
High Performance Stream Query Processing With
Correlation-Aware Partitioning ∗

Lei Cao and Elke A. Rundensteiner
Worcester Polytechnic Institute, Worcester, MA USA

(lcao,rundenst)@cs.wpi.edu

ABSTRACT
State-of-the-art optimizers produce one single optimal query plan
for all stream data, in spite of such a singleton plan typically be-
ing sub-optimal or even poor for highly correlated data. Recently a
new stream processing paradigm, called multi-route approach, has
emerged as a promising approach for tackling this problem. Multi-
route first divides data streams into several partitions and then cre-
ates a separate query plan for each combination of partitions. Un-
fortunately current approaches suffer from severe shortcomings,
in particular, the lack of an effective partitioning strategy and the
prohibitive query optimization expense. In this work we propose
the first practical multi-route optimizer namedcorrelation-aware
multi-route stream query optimizer(or CMR) that solves both prob-
lems. By exploiting both intra- and inter-stream correlations of
streams, CMR produces effective partitions without having to un-
dertake repeated expensive query plan generation. The produced
partitions not only are best served by distinct optimal query plans,
but also leverage the partition-driven pruning opportunity. Experi-
mental results with both synthetic and real life stream data confirm
that CMR outperforms the state-of-the-art solutions up to an order
of magnitude in both the query optimization time and the run-time
execution performance.

1. INTRODUCTION
Motivation. Given a user query, either static or continuous, most

modern query optimizers determine asingle optimalquery plan
with the lowest execution cost compared to other possible plans.
This is based on the implicit assumption that stream data follows
a uniform distribution. However, real-world data is often skewed
with possibly complex correlations hidden in both a single stream
or across multiple streams [16]. Thus using overall stream statis-
tics as the base for constructing one single query plan serving all
data tuples in the stream misses important opportunities for effec-
tive query optimization [14, 13].

Given skewed data, the recently emerged multi-route paradigm
instead proposes that the input stream data should be divided into

* This work is supported by NSF grants: IIS-1018443 & 0917017.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment,Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

partitions such that each partition exhibits distinct statistical char-
acteristics. This then leads us to supportmultiple query plansin-
stead of onesingle plan, with each plan tuned to serve a combi-
nation of partitions, called apartition query. Let us demonstrate
with a real-world example the optimization opportunities enabled
by data correlations.
Motivating Example. Consider an application which monitors re-
cent promising stocks by issuing the following queryQm [13].

SELECT S.sector, S.company, S.price, C.pattern, N.sector

FROM Stock as S, News as N, CandlestickPatterns as C

WHERE matches(S.data[60 seconds], C) /*op1*/

AND S.company = N.company[3 hours]) /*op2*/

WINDOW 60 seconds

TheCandlestickPatternstable contains the most significant “Can-
dlestick” patterns, e.g., “Engulfing” and “Kickers” [19] which are
widely recognized as effective indicators of bullish stocks. Opera-
tor op1 performs a similarity join on the latest financial data (i.e.,
incoming stock data from the last 60 seconds) with theCandleStick-
Patternstable, while operatorop2 performs a match of the stock’s
name with the last three hours of Yahoo! Financial news (News).
Here letδi denote the selectivity ofopi.

In the stock market the price of a company’s stock is highly cor-
related with the health of the industry represented by the stock sec-
tor. Stocks in the same sector tend to exhibit similar trends. Due
to these strong correlations between stocks performance and their
sectors we may want to divide the stock stream into partitions by
their sectors, such as Agriculture, Energy, Hi-tech, etc.

Suppose it is a bullish market. Based on the average selectivi-
ties withδ1 > δ2, the single query plan optimal for the overall data
has the ordering<op2, op1>. Now suppose the news reports the
Deepwater Horizon oil spill accident. This may hurt the perfor-
mance of companies in the energy sector. Under this condition the
energy sector stocks may have fewer matches with theCandlestick-
Patternstable and more matches instead with the news. In this case,
δ1 will be relatively lower thanδ2 for such data. So<op1, op2>
becomes the most efficient processing order for this particular par-
tition of data. Since other sectors are not influenced, the “global
best join ordering”<op2, op1> remains optimal for the other par-
titions. In this scenario, producing a customized query plan for the
energy partition of data would clearly outperform a solution that
forces the usage of one single generic plan upon all data types.

This horizontal partitioning of the stock stream exposes another
promising opportunity for optimization when stronginter-stream
correlation is experienced between stocks and news. The strong
inter-stream correlation exists when the stock and news streams ex-
hibit similar statistical properties. For example the media exposure
of the companies may be also highly correlated to its industry sec-
tor. In this case it would be beneficial to also divide the news stream

265

by its sector attribute (as shown in Fig. 1).
We notice that after this coordinated partitioning across multiple

streams the join operation among stocks and news no longer must
be conducted amongall pairs of partitions from these two streams.
For instance in our example, assume each company only belongs
to one single sector. The energy partitionSe of stock stream will
only produce results when it joins with the energy partitionNe of
the news stream (Fig. 1). SimilarlySa is guaranteed to not produce
any output tuple when joining with partitionNa of news, because
the domain values of the join attribute S.company in partitionSa

do not overlap with the domain values of N.company in partition
Ne. Clearly if in general we could successfully identify and prune
all join pairs guaranteed to not produce any output tuples, a major
performance benefit could be reaped. In short, the query perfor-
mance can be radically improved by exposing and then exploiting
inter-stream correlations between stock and news streams.

CandleStickPattern

Agriculture
(Sa)

Energy
(Se)

…
...

Stock

Hi-tech
(Sh)

Agriculture
(Na)

Energy
(Ne)

…
...

News

Hi-tech
(Nh)

�

Join Pair
(Sa,Na)

Figure 1: Join Pair Pruning for Query Qm

Technical Challenges.Finding an effective multi-route solution
which fully utilizes the optimization opportunities illustrated above
is challenging. First as shown in [13] given a single streamS the
complexity of dividingStuples into partitions with distinct optimal
execution plans is already exponential in the number of S’s do-
main values even when only considering S’s local data distribution.
Worst yet to utilize the join pair pruning, the partitioning of one
stream must also consider the partition decisions made for the other
participating streams. However simply partitioning all streams on
their join attributes may lead to not only too many partitions but
also very poor ones, namely the tuples in such a partition may not
share the same optimal plan.

To complicate matters further, with the introduction of partition-
ing query optimization now consists of two tasks: (1) determining
the partitions of the input streams, and (2) creating a query plan
for each partition query. Unfortunately the two subproblems are
strongly interdependent. A change in one optimization decision re-
quires re-optimization of the other subproblem. This yields a much
larger optimization space than the one considered by traditional op-
timizers. This conflicts with the requirement that multi-route opti-
mization must be highly efficient to be viable in fluctuating stream
environments [17]. It is this challenging problem of the design of a
practical multi-route optimizer meeting these competing demands
that we tackle in this work.

State-of-the-Art. While initial work on multi-route processing
has recently emerged [13, 20], the existing techniques do not ad-
dress the above described challenges. To reduce the search space
these multi-route optimizers construct partitions by either only con-
sidering the local statistics of each individual stream [13] in isola-
tion or by going with the unrealistic simplification of assuming con-
ditional independence across attributes [20]. By ignoring strong
inter-stream correlations existing optimizers miss the critical join

pair pruning opportunity illustrated above. To avoid enumerating
the entire search space, they identify partitions either by employ-
ing off-the-shelf randomized partitioning algorithms [13] or by uti-
lizing greedy search algorithms without backtracking [20]. These
simplistic search heuristics tend to result in ineffective optimiza-
tion decisions as confirmed by our experiments (Sec. 6.3). Further-
more in the search process they evaluate the quality of a selected
partitioning by creating query plans for the corresponding parti-
tion queries. This tight interdependency of partitioning and query
planning causes both methods to suffer from an order of magnitude
increase of optimization time compared to a traditional optimizer.

Proposed Solution. In this paper we propose the first practi-
cal multi-route optimizer namedCorrelation-Aware Multi-Route
Stream Query Optimizer(CMR). By explicitly exploring the cor-
relations at both the intra- and inter-stream levels, CMR produces
an effective multi-route solution within a short optimization time.
CMR is built on two key principles established by characterizing
the situational context in which a multi-route approach would be a
preferred solution over the classical single plan approach.

First, a multi-route solution shows a significant performance ad-
vantage only when the streams can be divided into partitions with
distinct statistics relative to other partitions, yet with uniformity
among tuples within the same partition. This intra-stream correla-
tion property is calledskewed uniformity. Based on this property
we design an algorithm called CORBA that discovers appropriate
partitions of each stream based on thecollision probability theory
[7]. The sampling-based nature and the sub-linear sample complex-
ity of CORBA make it ideal for unbounded continuously arriving
streaming data with dynamically changing statistics.

