger
than the actual LOF score of p. Therefore Theorem 3.1 holds.

For the formal proof of Theorem 3.1 please refer to [6].
Based on our cuto� threshold observation if U (p) is smaller than

the cuto� threshold ct used in pruning, then p can be safely pruned.
However, estimating the upper bound by computing directmax (p)
and indirectmin(p) is still expensive. While it does not require the
computation of the exact LOF score, the reachability distances
between p and its kNN q and the reachability distances between
q and q’s kNN have to be computed. This cost thus is e�ectively
equivalent to the precise computation of the exact LOF score.

Next, we introduce our multi-granularity pruning strategy that
leverages a more e�cient upper bound estimation mechanism.

3.2 Multi-granularity Pruning Strategy
A New Upper Bound. By Theorem 3.1, U (p) is based on
directmax (p) and indirectmin(p). If we replace indirectmin(p) in The-
orem 3.1 with a smaller value, more speci�cally, the distance of
the closest pair of points cp in D, a new upper bound U 0(p) can be
derived which is larger than U (p).

T������ 3.2. New Upper Bound. Given a point p 2 D, the LOF
score of p can be bounded by:

LOF(p) U 0(p) = directmax (p)
cp

(4)

If U 0(p) is smaller than the cuto� threshold ct, then the true
LOF score of p is guaranteed to be smaller than ct. Therefore p can
be pruned. In other words, U 0(p) can be utilized to safely prune
inliers. Estimating U 0(p) is much more e�cient than computing
U (p), since it avoids the computation of indirectmin(p) for each
individual point.

However, to acquire U 0(p), directmax (p) still has to be computed.
Next we introduce our CPrune pruning strategy that e�ectively
utilizes U 0(p) to prune inliers, while avoiding the computation of

directmax (p). The key insight of CPrune pruning is that by parti-
tioning the data into regular shaped cells whose size is determined
by cp and ct, all points in a dense cell (with more than k points)
have their U 0(p) guaranteed to be larger than ct. Therefore they
can be immediately pruned without any further computation.

L���� 3.3. CPrune Pruning. Let cp be the distance of the closest
pair of points in a d-dimensional data D and ct denote the LOF cuto�
threshold for pruning. Now let us assume that the domain space of
D is evenly divided into hyper-rectangle cells with the size of each
side as ct⇤cp

2
p
d
. Given a cell C, all points contained in C can be pruned

immediately if C contains more than k points.

P����. Since cp indirectmin(p), then LOF(p) < directmax (p)
cp . If

directmax (p)
cp < ct, then point p can be pruned. This condition is equiv-

alent to directmax (p) < ct ⇤ cp. directmax (p) represents the maxi-
mum reachability distance between p and its kNN. By the reacha-
bility de�nition in Def. 2.1, if p can acquire its kNN’s kNN within
ct ⇤ cp, then p can be pruned.

If there are k + 1 or more points in C, these points can all �nd
their kNNs within the diagonal length of C ct⇤cp

2 . Similarly the
kNNs of these points can all �nd their kNNs within the twice
diagonal length of C, namely ct ⇤ cp as shown in Fig. 1. Therefore
8 point p 2 C, directmax (p) < ct ⇤ cp. Thus all points in C can be
pruned immediately without further evaluation.

⇤

Fig. 1 shows an example of CPrune pruning. In this case k is set
as 2. The central cell contains more than k points. Therefore all
points in it can be pruned immediately.

!"#$%& '%((

Figure 1: CPrune Pruning

Point-based pruning (PPrune). By Lemma 3.3, a cell cannot be
pruned if it is not dense enough (k members). The points in such
cells then go through the next pruning stage, namely the point-based
pruning (PPrune). PPrune works in the following two steps.

First, the directmax (p) must be computed to acquire U 0(p). As
shown in the proof of Lemma 3.3, if directmax (p) < ct ⇥ cp, U 0(p) >
ct . Therefore p is guaranteed to be not an outlier and can be pruned.
Next, if directmax (p) does not satisfy the above condition, in order to
prune more points a LOF score upper bound U (p)t tighter (smaller)
than U 0(p) has to be computed. This can be achieved by estimating
a lower bound of indirectmin(p) tighter (larger) than cp, as de�ned
below.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1237

L���� 3.4. Approximation of indirectmin(p). Given a point p
in dataset D, indirect 0min(p) is de�ned as:

indirect 0min (p) =min{d(q,o) | q 2 kNN (p)
and o 2 kNN (q)} (5)

. Then indirect 0min(p) indirectmin(p).

