
Complex Event Analytics: Online Aggregation of Stream
Sequence Patterns ∗

Yingmei Qi†, Lei Cao‡, Medhabi Ray‡, Elke A. Rundensteiner‡
†Google Inc Seattle, WA 98103, USA

‡Worcester Polytechnic Institute Worcester, MA 01609, USA
yingmei.qi@gmail.com, lcao|medhabi|rundenst@cs.wpi.edu

ABSTRACT
Complex Event Processing (CEP) is a technology of choice for
high performance analytics in time-critical decision-making appli-
cations. Yet while effective technologies for complex pattern de-
tection on continuous event streams have been developed, the prob-
lem of scalable online aggregation of such patterns has been over-
looked. Instead, aggregation is typically applied as a post process-
ing step after CEP pattern detection, leading to an extremely inef-
fective solution. In this paper, we demonstrate that CEP aggrega-
tion can be pushed into the sequence construction process. Based
on this insight our A-Seq strategy successfully aggregates sequence
pattern online without ever constructing sequence matches. This
drives down the complexity of the CEP aggregation problem from
polynomial to linear. We further extend our A-Seq strategy to sup-
port the shared processing of concurrent CEP aggregation queries.
The A-Seq solution is shown to achieve over four orders of magni-
tude performance improvement for a wide range of tested scenarios
compared to the state-of-the-art solution.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

Keywords
Complex Event Processing, Aggregation, Sequence Pattern

1. INTRODUCTION
Motivation. High performance Complex Event Processing (CEP),

which detects complex sequence patterns over high speed event
streams, forms the core of many modern business processes [9, 11,
19]. Current research in CEP has focused primarily on how to ef-
ficiently detect time-order aware sequence patterns [3, 11, 19]. Yet
the optimization of CEP aggregation, critical for high performance
analytics, has been overlooked. CEP aggregation asks analytics
queries about matched sequence patterns, such as how frequently a

∗This work was done when Yingmei Qi was a master student at Worcester Polytechnic
Institute. NSF grants IIS-1018443 & 0917017 support this project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2593684.

certain sequence pattern occurs over some period of time or what
the maximum value of particular event attributes in a pattern is
among all matched sequences. Such CEP aggregation queries are
prevalent in every aspect of both our digital daily lives and the busi-
ness world alike, as motivated below.

Application I: Network Security. Consider a network security
system designed to prevent illegal web-access.

PATTERN <SEQ(TypeUsername,TypePassword,ClickSubmit)>
WHERE <TypePassword.value!=TypeUsername.Password>
GROUP BY <IP>
[AGG COUNT] [WITHIN 10s]
The query above counts the web click sequence pattern corre-

sponding to a wrong password immediately being submitted after
entering a user name from the same IP. A brute-force attack would
cause this count to rise abnormally. Then an appropriate action
should be taken to block the IP from further attacking the system.
It is necessary to respond to such situations in near real-time to
protect user accounts from being compromised. In this network se-
curity system the count of the matches must be rapidly determined.

Application II: E-Commerce. Consider an online shopping
website that monitors user click patterns for optimally timing tar-
geted promotions, product recommendations, and customized web
display layout. For instance, an analyst, hypothesizing user behav-
ior in online shopping, might be interested in knowing the number
of users who buy a Kindle followed by a Kindle Case and then a
Stylus within 1 hour. Such a query could be expressed as sequence
aggregation over web click stream with a 1 hour window.

PATTERN <SEQ(Kindle, KindleCase, Stylus)>
WHERE <Kindle.userId=KindleCase.userId=Stylus.userId>
[AGG COUNT] [WITHIN 1hour]
Given this insight, a prudent market strategy may be to display

Kindles and cases on the same web page when customers search for
either product, recommending cases when customers view Kindle,
as well as bundling a Kindle and a matching case together as a
package with a promotion price.

Application III: Fraud Detection. In a credit card protection
system, a susceptible credit card fraud might be defined as a partic-
ular online purchase pattern repeatedly arising with respect to the
same credit card with the total value over $10,000 within a short
time, such as a 10 minute-window. Once the occurrences of this
pattern surpasses a given threshold, an alert must be issued imme-
diately to block the suspicious transactions.

In spite of CEP aggregation being a core feature of analytics
systems, its optimization has been overlooked. For such aggre-
gation queries on high-volume event streams, a timely response is
of paramount importance. Even a one-second delay may lead to a
loss of huge funds, investment opportunities, or even human life.
We thus target the design of a high-performance CEP aggregation
solution in this work.

229

State-of-the-Art. To the best of our knowledge no research work
to date has focused on this CEP aggregation problem. In current
systems CEP aggregation queries are either not considered [3] or
are supported as a by-product of sequence detection queries [11,
19]. That is, they first employ a sequence detection algorithm to
find event instances that match the CEP pattern query to construct
all sequence matches. Thereafter the aggregation function, such as
COUNT, is applied to count the number of matched sequences. As
analyzed in Sec. 2 the CPU complexity of sequence detection is
polynomial in the number of active events − thus not scalable for
high volume event streams. Worst yet, it is exponential in the length
of the sequence pattern to be matched, therefore scaling poorly to
complex sequence pattern queries. Furthermore sequence detec-
tion also requires the system to store all active events. In a system
which receives millions of events per second, such an approach
poses a significant strain on memory resource. Therefore, a highly
customized lightweight approach must be developed to overcome
this critical performance bottleneck.

Unlike CEP aggregation, traditional aggregation over sliding win-
dow streams has been studied [7, 8]. The key innovation is that
upon the arrival of each individual data point its contribution to the
aggregation result can be instantly pre-computed for each future
window. Hence newly arriving events can be safely discarded once
processed. However unlike traditional stream aggregation which
aggregates independent data points, in CEP aggregation the con-
tribution of the new arrival to future windows depends on whether
in the future it could form sequence matches with any later arrival.
Thus it is not predictable. Therefore the techniques in [7, 8] cannot
be applied to solve our CEP aggregation problem.

Technical Challenges. The design of a lightweight CEP aggre-
gation algorithm is challenging. Given that sequence construction
mechanism is the bottleneck in processing sequence aggregation
queries [11, 19], if we were able to eliminate the sequence con-
struction step while computing CEP aggregation, a major benefit
would be reaped. However, any technique capable of correctly
supporting CEP aggregation must also be sequence-match aware.
Thus we need to design a preemptive algorithm which meets the
contradicting design goals of not only instantly aggregating and
pruning each event upon arrival, but also not missing any poten-
tial sequence match formed in the future under the premise that no
event is preserved.

In addition, a lightweight CEP aggregation solution must be able
to effectively handle the event expiration problem. Namely the
aggregation result needs to be continuously updated upon the ex-
piration of events from the current window. However one event
expiration might cause an arbitrary number of sequence matches
to be come invalid. Worst yet, independently expiring each event
would lead to erroneous aggregation results due to the correlation
among the events in each sequence match. Purging expired events
is thus difficult if the sequence matches themselves are not main-
tained, while explicitly maintaining all sequence matches conflicts
with the objective of eliminating the expensive sequence construc-
tion process.

Furthermore CEP queries require support for the negation (!) op-
erator. In a sequence pattern negation requires the non-occurrence
of instances of the negated event types at certain positions within
the matched sequence. In contrast to positive events, the arrival of
events of a negated type instead could invalidate some potential se-
quence matches. Thus one integrated strategy must be designed to
effectively process both positive and negative events.

Lastly, CEP applications often experience huge workloads of
similar but not identical queries over shared event streams [9]. The
design of a solution that optimizes the shared computation of ag-

gregation queries is vital for scalability. Intuitively common sub-
patterns, if extracted and aggregated independently, could be shared
by multiple queries. However not all sub-pattern matches would
form valid final sequence matches due to time order constraints of
pattern queries. How we can leverage the computation sharing over
arbitrary sub-patterns common within multi-queries, while still as-
suring correctness remains an open technical problem.

Proposed Solution. In this work we propose the A-Seq strat-
egy that successfully tackles all the above challenges. A-Seq com-
pletely eliminates the construction and maintenance of any actual
sequence match. It is therefore fundamentally more lightweight
compared to state-of-the-art approach [19]. In fact we prove that
CEP aggregation can be correctly handled by dynamically main-
taining a compact Prefix Counter structure. We also design a novel
algorithm for updating the Prefix Counter which instantly processes
and discards each new event upon its arrival. It is proven to be op-
timal in both CPU and memory costs.