Second, we demonstrate that strong inter-stream correlation re-
ferred in the joint distribution across input streams is the second
critical prerequisite for the deployment of a multi-route solution
being beneficial. In that case the multi-route approach will not
only avoid the prohibitive overhead of simultaneously maintaining
a large number of execution plans but also benefit from the highly
effective join pair pruning optimization. We propose ainforma-
tion theory-based metric [3] that can determine the existence of
strong inter-stream correlation. Better yet, this metric can now also
be exploited to further optimize the initial partitioning by merging
partitions with similar joint statistics.

The twocorrelation indicatorsnot only assist us in deriving an
effective partitioning solution without having to repeatedly under-
take expensive query plan generation, but also offer anearly ter-
minationmechanism. This assures that CMR quickly converges to
the traditional “single plan” approach when the data streams show
neither skewed uniformity nor strong inter-stream correlation.

Our experiments (Sec. 6.3) confirm thatCMRoutperforms state-
of-the-art methods up to an order of magnitude in both its runtime
execution performance and its optimization time. Thus CMR is a
win-win; it not only produces a highly effective multi-route solu-
tion, but does so with a surprising low optimization expense.

Contributions. In summary, the contributions of this work in-
clude: 1) We introducecorrelation indicatorsthat reliably deter-
mine the applicability of the multi-route approach for a given work-
load. 2) We design a sample-based partitioning algorithm that dis-
covers effectiveintra-streampartitions in sub-linear sample com-
plexity. 3) We propose a partition optimization approach that based
on theinter-stream correlation indicator, is shown to successfully
exploit the join pair pruning opportunity. 4) Our experiments con-
firm that ourCMR optimizer integrating the above strategies into
one comprehensive solution framework outperforms the existing
alternatives up to an order of magnitude.

266

2. RELATED WORK
Streaming Databases.Like Query Mesh [13], CMR is also a

multi-route approach. Once an effective multi-route solution has
been identified by CMR, it can be successfully executed by any
multi-route infrastructure, including the Query Mesh executor. How-
ever, this is where key similarities end. Unlike our effort, Query
Mesh [13] does not explore the data correlations within a single
stream nor across streams for stream partitioning. Rather it uses
a simplerandomized partitioning strategyfor every stream in iso-
lation, thus potentially leading to ineffective partitioning. Further-
more Query Mesh relies on query planning to evaluate if a parti-
tioning is good, making the optimization process prohibitively ex-
pensive. CMR overcomes both bottlenecks of Query Mesh, namely
the ineffective partitioning and the expensive optimization.

Thecontent-based routing(CBR) extension of Eddies [14] con-
tinuously profiles operators and identifies “classifier attributes” to
partition the underlying data into tuple classes to be routed by Ed-
dies. However CBR only considers the special case of a single-
attribute decision. We take a more general approach in CMR by in-
corporating correlations of multiple attributes not only within one
stream but also across several streams. CBR inherits several prob-
lems associated with Eddies, such as continuous and often unnec-
essary fine-grained route re-learning at runtime. Extending CBR
to non-Eddies-based systems, i.e., systems that pre-compute plans
prior to execution is non-trivial, as CBR does not compute full
routes. In contrast, our CMR has a much wider scope of appli-
cability as it addresses multi-route query processing in plan-based
systems−the standard paradigm for data processing.

Static Databases.In the context of static relational databases,
Polyzotis proposes an iterative algorithm [15] which partitionsone
relation of a join query intok (a fixed pre-defined threshold) parti-
tions and constructsk join plans, one for each partition. However
all other n - 1 relations are left non-partitioned. Our work does not
impose these two artificial limitations. First, we allow the parti-
tioning of multiple relations. Second, we do not apriori impose a
rigid number k of partitions that a relation is forced to be divided
into. Instead we use data-driven criteria for determining if or if not
to partition and if so how many partitions to make.

In [20] Tzoumas et al. introduces the notion ofconditional join
plans, a restricted search space resulting from horizontal partition-
ing that captures both the partitioning and join ordering aspects.
However [20] makes partitions only based on one single attribute,
while our work can partition on any set of attributes. They estimate
the join selectivity with the assumption thatconditional indepen-
denciesexist in the data. Instead by partitioning the data with the
guidance of both the intra-stream and inter-stream correlations, we
accurately estimate the selectivity without this assumption.

In [8] Herodotou et al. proposes techniques to generate effi-
cient plans for SQL queries on alreadypre-partitionedtables. In
other words they only focus on the traditional optimization prob-
lem, namely they produce an execution plan for each partition query
rather than the harder problem of identifying a suitable partitioning
within this huge partitioning search space. The latter is instead
tackled by our work.

Parallel and Distributed Data Processing. Like multi-route
optimization, data partitioning also has been considered in paral-
lel and distributed settings [1, 6, 11]. In these works, streaming
data is partitioned across machines of a parallel system and then
queries are rewritten accordingly to use the fragments located on
each node. However unlike multi-route optimization, the goal here
is load balancing, namely to spread the load of a query across the
distributed system so to avoid over-loaded nodes and reduce heavy
network traffic. In other words the data partitioning does not aim to

produce partitions with distinct optimal query plans. Instead they
aim to have equal load on each machine. However producing a
distinct plan for different partitions is the core concept of multi-
route optimization, while making partitions equal in cost to keep a
balanced workload across machines is not our concern.

3. MULTI-ROUTE OPTIMIZATION PROB-
LEM FORMULATION AND ANALYSIS

3.1 Problem Formulation
Problem Formulation. Si is a data stream whose tuple values
come from the universeUi (1≤i≤m). A queryQ is specified on a
set of streams{S1,S2,...,Sm}. A partition solutionof Si, P (Si), is
a set of pairwise disjoint subsets of tuple valueseSi fromUi whose
union covers the universeUi. A subset of streamSi containing
only the tuple values ineSi is called a substream ofSi. It is also
denoted aseSi when no ambiguity arises.

We useP(Si) to denote a particular partition solution of stream
Si andP(Si) to denote the set of all possible partition solutions of
streamSi. A global partition solutionGPj of the queryQ on m
streamsSi (1≤i≤m) is a set of m partition solutions{P(S1),P(S2)
,...,P(Sm)}. Given aGPj of Q, a partition queryQp(GPj) of
queryQ is a query identical to Q in semantics, but applied to a set
of m substreams{eS1 , eS2 ,... eSm } of the streams{S1, S2 ,...
Sm}, with eSi being an element ofP(Si) ∈ GPj , 1≤i≤m.

Given the set of all partition queries with respect toGPj , denoted
byQ(GPj), amulti-route query planQP(Q ,GPj) of queryQ for
GPj is a set of query plans, namely one for each of the partition
queries inQ(GPj). Now we are ready to define the notion of an
optimal multi-route plan ofGPj .

Definition 1. The optimal multi-route plan ofGPj denoted as
QPopt(Q ,GPj) is the multi-route planQP(Q ,GPj) that pro-
cesses all partition queries ofGPj with the minimal overall query
execution costs denoted ascost(Q ,GPj).

Our problem ofmulti-route optimizationcan now be formally
defined as follows.

Definition 2. Given m setsP(S1), P(S2), ...,P(Sm) of par-
tition solutions of streamsS1,S2,...,Sm, themulti-route optimiza-
tion problem MRopt is to find a global partition solutionGPk

and the multi-route planQPopt (Q ,GPk), whereGPk is formed
by selecting aP(Si) from eachP(Si), such thatcost(Q ,GPk) is
minimal among thecost(Q ,GPj) of all possibleGPj of Q.

TheMRopt problem has a much larger optimization space than
the one considered by traditional optimizers as analyzed below.

3.2 Complexity Analysis of Multi-Route Opti-
mization Problem

We analyze the complexity of the multi-route optimization prob-
lem for a queryQ with m input streams. LetCi=|Ui| denote the
cardinality of the universe of streamSi. Then theBell number[10]
Bi in Eq. 1 represents the cardinality ofP(Si).

Bi =

ni
X

k=1

1

k!

k
X

j=1

(−1)k−j

ni

k

!

j
ni

!

(1)

To find the optimal global partition solutionGPk,
Q

1≤i≤mBi

possible combinations ofm partition solutions fromm streams re-
spectively (possibleGPj) would have to be examined.E denotes

267

the time complexity of the join query planning algorithm forQ on
a given set of streams to join. If the query planning is applied to
each partition query in each possibleGPj , then the overall com-
plexity of the problem search space would beO(

Q

1≤i≤m
Bi *E).

In general the problem of identifying an optimal plan for a given
join query is known to beNP-hard [17]. Bi being exponential
in Ci further exasperates the problem [13]. Clearly for largeCi,
the search is prohibitively expensive. In essence, the complexity
of MRopt originates from two key factors: (1) the combinatorial
number of possibleGPj and (2) the strong interdependency of the
partitioning and query planning. Given the exponential complexity,
it is thus imperative that efficient yet effective search heuristics are
devised for tackling theMRopt problem defined in Def. 2.