P����. By the reach-distance de�nition (Def. 2.1),
reach � dist(q, o) = max(k � distance(o), d(q, o)). There-
fore d(q, o) reach � dist(q, o). Since indirectmin(p)
= min{reach � dist(q, o) | q 2 kNN (p) and o 2 kNN (q)},
indirect 0min(p) indirectmin(p). Lemma 3.4 holds. ⇤

Unlike the direct computation of indirectmin(p), indirect 0min(p) no
longer relies on computing the reachability distance reach-dist(q,o),
where q is the kNN of p and o is the kNN of q. Instead it can be
derived from the d(q, o). Therefore computing indirect 0min(p) avoids
the computation of k-distance(o) needed by reach-dist(q,o). Since
o represents p’s kNN’s kNN, in total there are k2 such objects
o. Therefore compared to indirectmin(p) computing indirect 0min(p)
avoids k2 kNN searches and thus is much more e�cient .

Since cp indirect 0min(p) indirectmin(p), replacing
indirectmin(p) with indirect 0min(p) in Theorem 3.1 will get a
bound U (p)t which is larger than U (p) but smaller than U 0(p).
Therefore U (p)t is tighter than U 0(p). Potentially more points will
be pruned in this pruning stage by utilizing U (p)t .

Point-based

Pruning

!"#$%& "#$%'%(

"#$%'%()$*&)$++&#)

,-$%.)/01+2

"#$%'%()$*&)$++&#)

,-$%.)/1+2
!

345)67-#&)

!-8+$9:9'-%

;-+<% 345

7-8+$9:9'-%

Cell-based

Pruning

Figure 2: Overall Process of TOLF

The overall process of TOLF is shown in Fig. 2. After partitioning
the dataset into cells, the CPrune pruning is �rst applied to prune
the cells satisfying Lemma 3.3. The points in the remaining cells
then go through the PPrune pruning based on Lemmas 3.2 and
3.4. The LOF score computation is only applied on the points not
pruned by CPrune and PPrune, from which the Top-n outliers are
derived.

4 DATA-DRIVEN TOP-N LOF DETECTION
Issues Caused by Skewed Data. However, simply applying the
multi-granularity pruning strategy on a skewed data D and evenly
dividing the whole domain space of D into hyper-rectangles with
the size of each side as ct⇤cp

2
p
d

by Lemma 3.3 may cause severe issues,
as shown below.

One problem concerns the generation of a large number of empty
or very sparse cells when dividing the sparse area. This then would
lead to signi�cant maintenance costs without being able to reap
any bene�t of pruning. Even more challenging, the distance of
the closest pair cp is determined by the points located in the most
dense area. Therefore cp risks being very small compared to the
distances of the points in other less dense areas. Since the size of

the generated cells relies on cp , applying cp uniformly to the whole
dataset will cause very small cells to be generated, none or very few
of which will contain more than k points even in the dense area.
As consequence our CPrune pruning might not be very e�ective.
Data-Driven TOLF: Big picture. To solve the above problem,
we further enhance TOLF with a set of data-driven optimization
strategies, then called data-driven TOLF, or in short D-TOLF. First,
D-TOLF no longer applies CPrune pruning blindly over the whole
dataset. Instead based on the distinct data characteristics of di�erent
areas, D-TOLF determines what areas can bene�t from CPrune
pruning and applies CPrune only on these areas. Furthermore,
instead of generating evenly sized cells by applying the global
threshold size cp of the whole dataset, cells in di�erent areas now
are assigned customized sizes adapted to the density of the data.
Moreover, during the cell generation process, D-TOLF produces a
density-aware index as side product. Unlike the traditional single
tree indexing structure, it is composed of multiple trees, each of
which best �ts the data characteristics of one corresponding area,
so called a Forest index. It speeds up the kNN search process in the
datasets with skewed distribution as con�rmed in our experiments
(Sec. 5).

Overall D-TOLF is composed of two steps, namely uniform area
generation (UAG) and density-aware cell generation (DCG). UAG
divides the domain space of the whole dataset into multiple areas,
each with a data distribution close to uniform. It ensures that the
closest pair (cp) of each such area is not much smaller than the
average distance of other point pairs. This succeeds to lead to a
tighter (small) LOF score upper bound, which in turn makes the
pruning e�ective. Next, given such a generated area, DCG decides
whether this area will bene�t from CPrune pruning and hence
ought to be further divided into cells. If so, inspired by the QuadTree
indexing, it generates cells with their size re�ecting the density of
their respective area. It produces a tree index customized for the
sake of CPrune pruning. The trees of di�erent areas pulled together
corresponds to a forest index for speeding up kNN search on the
whole dataset.