Furthermore A-Seq elegantly handles the problem of event expi-
ration while supporting sliding windows by first locating the mini-
mum subset of events whose expiration could indeed affect the ag-
gregation result. A-Seq, by pre-isolating the influence of this event
set, eliminates the need for purging expired sequence matches.

To support negation (!) in sequence aggregation, we establish
the novel Prefix Invalidation property which successfully bounds
the influence of negation to the update of the Prefix Counter struc-
ture. It empowers A-Seq to correctly process queries with negation
in constant time. Overall the complete A-Seq approach is shown
to successfully drive down the CEP aggregation costs from polyno-
mial to linear complexity.

Finally we also explore the problem of sharing computations
among multiple CEP aggregation queries. First, since A-Seq dy-
namically maintains the aggregations of prefix patterns, this com-
putation can be naturally shared among queries with common pre-
fixes. We further extend A-Seq to share the computation on com-
mon sub-patterns at arbitrary locations within the patterns. This
approach assures the correctness of the aggregation queries with
only a compact aggregation snapshot structure introduced.

Contributions. Contributions of our work include:
1) We design the first solution to effectively aggregate sequence

patterns called A-Seq. A-Seq, which is proven to correctly push
the aggregation computation into the sequence detection process,
features linear time complexity (Sec. 3).

2) A-Seq effectively handles a variety of core CEP features, in-
cluding negation, predicates, and GROUP BY (Sec. 3).

3) Lightweight algorithm is devised to share computation of com-
mon sub-patterns at arbitrary positions among queries in a given
workload (Sec. 4).

4) A-Seq effectively supports popular aggregation functions like
COUNT, MAX/MIN, and SUM/AVG (Sec. 5).

5) Our extensive experiments on real world event streams il-
lustrate that our proposed A-Seq approach demonstrates over four
orders of magnitude efficiency improvement for a wide range of
tested scenarios over the state-of-the-art approach (Sec. 6).

2. PRELIMINARIES

2.1 CEP Aggregation Query
Basic Terminology. An event instance is an occurrence of inter-

est denoted by a lower-case letter (e.g.,‘e’). The time of occurrence
of an event ei is denoted by ts or simply by the subscript i for
compactness. An event type E of an instance ei denoted by ei.type
describes the essential features associated with ei.

230

Query Specification. We use a CEP query language commonly
used in the literature [9, 19] and extend it to support aggregation
over pattern queries.

PATTERN <event pattern>
[WHERE <qualification>]
[GROUP By <attribute>]
[AGG <aggregation function>]
[WITHIN <window>]

The PATTERN clause is composed of a CEP operator that de-
fines an event pattern to be matched against an event stream. The
WHERE clause contains predicates on attributes of the events, such
as the E-Reader’s model. The GROUP BY clause allows the user
to partition sequence aggregation results by a certain attribute. The
AGG clause specifies an aggregation function such as COUNT the
number or SUM an attribute value over the set of sequence matches.
The WITHIN clause stipulates that the time difference between the
first to the last event instances matched by a pattern query falls
within the window constraint.

CEP Operators. Several complex event operators have been
studied in the literature [3, 11, 19]. In this work we focus on the se-
quential pattern queries denoted by the SEQ operator and the nega-
tion “!” operator which form a core feature of most event pro-
cessing systems [3, 19]. A SEQ operator imposes an order on the
instances of specific event types in terms of their timestamps to be
considered a valid match.

SEQ(E1, E2, ..., En) = {< e1, e2, ..., en > |e1.ts < e2.ts <

... < en.ts ∧ (e1.type = E1) ∧ (e2.type

= E2) ∧ ... ∧ (en.type = En)}.
(1)

A ! operator before an event type Ei indicates that the instance of
type Ei is not allowed to appear in the stream between the matched
events for the event types specified in the “SEQ” operator [19]. We
call such Ei a negative event type. Consequently we call an event
type Ei used in a SEQ construct without “!” a positive event type.

SEQ(E1, !Ei, En) = {< e1, en > |(e1.ts < en.ts)

∧ (e1.type = E1) ∧ (en.type = En)

∧ (¬∃ei where(ei.type = Ei) ∧ (e1.ts < ei.ts

< en.ts))}.
(2)

Sliding Window Constraint. Often continuous queries over streams
are computed over a finite subset of events extracted from the stream
by the “sliding window” constraint. The sliding window size is a
parameter specified in the query to denote that the user is interested
in the aggregated results over the most recent set of events. Here
we adopt the window semantics most commonly used for CEP pat-
tern detection queries [3, 9, 19]. That is, the query window has a
fixed window size Q.win. It slides from Wi to Wi+1 whenever a
new event instance arrives. Query results are output whenever the
aggregation result changes as the window slides.

2.2 Stack-Based Pattern Evaluation
State-of-the-art CEP engines employ an NFA based technique [19,

3] to process CEP sequence queries. Each event type specified in
the sequence operator SEQ(E1 ,..., En) is associated with a stack.
Each new event instance of Ei is appended to the end of its cor-
responding stack. Each event of Ei is augmented with a pointer
ptri to its adjacent event in stack Ei−1. When an event instance en
of the last event type En arrives, the sequences are constructed by
employing a depth-first search along instance pointers ptri rooted

at en. Once sequences have been computed, the aggregation opera-
tor is applied. The following example evaluates a CEP aggregation
with a NFA approach proposed in [19].

Pattern SEQ(TypeUsername a, TypePassword b, ClickSubmit c)
WITHIN 5s

Stream
a1 b2 c3 c4

[] a1 [a1] b2 [b2] c3

[b2] c4

TypeUsername TypePassword ClickSubmit

[b6] c7

[a5] b6
[] a5

a5 b6 c7

Figure 1: Stack Based Pattern Evaluation

EXAMPLE 1. Fig. 1 depicts a sequence aggregation query and
the event stacks. When a new event arrives it is appended to the end
of its respective stack. For example when c3 arrives it is inserted
into the ClickSubmit stack. The CEP engine first checks if any event
should be expired from the current window. Then a depth-first
search is triggered to construct the sequence matches. Sequence
<a1, b2, c3> is formed and the count is updated to 1. When c4
arrives, a new sequence, namely [<a1, b2, c4>] is formed. The
count is now 2. When b6 arrives, a1 is purged out of the window.
No valid sequence survives. Thus the count is updated to zero.

Term Definition
Cq The cost of computing results for a query q
PtEi,Ej

Selectivity of the implicit time predicate of sub-sequence
(Ei, Ej).

|Ei| Number of instances of type Ei in a time window

Table 1: Terminology Used in Cost Estimation

Cost Model for Stack-Based Execution. For an event pattern
query q = SEQ(E1, E2 ,..., Ei ,..., En), Ei is an event type for
1 < i < n. Using stack-based pattern evaluation, the computation
costs of Cq are formulated in Eq. 3 with the terms explained in
Table 1.

Cq =

n−1∑
i=0

|Ei+1| ∗ [
i∏

j=0

|Ej | ∗ PtEj ,Ej+1] (3)

For ease of comparison, given a sequence pattern with ‘n’ event
types, assume every event type Ei receives an equal number of
event instances |Ei |, then Eq. 3 is reduced to |Ei|n. In other words
the computation costs of the stack-based approach grow exponen-
tially with the length of the sequence pattern and polynomially with
the number of the event instances. Clearly this technology thus can-
not provide real time responsiveness for CEP aggregation queries
evaluated over high volume event streams.

3. THE A-SEQ SOLUTION
We now introduce our proposed A-Seq methodology that com-

putes sequence aggregation on-the-fly. Here we first focus on the
COUNT aggregation, being one of the most popular aggregation
operations in the context of sequence analysis [10, 14, 17]. The
other aggregation types, like SUM, AVG, MAX and MIN, can be
similarly supported by A-Seq as described in Sec. 5.