3.3 The CMR Approach
Any viable multi-route technique has to simplify thisMRopt

problem, while still achieving an effective solution.
Possible Solution Approaches.Several methods are possible

to reduce theMRopt problem. One solution is to partition each
stream in isolation by only considering the local stream statistics.
However even if locally optimal solutions could be found, simply
combining the local optimal partitions of each stream is not likely
to produce an effective global multi-streams partitioningGPj due
to the ignorance of the statistical properties of other streams.

An alternative solution may be to impose some artificial restric-
tions on the possible partitioning or the query plans to be consid-
ered such as always dividing each stream into a fixed number of
partitions or selecting optimal query plans only from a subset of
all possible plans. However after applying such drastic restrictions,
many effective multi-route solutions would be missed.

Our CMR Approach. CMR proposes acorrelation-aware par-
titioning strategy to simplify thisMRopt problem. By leverag-
ing both the intra- and inter-stream correlations for partitioning,
this strategy divides the problem of searching for an effectiveGPj

into two sub-problems, namelyintra-stream partitioningandinter-
stream partitioning. Furthermore it decomposes thepartitioning
and query planninginto two separate stages. Therefore CMR sig-
nificantly simplifies theMRopt problem, rendering it practical.

CMR is composed of three layers, namely intra-stream parti-
tioner, inter-stream partitioner, and partition query planner as shown
in Fig. 2. CMR first solves the intra-stream partitioning problem,
namely produces an initial partitioning for each individual stream
based on local stream statistics. These local partitions are then ex-
ploited to model the joint distribution across multiple streams.

As second step, the inter-stream partitioner further optimizes the
initial local partitions and produces the finalGPj . The inter-stream
partitioner is based on our proposed partition abstraction level joint
distribution. This significantlyreducesthe optimalGPj search
space. Otherwise it would be composed of combinatorial number
of possibleGPj if the partitioning instead relies on the much more
fine-grained tuple value granularity joint distribution.

Furthermore the inter-stream partitioning is driven by our pro-
posed joint statistical property based metric. This is highly effective
compared to having to test each triedGPj by an expensive query
planning process. The query planning is only applied as the third
and last step to produce the correspondingQPopt (Q ,GPj) after
the finalGPj has been formed by CMR optimizer. Therefore CMR
successfully decomposes the partitioning and query planning.

Effectiveness of CMR.The effectiveness of CMR lies on the
particular statistical properties that are proposed asindicators for
the multi-route optimization paradigm to be a suitable design choice,
namely the strong intra- and inter-stream correlations.

Single plan
optimizer

Local
partitions

Final
partitions

Intra-stream
Partitioner

Partition
Queries Planer

Streams
S1,S2,? Sn

��������
�

	�
Inter-stream
Partitioner

���
��
����������

��������
�

������
������
�����
�����������

�� ��

	�

Figure 2: CMR Framework

First, our intra-stream partitioner produces an initial partition-
ing of each individual stream by discovering highly correlated tu-
ples. This intra-stream partitioning serves as a good starting point
of our inter-stream partitioner. That is, it naturally follows the intra-
stream correlation that is indicator of a situation where the multi-
route solution is beneficial.

Second, when a strong inter-stream correlation exists among the
input streams, the tuples in the same stream partition formed by the
intra-stream partitioner tend to also show similar joint distribution
statistics. Thus modeling the joint distribution at the partition ab-
straction level would not miss the major characteristics of the joint
distribution. We thus postulate that relying on the partition level
joint distribution model to improve the local partitioning would not
miss important optimization opportunities.

Third, the joint distribution captures both the data statistics of the
input streams and the user query semantics. This leads to the fol-
lowing two observations. First, since the query optimizer uses the
joint distribution to determine the optimal query plan, tuples shar-
ing an optimal or a near optimal query plan could be located based
on their joint distribution statistics. Second, the potential perfor-
mance of eachGPj can be represented by some joint distribution
statistics related metric. This leads to the important insight that it
is possible to identify an effectiveGPj by maximizing the met-
ric instead of employing the expensive query planning process to
explicitly evaluate the cost of each of the exponentially manyGPj .

As shown in Sec. 5, our inter-stream partitioner incorporating the
above observations finds an effectiveGPj by maximizing our pro-
posedmutual informationmetric [3]. Our empirical study shows
that this metric is a good indicator of the potential gain of aGPj .

In summary in this work we propose the correlation-aware multi-
route stream query optimizer (or CMR) to tackle this challenging
MRopt problem (Def. 2). By leveraging the two proposedcor-
relation indicators, CMR successfully reduces the search space of
theMRopt problem. Yet it still guarantees to produce an effective
partitioning which can take full advantage of the optimization op-
portunities afforded by the multi-route query processing paradigm.

4. CORRELATION-AWARE INTRA-
STREAM PARTITIONING

Next, we will establish the fundamental insight that for a multi-
route solution to be an effective solution for processing a queryQ,
each input stream should satisfy a certain statistical property. This
observation opens the opportunity to effectively partition each sin-
gle stream by modeling it as a uniform interval detection problem.
Fortunately, we demonstrate that uniform intervals can be quickly
discovered based on the theory that any interval close to being uni-
form would have a smallpairwise collision probability[7]. This
probability can be measured on a stream sample with sub-linear
sampling complexity, makingCORBAefficient and thus conductive
to the dynamic streaming context. CORBA discovers appropriate
partitions that build a solid foundation to render the inter-stream
partitioning problem introduced in Sec. 5 practical.

268

4.1 The Skewed Uniformity Property
Multi-route optimization is based on the insight that tuples with

similar statistical properties are likely to be best served by the same
route [14]. On the one extreme if the data is uniform, then the tradi-
tional “one single plan” solution suffices to serve most of the tuples
well. On the other extreme if the data is “too skewed”, e.g., most
tuples have distinct statistics, route-less solutions like Eddies [2]
maybe most effective. Such route-less solutions at runtime decide
for every tuple which operator to visit next. Thus they come at the
cost of a per-tuple routing overhead. As illustrated in the motivation
example in Sec. 1, a multi-route solution exhibits a major perfor-
mance advantage in the case when each stream can be divided into
partitions with distinct statistics, yet with uniformity among tuples
within the same partition.

Here we formally define the above local stream property also be-
ing referred to asskewed uniformity. LetSi be a data stream with a
universeUi = {u1 , u2 , ...uL}. By mappingUi to a numerical uni-
verseUL = {1...L}, theprobability distributionof Si is represented
as a function D:UL → [0,1]. For each elementei ∈ UL, D(ei)
measures the probability thatei appears in streamSi denoted as
pi. Given any intervalI ⊆ UL, the probability of intervalI is de-
noted aspI =

P

ei∈I pi .

Definition 3. Given a distribution D:UL → [0, 1], a partition
thresholdτ (τ ≪ L), and an error thresholdǫ, D is a distribution
with skewed uniformity if:

(1) There exists a distribution̂D: UL → [0, 1] which is repre-
sented as a sequence of disjoint intervalsIj and a corresponding
sequence of valuesvj (1≤ j ≤ k with k≤ τ), wherevj ≤ 1; and

(2) Each intervalIj satisfies theuniform interval criteria:
P

i∈Ij
(pi − vj)

2 ≤ ǫ2pIj [7]; and

(3) ‖D − D̂‖2 =
q

P

Ij∈D

P

i∈Ij
(pi − vj)2) ≤ ǫ.

D̂ is said to be anǫ-approximation of D.

Based on the above observation we propose to build an intra-
stream partitioning for a given streamSi with skewed uniformity
by identifying theǫ-approximation of D. This intra-stream parti-
tioning serves as a good start point of our inter-stream partitioner.
That is, it naturally follows the statistical property that is indicator
of a situation where the multi-route solution is beneficial.

4.2 CORBA Algorithm
Capturing the distribution properties of streaming data is chal-

lenging due to the unbounded nature of the continuously arriving
streaming data and its frequently changing statistics. Any approach
involving prohibitive computational costs or producing results only
after seeing the complete data stream is clearly not practical.

We now propose a collision probability-based algorithm named
CORBAto partition each input stream into uniform intervals. Given
a distribution D,CORBAwill detect whether the skewed uniformity
holds. If it holds, CORBA also outputs a partitioning of D with no
more thanτ partitions, namely theǫ-approximationD̂ (Def. 3).

The general idea ofCORBAis to partitionUL into k (k ≤ τ)
longest intervals with each being approximately uniform, so called
longest uniform interval. An intervalI [start , end] is said to be a
longest uniform interval if there does not exist any other uniform
intervalI ′ = [start ′, end ′] with start ′ ≤ start andend ′ ≥ end .

