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ABSTRACT

State-of-the-art optimizers produce one single optimal query plan
for all stream data, in spite of such a singleton plan typically be-
ing sub-optimal or even poor for highly correlated data. Recently a

new stream processing paradigm, called multi-route approach, has

emerged as a promising approach for tackling this problem. Multi-

route first divides data streams into several partitions and then cre-

ates a separate query plan for each combination of partitions. Un-
fortunately current approaches suffer from severe shortcomings
in particular, the lack of an effective partitioning strategy and the
prohibitive query optimization expense. In this work we propose
the first practical multi-route optimizer namedrrelation-aware
multi-route stream query optimizéor CMR) that solves both prob-
lems. By exploiting both intra- and inter-stream correlations of
streams, CMR produces effective partitions without having to un-
dertake repeated expensive query plan generation. The produce
partitions not only are best served by distinct optimal query plans,
but also leverage the partition-driven pruning opportunity. Experi-
mental results with both synthetic and real life stream data confirm
that CMR outperforms the state-of-the-art solutions up to an order
of magnitude in both the query optimization time and the run-time
execution performance.

1. INTRODUCTION

Motivation. Given a user query, either static or continuous, most
modern query optimizers determinesangle optimalquery plan
with the lowest execution cost compared to other possible plans.
This is based on the implicit assumption that stream data follows
a uniform distribution. However, real-world data is often skewed
with possibly complex correlations hidden in both a single stream
or across multiple streams [16]. Thus using overall stream statis-
tics as the base for constructing one single query plan serving all
data tuples in the stream misses important opportunities for effec-
tive query optimization [14, 13].

Given skewed data, the recently emerged multi-route paradigm

partitions such that each partition exhibits distinct statistical char-
acteristics. This then leads us to suppudiltiple query plansn-
stead of onesingle plan with each plan tuned to serve a combi-
nation of partitions, called partition query Let us demonstrate

with a real-world example the optimization opportunities enabled

by data correlations.

Motivating Example. Consider an application which monitors re-

cent promising stocks by issuing the following quépy, [13].
SELECT S.sector, S.conpany, S.price, C pattern, N. sector
FROM Stock as S, News as N, CandlestickPatterns as C
VWHERE mat ches(S. data[ 60 seconds], C)
AND S. conpany = N.conpany[3 hours])
W NDOW 60 seconds

The CandlestickPatterntable contains the most significant “Can-

dlestick” patterns, e.g., “Engulfing” and “Kickers” [19] which are

I*op1*/
[*opa*l

(yvidely recognized as effective indicators of bullish stocks. Opera-

tor op; performs a similarity join on the latest financial data (i.e.,
incoming stock data from the last 60 seconds) withGhedleStick-
Patternstable, while operatoop. performs a match of the stock’s
name with the last three hours of Yahoo! Financial news (News).
Here letd; denote the selectivity afp;.

In the stock market the price of a company'’s stock is highly cor-
related with the health of the industry represented by the stock sec-
tor. Stocks in the same sector tend to exhibit similar trends. Due
to these strong correlations between stocks performance and their
sectors we may want to divide the stock stream into partitions by
their sectors, such as Agriculture, Energy, Hi-tech, etc.

Suppose it is a bullish market. Based on the average selectivi-
ties withd, > 2, the single query plan optimal for the overall data
has the ordering<op2, op1>. Now suppose the news reports the
Deepwater Horizon oil spill accident. This may hurt the perfor-
mance of companies in the energy sector. Under this condition the
energy sector stocks may have fewer matches witiCthedlestick-
Patternstable and more matches instead with the news. In this case,
01 will be relatively lower thany, for such data. Secopi, op2>
becomes the most efficient processing order for this particular par-

instead proposes that the input stream data should be divided intotition of data. Since other sectors are not influenced, the “global
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best join ordering"<op2, op1 > remains optimal for the other par-
titions. In this scenario, producing a customized query plan for the
energy partition of data would clearly outperform a solution that
forces the usage of one single generic plan upon all data types.
This horizontal partitioning of the stock stream exposes another
promising opportunity for optimization when stromger-stream
correlation is experienced between stocks and news. The strong
inter-stream correlation exists when the stock and news streams ex-
hibit similar statistical properties. For example the media exposure
of the companies may be also highly correlated to its industry sec-
tor. In this case it would be beneficial to also divide the news stream



by its sector attribute (as shown in Fig. 1). pair pruning opportunity illustrated above. To avoid enumerating
We notice that after this coordinated partitioning across multiple the entire search space, they identify partitions either by employ-
streams the join operation among stocks and news no longer musting off-the-shelf randomized partitioning algorithms [13] or by uti-
be conducted amorgll pairs of partitions from these two streams. lizing greedy search algorithms without backtracking [20]. These
For instance in our example, assume each company only belongssimplistic search heuristics tend to result in ineffective optimiza-

to one single sector. The energy partitiSn of stock stream will
only produce results when it joins with the energy partitign of

the news stream (Fig. 1). Similarhy, is guaranteed to not produce
any output tuple when joining with partitioN,, of news, because
the domain values of the join attribute S.company in partit¥n

do not overlap with the domain values of N.company in partition
N.. Clearly if in general we could successfully identify and prune
all join pairs guaranteed to not produce any output tuples, a major

performance benefit could be reaped. In short, the query perfor-

mance can be radically improved by exposing and then exploiting
inter-stream correlations between stock and news streams.

Join Pair
CandleStickPattern Stock (SaNa) News
Agriculture Agriculture

& (Na)
Energy Energy

(&3] (N9
Hitech | ... Hi-teCh

(S) (Nn)

Figure 1: Join Pair Pruning for Query Q.

Technical ChallengesFinding an effective multi-route solution
which fully utilizes the optimization opportunities illustrated above
is challenging. First as shown in [13] given a single streathe
complexity of dividingStuples into partitions with distinct optimal
execution plans is already exponential in the number of S’s do-
main values even when only considering S’s local data distribution.
Worst yet to utilize the join pair pruning, the partitioning of one

stream must also consider the partition decisions made for the other

participating streams. However simply partitioning all streams on
their join attributes may lead to not only too many partitions but

also very poor ones, namely the tuples in such a partition may not

share the same optimal plan.
To complicate matters further, with the introduction of partition-
ing query optimization now consists of two tasks: (1) determining

the partitions of the input streams, and (2) creating a query plan

for each partition query. Unfortunately the two subproblems are
strongly interdependeni change in one optimization decision re-
quires re-optimization of the other subproblem. This yields a much

larger optimization space than the one considered by traditional op-

timizers. This conflicts with the requirement that multi-route opti-
mization must be highly efficient to be viable in fluctuating stream
environments [17]. Itis this challenging problem of the design of a

practical multi-route optimizer meeting these competing demands

that we tackle in this work.
State-of-the-Art. While initial work on multi-route processing

has recently emerged [13, 20], the existing techniques do not ad-
dress the above described challenges. To reduce the search spa

these multi-route optimizers construct partitions by either only con-
sidering the local statistics of each individual stream [13] in isola-
tion or by going with the unrealistic simplification of assuming con-

ditional independence across attributes [20]. By ignoring strong
inter-stream correlations existing optimizers miss the critical join
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tion decisions as confirmed by our experiments (Sec. 6.3). Further-
more in the search process they evaluate the quality of a selected
partitioning by creating query plans for the corresponding parti-
tion queries. This tight interdependency of partitioning and query
planning causes both methods to suffer from an order of magnitude
increase of optimization time compared to a traditional optimizer.

Proposed Solution. In this paper we propose the first practi-
cal multi-route optimizer name@orrelation-Aware Multi-Route
Stream Query OptimizelCMR). By explicitly exploring the cor-
relations at both the intra- and inter-stream levels, CMR produces
an effective multi-route solution within a short optimization time.
CMR is built on two key principles established by characterizing
the situational context in which a multi-route approach would be a
preferred solution over the classical single plan approach.