4.1 Uniform Area Generation
Next, we present our uniform area generation algorithm (UAG) that
adopts the dual-purpose divide and conquer process to produce
‘close to be uniform’ areas and their closest pair distances (cp) in
one step.

In the divide phase, similar to the typical divide and conquer
based cp computation algorithm [7], UAG recursively divides the
domain area into sub-areas, each containing at least k points. Since
UAG aims to generate both uniform areas and closest pairs, un-
like the closest pair algorithm, the �nal sub-areas as well as the
intermediate areas produced during the divide process are also hier-
archically maintained in a binary tree structure. Each node records
the coordinates of the corresponding area’s corners. The leaf node
represents the �nal area which contains the data points. Figure 3
shows a 2-dimensional example where k = 2. The original area S
has been divided into four sub-areas S11, S12, S21, and S22. S1 and
S2 are the intermediate areas.

During the conquer phase, �rst, the closest pair distance is
computed for each leaf sub-area. The sibling leaf sub-areas Si1

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1238

Figure 3: Divide into area – a divide and conquer process.

and Si2 will be merged into their parent area Si if their clos-
est pair distances cpi1 and cpi2 satisfy the following condition:
max{cpi1,cpi2 }
min{cpi1,cpi2 } < di� , where di� is a threshold used to control the
di�erence between cpi1 and cpi2 . This ensures that the merged area
Si would not have a closest pair distance cpi much smaller than
cpi1 and cpi2 . The exact cpi of Si is computed similarly to the con-
quer process of the typical closest pair algorithm [7]. On the other
hand, if Si1 and Si2 do not satisfy this merge condition, they are
marked as ‘�nal’. At the same time, their parent node Si is marked
as ‘unmergeable’. This merge process recursively traverses upwards
towards the root as long as a pair of sibling nodes are still mergeable
and stops once no mergeable node remains. The output of UAG is
the �nal nodes and their closest pair distances cp. It is apparent
that UAG succeeds to produce the ‘close to be uniform areas’ as
well as their cp in one step.

As depicted in Figure 3, S21 and S22 cannot be merged and are
marked as �nal (represented as red rectangles). Their parent node
S2 is marked as unmergeable. S11 and S12 are merged into parent
S1. At the next upper layer, S1 is marked as �nal, since S1 cannot
merge with S2.

The time complexity of UAG in the worst case is as high as
the classical closest pair algorithm O(nlogn) with n as the number
of points). This arises when the entire dataset is uniform and all
nodes can be merged into one �nal node.
Divide Or Not. The above produced areas have di�erent densities.
A sparse area or even a dense area with a very small cp may not
bene�t from CPrune pruning. Hence it is not advisable to generate
cells and indices for all these areas. Instead, as the �rst step our
density-aware cell generation (DCG) algorithm determines what
areas ought to be further divided into cells based on their densities
and the cp computed above. By this, DCG fully unleashes the power
of CPrune pruning, while avoiding unnecessary overhead.

DCG �rst classi�es the areas into dense and sparse. If an area
contains fewer than t ⇤ k points where t is a tunable parameter, it
is classi�ed as sparse. And, no cell will be generated for it. On the
other hand, a dense area would be divided into cells. And, an index
will also be produced accordingly. The intuition here is that even
if a dense area cannot bene�t from CPrune pruning, indexing still
o�ers signi�cant speed up of the expensive kNN search when the
number of points of this area is large.

To determine the size of the cell, DCG further classi�es the dense
areas into two categories based on their cp. Given an area A if its
cp is large relative to the average distance a��d of the point pairs
in A, e.g., avgdcp < 3, A will be divided into cells with size S = ct⇤cp

2
p
d

based on Lemma 3.3. In this case the cells are large and hence have
a high chance to contain more than k points. This guarantees the
e�ectiveness of CPrune pruning. The average distance a��d of A
is estimated utilizing the property that each area A produced by
UAG is close to uniform. More speci�cally, suppose A has n two-
dimensional points and covers a domain region with size |x | ⇤ |y |,
then avgd ⇡

2
q

|x |⇤ |� |
n .

On the other hand, if cp of A is small relative to a��d , the LOF
score upper bound U 0(p), p 2 A will be large. Hence the chance
of pruning points from A by CPrune is small. In this case, still
setting the size of each cell as ct⇤cp

2
p
d

risks generating a large tree
structure with many extremely small cells, each containing very
few points. This inevitably leads to an increase in tree maintenance
and retrieval costs. Therefore a larger cell size is preferred to ensure
each cell on average contains at least k points for the sake of kNN
search. Similar to the estimation of a��d , in the two-dimensional

case the size of the cell could be set as S = 2
q

|x |⇤ |� |⇤k
n .