Let us assume that we have at our disposal an algorithmdetect-
LongUI which given a pointlow in UL, can detect the uniform
interval’s boundary starting fromlow in D. Then the CORBA algo-
rithm will perform as described in Alg. 1. At first̂D is initialized
to be empty (Line 2). In each iteration, the algorithm searches the

Algorithm 1 CORBA(D,τ)
Input: distribution D, partition number thresholdτ
Output: Bool skewUniformity, partitioningD̂ with no more thanτ intervals. Each

interval is represented as interval(low,high).
1: low = 1, boundary = 1;
2: D̂ = φ;
3: skewUniformity = false;
4: for i = 1 to τ do
5: boundary = detectLongUI(D, low);
6: D̂ = D̂ + interval(low,boundary);
7: if (boundary == L)then
8: skewUniformity = true;
9: return;
10: else
11: low = boundary + 1;
12: end if
13: end for

L

i

low hi

uniTest(low, hi) = true

hi + 1

uniTest(low, hi + 1) = false

Longest uniform interval

Figure 3: Longest Uniform Interval

interval boundary by running thedetectLongUIalgorithm (Line 5).
In Line 6, D̂ is updated by adding the newly identifiedinterval to
the set of intervals so far. If all elements ofD have been covered
by the located intervals, then the “for loop” (Line 4) will termi-
nate early even ifthe number of the intervalshas not reached the
upper boundτ . In that case distribution D is said to be a distribu-
tion with skewed uniformity. If not, we start to search for a new
interval with its start point set as the next element of the previously
located boundary (Line 11). If afterτ iterations, some elements of
D remain uncovered, then the distribution D will be declared as not
meeting the skewed uniformity property.

Above assumes the ability to detect the longest interval, for which
we now introduce thedetectLongUI algorithm. It is based on the
monotonic property of a uniform distribution.

LEMMA 1. Monotonic Property: If a given interval I[x,y] of
distribution D does not correspond to a uniform distribution, then
neither will its supersetI ′[x ′, y ′] (x ′ ≤ x andy ′ ≥ y). Naturally if
I[x,y] is uniform all its subsets are also uniform.

This lemma proven in [7] leads to the following observation.

Observation 1. If an algorithmuniTest exists which, given an
interval I = [x, y] ⊆ UL, could determine whether I is uniform,
then given a point low∈ UL the boundary of the longest uniform
interval starting from low can be identified by searching for a point
hi ∈UL which satisfies the following conditions: uniTest(I[low, hi])
returns true, while uniTest(I[low,hi+1]) returns false.

As shown in Fig. 3 this observation provides a criteria to deter-
mine the boundary of a uniform interval starting from pointlow ,
namely the last pointhi that satisfies the uniTest.

Based on Lemma 1 and Obs. 1, the problem of detecting the
boundary of a longest uniform interval can be solved using a bi-
nary search style algorithm. As shown in Fig. 4, given a start
point low and end pointhi, the interval[low ,mid] is tested first
(mid = low + p

hi−low
2

q). If uniTest returns true, then the possible
range of the boundary shrinks to[mid , hi]. Otherwise it is reduced
to [low ,mid − 1]. The search procedure continues until only one
candidate is left for the possible range value of the boundary.

269

hi

i

low

uniTest(low, mid) = true

hi

i

low

uniTest(low, mid) = false

= +

Figure 4: detectLongUI algorithm

uniTest Algorithm. Next we introduce our sampling-based uni-
formity test approachuniTest. ThisuniTestalgorithm first proposed
in [9], is based on the notion ofpairwise collision probabilityex-
plained next. Given a set of samplesSA of S, let SAI represent
the set of samples that fall intoI. Thepairwise collision probabil-
ity of I is the probability of getting the same tuple when randomly
picking two samples fromSAI . This can be calculated as below.

Definition 4. Thepairwise collision probability of intervalI is
denoted byCP I = collision(SAI)

(|SAI |
2)

wherecollision(SAI) =
P

ei∈I

`

|occur(ei ,SAI)|
2

´

, while occur(ei ,SAI) corresponds to the
number of occurrences ofei in SAI .

Intuitively CP I will be small whenI is close to being uniform
and large ifI is skewed. For example, in the extreme case ifpi
of all elementsei in I is 0 except for one elementej , CP I will
be 1, since any two tries will be guaranteed to get the same tuple.
This property ofCP I is similar to thel2 norm ofpI , denoted by
‖pI ‖

2

2
=
P

i∈I
(pi
pI
)2 . The quantitative connection between these

two concepts can be established with the following lemma [9].

LEMMA 2. If more than m =64
ǫ4

samples are collected from S

with ǫ as the threshold in Def. 3, we have: (1)p[
˛

˛CP I − ‖pI ‖
2

2

˛

˛

≤ ǫ2

2p̂I
] > 3

4
, (2) p̂I ≥ pI , wherep̂I = 2|SAI |

m
andCP I as Def. 4.

Lemma 2 indicates that thecollision probabilityof interval I is
close to thel2 norm of the real distribution ofI when enough sam-
ples are collected. Since distributions close to being uniform have
a smalll2 norm [7], we can conclude that given a random sampling
of the streamS, anyI ⊆ UL with a small collision probability with
high likelihood corresponds to a uniform distribution. Based on
this conclusion, theuniTestalgorithm that identifies the uniformity
of intervalI can now be devised as shown in Alg. 2.

Algorithm 2 uniTest(I[low,high],ǫ)
Input: portion I with its boundaries, error thresholdǫ;
Output: Bool uniform
1: collect n =16 ln(6L2) groups of samples fromS denoted asSA1 , ...,SAn ,

each with size m =64
ǫ4

2: for i = 1 to ndo

3: p̂i(I) =
2|SAI

i |

m
;

4: end for
5: uniform = false;

6: if ZI = median
`

CP I
1 , ...,CP I

n
´

≤ 1
|I |

+ maxi{
ǫ2

2p̂i (I)
} then

7: uniform = true;
8: end if
9: return uniform;

The uniTest algorithm is proven to be able to correctly evalu-
ate the uniformity of a given intervalI. More specifically given a
intervalI if uniTest returns true, then:

X

i∈I

(pi −
pI

|I|
)2 ≤ ǫ

2
pI (2)

D[L]
1

hi hi + 1

p� p� … p
n

x�

n > τ

D[L]
1

hi’ hi’ + 1

I� I� … I
k

x�

k ≤ τ

…p�

x�

x�

I

1

longest uniform interval

2

Figure 5: Contradictory Example

That is, I is uniform by Def. 3.
Complexity Analysis of uniTest. We first analyze the complexity
of uniTest. As shown in Line 1 of Alg. 2, the sample complexity
of uniTestis O(lnL2 ǫ−4). This is sub-linear in the domain size
L. The run time complexity ofuniTestis determined by the cost of
calculating thecollision probabilityof each domain value (Line 3).
It is linear in L. Line 3 is looped16 ln 6L2 times. Therefore the
overall execution time ofuniTestis O(L lnL2).
Complexity Analysis of CORBA.We now are ready to analyze the
complexity of CORBA. The sample complexity ofCORBAis deter-
mined by the sample complexity ofuniTestwhich isO(lnL2 ǫ−4)
as analyzed above. Then the run time complexity ofCORBA(Alg.
1) can be analyzed as follows. The body of the for-loop at Line 4
of (Alg. 1) executes at mostτ times. Within this for-loop the com-
putation in Lines 6 to 12 takes constant time. At Line 5 the time
complexity of the algorithmdetectLongUIis O(L lnL3) (detect-
LongUI calls theuniTestalgorithmO(lnL) times with the running
time complexity ofuniTestbeingO(L lnL2)). Hence the total ex-
ecution time ofCORBAisO(τL lnL3).

4.3 Correctness of CORBA Algorithm
In this section we show the effectiveness of theCORBAalgo-

rithm by proving the following lemma.

LEMMA 3. Given a distribution D, an interval number thresh-
old τ , an error thresholdǫ, then (D is a skewed uniform distribu-
tion) ⇐⇒ (CORBA returns true).

Proof: Proof in two directions.
“⇒.” First we prove ifCORBAaccepts D, D will be a skewed

uniform distribution. AssumeCORBAproduces anǫ-approximation
D̂ of D with a sequence of uniform intervalsI1 , ...Ik (k ≤ τ) and
a corresponding sequence of values

pI1
|I1 |

, ...,
pIk
|Ik |

. By Eq. 2, thel2

distancedistD between D and̂D is calculated as:

distD =
X

Ij∈D

X

i∈Ij

(pi −
pIj

|Ij |
)2 ≤ ǫ

2
X

Ij∈D

pIj = ǫ
2 (3)

ThereforeD is a skewed uniform distribution by Def. 3.
“⇐.” Next we prove bycontradiction if CORBA rejects D, then

D is guaranteed not to be a skewed uniform distribution.
Given a distributionD̂1 which coversUL with n longest uniform

intervals (n > τ). Suppose there exists another distributionD̂2

such that D satisfies Def. 3 as shown in Fig. 5. SinceP1 in D̂1 is
the longest uniform interval starting from elemente1 ofUL, the size
of I1 in D̂1 denoted by|I1| must be shorter than|P1|. Therefore
hi′ < hi as shown in Fig. 5. However in order to coverUL with
less intervals than̂D1, there must be at least one intervalIj (x0 , x3)

in D̂2 which is the superset of some other intervalPi(x1 , x2) in D̂1

(see Fig. 5). This contradicts the assumption thatPi is a longest
uniform interval. ThereforêD2 cannot coverUL with less intervals

270

thanD̂1. There does not exist anyǫ-approximationof D. Thus D
cannot be a skewed uniform distribution.�

5. CORRELATION-AWARE INTER-
STREAM PARTITIONING

Given as input each stream broken into non-overlapping parti-
tions by CORBA, we first establish a joint distribution property,
namely strong inter-stream correlation across input streams. We
then take an information theory based approach to measure this
property. That is, we map each stream to a random variable and
measure the inter-stream correlation with themutual information
metric [3]. This metric is empirically shown to be a good indica-
tor of the potential gain of a multi-route solution. Guided by this
foundation, we then propose a solution to further optimize the par-
titioning produced by CORBA. Our solution, called COrrelatioN
metriC gUided paRtitioning or CONCUR, produces an effective
global partition solution by merging partitions so to maximize the
mutual information metric.