First, a multi-route solution shows a significant performance ad-
vantage only when the streams can be divided into partitions with
distinct statistics relative to other partitions, yet with uniformity
among tuples within the same partition. This intra-stream correla-
tion property is calledskewed uniformity Based on this property
we design an algorithm called CORBA that discovers appropriate
partitions of each stream based on tudlision probability theory
[7]. The sampling-based nature and the sub-linear sample complex-
ity of CORBA make it ideal for unbounded continuously arriving
streaming data with dynamically changing statistics.

Second, we demonstrate that strong inter-stream correlation re-
ferred in the joint distribution across input streams is the second
critical prerequisite for the deployment of a multi-route solution
being beneficial. In that case the multi-route approach will not
only avoid the prohibitive overhead of simultaneously maintaining
a large number of execution plans but also benefit from the highly
effective join pair pruning optimization. We proposendorma-
tion theorybased metric [3] that can determine the existence of
strong inter-stream correlation. Better yet, this metric can now also
be exploited to further optimize the initial partitioning by merging
partitions with similar joint statistics.

The twocorrelation indicatorsnot only assist us in deriving an
effective partitioning solution without having to repeatedly under-
take expensive query plan generation, but also offeeanty ter-
minationmechanism. This assures that CMR quickly converges to
the traditional “single plan” approach when the data streams show
neither skewed uniformity nor strong inter-stream correlation.

Our experiments (Sec. 6.3) confirm tIZVIR outperforms state-
of-the-art methods up to an order of magnitude in both its runtime
execution performance and its optimization time. Thus CMR is a
win-win; it not only produces a highly effective multi-route solu-
tion, but does so with a surprising low optimization expense.

Contributions. In summary, the contributions of this work in-
clude: 1) We introduceorrelation indicatorsthat reliably deter-
mine the applicability of the multi-route approach for a given work-
load. 2) We design a sample-based partitioning algorithm that dis-
covers effectivantra-streampartitions in sub-linear sample com-
plexity. 3) We propose a partition optimization approach that based
on theinter-stream correlation indicatqris shown to successfully

ce

exploit the join pair pruning opportunity. 4) Our experiments con-
firm that ourCMR optimizer integrating the above strategies into
one comprehensive solution framework outperforms the existing
alternatives up to an order of magnitude.



2. RELATED WORK produce partitions with distinct optimal query plans. Instead they

Streaming Databases.Like Query Mesh [13], CMR is also a aim to have equal load on each machine. However producing a
multi-route approach. Once an effective multi-route solution has distinct plan for different partitions is the core concept of multi-
been identified by CMR, it can be successfully executed by any route optimization, while maklng_partl_tlons equal in cost to keep a
multi-route infrastructure, including the Query Mesh executor. How- balanced workload across machines is not our concern.
ever, this is where key similarities end. Unlike our effort, Query
Mesh [13] does not explore the data correlations within a single 3. MULTI-ROUTE OPTIMIZATION PROB-
strgam nor across strear_n_s f_or stream partitioning. Rathe_r it uses LEM FORMULATION AND ANALYSIS
a simplerandomized partitioning stratedipr every stream in iso-
lation, thus potentially leading to ineffective partitioning. Further- 3.1 Problem Formulation
more Query Mesh relies on query planning to evaluate if a parti- ~° ) .
tioning is good, making the optimization process prohibitively ex- Problem Formulation. S; is a data stream whose tuple values
pensive. CMR overcomes both bottlenecks of Query Mesh, namely COMe from the universi; (1<i<m). A queryQ is specified on a
the ineffective partitioning and the expensive optimization. set of stream¢5,,52,...,5m }. A partition solutionof S;, P(S:), is

The content-based routingCBR) extension of Eddies [14] con- @ Set of pairwise disjoint subsets of tuple valuésfrom/; whose
tinuously profiles operators and identifies “classifier attributes” to Union COVers the universi. A subset of streanti; containing
partition the underlying data into tuple classes to be routed by Ed- Only the tupb[e values ir™ is called a substream ¢;. Itis also
dies. However CBR only considers the special case of a single- d€noted ag” when no ambiguity arises. )
attribute decision. We take a more general approach in CMR by in- _ We useP’(S;) to denote a particular partition solution of stream
corporating correlations of multiple attributes not only within one 5 @nd3(5;) to denote the set of all possible partition solutions of
stream but also across several streams. CBR inherits several probStréamsi. A global partition solutionG'P; of the queryQ onm
lems associated with Eddies, such as continuous and often unnecStreamsS; (1<i<m)is a set of m partition solutions”(S:),P(5z)
essary fine-grained route re-learning at runtime. Extending CBR »+(5=)}. Given aGP; of Q, apartition query @, (GP;) of
to non-Eddies-based systems, i.e., systems that pre-compute plan§U€’YQ is a query identical to Q in semantics, but applied to a set
prior to execution is non-trivial, as CBR does not compute full of M su.bstr(;ams.{e ', e .. e7n} of the streamgSy, Sz ...
routes. In contrast, our CMR has a much wider scope of appli- Sm}, With ¢ being an element aP(5;) € GP;, 1<i<m.
cability as it addresses multi-route query processing in plan-based Given the set of all partition queries with respecti®;, denoted
systems-the standard paradigm for data processing. by Q(G'P;), amulti-route query planQP(@Q, GP;) of queryQfor

Static Databases.In the context of static relational databases, GF’ iS @ set of query plans, namely one for each of the partition
Polyzotis proposes an iterative algorithm [15] which partitions queries inQ(GP;). Now we are ready to define the notion of an
relation of a join query intok (a fixed pre-defined threshold) parti-  OPtimal multi-route plan ofzFP;.
tions and constructs join plans, one for each partition. However

all other n - 1 relations are left non-partitioned. Our work does not ont . -
impose these two artificial limitations. First, we allow the parti- @F° (@, GF;) is the multi-route planQP(@Q, GP;) that pro-

tioning of multiple relations. Second, we do not apriori impose a cesses all partition queries @fF; with the minimal overall query

rigid number k of partitions that a relation is forced to be divided €Xecution costs denoted asst(Q, GF;).
into. Instead we use data-driven criteria for determining if or if not
to partition and if so how many partitions to make.

In [20] Tzoumas et al. introduces the notionawnditional join
plans a restricted search space resulting from horizontal partition-
ing that captures both the partitioning and join ordering aspects.
However [20] makes partitions only based on one single attribute
while our work can partition on any set of attributes. They estimate
the join selectivity with the assumption thednditional indepen-
denciesexist in the data. Instead by partitioning the data with the
guidance of both the intra-stream and inter-stream correlations, we

accurately estimate the selectivity without this assumption. The MR.,: problem has a much larger optimization space than

_In [8] Herodotou et al. proposes techniques to generate effi- y,o one considered by traditional optimizers as analyzed below.
cient plans for SQL queries on alreafye-partitionedtables. In

other words they only focus on the traditional optimization prob- 3.2 Complexity Analysis of Multi-Route Opti-
lem, namely they produce an execution plan for each partition query mization Problem

rather than the harder problem of identifying a suitable partitioning
within this huge partitioning search space. The latter is instead
tackled by our work.

Parallel and Distributed Data Processing. Like multi-route

optimization, data partitioning also has been considered in paral-
lel and distributed settings [1, 6, 11]. In these works, streaming

Definition 1. The optimal multi-route plan offP; denoted as

Our problem ofmulti-route optimizationcan now be formally
defined as follows.

Definition 2. Given m set§3(S1), B(S2), ..., P(Sm) of par-
tition solutions of streams,5s,...,5,., the multi-route optimiza-
' tion problem M R, is to find a global partition solutionGP;,
and the multi-route plarQP " (Q, GPy.), where GP;, is formed
by selecting aP(S;) from each}3(.S;), such thatcost(Q, GPy) is
minimal among theost(Q, GP;) of all possibleGP; of Q.