3.1 A-seq Approach: Dynamic Prefix Counting
The key idea of A-seq is to push the aggregation computation

into the sequence detection process, called the Dynamic Prefix Count-
ing (DPC) method. Given a pattern p = (E1 ,E2 , ...,En), the pat-
tern pm = (E1 ,E2 , ...,Em) 1 ≤ m < n is called a prefix pattern

231

of p of length ‘m’. DPC exploits the key insight that sequence count
aggregation can be handled as a counting operation rather than a se-
quence pattern construction operation. In other words to answer the
sequence aggregation query q with pattern p, it is indeed not nec-
essary to construct any complete or even partial sequence. Instead
q can be solved by progressively counting the prefix patterns of p.

To better understand how DPC works, let us start by examining
the sequence match formation process using the concrete example
of pattern (A,B,C) in Fig. 2. At time ti, one match (a1, b1, c1)
has been found, while a2 is waiting for further event instances that
can participate in the formation of future matches.

Event Stream:

Pattern: SEQ(A, B, C)

Total Count (A, B, C): 1+0=1 1+ 0+0=1 1 1 1+ + + 1 = 4

a1 b1 c1 a2 b2
c2

a1

ti ti+1 ti+2

b1

c1

b2

c2

b1b1

c1c1

b2b2

c2c2

a1 a2a2a2 a1

b2

Figure 2: Sequence Forming Process for (A,B,C)

When b2 arrives at time ti+1, two new partial sub-sequences
(a1, b2) and (a2, b2) are formed together with a1 and a2. When c2,
the instance of the last event type to form sequence (A,B,C), ar-
rives at time ti+2, we append it to subsequences (a1, b1), (a1, b2)
and (a2, b2) to form 3 new (A,B,C) sequences. Thus, the to-
tal count of sequences constructed that match pattern (A,B,C) at
time ti+2 is 4, including the 3 newly formed sequences and the
one we have found before. From this, we observe that when ci ar-
rives, we can obtain the count of pattern (A,B,C) by adding two
counts, namely, 1) the count of sub-pattern (A,B), to which ci can
be appended to form new (A,B,C) matches, and 2) the count of
the previously detected pattern (A,B,C). This observation can be
generalized as follows.

LEMMA 1. Given a sequence pattern p = (E1 ,E2 , ...,En) and
its Longest Prefix Pattern pn−1 = (E1 ,E2 , ...,En−1), when one
event ei of ei .type = En arrives at time ti, the count of the se-
quence matches of p can be calculated by Eq. 4.

count(E1, E2, ..., En)ti =count(E1, E2, ..., En−1)ti−1+

count(E1, E2, ..., En)ti−1

(4)

Proof. Lemma 1 can be justified by proving the following two
arguments: (1) all sequence matches of pn−1 equally contribute to
the formation of the full sequence match; (2) when ei of ei .type = En

arrives, no any other prior sequences can lead to the construction
of p except the sequence matches of pn−1.

The two arguments naturally follow from the definition of se-
quence pattern (Sec. 2.1). To match pattern p the occurrence of
ei(ei .type = En) must be later than the occurrence of any other
event participating in the sequence. Since at ti−1 each pn−1 se-
quence match s is constructed by the events arriving earlier than
ei, a full sequence match of p will then be formed by appending ei
to s. Argument 1 is proven. On the contrary appending ei to the
matches of other prefix pattern pm(m < n − 1) would not lead to
a construction of p at time ti due to the missing of the event in-
stances ej (ej .type ∈ {Em+1 ...En−1}). Argument 2 is proven. �

Lemma 1 has two implications. First, to count the matches of
a sequence pattern p, only the counts of the previously formed se-
quence matches of p and the matches of pn−1 are required rather

than the actual matches. Therefore these actual sequence matches
and even the raw events can be safely pruned once processed. Sec-
ond, the count of the sequence matches at time ti only relies on the
state at the previous time point, namely the counts at time ti−1. For
example the count at ti+2 when c2 arrives only depends on the se-
quence counts at ti+1 (count(A,B ,C)ti+1 = 1 , count(A,B)ti+1

= 3). Therefore the states (the counts) at the older time points
(< ti−1) can be safely discarded.

However in event stream environments, only keeping the count
of the matches for p and pn−1 is not sufficient to guarantee that
we always get the correct aggregation. As new events continuously
arrive, a match of any prefix pattern of p potentially can evolve
to a match of its longest prefix pattern if the missing events are
acquired. A valid match to p will then be formed whenever an En
instance arrives later. Next we introduce Lemma 2 to establish the
minimum information necessary to guarantee the correctness of the
sequence aggregation query processing.

LEMMA 2. Given a sequence pattern p = (E1 ,E2 , ...,En), to
correctly count the matches to p at each time ti, it is sufficient and
necessary to continuously maintain a Prefix Counter (PreCntr)
set: PreCntrti−1 = {prefixCnt(pm)ti−1 | 1 ≤ m ≤ n}, where
prefixCnt(pm)ti−1

indicates the count of the matches for the prefix
pattern pm = (E1 ,E2 , ...,Em) constructed at time ti−1 .

Proof. Sufficiency: Once we acquire an event ei with ei .type = Em

at time ti, by Lemma 1 prefixCnt(pm)ti is calculated as:
prefixCnt(pm)ti = prefixCnt(pm)ti−1 + prefixCnt(pm−1)ti−1 .
Since prefixCnt(pm)ti−1 , prefixCnt(pm−1)ti−1 ∈ PreCntrti−1 ,
any prefix sequence match ending at ei that potentially leads to
the construction of a match of the full pattern p will not be missed
by maintaining PreCntrti−1 . The sufficiency of PreCntrti−1 is
proven.

Necessity: By contradiction. Assume prefixCnt(pm)ti−1 , which
represents the count of sequence matches for pm = (E1 ,E2 , ...,Em),
misses from the PreCntrti−1 set. Assume it is k. If events ei
(ei .type = Em+1), ei+1 (ei+1 .type = Em+2) ,..., ei+n−m−1

(ei+n−m−1 .type = En) continuously arrive between time ti to
ti+δ , then k sequence matches for p will be formed at ti+δ by
appending these new arrivals to the sequence matches of pm con-
structed previously at ti. Since prefixCnt(pm)ti−1 is not kept, the
k matches for p will be missed at ti+δ . Therefore every element in
PreCntrti−1 must be saved. The necessity of PreCntrti−1 is thus
proven. �

By Lemma 2 given a sequence pattern p = (A,B ,C ,D), we
can progressively compute its count from the singleton prefix (A),
until we get the count for the full pattern (A,B,C,D). That is, to
get the count of the whole pattern, we count all its prefix patterns
incrementally and store their most recent counts. The algorithm
called Dynamic Prefix Counting (DPC) is shown in Fig. 3.

Given a CEP aggregation query q with the sequence pattern spec-
ified as p = (E1 ,E2 , ...,En). DPC first creates a PreCntr structure
representing the counts of the n prefix patterns of p. Then DPC
classifies each new arrival into three classes, namely Start Event
Type (START), Update Event Type (UPD), and Trigger Event
Type (TRIG) as shown in Lines 3, 5, and 7. START indicates the
first event type E1 of p. When a START instance arrives, we simply
increase the count of E1 by 1 since there is no prefix pattern prior
to it (Line 4). UPD instead represents all other event types except
START in p. When a UPD instance arrives, the count of the prefix
pattern it triggers (ending with this UPD type) will be updated ac-
cording to Lemma 1 (Line 6). For example, the count of (A,B,C)
should be updated when a C instance arrives. The last event type

232

Basic A-Seq: Dynamic Prefix Counting
(Input: pattern query q, stream S)

 ei : an event instance
 ei.cat : event category ei falls in (START, UPD, TRIG)
 Lq : the number of event types in q

1. initialize a PreCntr of size Lq
2. for each arriving event ei in S
3. if ei.cat = START
4. count(START) ++
5. if ei.cat = UPD
6. apply Lemma 1

7. if ei.cat = TRIG
8. return the full sequence count

Figure 3: Dynamic Prefix Counting Algorithm

En in p is called TRIG. It not only performs the UPD update opera-
tion, but it also indicates the completion of the full pattern p. Thus,
TRIG will trigger the delivery of the output of the just generated
aggregation result to users (Line 8).