5.1 Strong Inter-Stream Correlation
To achieve an effective global partitioning solution thejoint dis-

tribution across multiple streamshas to be considered. This joint
distribution essentially determines the performance gain achievable
by the multi-route solution. For our example queryQm of Sec. 1,
assume the media exposure of a company were correlated to its lo-
cation instead of its industry, i.e.,independentof the distribution of
the stock stream. The news stream would be partitioned driven by
location rather than by industry. In this case each partition of the
news stream would have to be joined with every single partition of
the stock stream (a full cartesian partition product), since the range
of each news stream partition may overlap with any of the stock
stream partitions. Therefore the multi-route solution would not be
able to reap any benefit from the join pair pruning opportunity in-
troduced in Sec. 1.

Worst yet, this would lead to thecombinatorial explosionin the
number of combinations formed by the partitions from each input
stream. Each combination potentially leads to a partition query
with a distinct query plan. This will cause prohibitively high opti-
mization costs due to having to generate a plan for each partition
query. Worst yet simultaneously having to maintain such a huge
number of execution plans at run-time will introduce prohibitive
execution overhead.

Next let us characterize the joint distribution property for the
case when a large number of partition queries could be pruned.

First we formally define the joint distribution across input streams.
Consider a queryQ specified on a set of streams{S1 ,S2 , ...,Sm}.
Si is a data stream whose values come from the universeUi (1 ≤
i ≤ m). Without loss of generality, we assume each universeUi is
indexed by the set of integers{1 , 2 , ..., |Ui |}.

Definition 5. Given a combination of values(v1 , v2 , ..., vm)
(1 ≤ vi ≤ |Ui |), the joint frequencyf (v1 , v2 , ..., vm) is the num-
ber of join results produced byv1 ⊲⊳ v2 ⊲⊳, ..., ⊲⊳ vm . Then the
joint distribution of input streams{S1 ,S2 , ...,Sm} is captured as
a m-dimensional array (tensor), whosei th dimension is indexed by
the values of streamSi (1≤i≤m) and whose cells contain the joint
frequency of the corresponding combination of values.

To avoid the generation of too many partition queries, the joint
distribution must demonstrate strong correlation. The intuition comes
from the characteristics of a static database tabledt with strongly
correlated attributes. Given adt with two strongly correlated at-
tributesX andY with numX andnumY denoting the number

of distinct attribute values ofX andY respectively, then the num-
ber of its distinct tuple values is typically far fewer thannumX ∗
numY . In the extreme case when the values ofX exactly deter-
mine one value ofY , the number of distinct tuple values ofdt is
equal to min(numX ,numY).

Therefore intuitively if the input streams show strong inter-stream
correlation, the number of the non zero cells of the joint distribution
tensor would not be large. Since only a non zero cell would poten-
tially form a partition query, the number of partition query would
thus not be large under this condition.

Furthermore this strong inter-stream correlation leads to the fol-
lowing important observation.

Observation 2. The joint distribution of the tuples in each par-
tition produced by CORBA is statistical uniform if the strong inter-
stream correlation exists in the joint distribution.

This observation can be justified as follows. First, the tuples in
each partition share similar join selectivity when joining with the
same partition, because the tuples within each partition formed by
CORBA have similar statistics.

Second, the tuples in each partition have a high chance of having
to join with the same partition. Given any two streams S and R, if
S and R are highly correlated, a partitionSi of stream S only needs
to join with one or at least very few partitions ofR. This leads to
the high possibility that the tuples in a given partition will all join
with the same partitions.

Since the joint distribution across input streams represents the
join relationships of the tuples in each stream, the above leads us to
derive that the tuples in each partition formed by CORBA tend to
share the similar joint distribution.

This observation enables us to search for the effectiveGPj solu-
tion on the abstracted partition level joint distribution model rather
than at the original tuple value level model per Def. 5. Therefore
the search space of theGPj is significantly reduced.

5.2 Inter-Stream Correlation Evaluation
In this section we propose a lightweight method to evaluate if the

input streams of a given query show strong inter-stream correlation
property. We first introduce thePartition-Aware Join Graph(PAJ)
to model the joint distribution across multiple streams. The key
idea is that the PAJ model is built on the uniform intervals produced
by theCORBAalgorithm.

Definition 6. Let S represent a set of streams participating in
query Q. APAJ model of query Q andS is a graphGPAJ (V,E)
such that (1) each nodeRi in V represents a partitionRi ∈ R with
R ∈ S, (2) an edgeeij = (Ri, Tj) exists in E if partitionsRi ∈ R

and Tj ∈ T whereR, T ∈ S form a join pair in Q potentially
producing output, (3) each nodeRi ∈ V is annotated with a label
tc(Ri) = |Ri| denoting the cardinality ofRi, (4) each edge(Ri, Tj)
∈ E records the cardinality of its estimated join output denoted by
jc(Ri, Tj) = |Ri ⊲⊳ Tj |.

Similar to [15] aPAJmodel encodes a partitioning of the stream
data along with aggregate information about its statistics and the
join relationships among the partitions. Consider a specificPAJ
model, say the graphGPAJ , and a partitionRi ∈ R. Let Tj ∈ T

be a partition connected toRi with (Ri, Tj) ∈ E. Then we define
jr(Ri,Tj) = jc(Ri,Tj)/(tc(Ri) as the join ratio betweenRi andTj .
In this case, each tuple inRi is expected to join with each tuple in
Tj with the probability ofjr(Ri, Tj).

Example 1. Consider an example query Q1 over the partitioned
streams R, S, T, and U after join pair pruning shown in Fig.6.

271

S1

0

80

T1

T2

0

50

60

80

U1

U2

U3

U.a
0

10

20

U4

U5

U6

50

60

70

80

R2

R1

S2

S3

0

50

40

80

Figure 6: Horizontal Partitioning

!"
#$%&

'"
#(%%&

)*
+,-.

)"
+/-.

)0
+1-.

!(
#(%%&

'(
#$%&

2(
#3%&

'*
#($%&

20
#("%&

)(
+4-.

)$
+4-.

)5
+/-.

"6$%%

Figure 7: Original Partition-Aware Join Graph

Q1: SELECT * FROM R, S, T, U
WHERE R.a = S.a and S.a = T.a and T.a = U.a
WINDOW 60 seconds

Fig. 7 shows the PAJ model of Q1. In this graph, nodeR1

represents one partition ofR with tc(R1) = 100 samples falling in
this partition. Accordingly nodeS1 represents a partition ofS with
cardinality 50. Their join operation denoted by the edge(R1, S1)
is estimated to producejc(R1, S1) = 5000 results.

Based on the PAJ model we now propose a lightweight method to
measure the inter-stream correlations with the notion ofmutual in-
formation[3]. Given two random variables X and Y,mutual infor-
mation is a common technique used to measure their dependency.
This metric calculated with Eq. 4 is also widely adopted to measure
the correlation of attributes pairs of a static database table.

I(X,Y) =
X

x

X

y

P (x, y) log
P (x, y)

P (x)P (y)
(4)

In Eq. 4P (x, y) is thejoint probability distribution functionof
X and Y, andP (x) andP (y) are themarginal probability distribu-
tion functionsof X and Y respectively. The mapping between the
streams and the random variables is established as follows using
queryQ1 as example.