We analyze the complexity of the multi-route optimization prob-
lem for a queryQ with minput streams. Le€;=|l/;| denote the
cardinality of the universe of streaff). Then theBell numbei{10]

B; in Eq. 1 represents the cardinalityPf(.S; ).

data is partitioned across machines of a parallel system and then o1 E M v

i i i Bi=) |52 (=DM ) &
gueries are rewritten accordingly to use the fragments located on i = %l [
each node. However unlike multi-route optimization, the goal here k=1 J=1

is load balancing, namely to spread the load of a query across the g find the optimal global partition solutio P, lcic,,Bi
distributed system so to avoid over-loaded nodes and reduce heavy,gssible combinations o partition solutions fromm streams re-
network traffic. In other words the data partitioning does notaimto spectively (possiblé ;) would have to be examined: denotes
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the time complexity of the join query planning algorithm f@ron

a given set of streams to join. If the query planning is applied to
each partition query in each possiltleP;, then the overall com-
plexity of the problem search space would®gT, ., ., B: *E).

In general the problem of identifying an optimal plan for a given
join query is known to beNP-hard [17]. B; being exponential

in C; further exasperates the problem [13]. Clearly for lafge

the search is prohibitively expensive. In essence, the complexity

of MR,,, originates from two key factors: (1) the combinatorial
number of possibléZP; and (2) the strong interdependency of the
partitioning and query planning. Given the exponential complexity,

it is thus imperative that efficient yet effective search heuristics are

devised for tackling thé/R,,: problem defined in Def. 2.

3.3 The CMR Approach

Any viable multi-route technique has to simplify thig R,:
problem, while still achieving an effective solution.

Possible Solution Approaches.Several methods are possible
to reduce thell R,,: problem. One solution is to partition each
stream in isolation by only considering the local stream statistics.
However even if locally optimal solutions could be found, simply
combining the local optimal partitions of each stream is not likely
to produce an effective global multi-streams partitioni&§; due
to the ignorance of the statistical properties of other streams.

An alternative solution may be to impose some artificial restric-

Strong
inter-stream

correlatior
Inter-stream |
Local Partitioner

partitions
Single plan
optimizer

Figure 2: CMR Framework
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First, our intra-stream partitioner produces an initial partition-
ing of each individual stream by discovering highly correlated tu-
ples. This intra-stream partitioning serves as a good starting point
of our inter-stream partitioner. Thatis, it naturally follows the intra-
stream correlation that is indicator of a situation where the multi-
route solution is beneficial.

Second, when a strong inter-stream correlation exists among the
input streams, the tuples in the same stream partition formed by the
intra-stream partitioner tend to also show similar joint distribution
statistics. Thus modeling the joint distribution at the partition ab-
straction level would not miss the major characteristics of the joint
distribution. We thus postulate that relying on the partition level
joint distribution model to improve the local partitioning would not
miss important optimization opportunities.

Third, the joint distribution captures both the data statistics of the
input streams and the user query semantics. This leads to the fol-

tions on the possible partitioning or the query plans to be consid- Jowing two observations. First, since the query optimizer uses the
ered such as always dividing each stream into a fixed number of joint distribution to determine the optimal query plan, tuples shar-
partitions or selecting optimal query plans only from a subset of ing an optimal or a near optimal query plan could be located based
all possible plans. However after applying such drastic restrictions, on their joint distribution statistics. Second, the potential perfor-

many effective multi-route solutions would be missed.

Our CMR Approach. CMR proposes aorrelation-aware par-
titioning strategy to simplify thisM R,,: problem. By leverag-
ing both the intra- and inter-stream correlations for partitioning,
this strategy divides the problem of searching for an effeativg
into two sub-problems, nameigtra-stream partitioningandinter-
stream partitioning Furthermore it decomposes tpartitioning
and query planningnto two separate stages. Therefore CMR sig-
nificantly simplifies theM R,,: problem, rendering it practical.

CMR is composed of three layers, namely intra-stream parti-

mance of eaclGP; can be represented by some joint distribution
statistics related metric. This leads to the important insight that it
is possible to identify an effectivé&/P; by maximizing the met-

ric instead of employing the expensive query planning process to
explicitly evaluate the cost of each of the exponentially mé&is;.

As shownin Sec. 5, our inter-stream partitioner incorporating the
above observations finds an effecti&; by maximizing our pro-
posedmutual informationmetric [3]. Our empirical study shows
that this metric is a good indicator of the potential gain @fB;.

In summary in this work we propose thercelation-aware miti-

tioner, inter-stream partitioner, and partition query planner as shownroute stream query optimizer (or CMR) to tackle this challenging

in Fig. 2. CMR first solves the intra-stream partitioning problem,
namely produces an initial partitioning for each individual stream

M R,p¢ problem (Def. 2). By leveraging the two proposeat-
relation indicators CMR successfully reduces the search space of

based on local stream statistics. These local partitions are then exthe MRopt problem. Yet it still guarantees to produce an effective

ploited to model the joint distribution across multiple streams.

partitioning which can take full advantage of the optimization op-

As second step, the inter-stream partitioner further optimizes the portunities afforded by the multi-route query processing paradigm.

initial local partitions and produces the findlP;. The inter-stream

partitioner is based on our proposed partition abstraction level joint 4. CORRELATION-AWARE INTRA-

distribution. This significantlyreducesthe optimal GP; search

space. Otherwise it would be composed of combinatorial number

of possibleGP; if the partitioning instead relies on the much more
fine-grained tuple value granularity joint distribution.

Furthermore the inter-stream partitioning is driven by our pro-
posed joint statistical property based metric. This is highly effective
compared to having to test each triéP; by an expensive query

STREAM PARTITIONING

Next, we will establish the fundamental insight that for a multi-
route solution to be an effective solution for processing a q@gry
each input stream should satisfy a certain statistical property. This
observation opens the opportunity to effectively partition each sin-
gle stream by modeling it as a uniform interval detection problem.

planning process. The query planning is only applied as the third Fortunately, we demonstrate that uniform intervals can be quickly

and last step to produce the correspondipg°”* (Q, GP;) after
the final GP; has been formed by CMR optimizer. Therefore CMR
successfully decomposes the partitioning and query planning.
Effectiveness of CMR.The effectiveness of CMR lies on the
particular statistical properties that are proposethdigatorsfor

discovered based on the theory that any interval close to being uni-
form would have a smalpairwise collision probability{7]. This
probability can be measured on a stream sample with sub-linear
sampling complexity, makinGORBAefficient and thus conductive

to the dynamic streaming context. CORBA discovers appropriate

the multi-route optimization paradigm to be a suitable design choice,partitions that build a solid foundation to render the inter-stream

namely the strong intra- and inter-stream correlations.
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partitioning problem introduced in Sec. 5 practical.



4.1 The Skewed Uniformity Property

Multi-route optimization is based on the insight that tuples with
similar statistical properties are likely to be best served by the same
route [14]. On the one extreme if the data is uniform, then the tradi- 1: jow = 1, boundary = 1;
tional “one single plahsolution suffices to serve most of the tuples  2: D =¢;
well. On the other extreme if the data is “too skewed”, e.g., most 3: skewUniformity = false;
tuples have distinct statistics, route-less solutions like Eddies [2] g: fori = 1to7 do
maybe most effective. Such route-less solutions at runtime decide 6:

for every tuple which operator to visit next. Thus they come atthe 7:

Algorithm 1 CORBA(D, 7)

Input: distribution D, partition number threshotd
Output: Bool skewUniformity, partitioningd with no more thanr intervals. Each
interval is represented as interval(low,high).

boundary = detectLongUI(D, low);
D = D + interval(low,boundary);
if (boundary == L)}then

cost of a per-tuple routing overhead. As illustrated in the motivation
example in Sec. 1, a multi-route solution exhibits a major perfor-
mance advantage in the case when each stream can be divided int
partitions with distinct statistics, yet with uniformity among tuples
within the same patrtition.

Here we formally define the above local stream property also be-
ing referred to askewed uniformityLet.S; be a data stream with a
universeld; = {us, ug,...ur}. By mapping{; to a numerical uni-
verseld;, = {1...L}, theprobability distributionof S; is represented
as a function DU/, — [0,1]. For each elemer#; € Uy, D(e;)
measures the probability that appears in strear§; denoted as
pi. Given any intervall C Uy, the probability of interval is de-

noted ap; =3, ; pi.