EXAMPLE 2. Fig. 4 depicts the prefix count update process
based on the DPC algorithm. The number at the lower right corner
of each circle represents the count of this prefix pattern at the re-
spective moment in time indicated at the top of each column. When
event instance b arrives at time ti+1, new matches of the prefix pat-
tern that end in B will be triggered, namely, (A,B). For this, we
simply add the existing counts of (A) = 3 and (A,B) = 2 to get
the new count of (A,B) = 5. The counts of all other prefix pat-
terns remain unchanged. Similarly, when the instance d arrives,
the same update process is applied to compute the new count of its
corresponding pattern (A,B,C,D). Since d is a TRIG, this new
count will be returned to the user.

A

AB

ABC

ABCD

3

2

3

1

A

AB

ABC

ABCD

3

5

3

1

A

AB

ABC

ABCD

3

2

3

b d

2(AB)

1(ABCD)

4

Figure 4: Prefix Pattern Count for Pattern (A, B, C, D)

Complexity Analysis. DPC is optimal in both CPU and mem-
ory utilization. Each incoming event is processed only once with
only one element of the PreCntr updated. Clearly this is optimal,
since without touching each event at least once it is impossible to
correctly answer any counting problem. In terms of memory DPC
does not store any event. Instead events are immediately discarded
once processed. At any time instance PreCntr is the only data struc-

ture that is stored, which by Lemma 2 is the minimum information
required to guarantee the correctness of sequence counting.

3.2 Expiration Support for A-Seq
Sliding Window Problem. DPC is able to aggregate the se-

quence patterns formed by continuously arriving events with min-
imum CPU and memory costs. However, this technique does not
support sliding window clause. That is, as new events continu-
ously arrive, old events continuously expire. Every event would
eventually expire and no longer participate in future CEP sequence
construction. Thus, they should be purged. However purging only
the expired events is not sufficient for CEP sequence aggregation.
After an event expires, any sequence match that contains the ex-
pired event would also become invalid and should be purged from
the aggregation result.

Intuitively we may be able to support the removal of expired
events by maintaining a count for each event instance ei, which in-
dicates how many sequence matches ei participates in. Thus when
ei expires, this count is deducted from the aggregation result.

However only maintaining the count for each ei is not sufficient
to correctly handle event expiration, although it adds significant
memory overheads to A-Seq. Each sequence match is composed
of l individual events with l indicating the length of the sequence
pattern. If we independently expire each event by removing all the
sequences involving it (the count), one sequence will be expired l
times. To solve this problem we have to be aware of other partic-
ipants in each sequence. This in fact equals to keeping each ac-
tual sequence match. This requirement clearly invalidates the core
principle of DPC, namely answering the aggregation query without
constructing actual sequence matches.

Start Event Marking (SEM) Solution. The key insight is that
the expiration of most of the event instances makes no impact on
the sequence aggregation query result. The only case when we need
to purge the sequence count is when the START events expires.

LEMMA 3. Given a sequence pattern query q = (E1 ,E2 , ...,En)
and an event instance ei , ei .type 6= E1 , when ei expires at time
tj , then before processing the new event instance arriving at tj:
count(q)tj−1 = count(q)tj

Proof. Suppose ei participates in at least one sequence match
s of q. By the definition of sequence pattern, in each s at least
one START event instance ek , ek .type = E1 must exist which had
arrived before ei. Otherwise s would not be a valid sequence match
of q. In event streams earlier arrivals always expire before later
arrivals. Therefore when ei expires at tj , all matches that includes
ei would already have become invalid due to the expiration of some
prior ek within its s. Hence the expiration of ei will not impact the
sequence count at tj . This proves Lemma 3. �

We now leverage Lemma 3 to design a Start Event Marking
(SEM) technique which pre-isolates the influence of each START
instance upon its arrival. It successfully avoids the expensive pro-
cess of having to eliminate the impact of instances once they expire
from the current window.

The SEM algorithm (Fig. 5) is composed of the following steps:
(1) When a START instance ei arrives, a PreCntr is created for

ei (denoted as PreCntr(ei)) to record the number of sequence
matches formed on it (Lines 3-6).

(2) When a UPD instance arrives, the same update process as in
basic A-Seq approach (Fig. 3) is applied. However, this update is
applied to the PreCntr of all active START instances (Lines 7-11).

(3) When a TRIG instance arrives, counts on all active PreC-
ntr are summed together and output as aggregation result. Expired
PreCntr (if any) is simply removed (Lines 12-18).

233

A-Seq SEM
ei.ts: arrival timestamp of ei

PreCntr.exp: expiration timestamp of a PreCntr (a START instance ei)

ts : current system timestamp

Win : query window size (time based)

1. agg = 0

2. for each arriving event in stream S

3. //step 1: Create PreCntr

4. if ei.cat = START

5. create a PreCntr of size Lq-1

6. mark PreCntr.exp = et.ts + Win

7. //step 2: Update Count

8. else

9. for each PreCntr

10. if PreCntr.exp< ts

11. apply Lemma 1

12. //step 3: Sum aggregation result

13. if ei.cat = TRIG

14. for each PreCntr

15. if PreCntr.exp< ts

16. agg = agg + PreCntr.count

17. else

18. remove this expired PreCntr

19. return agg

Figure 5: A-Seq SEM Algorithm

(4) When the window slides, any expired START event with its
corresponding PreCntr is removed. If an output result were to be
required at this time, then the count on this PreCntr will be simply
subtracted from the total count result.

Next we use an example to illustrate the SEM counting process.

Stream

a1

1s

b1

2s

c1

3s

a2

4s

c2

5s

b2

6s

d1

7s

c3

8s

a3

9s

d2

10s

PC AB 1 1 1 1 2 2

Exp:8s ABC 0 1 1 2 2 2

ABCD 0 0 0 0 0 2

PC AB 0 1 1 1 1 1

Exp:11

s

ABC 0 0 0 1 1 1

ABCD 0 0 0 0 0 1

PC AB 0

Exp:16

s

ABC 0

ABCD 0

Output: 2 Output: 1

Pattern SEQ <A, B, C, D>

AGG COUNT

WITHIN 7s

Figure 6: Pushing Windows Down into A-Seq Using SEM

EXAMPLE 3. In Fig. 6, when a1 arrives at time t = 1s, we first
calculate its expiration timestamp (Exp), where Exp = arrT ime+
Q.win. Thus, a1.Exp = 1s + 7s = 8s. That is, a1 and its ag-
gregation result will become invalid at t = 8s. Then we create
a PreCntr for a1. We remove the element for prefix A from the
PreCntr set. Now each instance of A has its own PreCntr structure.
Thus, the count for prefix A will always be 1, hence not necessary
to explicitly maintain it.

The update process of the basic A-Seq method is applied when b1
and c1 arrive. When a2 arrives at t = 4s, we now have to create
a new PreCntr for a2 and mark it with its expiration timestamp.
Subsequently, when c2 and b2 arrive, the PreCntrs on both a1 and
a2 are updated.

When d1 arrive at t = 7s, first we update the count on both
PreCntrs. Since the instance of the TRIG event type D completes

the full sequence, we compute the final aggregation result by sum-
ming the counts of pattern (A,B,C,D) from all active PreCntrs.
Thus, the output result is 2 = 2(a1PreCntr) + 0(a2PreCntr).

Next, c3 arrives at time t = 8s. When we perform the update on
each PreCntr, we find that a1 expires at 8s and a1’s PreCntr should
be purged. If users require a result at this moment, the output would
be 0 instead of 2. The same steps as above are applied when a3 and
d2 arrive. The output result becomes 1 after d2 is processed.

Next we are ready to prove the correctness of SEM.

LEMMA 4. Given a sequence pattern query q = (E1 ,E2 , ...,En),
then at any time ti:

count(q)ti =
∑

e
j
1.type=E1,e

j
1.exp>ti

PreCntr(ej1).count(q)ti

(5)

Proof. By the definition of sequence pattern, we have

count(q)ti =
∑

e
j
1.type=E1,e

j
1.exp>ti

count(ej1, E2, ..., En)ti (6)

where count(e j
1 ,E2 , ...,En)ti represents the number of sequence

matches starting at START event instance ej1.
By Lemma 2, count(e j

1 ,E2 , ...,En)ti = PreCntr(e j
1).count(q)ti .