Algorithm 1 Build FixedAreaTree
1: k number o f nearest nei�hbors
2: checkNodes initialize Stack<Node>
3: Root initialize root node
4: function �����T���()
5: push Root into stack checkNodes
6: while Stack checkNodes not empty do
7: curNode pop one node from checkNodes
8: if # points in curNode � k + 1 then
9: ��������C�������(curNode)
10: function ��������C�������(���N��� N���)
11: childNodes � list di�ide curNode
12: for each children c 2 childNodes-list do
13: if is the same size as a small bucket then
14: set as ’Leaf Node’
15: if # points in � k + 1 then
16: set ’Can Prune’
17: else
18: check if empty
19: else
20: if # points in � k + 1 then
21: push into stack checkNodes
22: else
23: set as ’Leaf Node’ and check if empty

4.2 Density-aware Cell Generation
In summary DCG classi�es all areas into three categories, namely
sparse areas without indexing, small cp dense areas with indexing
for kNN search only, and large cp dense areas with indexing for
both CPrune pruning and kNN search.
Cell Generation and Indexing. After determining the cell size
S for area A, DCG generates cells and builds a tree index for A
customized for CPrune pruning. Similar to the QuadTree [21], each
node of the tree represents a bounding box covering some part of
the space being indexed, with the root node covering the entire

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1239

area. Each leaf node corresponds to a �nal cell C. However, DCG no
longer requires that each internal node contains exactly 2d children.
Instead it ensures that the area covered by each leaf node corre-
sponds to n ⇥ S, so called FixedAreaTree. By this DCG generates
cells C with their size guaranteed to be S if C contains more than k
points. Such cells C satisfy the requirement of CPrune pruning and
hence can be pruned immediately once produced as shown in Line
16 of Alg. 1.

To achieve this, DCG �rst evenly divides the given area into small
buckets with the pre-determined size S. The bucket instead of the
point is used as theminimal operation unit of the index construction
algorithm. The construction of FixedAreaTree is similar to building a
QuadTree [21] as a node split process. A node is de�ned as splittable
if its buckets contain in total more than k points as shown in Alg. 1
(Line 8). Due to space restrictions, we omit the details here.
Complexity of DCG. The complexity of mapping points to buck-
ets is O(n) with n the number of points. The complexity of con-
structing the FixedAreaTree index is the same as the complexity
of building a QuadTree, namely O(mlogm) with m the number of
buckets. Therefore the total complexity of DCG is O(n +mlogm).
Overall Complexity of D-TOLF. Since the complexity of UAG is
O(nlogn), the overall preprocessing complexity of D-TOLF hence is
O(nlogn + n +mlogm). The number of buckets m is much smaller
than the number of points n. Therefore the complexity of D-TOLF
is determined by O(nlogn), which is the same as the complexity of
the traditional indexing. Therefore we note that little additional
overhead is introduced by D-TOLF.

!" !#

!$!%

!&'()
*+,'-!&'(.&''

Figure 4: Forest Index

4.3 Forest Index-based kNN Search
After building the FixedAreaTree, each dense area is indexed by a
tree structure as shown in Fig. 4. Therefore the whole dataset D
can be represented by a forest index composed of multiple trees,
each �tting the data characteristics of its particular area. Next, we
introduce our kNN algorithm that by leveraging the forest index,
speeds up the kNN search required by point-based pruning and
LOF score computation, so called ForestKnn.

Local kNN search. Given a point p, ForestKnn �rst searches its
kNN within its local area Ai in which p resides, called local kNN
search. If Ai is associated with a FixedAreaTree, the traditional
indexed-based kNN search mechanism could be equally applied
here.

Utilizing the kNN found in Ai , called local kNN, ForestKnn then
determines whether the local kNN is its actual kNN within the
whole dataset. More specially, if the distance of p to its kth local
nearest neighbor is smaller than the shortest distance from p to
any boundary of area Ai , then the local kNN is guaranteed to be
the actual kNN. This is so because no point outside Ai can possibly
be closer to p than its local kNN. If this condition does not hold,
ForestKnn continues to search the neighboring areas of Ai using a
external kNN search.