Definition 3. Given a distribution D2/, — [0, 1], a partition
thresholdr (7 < L), and an error threshold, D is a distribution
with skewed uniformity if: R

(1) There exists a distributio®: U/, — [0, 1] which is repre-
sented as a sequence of disjoint intervalsand a corresponding
sequence of valueg (1 <j <k with k< 7), wherev; < 1; and

(2) Each intervall; satisfies theniform interval criteria:

Zie[] (pi — vj)2 < EQPIJ [7];and

@D = Dll, = /e Ticy (i = m)?) <.

D is said to be ar-approximation of D.

Based on the above observation we propose to build an intra-
stream partitioning for a given streaf with skewed uniformity
by identifying thee-approximation of D. This intra-stream parti-
tioning serves as a good start point of our inter-stream patrtitioner.
That is, it naturally follows the statistical property that is indicator
of a situation where the multi-route solution is beneficial.

4.2 CORBA Algorithm

Capturing the distribution properties of streaming data is chal-
lenging due to the unbounded nature of the continuously arriving
streaming data and its frequently changing statistics. Any approach
involving prohibitive computational costs or producing results only
after seeing the complete data stream is clearly not practical.

We now propose a dlision probability-based algorithm named
CORBAto partition each input stream into uniform intervals. Given
a distribution D,.CORBAwill detect whether the skewed uniformity
holds. If it holds, CORBA also outputs a partitioning of D with no
more thanr partitions, namely the-approximationD (Def. 3).

The general idea o€ORBAIs to partitioni/;, into k (k < 7)
longest intervals with each being approximately uniform, so called
longest uniform interval An interval I [start, end] is said to be a
longest uniform interval if there does not exist any other uniform
interval I’ = [start’, end’] with start’ < start andend’ > end.

Let us assume that we have at our disposal an algorkbt@ct-
LongUl which given a pointow in U, can detect the uniform
interval’s boundary starting froow in D. Then the CORBA algo-
rithm will perform as described in Alg. 1. At firsh is initialized
to be empty (Line 2). In each iteration, the algorithm searches the
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skewUniformity = true;
return;

10: else

a1: low = boundary + 1;
. endif

13: end for

Longest uniform interval

low

hil hi+1

uniTest(low, hi) = true

uniTest(low, hi + 1) = false

Figure 3: Longest Uniform Interval

interval boundary by running ttaetectLongUhlgorithm (Line 5).
In Line 6, D is updated by adding the newly identifiederval to
the set of intervals so far. If all elements bfhave been covered
by the located intervals, then the “for loop” (Line 4) will termi-
nate early even ithe number of the intervalsas not reached the
upper bound-. In that case distribution D is said to be a distribu-
tion with skewed uniformity If not, we start to search for a new
interval with its start point set as the next element of the previously
located boundary (Line 11). If afteriterations, some elements of
D remain uncovered, then the distribution D will be declared as not
meeting the skewed uniformity property.

Above assumes the ability to detect the longest interval, for which
we now introduce theletectLongUl algorithm. It is based on the
monotonic property of a uniform distribution.

LEmMA 1. Monotonic Property: If a given interval I[x,y] of
distribution D does not correspond to a uniform distribution, then
neither will its superset’[z’, y'] (z < x andy’ >y). Naturally if
I[x,y] is uniform all its subsets are also uniform.

This lemma proven in [7] leads to the following observation.

Observation 1. If an algorithmuniTest exists which, given an
interval | =[x, y] C U, could determine whether | is uniform,
then given a point lowe U/, the boundary of the longest uniform
interval starting from low can be identified by searching for a point
hi € U1, which satisfies the following conditions: uniTest(I[low, hi])
returns true, while uniTest(I[low,hi+1]) returns false.

As shown in Fig. 3 this observation provides a criteria to deter-
mine the boundary of a uniform interval starting from poiot,
namely the last point: that satisfies the uniTest.

Based on Lemma 1 and Obs. 1, the problem of detecting the
boundary of a longest uniform interval can be solved using a bi-
nary search style algorithm. As shown in Fig. 4, given a start
point low and end pointi, the interval[low, mid] is tested first
(mid = low + "%7). If uniTest returns true, then the possible
range of the boundary shrinks ftmid, hi]. Otherwise it is reduced
to [low, mid — 1]. The search procedure continues until only one
candidate is left for the possible range value of the boundary.



mid

uniTest(low, mid) = true

mid =low + [ law"\ ’

mid — 1

uniTest(low, mid) = false

Figure 4: detectLongUl algorithm

uniTest Algorithm. Next we introduce our sampling-based uni-
formity test approachniTest ThisuniTestalgorithm first proposed
in [9], is based on the notion gfairwise collision probabilityex-
plained next. Given a set of samplés! of S let SA; represent
the set of samples that fall inth The pairwise collision probabil-
ity of | is the probability of getting the same tuple when randomly
picking two samples fron$' A;. This can be calculated as below.

Definition 4. Thepairwise collision probability of interval ! is
denoted byCP; %ﬁﬂif”) wherecollision(SA;) =

2
S, oy (17 tenSADT) while occur(e;, SA;) corresponds to the
number of occurrences ef in SA;.

Intuitively CP; will be small whenl is close to being uniform
and large ifl is skewed. For example, in the extreme casg; if
of all elementse; in | is O except for one elememt;, CP; will

be 1, since any two tries will be guaranteed to get the same tuple.

This property of CP; is similar to thel, norm of p;, denoted by
lp:rll5 = > ier(24)?. The quantitative connection between these
two concepts can be established with the following lemma [9].

LEMMA 2. If more than m =54 samples are collected from S
with ¢ as the threshold in Def. 3, we have: @) CP; — ||p:]|3]|

< ;;1] > 2,(2)pr > p1, wherep; = 218411 and CP; as Def. 4.

Lemma 2 indicates that theollision probability of interval |l is
close to thd> norm of the real distribution df when enough sam-
ples are collected. Since distributions close to being uniform have
a smalll; norm [7], we can conclude that given a random sampling
of the strean§ anyI C U, with a small collision probability with
high likelihood corresponds to a uniform distribution. Based on
this conclusion, theniTestalgorithm that identifies the uniformity
of intervall can now be devised as shown in Alg. 2.

Algorithm 2 uniTest(I[low,high],e)

Input: portion | with its boundaries, error threshalg

Output: Bool uniform

1: collect n =16 In(6L?) groups of samples frors denoted asSA?, ...,
each with size m -54

SA",

. for i = 1tondo
Lig\ _ 2|SA[Y .
OEES

. end for

. uniform = false;

L if Z; =mediar(CP,?, ...,
uniform = true;

. end if

. return uniform;

crP;™) < %I + maxz{ } then

‘(1)

©O~N O UIRWN

The uniTest algorithm is proven to be able to correctly evalu-
ate the uniformity of a given intervdl More specifically given a
intervall if uniTest returns true, then:

@)
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longest uniform interval

Py

X2

pi

X3

Figure 5: Contradictory Example

That s, | is uniform by Def. 3.
Complexity Analysis of uniTest. We first analyze the complexity
of uniTest. As shown in Line 1 of Alg. 2, the sample complexity
of uniTestis O(In L?¢™#). This is sub-linear in the domain size
L. The run time complexity ofiniTestis determined by the cost of
calculating thecollision probabilityof each domain value (Line 3).
It is linear in L. Line 3 is looped!6 In 6L° times. Therefore the
overall execution time afiniTestis O(LIn L?).
Complexity Analysis of CORBA. We now are ready to analyze the
complexity of CORBA. The sample complexity GORBAIs deter-
mined by the sample complexity ahiTestwhich is O(In L?¢™#)
as analyzed above. Then the run time complexitC @RBA(AIg.
1) can be analyzed as follows. The body of the for-loop at Line 4
of (Alg. 1) executes at mosttimes. Within this for-loop the com-
putation in Lines 6 to 12 takes constant time. At Line 5 the time
complexity of the algorithndetectLongUlis O(LIn L?) (detect-
LongUlI calls theuniTestalgorithm O (In L) times with the running
time complexity ofuniTestbeing O(L1n L?)). Hence the total ex-
ecution time ofCORBAis O(7L1n L?).