Therefore Eq. 5 holds. Lemma 4 is thus proven. �
Complexity Analysis. As shown in Fig. 5 the CPU costs of

SEM originate from the update operation on each PreCntr triggered
by each new arrival. This update costs depend on the number of ac-
tive start events k. Since the update of each PreCntr takes constant
time, the time complexity of SEM is thus k. Similarly the memory
cost of SEM is k × sizeof (PreCntr) = kl with l indicating the
length of the sequence pattern. That is, the memory complexity of
SEM is linear in k. In short, SEM successfully drives down the
sequence aggregation cost from polynomial to linear.

3.3 Negation Support for A-Seq
The Invalid Sequence Check Problem. Negation in CEP queries

requires us to assert the non-occurrence of instances of the negated
event types at certain positions in a sequence pattern. For exam-
ple, to plan an effective web advertising strategy online retailers
might be interested in pattern pn = (VK ,BK , !REC ,VC ,BC).
This pattern tracks how many customers purchase a case after the
purchase of a kindle, yet without first clicking through the “Rec-
ommendation” link. When an event instance of a negated type oc-
curs, it will invalidate some otherwise potential sequence matches.
While the occurrence of the positive event instances instead would
advance the formation of longer sequence matches. The design of
one single algorithm that accommodates these two contradictory
requirements (invalidation vs. advancement) is challenging.

One intuitive way from the literature [3, 19] to solve this problem
would be to add a negation filter on top of the query plan to discard
all positive matched sequences (vki, bki, vci, bci) that have reci
between bki and vci. An obvious problem with this later-filter-
step solution is that it generates a potentially huge number of in-
termediate results, many of which may be filtered out eventually.
Worst yet it is incompatible with our core A-Seq approach as we
avoid constructing any full or even partial sequence matches. We
now propose a solution that addresses this problem by pushing this
negation check into A-Seq.

The Immediate Re-Count Solution. We now illustrate that the
invalidation effect of the negative events can be naturally handled

234

in the dynamic prefix counting process. Negation can be supported
by simply plugging a recounting rule in A-Seq. In other words
to support negation, it is still not necessary to construct any actual
sequence matches.

First we introduce the Prefix Invalidation Property which de-
fines the boundary of the influence of negative events.

LEMMA 5. Given a negation pattern query q = (E1 ,E2 , ...,
!Ei , ...,En), when a negative event instance ej with ej .type = Ei

arrives, then all the prefix sequences of q remain valid except those
Longest Positive Prefix Sequences LPPS with LPPS representing
the sequences that match prefix pattern (E1 ,E2 , ...,Ei−1).

Proof. With the arrival of ej even if an event instance ek of Ei+1

arrives later, LPPS cannot form any longer prefix pattern of q with
ek. Therefore LPPS is not valid any more. All other prefix matches
remain effective. First the previously formed matches of the prefix
patterns longer than LPPS are not affected. This is so because ej
arrives later than the last event of these matches, hence it does not
satisfy the time order of q. Second, the sequences matching the
prefix pattern shorter than LPPS are also not affected. Without loss
of generality given such a pattern p = (E1 ,E2 , ...,Ei−2), the se-
quences of p is still able to form valid matches of the longer prefix
pattern (E1 ,E2 , ...,Ei−1) as an new event of Ei−1 arrives. �

Since our A-Seq solution preserves the count of each prefix pat-
tern, A-Seq can elegantly leverage Lemma 5 to support negation by
applying the Recounting Rule (RR).

LEMMA 6. Given a pattern query with negation q = (E1 ,E2 , ...,
!Ei , ...,En), when a negative event instance ej with ej .type = Ei

arrives at time tj , then:
(1) count(E1 ,E2 , ...,Ei−1)tj = 0 ; (2) For other prefix pattern

p of q, count(p)ti = count(p)ti−1 .

That is, when a negative event instance arrives, we only need to
reset the count of the previous prefix pattern adjacent to the negative
event type to 0. This simple reset corresponds to an effective re-
counting. In other words A-Seq can support negation by applying
the RR rule on each negative event without any further change.

Stream

a1

1s

b1

2s

c1

3s

a2

4s

b2

5s

d1

6s

A 1 1 1 2 2 2

AB (!C) 0 1 0 0 2 2

ABD 0 0 0 0 0 2

Output: 2
Pattern SEQ(A,B,!D)

AGG COUNT

<a1, b2, d1>

<a2, b2, d1>

without

constructing

Figure 7: Pushing Negation Check Down

EXAMPLE 4. Fig. 7 illustrates how RR works using pattern
(A,B, !C,D). When c1 arrives at t = 3s, the count of (A,B)
is cleared to 0 while the (A) and (A,B,D) counts are kept. The
output result is 2 when d1 arrives. The sequence < a1, b1, d1 > is
not counted, as a C instance c1 exists between b1 and d1.

3.4 Predicates and GROUP BY for A-Seq
Below, we present solutions for pushing the predicate evaluation

into our sequence aggregation process.

Local Predicates. The most common predicates over event data
are local predicates, which impose constraints on the attribute val-
ues of an event instance (e.g. Kindle.model = “touch”). Such pred-
icates can be evaluated on the relevant event instances before these
instances are involved in the aggregation process. Event instances
that do not satisfy the predicates are immediately discarded .

Equivalence Predicates. CEP queries often use equivalence
predicates to correlate events in a sequence pattern [19]. For ex-
ample, in our online shopping pattern tracking scenario, the clicks
should be from the same customer. Similarly, in the stock mar-
ket example, the pattern of price going up and down should be of
the same stock. An equivalence test essentially partitions an event
stream into several sub-streams, where events in the same parti-
tion have the same value for the attribute used in the equivalence
test (i.e. equivalence attribute). Here, we propose a technique to
dynamically partition the event stream during the sequence aggre-
gation, henceforth called Hashed Prefix Counter (HPC).

The basic idea of HPC is that the aggregation process is applied
separately to each equivalent partition. Prefix counters for a START
instance are created upon their arrival and hashed into the corre-
sponding partition based on the equivalence attribute value of this
instance. Other event instances are similarly hashed to their cor-
responding partition. Aggregation results are computed based on
each partition using our regular A-Seq method.

GROUP BY. Aggregation queries are often used in conjunction
with GROUP BY clause. For instance, in Application I described
in Sec. 1, the query counts the web click sequences coming from a
certain IP address. The HPC technique naturally supports partition-
ing the aggregation by attribute values. Here instead of summing
the aggregation from different HPC partitions, the results are out-
put separately for each partition.

id=3

… a4
Exp:16

AB ABC ABCD

2 2 1
a1
Exp:9

AB ABC ABCD

5 4 4

a3
Exp:14

AB ABC ABCD

3 2 3
…

…

id=2

id=1

attr:id

a2
Exp:12

AB ABC ABCD

4 3 3

a5
Exp: 21

AB ABC ABCD

1 0 0

PATTERN SEQ <A, B, C, D>
WHERE A.id = B.id = C.id = D.id
AGG COUNT
WITHIN 7s

Figure 8: Hashed Prefix Counter (HPC) Data Strcture

EXAMPLE 5. Fig. 8 illustrates the HPC data structure pro-
posed to cope with the processing of equivalence predicates in the
query in Fig. 8. The equivalence test is on attribute id. The id value
of each incoming event will be evaluated. Assuming three distinct
id values (1,2,3) exist, then three hash partitions are created as de-
picted in Fig. 8 with id value as key and the prefix counters as the
value. For instance, the id values of instances a1 and a4 are 1. Thus
their prefix counters are created in the ID1 partition. The instances
of type B,C,D will activate the update of the prefix counters in the
partition determined by their respective id values.

4. THE MULTI-QUERY A-SEQ SOLUTION
For rich data streams from web-clicks to stock ticker streams,

large workloads of similar queries may be processed. Executing
each query separately could lead to repeated computations causing

235

scalability and performance issues. Thus, in this section we explore
the opportunity to share the computation across multiple CEP ag-
gregation queries [9].

EXAMPLE 6. Consider the running example in Sec. 1, where
merchants are interested in various purchase patterns to determine
customer shopping habits, including: 1

Q1 = SEQ(VKindle,BKindle,VCase,BCase)
Q2 = SEQ(VKindle,BKindle,VKindleFire)
Q3 = SEQ(VKindle,BKindle,VCase,BCase,VeBook,BeBook)
Q4 = SEQ(VKindle,BKindle,VCase,BCase,VLight,BLight)
Q5 = SEQ(ViPad,VKindleFire,VKindle,BKindle)

Several common sub-queries (substrings) arise across these 5
pattern queries, such as (V Kindle,BKindle).