External kNN Search. The external kNN search is conducted
on the trees of other adjacent areas Aj . Unlike the local kNN search
(traditional kNN search) which starts the search from the leaf node
containing p, there is no leaf node in Aj containing p. Therefore
the external kNN search has to �rst locate the leaf nodes that
possibly have the kNN of p in a top-down manner from the root
node, First, it checks whether a child node ndi of the root node
possibly has the kNN. If the shortest possible distance between
p and the boundary of the sub-area represented by ndi is smaller
than the local k-distance of p computed within its local areaAi , ndi
could contain p’s kNN. Thus the children of ndi must be recursively
evaluated in a depth �rst manner until all leaves underneath ndi
are traversed. The leaf nodes that possibly contain the kNN of p
are marked. The kNN search then is only conducted on the points
within such leaf nodes. Therefore, the CPU costs are signi�cantly
reduced.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup & Methodologies
Experimental Infrastructure. All experiments are conducted on
a computer with Intel 2.60GHz processor (Intel(R) Xeon(R) CPU
E5-2690 v4), 500GB RAM, and 8TB DISK. It runs Ubuntu operating
system (version 16.04.2 LTS). All code used in the experiments is
made available at GitHub [2].

Datasets. We evaluate our proposed methods on three real-
world datasets: OpenStreetMap [11], SDSS [9], and TIGER [8].

The OpenStreetMap dataset we use contains the geolocation
of buildings all over the world. Each row in this dataset represents a
building. OpenStreetMap dataset has been used in other similar re-
search work [17, 22]. Two attributes are utilized in the experiments,
namely longitude and latitude for distance computation.

To evaluate the performance of our proposed methods on vari-
ous dataset sizes, we extract from OpenStreetMap �ve data subsets
of di�erent sizes, including Rhode Island, Connecticut, Mas-
sachuse�s, US Northeast and US South. The number of data
points gradually grows from 0.67 million to more than 210 mil-
lion.

Sloan Digital Sky Survey (SDSS) dataset [9] is one of the
largest astronomical catalogs publicly accessible. It covers more
than one third of the entire sky. We extract 100 million records
from the thirteenth release of SDSS data [1] with eight numerical
attributes including ID, Right Ascension, Declination, three Unit
Vectors, Galactic longitude and Galactic latitude. The size of the
extracted dataset is 25GB.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1240

(a) Rhode Island (b) Connecticut (c) Massachusetts (d) US Northeast (e) US South

Figure 5: Evaluation of Processing Time with OpenStreetMap Datasets.

TIGER [8] dataset represents GIS features of the US. This 60GB
dataset contains 70 million line segments. The four numerical at-
tributes we work with include the longitude and latitude of two
endpoints of the line segments.

Table 1: Summary of OpenStreetMap datasets.

of records dataset size
Rhode Island 0.67 million ⇠30M
Connecticut 2.1 million ⇠ 90M
Massachusetts 31 million ⇠1.2G
US Northeast 81 million ⇠3.5G
US South 210 million ⇠10G

Metrics. We use the following measures. First, we measure the
total processing time of each method on each dataset. To provide
more insight into the preprocessing overhead, we break down the
total processing time into time spent on preprocessing and Top-
n outlier detection. Second, we measure the e�ectiveness of our
proposed multi-granularity pruning strategy (Sec. 3.2) by the ratio
of the number of pruned records versus the total number of records.

Algorithms.We compare the proposedmethods experimentally.
(1) The two step baseline method baseline: �rst compute the LOF
scores of all points utilizing the algorithm in [6] and sort the points
based on their LOF scores; (2) MC: the state-of-the-art Top-n LOF
algorithm MC as described in Sec. 6; (3) TOLF : our proposed top-n
LOF outlier detection approach. All three algorithms produce the
exactly identical Top-n LOF outliers in any case.

Experimental Methodology.We conduct experiments to eval-
uate the e�ectiveness of our proposed algorithms using vari-
ous datasets derived from the OpenStreetMap, SDSS, and TIGER
datasets. Except for the experiments of varying parameter k and
evaluating the pruning strategy of MC, the input parameter k of
LOF is �xed as 6 shown to be e�ective in capturing outliers in [6].
Similarly, except for the experiment varying parameter n, the input
parameter n of top outliers is set to be 0.0001% of the total data
points for each dataset. For example, in the OpenStreetMap US

South dataset experiment, the top 200 most unusual buildings are
returned.

5.2 Evaluation of the Processing Time
We evaluate the breakdown of the processing time of the three
algorithms using �ve OpenStreetMap datasets described above.