4.3 Correctness of CORBA Algorithm

In this section we show the effectiveness of tB@RBAalgo-
rithm by proving the following lemma.

LeEmMMA 3. Given a distribution D, an interval number thresh-
old 7, an error threshold, then (D is a skewed uniform distribu-
tion) < (CORBA returns true).

Proof: Proof in two directions.
=" First we prove ifCORBAaccepts D, D will be a skewed
uniform distribution. Assum€ORBAproduces aa-approximation
D of D with a sequence of uniform intervals, ... I, (k < 7) and

a corresponding sequence of vallféﬁ, lpj”c‘ By Eq. 2, thel,

distancedistp between D and) is calculated as:

dZStD = Z Z |IJ| 2 Z pI =

I;eDi€ly I,€eD

®)

ThereforeD is a skewed uniform distribution by Def. 3.
<.” Next we prove bycontradiction if CORBA rejects D, then
D is guaranteed not to be a skewed uniform distribution.

Given a distributionD; which coverg/;, with n longest uniform
intervals @ > 7). Suppose there exists another distribgtlé@
such that D satisfies Def. 3 as shown in Fig. 5. Sifgén D; is
the longest uniform interval starting from elemenbf /., the size
of I in D; denoted by|I;| must be shorter thajP;|. Therefore
hi’ < hi as shown in Fig. 5. However in order to covér with
less intervals thai);, there must be at least one intervigy, m)
in D, which is the superset of some other intera{z; , z2) in Dy
(see Fig. 5). This contradicts the assumption tRais a longest
uniform interval. Thereford, cannot covet(;, with less intervals



thanD;. There does not exist aryapproximationof D. Thus D of distinct attribute values ok andY respectively, then the num-

cannot be a skewed uniform distributidl. ber of its distinct tuple values is typically far fewer thanm x *
numy . In the extreme case when the valuesXofexactly deter-
5. CORRELATION-AWARE INTER- mine one value of’, the number of distinct tuple values df is
STREAM PARTITIONING equal to mingurm x.numy )

Therefore intuitively if the input streams show strong inter-stream

Given as input each stream broken into non-overlapping parti- correlation, the number of the non zero cells of the joint distribution
tions by CORBA, we first establish a joint distribution property, tensor would not be large. Since only a non zero cell would poten-
namely strong inter-stream correlation across input streams. Wetjally form a partition query, the number of partition query would
then take an information theory based approach to measure thisthus not be large under this condition.
property. That is, we map each stream to a random variable and  Furthermore this strong inter-stream correlation leads to the fol-
measure the inter-stream correlation with thaetual information lowing important observation.
metric [3]. This metric is empirically shown to be a good indica-
tor of the potential gain of a multi-route solution. Guided by this Observation 2. The joint distribution of the tuples in each par-
foundation, we then propose a solution to further optimize the par- tition produced by CORBA is statistical uniform if the strong inter-
titioning produced by CORBA. Our solution, called @€latioN stream correlation exists in the joint distribution.
metriC gUided paRitioning or CONCUR produces an effective . ) o . )
global partition solution by merging partitions so to maximize the This observation can be justified as follows. First, the tuples in

mutual information metric. each partition share similar join selectivity when joining with the
same partition, because the tuples within each partition formed by
5.1 Strong Inter-Stream Correlation CORBA have similar statistics.
To achieve an effective global partitioning solution jbiat dis- Second, the tuples in each partition have a high chance of having

tribution across multiple streamisas to be considered. This joint (0 Join with the same partition. Given any two streams S and R, if
distribution essentially determines the performance gain achievableS @nd R are highly correlated, a partitiSpof stream S only needs

by the multi-route solution. For our example quedy, of Sec. 1, to join with one or at least very few partitions &. This leads to
assume the media exposure of a company were correlated to its |0_th_e high possmlllty_ t_hat the tuples in a given partition will all join
cation instead of its industry, i.éndependenof the distribution of ~ With the same partitions. _

the stock stream. The news stream would be partitioned driven by | _Slnce _the joint distribution across input streams represents the
location rather than by industry. In this case each partition of the 10N refationships of the tuples in each stream, the above leads us to
news stream would have to be joined with every single partition of derive that the tuples in each partition formed by CORBA tend to
the stock stream (a full cartesian partition product), since the range Share the similar joint distribution.

of each news stream partition may overlap with any of the stock _ 1 NiS observation enables us to search for the effeciti solu-
stream partitions. Therefore the multi-route solution would not be tion on the abstracted partition level joint distribution model rather

able to reap any benefit from the join pair pruning opportunity in- than at the original tuple yalug Igyel model per Def. 5. Therefore
troduced in Sec. 1. the search space of th@P; is significantly reduced.

Worst yet, this would lead to theombinatorial explosioiin the 5.2 Inter-Stream Correlation Evaluation
number of combinations formed by the partitions from each input i . ) . .
stream. Each combination potentially leads to a partition query . In this section we _proposeallghtwelght m_ethod to evaluate if the
with a distinct query plan. This will cause prohibitively high opti- input streams of a given query show strong inter-stream correlation

mization costs due to having to generate a plan for each partition Property. We first introduce thiartition-Aware Join GrapHPAJ)

query. Worst yet simultaneously having to maintain such a huge [©© model the joint distribution across multiple streams. The key
number of execution plans at run-time will introduce prohibitive idea is that the PAJ model is built on the uniform intervals produced

execution overhead. by theCORBAalgorithm.

Next let us characterize the joint distribution property for the
case when a large number of partition queries could be pruned.
First we formally define the joint distribution across input streams.
Consider a quer specified on a set of streari§;, Sz, ..., Sm }.
S; is a data stream whose values come from the univgrgg <
i < m). Without loss of generality, we assume each univéfsis
indexed by the set of integef{d, 2, ..., |U;|}.

Definition 6. LetS represent a set of streams participating in
query Q. APAJ model of query Q an@ is a graphGp.as(V,E)
such that (1) each nodB; in V represents a partitiol?; € R with
R €S, (2) an edges;; = (R;, Tj) exists in E if partitionsk; € R
andT; € T whereR,T € S form a join pair in Q potentially
producing output, (3) each node; € V is annotated with a label
tc(R;) = |R;| denoting the cardinality oR;, (4) each edgéR;, T})
€ E records the cardinality of its estimated join output denoted by

Definition 5. Given a combination of valu€s;, vz, ..., v, )
) Ic(Ri, Tj) = |Ri b T3]

(1 < v < |U4)), the joint frequency (vy, vg, ..., vy is the num-
ber of join results produced by; > v <, ...,bd v,,.  Then the
joint distribution of input stream¢S;, S, ..., S, } is captured as
a m-dimensional array (tensor), whosé dimension is indexed by
the values of strearfi; (1<i<m) and whose cells contain the joint
frequency of the corresponding combination of values.

Similar to [15] aPAJ model encodes a partitioning of the stream
data along with aggregate information about its statistics and the
join relationships among the partitions. Consider a spebifid
model, say the grap&'ras, and a partitionR; € R. LetT; € T
be a partition connected t8; with (R;,T;) € E. Then we define

To avoid the generation of too many partition queries, the joint N(R:,T5) = je(12i, T3)/(tc(R:) as the join ratio betweeR; andT;.

distribution must demonstrate strong correlation. The intuition comegj_ t\?vli?hctarllséel r?oa:)Cahb?Il;tpliﬁuj(i]I%s- (aji(gected o join with each tuple in
from the characteristics of a static database tablesith strongly J P y e

correlated attributes. Given & with two strongly correlated at- Example 1. Consider an example query Q1 over the partitioned
tributes X andY with numx andnumy denoting the number  streams R, S, T, and U after join pair pruning shown in Fig.6.
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Figure 7: Original Partition-Aware Join Graph

QL: SELECT »+ FROMR, S, T, U
WHERE R a = S.a and S.a = T.a and T.a = U a
W NDOW 60 seconds
Fig. 7 shows the PAJ model of Q1. In this graph, ndde
represents one partition d® with tc(R1) = 100 samples falling in
this partition. Accordingly nodé; represents a partition of with
cardinality 50. Their join operation denoted by the edda, S1)
is estimated to producge(R1, S1) = 5000 results.