Let T andU denote a set of nodes inGPAJ corresponding to
streamsT andU respectively. First we map the streamT to a ran-
dom variableX and accordingly each nodeTi in T to one value of
X denoted asxTi . Similarly letY be the random variable modeling
streamU and nodeUj in U be mapped toyUj of variableY.P (xTi)
is defined as the percentage of the number of tuples inTi over the
total sampling cardinality of streamT. It is calculated as:

P (xTi) =
tc(Ti)
P

Tj∈T

tc(Tj)
(5)

Then the joint probabilityP (xTi , yUj) of xTi and yUj is de-
fined as the percentage of the number of results produced by joining

Ti with Uj over the expected total output produced when joining
streams T and U, namely:

P (xTi , yUj) =
jc(Ti, Uj)
P

Tj∈T,Uk∈U

jc(Tj , Uk)
(6)

Given thismutual informationmetric for pair streams, we use the
average mutual information(MI) to assess the overall inter-stream
correlation across all streams involved in a queryQ. Given a setSp

of all stream pairs (Si, Sj) with edges connected inGPJ , Vp is a
set containing the random variable pairs (X,Y) mapped from the
stream pairs inSp. MI is calculated as:

MI =

P

(X,Y)∈Vp

I(X,Y)

|Vp|
(7)

As confirmed by our experiments in Sec. 6.3MI in Eq. 7 effec-
tively indicates the potential gain of the multi-route solution. The
largerMI is, the better the performance of the multi-route solution
will be. WhenMI is greater than some constant value, the multi-
route strategy is guaranteed to win against the single plan strategy.
Early Termination. With the stronginter-stream correlationand
skewed uniformityproperties we now are ready to design anearly
terminationmechanism for short-cutting the multi-route optimiza-
tion. Namely if the input streams are found to not exhibit either
skewed uniformity or strong inter-stream correlation, then we pro-
pose to terminate the expensive multi-route optimization proce-
dure. This decision criteria, albeit simple, enablesCMR to quickly
converge to the traditional “single plan” approach in any multi-
route unfriendly environment.

5.3 CONCUR Algorithm
Guided by theMI metric, we now demonstrate the CONCUR

algorithm at improving the partitioning by clustering and merging
nodes with similar joint distributions. This algorithm leads to a re-
duced number of the final partition queries and in turn an increased
MI, indicating the run-time execution performance has improved.

Algorithm 3 CONCUR(P[n][],ct)
Input: partitioning of streamS1, S2, ...Sn P[n][], clustering thresholdct
Output: PAJG
1: Initialize PAJ with one node per partition in P[n][];
2: for streamSi from S1 to Sn do
3: while changedo
4: P = map(Si);
5: Merge(cluster(P,ct));
6: end while
7: end for

We now describe the overall process flow of theCONCURalgo-
rithm (Alg. 3). CONCURreceives as input the partitions of then
input streams of queryQ denoted by P[n][], and a clustering error
thresholdct. It returns a compressedPAJ graphG. CONCURfirst
initializes thePAJgraph with the given partitions of each stream as
nodes and the join pairs as edges (Line 1).

Then CONCURutilizes a clustering algorithm to identify the
nodes with similar statistics. Given a setR containing the nodesRi

in streamR. Inspired by [15] we measure the similarity of nodes by
mapping every nodeRi of R to a multi-dimensional point (Line 4).
More specifically we use setlinks(R) to represent the nodes with
a direct edge linked to any node inR in thePAJ model. |LinksR|
denotes the cardinality of setlinks(R). Then every nodeRi of R is
mapped to an|LinksR|-dimensional point, where each dimension
corresponds to a nodeRlink in links(R). This coordinate value

272

78
9:;<

=8
98:;<

>8
9?;<

>@
9A:;<

A;B:;; ACB;;;

>A
9D;<

7A
9A;;<

=A
9:;<

:B;;; CB;;; EA
9?;<

E8
9A8;<

CB:;;

CBF;;

Figure 8: Compressed Partition-Aware Join Graph of Q1

of Ri for nodeRneigh is set tojr(Ri,Rlink). In other words, the
multi-dimensional point ofRi indicates the other nodes to which
Ri is linked and their corresponding join ratios.

We thus can measure the similarity of two nodes in terms of the
distance in this multi-dimensional space. The nodes with similar
characteristics can be identified by applying any clustering algo-
rithm (Line 5). In this work we adopt BIRCH [21] with thediame-
ter metric(Eq. 8) as the tightness measure of a cluster.

diameter(Rc) =

v

u

u

u

u

t

|Rc|
P

i=1

|Rc|
P

j=1

(Ri −Rj)2

| Rc | (| Rc | −1)
(8)

After a clusterRc is identified,CONCURuses the merge func-
tion to substitute all nodes inRc with a single new nodeRnew that
represents the union of all partitions inRc (Line 4). The statistics of
the new nodeRnew are naturally defined as:tc(Rnew) =

P

Ri∈Rc

tc(Ri), andjc(Rnew,t) =
P

Ri∈Rc jc(Ri,t).

Example 2. In Fig. 7, nodeS2 is abstracted as a pointp2(40, 50)
with 40 and 50 beingjr(R2, S2) andjr(S2, T4). Similarly node
S3 is represented by the pointp3(43, 60). According to Eq. 8, the
diameter({p2, p3}) is measured to be 10. Given an error thresh-
old ct = 20 > 10, the nodesS2 andS3 are declared to be similar
enough to be substituted by a new nodeSnew with tc(Snew) =
250, jc(Snew, R2) = 10500, andjc(Snew, T2) = 14000.

This process (Lines 4, 5) continues until every stream has been
examined at least once and no nodes remain that form a valid clus-
ter under the restriction of the error thresholdct (Lines 2, 3). After
sequentially merging{U1, U2}, {U4, U5, U6}, and{S2, S3}, the
final partitioning is derived as shown in Fig. 8.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Design
Experimental Setup: All our experiments are run on a machine
with Java 1.6.0.22, Windows 7 with Intel(R) Core(TM) i7 CPU
@2.67GHz processor and 4GB of RAM.

We compare the performance of ourCMRagainst the three key
alternative approaches in the literature, namely (1) the traditional
“single plan for all data” system [18] (SP), (2) the “query mesh”
system [13] (QM), and (3) the “Sharing-Aware Horizontal Parti-
tioning” [20] (HP). For SP, we implement a multi-way join (MJoin)
[18] operator. MJoin is a generalization of the symmetric binary
join algorithm shown to provide the best plan for each stream. HP
[20], although focused on static databases, is the state-of-the-art
work in horizontal partitioning. We apply this to our stream con-
text by adding sampling for collecting the data statistics. We in-
stantiate HP’s query plans in our execution infrastructure. TheQM

strategy [13] with a content-driven start solution is the approach
in the literature closest to ourCMR, since both conduct content-
based partitioning. However we replace their simplistic partitioner
heuristic by our more sophisticated CMR optimizer.

To ensure a fair comparison, all systems are implemented in the
CAPE platform [5]. Each implementation uses as much of the same
code base as possible. Since QM, HP, and CMR are implemented
within the same software framework, we can employ the same sys-
tem parameters (both for optimization and execution parameters)
as shown in Table 1.

Parameter Value Description
Data
Arrival

Poisson Data arrival distribution

µ 500 msec Mean inter-arrival rate
|A| 6 # of attributes in tuple schema
|Tdq| 1,000 Maximum # of tuples dequeued by an oper-

ator at a time
WTC 1,000 tuples Classification window size
Ruster size 100 tuples Minimum rustersize

Table 1: Defaults used in the experiments.

Metrics. We compareCMRagainst its competitors by measur-
ing: a) the average output rate at run-time, b) the execution time
with varying correlations at run-time, c) the cumulative number of
tuples produced over time, and d) the optimization time with vary-
ing correlations at compile time.

Key Features.We study the effectiveness of the key features of
CMR : 1) the partitioning number threshold in theCORBAalgo-
rithm, and 2) the CORBA and CONCUR algorithms.

6.2 Data Sets and Queries
Weather Dataset: This real world dataset made available byCDIAC
[4] consists of weather measurements organized by month and col-
lected over several years by thousands of weather stations. For
our experiments, we chose the readings in the month of November
over ten consecutive years (2000, 2009). The attributes of inter-
est were the latitude, longitude, and brightness information. The
latitude and longitude pinpoint the location of the weather station
taking the readings. To explicitly represent the physical proximity
of weather stations we divided locations on the earth into square
grids consisting of 10 degrees of latitude and longitude each. We
then replaced the location attributes of each event with the ID of
the grid cell that it falls in. The brightness information is a (0,1)
score indicating whether the illuminance criterion was satisfied.
Soccer Dataset: This real world sport stream [12] is used as chal-
lenge benchmark at DEBS 2013. It is produced by the Real-Time
Locating System deployed on a soccer field of Nuremberg Stadium
in Germany. Data originates from sensors located near the players’
shoes and in the ball. Every event describes the position of a given
sensor in a three-dimensional coordinate system. We have divided
the sensor readings into four streams (Team A, Team B, the ball,
and the referee) based on the identity of the people that the sen-
sor is located on. We have equally divided the soccer field into 4
areas and replaced the coordinate attributes of each event with its
corresponding area. This facilitates the analysis of the defense and
offense relationship among the players.
Berkeley Dataset: The third real dataset is composed of readings
from sensors in the Intel Research, Berkeley Lab [14] between Feb.
28th and Apr. 5th, 2004. We have partitioned these sensor readings
into five data streams based on sensor locations. Each stream cor-
responds to a group of sensors in close proximity to each other.