The intuition is that if we were to compute intermediate aggre-
gates for the (VKindle, BKindle) substring, then we would be
able to share this result among the queries that contain this sub-
string. This way, redundant aggregation computation for common
substrings would be avoided. In principle, the more queries share
common substrings, the more computational resources could po-
tentially be saved. This promise of scalability leads us to adapting
our A-Seq approach to support sharing-aware execution of multiple
aggregation queries.

4.1 The Prefix Sharing Strategy
We first investigate how to achieve multiple aggregation query

sharing among queries with common prefixes. The observation here
is that once the aggregation of a full sequence pattern p is computed
by A-Seq, then the aggregations of all its prefix patterns pm would
also have been obtained as side-effect. These aggregation results
thus can be naturally reused by other queries.

Based on this observation, we first propose a Prefix Tree (Pre-
Tree) structure in support of the Prefix Sharing.

vKindle bKindle

vKindle
Fire

vCase bCase

vEBook bEBook

vLight bLight

Figure 9: PreTree Structure

EXAMPLE 7. Fig. 9 shows an example of the PreTree structure
for Q1 ∼ Q4, namely, these four prefix counters are organized into
a PreTree structure. For computation of these four patterns, the
result of substring (vKindle, bKindle) is pipelined into both Q1

and Q2, while the Q1 result is pipelined to both Q3 and Q4.

Based on this PreTree structure A-Seq can easily be adapted for
this common prefix patterns sharing as follows.

(1) When a START instance arrives, a PreTree structure is cre-
ated instead of the old PreCntr structure.

(2) When a UDP instance arrives, the count update occurs on the
corresponding location in each PreTree only once. For example,
when a bKindle instance arrives, one update on PreTree is needed
in place of four updates on each of the four PreCntrs.

(3) When a TRIG instance arrives, results for the respective query
can be directly acquired from the appropriate locations of PreTree.

Apparently no overhead is introduced in this process. That is,
A-Seq effectively shares the computation on the common prefix
patterns for free.
1Capital letter V represents View, and B represents Buy

4.2 Sub-pattern Sharing Strategy
Overall Idea of Chop-Connect Approach. In general, queries

may feature common sub-expressions at arbitrary locations rather
than only at their prefix positions. For instance in Example 6 Q5

shares (VKindle, BKindle) with the other four query patterns
at the tail. As shown in Sec. 4.1 we can obtain the count of
(VKindle,BKindle) from the prefix tree that has been set up for
Q1 ∼ Q4. Intuitively if we were to compute the remainder of Q5

(ViPad ,VKindleFire) separately, then we could potentially ac-
quire the count of the full pattern by connecting the counts of these
two substrings together. This way, the computation of (VKindle,
BKindle) would be shared by all five queries. This leads us to pro-
pose the Chop-Connect (CC) method to tackle this general prob-
lem of common sub-expression computation. The idea is to chop
a query into substrings, with each substring being computed sepa-
rately. The results of all substrings are later connected together to
get the count of the whole sequence pattern. Hence this approach
is called Chop-Connect, or in short CC.

The Connect Problem. Compared to the prefix sharing of Sec.
4.1, an extra connect operation is introduced. However to get the
count of the longer connected sequence (sub1 + sub2), we can-
not simply construct a cartesian product of two previously com-
puted sub-counts. Instead the time order between the matches of
the two substrings sub1 and sub2 matters. That is, the sub1 match
must be formed before the starting time of the sub2 match for the
two sequences to construct a valid longer sequence match. Since
the A-Seq approach does not maintain any time information (ex-
cept START for expiration), additional ordering knowledge must
be recorded to correctly connect two substrings. One straightfor-
ward solution is to maintain the time when each sub1 match is con-
structed and compare it with the arrival time of the START event
of sub2 once the connect operation is required. However keeping
the time information of each single sequence match contradicts the
core of the A-Seq technology.

Count Attachment Observation. Fortunately our analysis re-
veals that it is not necessary to store the time information of each
sub1 match. Instead, it is sufficient to only attach a count of sub1
to each START instance of sub2 upon its arrival.

LEMMA 7. Given a sequence pattern p chopped into two sub-
strings sub1 and sub2, a START event ei of sub2 arriving at ti,
when a TRIG event ej of s2 arrives at tj , then:

count(p, ei)tj = count(sub1)ti ∗ count(sub2, ei)tj (7)

where count(p, ei)tj represents the count of full sequence matches
of pattern p at tj that contains the event ei (a START event of sub2),
count(sub1)ti represents the count of sub-sequences sub1 at ti,
and count(sub2 , ei)tj represents the count of sub-sequences sub2
starting at ei at time tj

Proof. This lemma can be proven by the fact that only the sub1
sequence matches constructed before the arrival of ei (ti) can be
connected to the sub2 sequence matches starting at ei to form valid
full sequence matches, while those sub1 sequence matches con-
structed after ti cannot. �

Lemma 7 indicates that keeping only the count of sub1 matches
formed before the arrival of each START event of sub2 is sufficient
to correctly connect two substrings. In other words the connect
problem can be safely solved by attaching to each START event ei
of sub2 a count upon its arrival, where the count indicates the total
number of sub1 matches detected before ei arrives. We note that
this sub1 count would already have been calculated and stored in
PreCntr by our A-Seq algorithm.

236

Challenges Caused by Expiration. However, the above con-
nect solution assumes that events never expire. Suppose that the
#(sub1) (count of sub1 matches) is attached to a START instance
of sub2 as it arrives at time ti. When a TRIG instance of sub2 ar-
rives at time tj , this #(sub1) might be invalid due to the expiration
of some sub1 matches. This causes erroneous aggregation.

SnapShot Solution. We now propose a solution to this con-
nect expiration problem. The idea is to leverage the observation
of Lemma 3 introduced in Sec. 3.2. Namely, when a START in-
stance of sub2 arrives, instead of attaching the current overall sub1
count, we record the count of each PreCntr on sub1 correspond-
ing to each start event of sub1 separately along with their expiration
timestamps. Therefore, when a TRIG instance arrives, the respec-
tive PreCntr to be expired by its arrival can be discovered by
checking the expiration time of each partial sub1 count.

We then design the SnapShot data structure to represent the counts
on all sub1’s PreCntrs. The snapshot is organized as a table.
Each row represents the count snapshot of a sub1’s PreCntr. The
columns contain metadata: 1) PreCntr tag, indicating the START
instance to which this PreCntr belongs, 2) the expiration time of
this PreCntr, and 3) the count of this PreCntr.

When d1 arrives,

a1 PreCntr

Exp: 10s

AB ABC

2 1

d1 PreCntr

Exp: 15s

DE

0

a2 PreCntr

Exp: 13s

AB ABC

1 0

START Exp Cnt

a1 10 1

a2 13 0

Snapshot of (A,B,C) for d1

When d2 arrives,

a1 PreCntr
Exp: 10s

AB ABC

2 3

d2PreCntr
Exp: 18s

DE

0

a2 PreCntr

Exp: 13s

AB ABC

1 1

START Exp Cnt

a1 10 3

a2 13 1

a3 17 0

Snapshot of (A,B,C) for d2

a3 PreCntr

Exp: 17s

AB ABC

0 0

When e1 arrives,

d1 PreCntr

Exp: 15s

DE

1

d2 PreCntr

Exp: 18s

DE

1

Stream
a1

1s
b1

2s
c1

3s
a2

4s
b2

5s
d1

6s
c2

7s
a3

8s
d2

9s
e1

10s

Figure 10: SnapShot Maintenance

EXAMPLE 8. Fig. 10 illustrates the snapshot maintenance of
sub1 (A,B,C) for sub2 (D,E). In Fig. 10, when d1 arrives, a
snapshot of d1 with counts and expiration timestamps of all sub1
prefix counters is created, and attached to d1. When d2 arrives,
similarly, another snapshot is created to record the prefix counter
status of sub1 at that moment and attached to d2. When e1 arrives
at t = 10s, after the PreCntrs of (D,E) is updated, the snapshot
expiration check is applied to each table row of sub2 PreCntr.
Expired rows are discarded, and thus won’t be involved in any fu-
ture aggregation. For example, when e1 arrives at t = 10s, the
snapshot check finds that a1 expires at that time. Thus, only the
counts of the PreCntrs of a2 and a3 will be used. The total count
#(A.B,C,D,E) at t = 10s thus is calculated as:
count1 = #(d1 PreCntr) = #(A,B,C, d1, E) = 1× 0 = 0;
count2 = #(d2 PreCntr) = #(A,B,C, d2, E) = 1× 0 + 1×
1 = 1;
#(A,B,C,D,E) = count1 + count2 = 0 + 1 = 1

We now introduce a new event category, called Connect Event
Type (CNET). CNET is the START event type in sub2 when con-

necting sub1 and sub2. The arrival of a CNET instance will trigger
the process of checking counts on sub1’s PreCntrs and creating the
sub1 snapshot for sub2. For example, event type D falls into the
category CNET, meaning when connecting (A,B,C) and (D,E),
a snapshot of (A,B,C) count is created for (D,E) whenever a
new di instance of type D arrives. By this the snapshot strategy can
be seamlessly plugged into our A-Seq algorithm (Fig. 5).