Based on the PAJ model we now propose a lightweight method to
measure the inter-stream correlations with the notiomofual in-
formation[3]. Given two random variables X and Mutual infor-
mationis a common technique used to measure their dependency.
This metric calculated with Eq. 4 is also widely adopted to measure
the correlation of attributes pairs of a static database table.

P(z,y)

(=) P(y)

In Eq. 4P(z,y) is thejoint probability distribution functiorof
Xand Y, andP(z) and P(y) are themarginal probability distribu-
tion functionsof X and Y respectively. The mapping between the

I(X,Y) =) "> P(z,y)log (4)

T; with U; over the expected total output produced when joining
streams T and U, namely:

jc(Tiv U])

Z jc(Tj ) Uk)
T; €T,Ux €U

P(xTwij) = (6)

Given thismutual informatiommetric for pair streams, we use the
average mutual informatio(MI) to assess the overall inter-stream
correlation across all streams involved in a qu@rysiven a sef,,
of all stream pairsg;, S;) with edges connected @ p;, V, is a
set containing the random variable paifs, ") mapped from the
stream pairs if5,,. Ml is calculated as:

S IXY)

(X,Y)ev,
MM=—" 7
V,] )

As confirmed by our experiments in Sec. 648in Eq. 7 effec-
tively indicates the potential gain of the multi-route solution. The
largerMl is, the better the performance of the multi-route solution
will be. WhenMI is greater than some constant value, the multi-
route strategy is guaranteed to win against the single plan strategy.
Early Termination. With the strongnter-stream correlatiorand
skewed uniformitproperties we now are ready to designeamly
terminationmechanism for short-cutting the multi-route optimiza-
tion. Namely if the input streams are found to not exhibit either
skewed uniformity or strong inter-stream correlation, then we pro-
pose to terminate the expensive multi-route optimization proce-
dure. This decision criteria, albeit simple, enallddR to quickly
converge to the traditional “single plan” approach in any multi-
route unfriendly environment.

5.3 CONCUR Algorithm

Guided by theMl metric, we now demonstrate the CONCUR
algorithm at improving the partitioning by clustering and merging
nodes with similar joint distributions. This algorithm leads to a re-
duced number of the final partition queries and in turn an increased
MI, indicating the run-time execution performance has improved.

Algorithm 3 CONCUR(P[N][ 1,ct)

Input: partitioning of strean®, Sz, ...S, P[n][], clustering thresholdt
Qutput: PAJG
1: Initialize PAJ with one node per partition in P[n][ ];
for streamS; from S, to S,, do
while changedo
P =map(S;);
Merge(cluster®,ct));
end while
end for

2:
3
4.
5
6
7.

streams and the random variables is established as follows using \ve now describe the overall process flow of @®@NCURalgo-

query@, as example.

Let T andU denote a set of nodes i@p4; corresponding to
streamsl” andU respectively. First we map the stredhto a ran-
dom variableX and accordingly each nodg in T to one value of
X denoted as:,. Similarly letY be the random variable modeling
streaml/ and nodé/; in U be mapped tgy, of variableY. P(xr,)
is defined as the percentage of the number of tuplés mver the
total sampling cardinality of stream It is calculated as:

Plan,) = L)

> te(Ty)

T;ET

®)

Then the joint probabilityP(zr,, yu;) of xr, andyy, is de-
fined as the percentage of the number of results produced by joining
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rithm (Alg. 3). CONCURreceives as input the partitions of the
input streams of quer@® denoted by P[n][ ], and a clustering error
thresholdct. It returns a compressd®AJ graphG. CONCUR(irst
initializes thePAJ graph with the given partitions of each stream as
nodes and the join pairs as edges (Line 1).

Then CONCURUtilizes a clustering algorithm to identify the
nodes with similar statistics. Given a &tontaining the nodeR;
in streamR. Inspired by [15] we measure the similarity of nodes by
mapping every nod&; of R to a multi-dimensional point (Line 4).
More specifically we use séinks(R) to represent the nodes with
a direct edge linked to any node in the PAJ model. | Linksg|
denotes the cardinality of s&hks(R). Then every nod&; of R is
mapped to anLinksg|-dimensional point, where each dimension
corresponds to a nodB;;,x in links(R). This coordinate value



strategy [13] with a content-driven start solution is the approach
in the literature closest to oBMR, since both conduct content-
based partitioning. However we replace their simplistic partitioner
heuristic by our more sophisticated CMR optimizer.

To ensure a fair comparison, all systems are implemented in the
CAPE platform [5]. Each implementation uses as much of the same
code base as possible. Since QM, HP, and CMR are implemented
within the same software framework, we can employ the same sys-
tem parameters (both for optimization and execution parameters)

Figure 8: Compressed Partition-Aware Join Graph of Q1 as shown in Table 1.
Parameter Value Description
. . Data Poisson Data arrival distribution

of R; for node Ry.cign is set tojr( R, Riink). In other words, the Arrival
multi-dimensional point ofR; indicates the other nodes to which 1 500 msec Mean inter-arrival rate
R; is linked and their corresponding join ratios. \ ;‘\ i 556 ’:A of ?‘“"bU;esf'? ‘L:P'edSChemad -

We thus can measure the similarity of two nodes in terms of the | |14/ : Aty At O PIES dequeusdiby an opar
distance i'n .this multi-dilmensi'onal space. .The nodes With similar [T 1,000 tuples | Classfification window size
characteristics can be identified by applying any clustering algo- [ Ruster size 100 tuples Minimum ruster size

rithm (Line 5). In this work we adopt BIRCH [21] with thdiame-

ter metric(Eq. 8) as the tightness measure of a cluster. Table 1: Defaults used in the experiments.
[Re| |RC| ) ) ) )
> S (Ri — Ry)? Metrics. We compareCMR against its competitors by measur-
diameter(R®) = i=1j=1 ©) ing: a) the average output rate at run-time, b) the execution time
| Re | (| Re | 1) with varying correlations at run-time, c) the cumulative number of

ft | ¢ is identified h ¢ tuples produced over time, and d) the optimization time with vary-
After a clusterR® is identified, CONCURuses the merge func- ing correlations at compile time.

tion to substitute 5_‘" nodes iR® With a sing_le new nOdé{"%w _that Key Features. We study the effectiveness of the key features of
represents the union of all partitionsii (Line 4). The statistics of CMR : 1) the partitioning number threshold in tORBAalgo-

the new node?,..., are naturally defined asc(Rn.ew) = 2R, eme rithm, and 2) the CORBA and CONCUR algorithms.
te(R:), andjc(Rnew,t) = D 5. cpelC(Ri ).