273

Synthetic Datasets. Beyond the rich sets of real data we also work
with synthetic datasets. By manipulating the parameters of syn-
thetic data we evaluate the performance patterns of CMR under
varying data skewness and distribution. To establish data skew, we
employ theUniformandPoissondistributions with parameter vari-
ations as per Table 2.
Queries: We deployN -way join queries, asN-way join queries
are among the core and most expensive queries in database sys-
tems. Such queries are commonly used to discover correlations
across data from different sources and to compose complex results.
In the context of theweather datathe join query is performed on
the cell and brightness attributes of streams to identify weather sta-
tions that are located physically near each other yet are observing
different brightness measures. Such information might be valuable
for the analysis of climate change. For thesoccer data, we per-
formed a join on the four streams using the area attribute to iden-
tify sensors (players) located physically near each other. Such a
join query could potentially be used to analyze the defense and of-
fense relationships among the players. For theBerkeley data, the
join query performed on the temperature attribute may help to de-
tect fire “hotspots” or support automatic temperature control inside
buildings. The sliding window on the join operator enforces that
the matched readings are taken at nearby points in time. For syn-
thetic data experiments unless otherwise stated we use an equi-join
of 5 streams, i.e.,S0 ⊲⊳ S1... ⊲⊳ S4.

Data Distributions
Name Parameters Application Examples
Uniform α ∈ {...,β-1,β}

β ∈ {α,α+1,...}
X ∈ {α,...,β-1,β}

• Long-term patterns of data
• Distribution of moving objects in
some geographic areas

Poisson 0< λ < ∞
X ∈ {0,1,...}

• # people at a counter
• # of times web server accessed per
minute

Uniform (α = 0,β = 100):min: 0.0,max: 100.0,med: 49.0,
mean: 49.7,ave.dev: 25.2,st.dev: 29.14,var: 849.18,skew: 0.05,
Poisson(λ = 1): min: 0.0,max: 7.0,med: 1.0,mean: 0.97,
ave.dev: 0.74,st.dev: 1.01,var: 1.02,skew: 1.17,kurt: 1.89
Distribution transitions: (λ = 1)→(λ = 3)→(λ = 5)...

Table 2: Distribution statistics for synthetic Data.

6.3 Comparing Alternative Solutions
Average Output Rates. First we compareCMRto SP, QM, and HP
with both uniform and poisson distributed synthetic data (settings
in Table 1) to verify the scope of the applicable scenarios for multi-
route solutions. The results are averaged over 10 runs of 10 minutes
each to measure the average output rate in Fig. 9.

First let us discuss the worst case scenario for the multi-route
solution, namely, when the data is uniform. We observe that in
this case,CMR tends to default to a solution with a single route
per stream or occasionally at most two routes. This is expected as
with a none-skewed dataset, no benefit can be gained from distinct
routes. It is in fact desirable as we would not enforce any additional
routes. In this case, we observe on averageCMR, QM, and HP
are 2.2% worse than SP in output rate due to the extra overhead
of the multi-route execution infrastructure (left in Fig. 9). CMR,
QM, and HP exhibit similar performance due to the same execution
infrastructure they adopt.

In the second experiment we instead utilize poisson distributed
streams. In general the poisson distributed data is skewed. Yet
the adjacent values of the poisson distribution tend to show simi-
lar statistics. This benefits the multi-route solution. As shown in

 0

 20

 40

 60

 80

 100

 120

 140

Uniform Poisson

tu
pl

es
 p

er
 m

s

Data Distribution

SP
QM
HP

CMR

Figure 9: Output rates

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 6 7 8 9 10

cu
m

ul
at

iv
e

of

 tu
pl

es
 (

x1
05)

Number of Input Streams

SP

QM

HP

CMR

Figure 10: Stream number

the right side of Fig. 9,CMR on average has an 87% higher out-
put rate than HP, 90% higher than QM, and 121% higher than SP.
This confirms the effectiveness of the correlation-aware partition-
ing strategy of CMR when handling skewed data.

In summary our results show thatCMR has a low overhead as
there is no significant degradation in performance if datasets are not
skewed, yet exhibits significant improvements where skew arises.
The Effect of Varying Query Complexity On Execution. Next
we evaluate the performance of CMR by varying the number of
streams involved in the join queries. In this experiment we use
the real lifeweather data (Sec. 6.2). The number of streams
varies from from 5 (2000 to 2004 weather data) to 10 (2000 to 2009
weather data). Here we analyze the total number of tuples created
after 5 minutes (averaged over 10 runs).

As shown in Fig. 10 CMR outperforms SP at least by 60 per-
cent in all cases. This is due to the consistent existence of strong
correlations as shown below. The readings produced by the sensors
located in the same cell at nearby points in time tend to have similar
brightness measures. This leads to theskewed uniformityshown in
each weather stream. Preserving this correlation is straightforward
when mapping the categorical weather station identity to numer-
ical domain, because the weather stations are already ordered by
their locations in the original data files. Furthermore the weather
streams share the similar statistical patterns each year. Therefore
the weather streams of different years are strongly correlated no
matter how many weather streams are involved in the query.

We also measure the MI value in this experiment. It varies in a
small range from 0.55 to 0.61. Therefore this experiment also con-
firms that the performance of CMR strongly relies on the intensity
of the correlations instead of on the complexity of the queries.

Furthermore we observe that HP and QMno longershow much
advantage over SP as the query length increases to 9 or beyond.
This might be caused by their ignorance of the optimization oppor-
tunities hidden behind the strong inter-stream correlations. These
opportunities increase as the number of input streams increases.

In this experiment we also evaluate our Obs. 2 proposed in Sec.
5.1. The weather stream of each year is divided into 11 to 13 uni-
form intervals by CORBA. We then produce the optimal query plan
for each single tuple based on the statistics collected by CORBA.
Most of the tuples (86% in average) within each uniform interval
are observed to share same optimal plan and hence show similar
joint distribution statistics. This confirms the validity of Obs. 2.
The Effect of Varying Data Correlations on Execution.Next we
evaluate the effectiveness of CMR for data streams with increasing
data correlations. We control the data correlations by varyingMI
from 0.1 to 1. The stream generator achieves such MI variations by
adjusting the percentage of each tuple value over the data stream.

Fig. 11 (a) shows the total number of tuples created after 5 min-
utes (averaged over 10 runs). For weakly correlated data (MI <

274

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

of

 tu
pl

es
 (

x1
05)

Mutual Information

SP

QM

HP

CMR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
pt

im
iz

at
io

n
tim

e
(m

s)

Mutual Information

SP

QM

HP

CMR

(a) Number of tuples produced (b) Optimization time

Figure 11: Data correlations

0.2), all four systems yield almost the same number of output tu-
ples. As the data becomes more correlated (MI ≥ 0.2) CMR, QM,
and HP become faster than SP. AtMI = 1, we observe that CMR is
3-fold faster than SP. As theMI rises to 5 (not shown in this chart
due to the scope restriction of the x axis) CMR is 10-fold faster
than SP. This experiment confirms thatMI effectively indicates the
potential gain achievable by applying CMR instead of traditional
single plan technology. However when the data is strongly corre-
lated (MI ≥ 0.9), HP and QM no longer clearly outperform SP.
In this case both HP and QM do not utilize the join pair pruning
opportunities nor succeed to merge the partition combinations to
a small number of partition queries (see Sec. 5), while stronger
correlations indicate that more such opportunities should exist for
optimization. Such opportunities are indeed leveraged by CMR.
The Effect of Varying Data Correlations on Optimization. Next
we evaluate the optimization time using the above setting. As
shown in Fig.11 (b) although all three multi-route algorithms are
more expensive than SP as expected, CMR is consistently supe-
rior to QM and HP. When data is weakly correlated, CMR exhibits
similar optimization time with SP. This can be explained by our
early termination mechanism that quickly determines whether a
multi-route solution should be even explored. For highly correlated
data, CMR benefiting from the small number of partition queries,
greatly outperforms QM and HP. In all cases CMR significantly
outperforms QM and HP, because CMR successfully decomposes
the stream partitioning and query planning. HP is about 30 percent
faster than QM as the latter applies the traditional algorithm [18] to
compute the optimal join plans separately for each partition query.
Total Number of Tuples Produced Over Time. We use two real
datasets (soccer dataandBerkeley dataintroduced in Sec. 6.2) to
evaluate the total number of tuples produced by the four strategies
over time. Here we display the average output for the first 10 min-
utes of longer execution runs.