Multi-Connect Process. Based on the sharing plan produced by
a multi-query optimizer, a query might be chopped into multiple
pieces rather than just only 2. For example, the pattern query (A,
B, C, D, E, F, G) might be chopped into: sub1 = (A,B,C),
sub2 = (D,E), and sub3 = (F,G), as sub2 and sub3 are shared
by other queries respectively. In this case all three substrings have
to be concatenated. Intuitively this can be achieved by recursively
connecting adjacent substrings.

In support of expiration, when we create the snapshot for one
substring, we always use the START event of the full sequence
as the tag. Since the START event is always the first one to ex-
pire in a sequence, by this it is very convenient to check and ex-
clude the expired sequences. For example, when we create the
snapshot for sub3 = (F,G), we calculate the snapshot counts of
(A,B,C,D,E) on each A instance, that is, counts of (ai, B, C,
D, E) for all active ai. When F instance arrives, these counts can
be calculated as follows:

(1) Calculate count of (ai, B,C,D,E) on each (D,E) PreC-
ntr. For each (D,E) PreCntr, to which the snapshot of (A,B,C)
is attached, we multiply its (D,E) count with the count in its snap-
shot one by one. That is, we calculate the count for each (ai, B,C, dj , E).

(2) Calculate the count of (ai, B,C,D,E) on all (D,E) PreC-
ntrs. Given the counts calculated by step 1, we apply a sum over
those counts with the same ai tag across all (D,E) PreCntrs.

EXAMPLE 9. Fig. 11 illustrates the multi-connect calculation
process of the above example. When f1 arrives at t = 12s, we first
multiply the count on each (D,E) PreCntr with its corresponding
snapshot counts of (A,B,C). Then, we calculate the overall count
of tag a2 by adding the count 1 on d1’s PreCntr to the count 2
on d2’s PreCntr with the same tag a2. Similarly, we sum up the
counts with same tag across all (D,E) PreCntrs. Lastly we at-
tach these counts to the f1 PreCntr representing the snapshot of
(A,B,C,D,E).

d1 PreCntr

Exp: 17s

DE

1

d2 PreCntr

Exp: 20s

DE

1

START Exp Cnt

a1 10 2

a2 13 1

START Exp Cnt

a1 10 3

a2 13 2

a3 18 1

f1 PreCntr

Exp: 24s

FG

0

START Exp Cnt

a2 13 3

a3 18 1

t=12s, f1 arrives

t=12s, a1 expires

a2 1 * 1 = 1

t=12s, a1 expires

a2 2 * 1 = 2

a3 1 * 1 = 1

+

Figure 11: Snapshot Computation of Multi-connect

Cost Analysis. The memory overhead of Chop-Connect orig-
inates from the snapshot structure attached to each CNET event.
The size of the snapshot structure is determined by the number of
active start events k. Therefore the memory overhead per CNET
event is linear in k. The CPU overhead depends on the costs of
creating the snapshot structure as each CNET event arrives. It also
depends on k. Therefore the CPU overhead per CNET event is also
linear in k. This is identical to the CPU costs of processing each

237

event by the single A-Seq. Since the number of CNET events is far
less than the total number of events, the overhead of Chop-Connect
is minor compared to supporting multiple queries by applying the
single A-Seq on each query to process each event separately.

5. DISCUSSION ON AGGREGATION TYPES
Aggregation functions like COUNT, MAX/MIN, and SUM/AVG

are all common. In this paper, we first focused on COUNT, as
COUNT is the most popular and important aggregation type for
pattern detection in CEP. Now we briefly sketch how the MAX/MIN
and SUM/AVG operators could also be supported by A-Seq.

First, we interpret SUM/AVG/MAX/MIN aggregation over se-
quences. These functions aggregate the attribute value of a certain
event type over all sequence matches. For example, assume for
all sequence matches of pattern (A,B,C,D), we want the SUM
value on event type C.weight with weight an attribute of event type
C. Then a SUM operation will be applied to add c.weight values
of all sequence matches together. Similarly, the AVG requires the
average c.weight among all sequence matches, while MAX/MIN
requires the maximum or minimum c.weight.

We now illustrate that how above aggregation types can be pushed
into our A-Seq approach. For SUM, we maintain an extra SUM
field in each PreCntr structure. Whenever a C instance arrives and
causes a relevant count to be updated, the SUM field of each PreC-
ntr will also be updated by a rule similar to Lemma 1: sumti =
sumti−1 + count(A,B)ti−1 ∗ c.weight . When a TRIG event D ar-
rives at tj , the final SUM per PreCntr will be calculated as sumti ∗
count(A,B,C ,D)tj
count(A,B,C)ti

. Then the overall SUM can be simply derived by
adding up the sum of each PreCntr.

The AVG can be directly obtained by our SUM /COUNT so-
lution. That is, we can simply maintain both SUM and COUNT
at same time. The computation of MAX/MIN is similar as SUM.
We maintain a result field, which always tracks the max/min value
of c.weight. Whenever a C instance arrives, we check whether its
value is greater or less than the maintained value. We then update
this field accordingly.

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
We implement our sequence aggregation techniques inside HP

Lab’s stream engine CHAOS [18]. Experiments were conducted on
a PC with Intel Pentium IV 2.8 GHz CPU and 4GB RAM running
Windows 7 system. We first compare our proposed A-Seq approach
(Sec. 3) with the state-of-the-art two-step approach [19]. We also
compare our multi A-Seq technique by comparing it against the
non-shared A-Seq technique and the state-of-the-art multi-query
sharing strategy for sequence queries [9] to demonstrate the ef-
fectiveness of our sub-pattern sharing strategy.

Data Sets. We evaluate A-Seq using real stock trades data from
[6], which contains stock ticker and timestamp information. The
portion of the trace holds 120,000 event instances. For evaluat-
ing the multi-query techniques, to make longer queries and to form
larger query workloads, we also generate synthetic stock streams
with more event types and their corresponding instances.

Evaluation Metrics. We compare the average execution time for
computing sequence aggregation per window slide. Execution Time
= Telapsed /|Window Slides|, where |Window Slides| represents
the number of windows that have been processed. Peak memory
usage is measured by the maximum number of active Java objects
or references. Namely, for the state-of-the-art approach, we count
the sum of three types of objects: active event references inserted in

the stacks, pointers, as well as intermediate sequence matches for
later aggregation. For our A-Seq approach, we count the number
of active prefix counters (PreCntr), in which all the information for
aggregation computation is stored. The maximum object counts for
both approaches are reported as peak memory usage.

6.2 Single Query Evaluation
Effect of Query Length on A-Seq. In this set of experiments,

the length of the sequence pattern is varied from l = 2 to 5. The
window size is fixed at 1000ms. The above patterns are aggregated
using the state-of-the-art stack-based technique and our A-Seq ap-
proach. The average execution time per window slide is shown in
Fig. 12(a) using logarithmic scale on the Y-axis. As confirmed by
the cost analysis of the stack-based technique (Sec. 2.2), its execu-
tion costs grow exponentially with the length of the pattern query.
On the other hand, the average execution time for A-Seq stays fairly
constant with varying pattern lengths. At length 5, A-Seq is 16,736-
fold faster than the state-of-the-art approach.