Example 2. InFig. 7, nodeS; is abstracted as a poink (40, 50) 6.2 Data Set_s and Que”es )
with 40 and 50 beingr(R2, S2) and jr(Ss, T4). Similarly node Weather Dataset: This real world dataset made available®®IAC
Ss is represented by the poipt (43, 60). According to Eq. 8, the [4] consists of weather measurements organized by month and col-
diameter{p-, p3}) is measured to be 10. Given an error thresh- |ected over several years by thousands of weather stations. For
old ct = 20 > 10, the nodes’; and S; are declared to be similar oy experiments, we chose the readings in the month of November
Sggugrz Stp be Igu)bit'tlu(}ggobgn% r.‘e(‘g ”%w) VX'“; 475(%5"”“) = over ten consecutive years (2000, 2009). The attributes of inter-
1 JEOnew; R2) = » SEJEonew, 22) = ' est were the latitude, longitude, and brightness information. The
latitude and longitude pinpoint the location of the weather station

examined at least once and no nodes remain that form a valid clus-{@king the readings. To explicitly represent the physical proximity
ter under the restriction of the error threshaidLines 2, 3). After of weather stations we divided locations on the earth into square

; ; ids consisting of 10 degrees of latitude and longitude each. We
sequentially mergind Ui, Uz}, {Us, Us, Us}, and{S2, S5}, the ari _ _ _
final partitioning is derived as shown in Fig. 8. then r_eplaced thg Iocatl_on attrlbutgs of eac_h event _wnh_ the ID of
the grid cell that it falls in. The brightness information is a (0,1)
score indicating whether the illuminance criterion was satisfied.

This process (Lines 4, 5) continues until every stream has been

6. EXPERIMENTAL EVALUATION Soccer Dataset: This real world sport stream [12] is used as chal-
. . lenge benchmark at DEBS 2013. It is produced by the Real-Time
6.1 Experimental Design Locating System deployed on a soccer field of Nuremberg Stadium

Experimental Setup All our experiments are run on a machine in Germany. Data originates from sensors located near the players’
with Java 1.6.0.22, Windows 7 with Intel(R) Core(TM) i7 CPU shoes and in the ball. Every event describes the position of a given
@2.67GHz processor and 4GB of RAM. sensor in a three-dimensional coordinate system. We have divided
We compare the performance of dDMR against the three key  the sensor readings into four streams (Team A, Team B, the ball,
alternative approaches in the literature, namely (1) the traditional and the referee) based on the identity of the people that the sen-
“single plan for all data” system [18] (SP), (2) the “query mesh” sor is located on. We have equally divided the soccer field into 4
system [13] (QM), and (3) the “Sharing-Aware Horizontal Parti- areas and replaced the coordinate attributes of each event with its
tioning” [20] (HP). For SP, we implement a multi-way join (MJoin)  corresponding area. This facilitates the analysis of the defense and
[18] operator. MJoin is a generalization of the symmetric binary offense relationship among the players.
join algorithm shown to provide the best plan for each stream. HP Berkeley Dataset: The third real dataset is composed of readings
[20], although focused on static databases, is the state-of-the-artfrom sensors in the Intel Research, Berkeley Lab [14] between Feb.
work in horizontal partitioning. We apply this to our stream con- 28th and Apr. 5th, 2004. We have partitioned these sensor readings
text by adding sampling for collecting the data statistics. We in- into five data streams based on sensor locations. Each stream cor-
stantiate HP’s query plans in our execution infrastructure. Qe responds to a group of sensors in close proximity to each other.
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Synthetic Datasets. Beyond the rich sets of real data we also work

with synthetic datasets. By manipulating the parameters of syn- ' — 55—

thetic data we evaluate the performance patterns of CMR under ** R

varying data skewness and distribution. To establish data skew, weg ** & 4 e -

employ theUniform andPoissondistributions with parameter vari- g @ 2 357

ations as per Table 2. LI 3

Queries: We deploy N-way join queries, afN-way join queries " g

are among the core and most expensive queries in database sys- | : g £ -
tems. Such queries are commonly used to discover correlations o et 5 6 7 8 9 10
across data from different sources and to compose complex results. Number of Input Streams

In the context of thaveather datahe join query is performed on Figure 9: Output rates

the cell and brightness attributes of streams to identify weather sta- Figure 10: Stream number

tions that are located physically near each other yet are observing
different brightness measures. Such information might be valuable
for the analysis of climate change. For theccer datawe per-
formed a join on the four streams using the area attribute to iden-
tify sensors (players) located physically near each other. Such a
join query could potentially be used to analyze the defense and of-
fense relationships among the players. ForBeekeley datathe

join query performed on the temperature attribute may help to de-
teqt f_|re hotspots_ or sup_port automatlt_: t_emperature control inside skewed, yet exhibits significant improvements where skew arises.
buildings. The sliding window on the join operator enforces that

the matched readings are taken at nearby points in time. For s n-The Effect of Varying Query Complexity On Execution. Next
thetic data ex erimegnts unless otherwise Ztgted we use a.n e ui-yoinWe evaluate the performance of CMR by varying the number of

p AU reams involved in the join queries. In this experiment we use
of 5 streams, i.e.$o >1 S1... > S4.

the real lifeweather data (Sec. 6.2). The number of streams
varies from from 5 (2000 to 2004 weather data) to 10 (2000 to 2009

the right side of Fig. 9CMR on average has an 87% higher out-
put rate than HP, 90% higher than QM, and 121% higher than SP.
This confirms the effectiveness of the correlation-aware partition-
ing strategy of CMR when handling skewed data.

In summary our results show th@MR has a low overhead as
there is no significant degradation in performance if datasets are not

Data Distributions _ weather data). Here we analyze the total number of tuples created
Name Parameters Application Examples fter 5 minut d 10
Uniform a€{..B-18} e Long-term patterns of data arter > minu e_s (e_“/erage over runs).
B € {a,a+l,..} o Distribution of moving objects in As shown in Fig. 10 CMR outperforms SP at least by 60 per-
_ X € {a,...3-1,8} some geographic areas cent in all cases. This is due to the consistent existence of strong
Poisson O<A<oo * # people at a counter correlations as shown below. The readings produced by the sensors
Xe{01,.} e # of times web server accessed per . . I o
minute located in the same cell at nearby points in time tend to have similar
Uniform (a =0, 3 = 100): min: 0.0,max 100.0,med 49.0, brightness measures. This leads togkewed uniformitghown in
mean 49-}\7 ’a‘ie-d‘?"zg-gﬁt-de‘; %9-143’ir:()849-1865;‘;""’ 0.05, each weather stream. Preserving this correlation is straightforward
oisson(A = 1): min: 0.0,max /.0,me . ean 0. . . . . .
R T e ety 1 O when mapping the categorical weather station identity to numer-
Distribution transitions (A = 1)— (X = 3)—(\ = 5)... ical domain, because the weather stations are already ordered by

their locations in the original data files. Furthermore the weather
streams share the similar statistical patterns each year. Therefore
the weather streams of different years are strongly correlated no
matter how many weather streams are involved in the query.

We also measure the MI value in this experiment. It varies in a
. . . small range from 0.55 to 0.61. Therefore this experiment also con-
6.3 Compa”ng Alternative Solutions firms that the performance of CMR strongly relies on the intensity
Average Output Rates First we compar€MRto SP, QM, and HP of the correlations instead of on the complexity of the queries.
with both uniform and poisson distributed synthetic data (settings  Furthermore we observe that HP and @bllongershow much
in Table 1) to verify the scope of the applicable scenarios for multi- advantage over SP as the query length increases to 9 or beyond.
route solutions. The results are averaged over 10 runs of 10 minutesThis might be caused by their ignorance of the optimization oppor-
each to measure the average output rate in Fig. 9. tunities hidden behind the strong inter-stream correlations. These

First let us discuss the worst case scenario for the multi-route opportunities increase as the number of input streams increases.
solution, namely, when the data is uniform. We observe that in  In this experiment we also evaluate our Obs. 2 proposed in Sec.
this caseCMR tends to default to a solution with a single route 5.1. The weather stream of each year is divided into 11 to 13 uni-
per stream or occasionally at most two routes. This is expected asform intervals by CORBA. We then produce the optimal query plan
with a none-skewed dataset, no benefit can be gained from distinctfor each single tuple based on the statistics collected by CORBA.
routes. Itisin fact desirable as we would not enforce any additional Most of the tuples (86% in average) within each uniform interval
routes. In this case, we observe on aver@j4R, QM, and HP are observed to share same optimal plan and hence show similar
are 2.2% worse than SP in output rate due to the extra overheadjoint distribution statistics. This confirms the validity of Obs. 2.
of the multi-route execution infrastructure (left in Fig. 9). CMR, The Effect of Varying Data Correlations on Execution. Next we
QM, and HP exhibit similar performance due to the same execution evaluate the effectiveness of CMR for data streams with increasing
infrastructure they adopt. data correlations. We control the data correlations by variihg