Thesoccer datashows strong correlations in the sense that our
MI metric is measured as 0.76. The reason is that the positions
of the players are highly correlated with the specific areas on the
field which they cover. For instance the strikers usually cover the
offensive half of the field, while the goalkeepers generally do not
leave the penalty box. These strong correlations between the sen-
sor Id (players) and the area attributes indicates that the players in
the same position tend to cover similar areas. This leads to the
skewed uniformityshown in the player streams. When performing
the intra-stream partitioning (CORBA) the identities of the players
are mapped to consecutive numerical values along their original or-
der in the metadata file of soccer data [12]. Since in the metadata
file the names of players are naturally ordered by their positions,
this property is preserved after the mapping. Furthermore the ref-
eree stream and the ball stream are also highly correlated, since in

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 3 4 5 6 7 8 9 10

cu
m

ul
at

iv
e

of

 tu
pl

es
 (

x1
05)

Time (min)

SP

QM

HP

CMR

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

cu
m

ul
at

iv
e

of

 tu
pl

es
 (

x1
05)

Time (min)

SP

QM

HP

CMR

(a) Soccer data (b) Real sensor data

Figure 12: Total number of tuples produced over time

general the referee is physically close to the location of the ball.
As shown in Fig. 12 (a),CMR significantly outperforms other

alternatives. This is because that CMR successfully discovers the
uniform intervals of the player streams and fully utilizes the strong
inter-stream correlations between referee stream and ball stream. In
the SP approach, single plan optimization coarseness leads to pro-
ducing a lot more intermediate results. These results gradually fill
up the queues and hinder the performance of the system. Although
compared to SP, QM and HP solutions show better performance,
both of them suffer from lack of an effective partitioning strategy.
They either produce too many partitions, or incorrectly group the
tuples without sharing similar optimal plans into the same partition.
This makes them worse than CMR by more than 50 percent.

Similar to the soccer data experiment, for theBerkeley data
CMR significantly outperforms the other three approaches as shown
in Fig. 12 (b). This performance gain originates from the strong
correlations between the location of the sensors and their temper-
ature readings. This leads to a relatively high MI value as 0.42−
high enough to provide CMR with opportunities to discover good
partitions. When conducting the intra-stream partitioning (CORBA),
the sensor tags are mapped to consecutive positive integers by fol-
lowing their original order in the metadata file. This mapping suc-
cessfully keeps this correlation, since the sensors in physical prox-
imity are indeed adjacent to each other in the metadata file.

Similar to theweather streamexperiment, Obs. 2 of Sec. 5.1
is also evaluated in this set of experiments. CORBA divides each
soccer stream into 3 or 4 partitions and each Berkeley stream into
5 to 7 partitions. More than 80% percent of tuples in each partition
are observed to share same optimal plan. This again confirms the
validity of Obs. 2.

6.4 Key Features of CMR
The Effect of the Partition Number Threshold. The threshold
τ which restricts the maximum number of partitions made on each
stream is used to identify if the distribution exhibits theskewed
uniformityproperty (Sec. 4.2).

Fig. 13 (a) shows the number of tuples produced in 5 minutes
by CMR and SP when varying the number of partitions per input-
stream. When the number of partitions is smaller than 16, CMR
processes more tuples than SP. As each individual stream is divided
into more than 16 partitions, CMR becomes worse than SP due to
having to maintain a larger and larger number of partition queries
and their routes. Clearly the benefit of supporting multiple plans
is outweighed by the overhead introduced by route maintenance
and tuple classification. Given this empirical evidence we use this
calibrated value of 16 as the partition number thresholdτ for our
experiments. This threshold is used by CORBA to evaluate whether
an input stream shows skewed uniformity.

275

 4

 4.5

 5

 5.5

 6

 6.5

 7

1 2 4 6 8 10 12 14 16 18

C
um

ul
at

iv
e

ou
tp

ut
 tu

pl
es

 (
x1

05)

Number of partitions

SP
CMR

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

of

 tu
pl

es
 (

x1
05)

Mutual Information

SP
CORBA

CMR

(a) Partition threshold (b) Partition Algorithms

Figure 13: Impact of different features.

The Effect of CORBA and CONCUR. Next we evaluate the ef-
fectiveness of ourCORBAandCONCURalgorithms independently.
The effectiveness ofCORBAis evaluated by excludingCONCUR
from CMR. Then the performance ofCONCURcan be naturally
demonstrated by comparing theCORBAonly optimizer against the
full CMR optimizer.

Fig. 13 (b) depicts the number of output tuples produced after
5 minutes by thefull CMR, theCORBAonly CMR, and SP. The
difference is shown over increasing data correlations. We vary the
data correlations by the same approach applied in the correlation
experiments of Sec. 6.3. As Fig. 13 (b) shows,CMRprocesses tu-
ples up to 50 percent faster thanCORBA, becauseCONCURelim-
inates unnecessary partitions who have similar joint distributions
with others. However for weakly correlated (MI< 0.2) and highly
correlated (MI≥ 0.9) data,CMR does not show much advantage
overCORBA. Only in these settings, each stream does not produce
many local partitions. Hence less opportunities for partition merg-
ing are offered toCONCUR. CORBAoutperformsSP in all cases
with MI ≥ 0.2. This is because that CORBA successfully groups
tuples sharing similar query plans into the same partition. In sum-
mary this experiment confirms that bothCORBAandCONCURal-
gorithms contribute to produce effective partitioning.

6.5 Summary of Experimental Results
Our main findings can be summarized as: 1)CMR improves ex-

ecution time and output rate metrics by up to 10-fold compared to
the single plan solution. 2) The correlation-aware partitioning strat-
egy enablesCMRto achieve effective partitioning and dramatically
outperforms the existing partitioning strategies, both QM [13] and
HP [20]. 3) In the worst case when the data is uniform and thus a
traditional single route solution would have been ideal,CMR’s per-
formance is only 2% slower than that of SP. All in all these experi-
ments demonstrate thatCMRachieves significant performance im-
provements over alternative solutions. Thus indeed it is a promising
optimizer for multi-route stream query processing.

7. CONCLUSION
In this paper, we have proposed a practical multi-route optimizer

calledCMR. By carefully analyzing the stream data properties re-
vealed in the multi-route strategy winning scenario,CMRsuccess-
fully decomposes the stream partitioning and query planning with
an effective correlation-aware partitioning strategy. The layered
structure of CMR makes it amendable to handling characteristics
drift which frequently arises in dynamic streaming context. All the
above features makeCMR a practical and effective optimizer for
time-critical applications.

8. REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik.
The design of the borealis stream processing engine. In
CIDR, pages 277–289, 2005.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. InSIGMOD, pages 261–272,
2000.

[3] C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees.IEEE Trans.
on Information Theory, 14:462–467, 1968.

[4] R. Eastman and S. Warren. Extended edited synoptic cloud
reports from ships and land stations over the globe,
1952-2009 (ndp-026c).

[5] E.Rundensteiner and L.Ding and T.Sutherland and Y.Zhu and
B.Pielech and N.Mehta. Cape: Continuous query engine with
heterogeneous adaptivity. InVLDB, pages 1353–1356, 2004.

[6] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
Spade: the system s declarative stream processing engine. In
SIGMOD Conference, pages 1123–1134, 2008.

[7] O. Goldreich and D. Ron. On testing expansion in
bounded-degree graphs. InStudies in Complexity and
Cryptography, pages 68–75. 2011.

[8] N. B. Herodotos Herodotou and S. Babu. Query optimization
techniques for partitioned tables. InSIGMOD Conference,
pages 49–60, 2011.

[9] P. Indyk, R. Levi, and R. Rubinfeld. Approximating and
testing k-histogram distributions in sub-linear time. In
PODS, pages 15–22, 2012.

[10] M. Klazar. Bell numbers, their relatives, and algebraic diff.
equations.J. Comb. Theory Ser., pages 63–87, 2003.

[11] S. C. Mehul A. Shah, Joseph M. Hellerstein and M. J.
Franklin. Flux: An adaptive partitioning operator for
continuous query systems. InICDE, pages 25–36, 2003.

[12] C. Mutschler and F. IIS. The dataset of debs 2013 grand
challenge.http://www.orgs.ttu.edu/debs2013.

[13] R. V. Nehme, K. Works, C. Lei, E. A. Rundensteiner, and
E. Bertino. Multi-route query processing and optimization.J.
Comput. Syst. Sci., 79(3):312–329, 2013.

[14] P. Bizarro and S.Babu and D.DeWitt and J.Widom.
Content-based routing: Different plans for different data. In
VLDB, pages 757–768, 2005.

[15] N. Polyzotis. Selectivity-based partitioning: a
divide-and-union paradigm for effective query optimiation.
In CIKM, pages 720–727, 2005.

[16] V. Poosala and Y. E. Ioannidis. Selectivity estimation without
the attribute value independence assumption. InVLDB,
pages 486–495, 1997.

[17] S.Babu, R. Motwani, K. Munagala, I. Nishizawa, and J.
Widom. Adaptive ordering of pipelined stream filters. In
SIGMOD, pages 407–418, 2004.

[18] S.Viglas, J.Naughton, and J.Burger. Maximizing the output
rate of multi-way join queries over streaming inf. sources. In
VLDB, pages 285–296, 2003.

[19] TradingMarkets. http://www.tradingmarkets.com/.
[20] K. Tzoumas and et.al. Sharing-aware horizontal partitioning

for exploiting correlations during query processing.PVLDB,
3(1):542–553, 2010.

[21] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An
efficient data clustering method for very large databases. In
SIGMOD, pages 103–114, 1996.

276