Fig. 5 demonstrates the results on the OpenStreetMap datasets.
D-TOLF signi�cantly outperforms the baseline solution and the
state-of-the-art MC in all �ve cases up to 35 times in total process-
ing time. Better yet, the larger the dataset, the more it wins. The
performance gain of D-TOLF results from our multi-granularity
pruning strategy, the data-driven cell generation mechanism, and
the density-aware forest indexing. The multi-granularity pruning
strategy (in Sec. 3.2) quickly prunes the points that are not pos-
sible to be top-N outliers without computing their LOF scores or
even kNNs. The data-driven cell generation mechanism ensures
the multi-granularity pruning works e�ectively on skewed datasets
with various distributions. While the forest indexing created during
the cell generation process signi�cantly speeds up the kNN search
for the following two reasons. First, the height of each tree in the
forest index is much smaller than the height of a tree index built
on the whole dataset, while it is the height of the tree that deter-
mines the costs of index-based kNN search. Second, our forest index
automatically adapts to the data densities of di�erent areas. The
state-of-the-artMC algorithm does not clearly superior to the naive
two steps baseline approach because of its heavy preprocessing
costs as shown in Fig. 5. On the other hand despite the e�ciency
of our multi-granularity pruning strategy the preprocessing costs
of D-TOLF are much lower than MC.

5.3 Evaluation on Various Dimensional Data
To study the impact of varying dimensions on Top-n LOF outlier
detection we evaluate D-TOLF on the TIGER dataset (4-dimensions)
and SDSS dataset (8-dimensions).
SDSS Dataset. Fig. 6(b) showcases the results on the eight dimen-
sional SDSS dataset. D-TOLF is around 20 times faster than baseline
and MC in total processing time due to taking advantage of the

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1241

Table 2: E�ectiveness of Proposed Pruning Strategies (% of total number of records).

Rhode Island Connecticut Massachusetts US Northeast US South
CPruning 11.07% 2.54% 10.39% 5.13% 11.59%
PPruning 83.07% 92.58% 81.75% 72.60% 84.41%

Total Pruning 94.14% 95.12% 92.14% 77.73% 96.00%

(a) TIGER (b) SDSS

Figure 6: Evaluation of Processing Time with Multi-
dimensional Datasets

multi-granularity pruning strategy and the density-aware forest
indexing (Sec. 4). Similar to the OpenStreetMap dataset experi-
ments the preprocessing costs of MC are even larger than its Top-n
LOF computation costs. Therefore MC is only slightly better than
baseline in total processing time.
TIGERDataset.The TIGER dataset contains longitude and latitude
of two endpoints in each record. As shown in Fig. 6(a), D-TOLF is
more than 30 times faster than baseline and MC due to the reasons
similar to the SDSS dataset. Again MC is only slightly better than
baseline because of its heavy preprocessing cost.

In summary, our experiments on the SDSS dataset and TIGER
dataset demonstrate that our D-TOLF approach e�ciently support
datasets with varying dimensions.

5.4 Evaluation of the E�ectiveness of Pruning
Pruning of D-TOLF. In this set of experiments we �rst evalu-
ate the e�ectiveness of our multi-granularity pruning strategy by
measuring the ratio of the number of pruned points and the total
number of points in the dataset. The same data and setting are
utilized as in Sec. 5.2. The results are shown in percentage.

As shown Tab. 2 (column 2-6), more than 10% of points can be
pruned immediately without any evaluation by CPrune pruning.
Further, up to 90% of the points can be pruned without computing
their LOF scores by our D-TOLF point-based pruning (PPrune).
Pruning ofMC.We also evaluate the pruning strategy of the state-
of-the-art Top-n LOF algorithm MC. The OpenStreetMap Rhode
Island dataset is utilized in this set of experiments. The parameter k
(3) and n (1) are set much smaller than other experiments, because
based on our testing, MC cannot prune any point when k and n are

set to larger values. As shown in Fig. 7(b) as the radius of the micro-
clusters (formed for pruning purpose) decreases, the percentage of
the pruned points increases up to 11%. However, the processing
time also increases accordingly, although more points are pruned.
This is so because a smaller radius leads to the generation of a large
number of small micro-clusters. Although small cluster bene�ts
the pruning strategy of MC, generating a large number of clusters
signi�cantly increases the cost of Birch clustering when creating
the CF tree [23]. The increased preprocessing costs outweigh the
bene�t of pruning more points. Therefore the pruning of MC only
works in very limited scenarios with carefully tuned cluster radius
parameter.