In the second experiment we instead utilize poisson distributed from 0.1 to 1. The stream generator achieves such Ml variations by
streams. In general the poisson distributed data is skewed. Yetadjusting the percentage of each tuple value over the data stream.
the adjacent values of the poisson distribution tend to show simi-  Fig. 11 (a) shows the total number of tuples created after 5 min-
lar statistics. This benefits the multi-route solution. As shown in utes (averaged over 10 runs). For weakly correlated ddta<(

Table 2: Distribution statistics for synthetic Data.
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Figure 11: Data correlations Figure 12: Total number of tuples produced over time

0.2), all four systems yield almost the same number of output tu- general the referee is physically close to the location of the ball.
ples. As the data becomes more correlatdt ¥ 0.2) CMR, QM, As shown in Fig. 12 (a)CMR significantly outperforms other
and HP become faster than SP.Mi = 1, we observe that CMR is  alternatives. This is because that CMR successfully discovers the
3-fold faster than SP. As thdl rises to 5 (not shown in this chart  uniform intervals of the player streams and fully utilizes the strong
due to the scope restriction of the x axis) CMR is 10-fold faster inter-stream correlations between referee stream and ball stream. In
than SP. This experiment confirms tihl effectively indicates the ~ the SP approach, single plan optimization coarseness leads to pro-
potential gain achievable by applying CMR instead of traditional ducing a lot more intermediate results. These results gradually fill
single plan technology. However when the data is strongly corre- up the queues and hinder the performance of the system. Although
lated (Ml > 0.9), HP and QM no longer clearly outperform SP. compared to SP, QM and HP solutions show better performance,
In this case both HP and QM do not utilize the join pair pruning both of them suffer from lack of an effective partitioning strategy.
opportunities nor succeed to merge the partition combinations to They either produce too many partitions, or incorrectly group the
a small number of partition queries (see Sec. 5), while stronger tuples without sharing similar optimal plans into the same partition.
correlations indicate that more such opportunities should exist for This makes them worse than CMR by more than 50 percent.
optimization. Such opportunities are indeed leveraged by CMR. Similar to the soccer data experiment, for tBerkeley data
The Effect of Varying Data Correlations on Optimization. Next CMR significantly outperforms the other three approaches as shown
we evaluate the optimization time using the above setting. As in Fig. 12 (b). This performance gain originates from the strong
shown in Fig.11 (b) although all three multi-route algorithms are correlations between the location of the sensors and their temper-
more expensive than SP as expected, CMR is consistently supe-ature readings. This leads to a relatively high Ml value as 8:42
rior to QM and HP. When data is weakly correlated, CMR exhibits high enough to provide CMR with opportunities to discover good
similar optimization time with SP. This can be explained by our partitions. When conducting the intra-stream partitioning (CORBA),
early termination mechanism that quickly determines whether a the sensor tags are mapped to consecutive positive integers by fol-
multi-route solution should be even explored. For highly correlated lowing their original order in the metadata file. This mapping suc-
data, CMR benefiting from the small number of partition queries, cessfully keeps this correlation, since the sensors in physical prox-
greatly outperforms QM and HP. In all cases CMR significantly imity are indeed adjacent to each other in the metadata file.
outperforms QM and HP, because CMR successfully decomposes Similar to theweather streanexperiment, Obs. 2 of Sec. 5.1
the stream partitioning and query planning. HP is about 30 percentis also evaluated in this set of experiments. CORBA divides each
faster than QM as the latter applies the traditional algorithm [18] to Soccer stream into 3 or 4 partitions and each Berkeley stream into
compute the optimal join plans separately for each partition query. 5 to 7 partitions. More than 80% percent of tuples in each partition
Total Number of Tuples Produced Over Time We use two real are observed to share same optimal plan. This again confirms the
datasetsgoccer dataandBerkeley datantroduced in Sec. 6.2) to  Vvalidity of Obs. 2.
evaluate the total number of tuples produced by the four strategies
over time. Here we display the%vergge output ?or the first 10 mgiln- 6.4 Key Features of CMR
utes of longer execution runs. The Effect of the Partition Number Threshold. The threshold

The soccer datashows strong correlations in the sense that our 7 which restricts the maximum number of partitions made on each
MI metric is measured as 0.76. The reason is that the positions stream is used to identify if the distribution exhibits tsleewed
of the players are highly correlated with the specific areas on the uniformityproperty (Sec. 4.2).
field which they cover. For instance the strikers usually cover the  Fig. 13 (a) shows the number of tuples produced in 5 minutes
offensive half of the field, while the goalkeepers generally do not by CMR and SP when varying the number of partitions per input-
leave the penalty box. These strong correlations between the senstream. When the number of partitions is smaller than 16, CMR
sor Id (players) and the area attributes indicates that the players inprocesses more tuples than SP. As each individual stream is divided
the same position tend to cover similar areas. This leads to theinto more than 16 partitions, CMR becomes worse than SP due to
skewed uniformitghown in the player streams. When performing having to maintain a larger and larger number of partition queries
the intra-stream partitioning (CORBA) the identities of the players and their routes. Clearly the benefit of supporting multiple plans
are mapped to consecutive numerical values along their original or- is outweighed by the overhead introduced by route maintenance
der in the metadata file of soccer data [12]. Since in the metadataand tuple classification. Given this empirical evidence we use this
file the names of players are naturally ordered by their positions, calibrated value of 16 as the partition number threshofdr our
this property is preserved after the mapping. Furthermore the ref- experiments. This threshold is used by CORBA to evaluate whether
eree stream and the ball stream are also highly correlated, since inan input stream shows skewed uniformity.
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The Effect of CORBA and CONCUR. Next we evaluate the ef-
fectiveness of ouEORBAandCONCURalgorithms independently.
The effectiveness dEORBAIs evaluated by excludinGONCUR
from CMR. Then the performance &ONCURcan be naturally
demonstrated by comparing tG@®RBAonly optimizer against the
full CMR optimizer.

Fig. 13 (b) depicts the number of output tuples produced after

5 minutes by thdull CMR, the CORBAonly CMR, and SP. The

(6]

(7]

difference is shown over increasing data correlations. We vary the 8]

data correlations by the same approach applied in the correlation

experiments of Sec. 6.3. As Fig. 13 (b) sho@$/R processes tu-
ples up to 50 percent faster th@®ORBA becaus€ ONCURelim-

inates unnecessary partitions who have similar joint distributions

Bl

with others. However for weakly correlated (Ml 0.2) and highly

correlated (MI> 0.9) data,CMR does not show much advantage
over CORBA Only in these settings, each stream does not produce

[10]

many local partitions. Hence less opportunities for partition merg-

ing are offered taACONCUR CORBAoutperformsSPin all cases

[11]

with Ml > 0.2. This is because that CORBA successfully groups
tuples sharing similar query plans into the same partition. In sum-

mary this experiment confirms that bdlf©RBAandCONCURal-

gorithms contribute to produce effective partitioning.

6.5 Summary of Experimental Results

Our main findings can be summarized asCMRimproves ex-
ecution time and output rate metrics by up to 10-fold compared to [14] P. Bizarro and S.Babu and D.DeWitt and J.Widom.
the single plan solution. 2) The correlation-aware partitioning strat-
egy enable€MRto achieve effective partitioning and dramatically
outperforms the existing partitioning strategies, both QM [13] and [15] N. Polyzotis. Selectivity-based partitioning: a
HP [20]. 3) In the worst case when the data is uniform and thus a
traditional single route solution would have been id€MRs per-
formance is only 2% slower than that of SP. All in all these experi- [16] V. Poosala and Y. E. loannidis. Selectivity estimation without
ments demonstrate th@MR achieves significant performance im-
provements over alternative solutions. Thus indeed itis a promising
optimizer for multi-route stream query processing.
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