5.5 Evaluation of the In�uence of Parameters
We next evaluate the in�uence of the number of neighbors k and
the number of outliers n. We use the OpenStreetMap Connecticut
dataset with 2.1 million records (Tab. 1).
In�uence of Varying Parameter k . Fig. 8(a) presents the results
of varying the LOF input parameter k from 1 to 100. D-TOLF out-
performs other alternatives up to 1 order of magnitude in total
processing time even on this small dataset. As k increases, the costs
of the kNN search will also increase and hence the overall pro-
cessing time. However the processing time of D-TOLF increases
much slower than baseline and MC. Therefore the larger k is, the
more D-TOLF wins. This is so because the multi-granularity prun-
ing strategy of D-TOLF e�ectively reduces the number of kNN
searches required by the exact LOF score computation. Further,
our density-aware forest index is more e�ective in speeding up the
kNN search than the traditional indexing like R-tree [10] utilized
by baseline andMC, while the kNN search becomes more expensive
as k increases.
In�uence of Varying Parameter n. Fig. 8(b) shows the total pro-
cessing time when varying the input parameter n, that is, the num-
ber of outliers. N is varied from 1 to 10,000. D-TOLF beats baseline
andMC in all cases at least one order of magnitude. Further, the pro-
cessing time of D-TOLF is stable as n increases. This indicates that
the pruning and indexing of D-TOLF are still very e�ective with
large n. The processing time of baseline and MC increases slightly
when n increases. For baseline, their additional sorting phase be-
comes more expensive as n increases. However, the costs of the
sorting phase are minor compared to the LOF score computation
costs. As for MC the increase of n potentially would in�uence its
pruning ability. However, since the pruning ability ofMC is already
very limited even when n is small, the in�uence of a larger n to MC
will not be very obvious.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1242

(a) Time Cost (b) Percentage of Pruned Points

Figure 7: Evaluate the Pruning of MC on Rhode Island
Dataset. (k=3, n=1)

(a) Tune K (b) Tune N

Figure 8: Tune Parameters k and n on Connecticut
dataset

6 RELATEDWORK
Breunig et al. [6] proposed the notion of local outliers in contrast
to global distance-based outliers [15, 20]. They de�ned a degree of
outlierness based on the density of a point relative to its neighbors,
the so called Local Outlier Factor (LOF). LOF has been shown to
provide better accuracy in identifying anomalous points [16]. A
centralized algorithm was proposed in [6] to compute the LOF
score of each point. It can be utilized to detect top-n LOF outliers by
sorting the points based their computed LOF scores. As a baseline
method it is shown in our experiments to be at least 20 times slower
than our TOLF approach, because it relies on routinely conducting
the expensive kNN search on each point to detect outliers.

In [13] that proposed the concept of top-n LOF outlier, a cen-
tralized detection algorithm was developed that is highly coupled
with an expensive preprocessing phase [13]. It �rst applies BIRCH
clustering to group nearby data points together. Then based on
the radius of each individual cluster and the distance relationships
among all clusters, it ranks the clusters based on their likelihood of
containing outliers and detects outliers only in the highly ranked
clusters. However as shown in its experiments [13], this method
took thousands of seconds to process a synthetic dataset smaller
than 1M. Therefore it is not scalable to reasonable sized datasets. As
con�rmed by our experiments in Sec. 5.2, in some cases it cannot
even beat the naive two step baseline approach due to its high pre-
processing costs and ine�ciency in avoiding the expensive exact
LOF score computation.

Another local outlier detection technique was proposed in [19]
called LOCI. Unlike LOF, LOCI utilizes a distance range threshold
r to de�ne the local neighborhood of each point instead of the
kNN concept. LOCI has lower computation costs compared to LOF.
However, applying a uni�ed distance range threshold r to the whole
dataset is not e�ective in de�ning the local neighborhood when
handling skewed datasets. It may lead to a vacant neighborhood
for data points in sparse areas, while numerous neighbors for data
points in dense areas.

Bhaduri et al. [5] proposed an e�cient detection method for the
distance-based outlier semantics in [20] which de�nes outliers as

the n points presenting the highest k-distance, where k-distance
represents the distance of a point to its kth nearest neighbor. Similar
to our work, it utilizes the nth largest k-distance seen so far as
a threshold to determine whether a new point p has chance to
be in the top-n list based on its largest possible (upper bound) k-
distance. Given a point p estimating its upper bound for k-distance
is much more straightforward than for LOF score. Intuitively, in the
k-distance computation process, the distance of p to its kth furthest
point evaluated so far (or temporary k-distance) can naturally serve
as the upper bound k-distance of p. This is so because the more
points are evaluated, the smaller the temporary k-distance will be.
Unfortunately, the LOF score computation does not demonstrate
such monotonicity property. Approximating the upper bound of
LOF score is much more challenging than k-distance, since the LOF
score of p is the ratio of its local density against the average local
density of its kNN, which is determined not only by p’s kNN, but
also by its kNN’s kNN.

7 CONCLUSION
Top-n Local Outlier Factor semantics (LOF) is shown to be very
e�ective in detecting outliers in skewed real world large data. How-
ever existing techniques lack proper scaling to large dataset. In this
work, we propose the �rst scalable Top-n LOF outlier detection ap-
proach called TOLF. Innovations include multi-granularity pruning
strategy that quickly excludes most inliers without computing their
LOF scores and even kNNs, a data-driven partitioning strategy that
ensures the e�ectiveness of the pruning strategy over skewed data,
and the density-aware forest indexing mechanism to speed up kNN
search. Our experimental evaluation on OpenStreetMap, TIGER,
and SDSS datasets demonstrates the e�ciency of TOLF - up to 35
times faster than the state-of-the-art approach.

8 ACKNOWLEDGEMENT
This work is supported by NSF IIS #1560229, NSF CRI #1305258,
and Philips Research.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1243

REFERENCES
[1] 2016. SDSS 13 Release. http://www.sdss.org/dr13/. (2016).
[2] 2017. Top-n LOF Code. https://github.com/yizhouyan/TopNLOFKDD. (2017).
[3] Charu C. Aggarwal. 2013. Outlier Analysis. Springer.
[4] Stephen D. Bay and Mark Schwabacher. 2003. Mining distance-based outliers in

near linear time with randomization and a simple pruning rule. In KDD. 29–38.
[5] Kanishka Bhaduri, Bryan L. Matthews, and Chris Giannella. 2011. Algorithms

for Speeding up Distance-based Outlier Detection. In KDD. 859–867.
[6] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and JÃČÂűrg Sander.

2000. LOF: Identifying Density-based Local Outliers. In SIGMOD (SIGMOD ’00).
ACM, New York, NY, USA, 93–104.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms (3. ed.). MIT Press.

[8] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce
framework for spatial data. In ICDE. IEEE, 1352–1363.

[9] Kyle S. Dawson et.al. 2016. The SDSS-IV Extended Baryon Oscillation Spectro-
scopic Survey: Overview and Early Data. The Astronomical Journal 151, 2 (2016),
44.

[10] Antonin Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching.
In INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA. ACM, 47–57.

[11] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-generated
street maps. IEEE Pervasive Computing 7, 4 (2008), 12–18.

[12] Douglas M. Hawkins. 1980. Identi�cation of Outliers. Springer. 1–188 pages.
[13] Wen Jin, Anthony K. H. Tung, and Jiawei Han. 2001. Mining Top-n Local Outliers

in Large Databases. In KDD (KDD ’01). New York, NY, USA, 293–298.

[14] EdwinM. Knorr and Raymond T. Ng. 1998. Algorithms forMining Distance-Based
Outliers in Large Datasets. In VLDB. 392–403.

[15] Edwin M Knox and Raymond T Ng. 1998. Algorithms for mining distance-based
outliers in large datasets. In Proceedings of the International Conference on Very
Large Data Bases. 392–403.

[16] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Sri-
vastava. 2003. A Comparative Study of Anomaly Detection Schemes in Network
Intrusion Detection.. In SDM. SIAM, 25–36.

[17] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. E�cient processing of
k nearest neighbor joins using mapreduce. Proceedings of the VLDB Endowment
5, 10 (2012), 1016–1027.

[18] Gustavo Henrique Orair, Carlos H. C. Teixeira, Ye Wang, Wagner Meira Jr., and
Srinivasan Parthasarathy. 2010. Distance-Based Outlier Detection: Consolidation
and Renewed Bearing. PVLDB 3, 2 (2010), 1469–1480.

[19] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos Falout-
sos. 2003. LOCI: Fast Outlier Detection Using the Local Correlation Integral. In
ICDE. 315–326.

[20] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. E�cient Algo-
rithms for Mining Outliers from Large Data Sets. In SIGMOD. 427–438.

[21] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data Structures.
ACM Comput. Surv. 16, 2 (June 1984), 187–260.

[22] Chi Zhang, Feifei Li, and Je�rey Jestes. 2012. E�cient parallel kNN joins for large
data in MapReduce. In EDBT. 38–49.

[23] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: an e�cient
data clustering method for very large databases. In ACM SIGMOD Record, Vol. 25.
ACM, 103–114.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1244