Fig. 12(b) shows the peak memory usage of the two approaches
when varying pattern lengths with Y-axis in logarithmic scale. A-
Seq also wins in storage consumption, i.e., it uses significantly less
memory, because it stores only prefix counters, whose cardinality is
equal to the number of active START events. While the state-of-art
approach must store all relevant event instances along with pointers
indicating the time order among the events.

Effect of Window Size on A-Seq. In this set of experiments,
the window size w is varied from 100ms to 1000ms. The query
pattern length is fixed at 3. We again measure the average execu-
tion time and peak memory usage and compare our A-Seq tech-
nique with the state-of-the-art method. Fig. 13(a) shows that as the
window size increases, the average execution time of both meth-
ods increases. As expected, the state-of-the-art approach degrades
significantly faster than A-Seq, because A-Seq successfully drives
down the CPU costs from polynomial to linear in the number of
active events per window. As shown in Fig. 13(b), memory utiliza-
tion increases in a similar manner with the CPU costs.

Scalability Test for A-Seq. As demonstrated above, the perfor-
mance of the state-of-the-art approach degrades dramatically with
the growth in either the pattern length or the window size. Now we
examine the scalability of A-Seq under scalability tests in which the
traditional stack-based join method fails in our system (i.e., mem-
ory overflow). We vary the pattern length from 6 to 10. The win-
dow size is extended to 2000ms.

Fig. 14 (a) illustrates the scalability test result of A-Seq in terms
of the average processing time. No significant performance degra-
dation of A-Seq is observed even in the most extreme case (at length=10
and window=2000). The performance (0 .0219ms/event) at the
extreme case is almost the same as that of the-state-of-the-art per-
formance at the lowest load case of length=2 and window=100
(0 .02ms/event) in Fig. 12(a).

Negation Test for A-Seq. In this experiment, we study A-Seq’s
performance for processing queries with negation. We compare the
performance of A-Seq (negation pushed down) approach with the
state-of-the-art (post-filtering negation check) approach, for queries
q1 and q2 below:

q1 = (DELL,IPIX,AMAT)
q2 = (DELL,IPIX,!QQQ,AMAT)

q1 and q2 have the same positive pattern (DELL,IPIX,AMAT)
while q2 has the additional negative event type QQQ filter inserted.
When processing q2, the state-of-the-art approach will first collect
all matches of the positive pattern (DELL,IPIX,AMAT), and then
filter out those matches that contain QQQ instances between IPIX

238

0.002
0.004

0.0143 0.0198

0.231
0.356

15.654

97.0744

0.001

0.01

0.1

1

10

100

2 3 4 5

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Query Length (window = 1000s)

A-Seq

State-of-art

(a) Average Processing Time

0.192 0.192 0.192 0.192

0.948

27.474

1677.052

33447.558

0

5

250

12500

2 3 4 5

P
ea

k
 M

em
o

ry
 (

co
u

n
t

x
 1

00
00

)

Query Length (window = 1000s)

A-Seq

State-of-art

(b) Peak Memory (objects count)

Figure 12: A-Seq Performance by Varying Pattern Length

0.0052 0.0057 0.0066 0.0072

0.1210

0.2138

0.6191
0.8710

0.003

0.030

0.300

100 250 500 1000

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Window Size (ms)

A-Seq

State-of-art

(a) Average Processing Time

0.121
0.192

0.358
0.582

4.325

27.320

234.651

1887.170

0

10

1000

100 250 500 1000

P
ea

k
 M

em
o

ry
 (

co
u

n
t

x
 1

00
00

)

Window Size (ms)

A-Seq

State-of-art

(b) Peak Memory (objects count)

Figure 13: A-Seq Performance by Varying Window Size

0.0126 0.0153 0.0162 0.0203 0.0219

0.01
0.03
0.05
0.07
0.09

6 7 8 9 10
Query Length (window = 1000s)

A-Seq

0.0045

0.0932

0.0049

0.2698

0

0.1

0.2

0.3

A-Seq State-of-art

No Negation

Negation

(a) Scalability Test

(b) Negation test

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

 à

Figure 14: Scalability and Nega-
tion

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

2 3 4 5 6

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Shared Query Length (l)

CC

Unshared A-Seq

SASE

E-Cube

Figure 15: Shared A-Seq v/s
State-of-the-art

and AMAT instances. While A-Seq only needs to reset the count of a
particular prefix pattern once a negative event instance arrives. Fig.
14 (b) depicts the average processing time of these two methods.
A-Seq experiences almost no overhead for processing the negation
query, while the state-of-art approach suffers from significant over-
head introduced by the post-filtering negation check.

6.3 Multi-query Evaluation
Next we demonstrate the savings in CPU time obtained by shar-

ing common substrings among multiple queries either via Prefix
sharing or by Chop-Connect method.

Shared A-Seq v/s ECube Sharing. We first compare our multi-
ple aggregation queries sharing strategy against the state-of-the-art
CEP multi-query computation strategy [9]. Fig. 15 shows the aver-
age execution time for aggregating 3 queries using four approaches:
1) applying SASE [19] to each query independently, 2) sharing the
computation of common substrings in sequence construction fol-
lowed by independent counting (ECube) [9], 3) applying A-Seq
to each query independently, 4) multi-query A-Seq using Chop-
Connect(CC). Although ECube outperforms SASE 2 to 3 fold by
sharing the computation for common substrings, it is still at least
100 times slower than our A-Seq and CC techniques, leading to the
overlapped lines of A-Seq and CC. To clearly show the effective-
ness of our multi-query sharing strategy, in the rest of the experi-
ments we only compare it against A-Seq.

6.3.1 Prefix Sharing Strategy
Effect of Varying Length of Shared Prefix: We vary the length

of the shared common prefix pattern from 2 to 6. To exclude the
effect of the query numbers, each workload only has three queries.
This effectively is our worst case, as clearly for more sharing op-
portunities introduced by more queries, more saving can be reaped.

While the length of the overall pattern does not affect the per-
formance of A-Seq, the length of the common prefix significantly
affects the gain in performance achievable by sharing the prefix. As
shown in Fig. 16(b) for even only a 3 query workload with a shar-
ing prefix length of 2, A-Seq is 3 times faster than the un-shared

A-Seq approach, while the last workload which shares a prefix of
length 6 gains more (around 5 times).

Effect of Varying Number of Queries Sharing the Prefix: The
next set of experiments shows the amount of gain obtained by shar-
ing the prefix among larger number of queries. As shown in Fig.
16(a) when the workload size increases from 2 to 6 queries each
sharing a prefix of length 3, Prefix-Share consistently wins around
2 times. The saved average execution time per event increases from
0.027 ms to 0.051 ms.

6.3.2 Chop-Connect (CC) Sharing Strategy
Similar to prefix sharing experiments the length of the common

substring and the number of queries sharing the substring both im-
pact the performance of the Chop-Connect sharing strategy.

Effect of Varying Length of Shared Substring l. Similar to
the experiment in Sec. 6.3.1, the length of the shared substring is
varied from 2 to 6.

As shown in Fig. 16(c) with the increase in the length of the
shared substring, similar to the trend of prefix sharing in Fig. 16(a)
the gain obtained by our CC methodology increases from 1.3 times
to 2.6 times. This confirms that our CC strategy is lightweight and
requires very little CPU overhead to achieve the computation shar-
ing on the common sub-patterns at arbitrary positions.

Effect of Varying the Number of Shared Queries k. Next we
add more queries to the workload namely from 2 to 6 queries. The
results of CC and NonShare methods are illustrated in Fig. 16(d).
Once again the difference in processing time between the shared
and unshared approaches is increasing. This indicates that com-
pared to the NonShare method, the performance of CC improves
with the growth of k. The performance gain is as pronounced as in
the prefix sharing experiments (2 times), again confirming our CC
strategy is very lightweight.

7. RELATED WORK
Complex Event Processing. Many CEP systems have been de-

veloped for scalable pattern detection over high-speed event streams.
SASE [2, 19] employs an NFA-based matching model for stack-
based sequence construction. Cayuga [3] employs a more general
NFA system for processing complex events. These two systems
inherit the limitations of the NFA-based model including the late
negation-filter processing. ZStream [11] optimized this CEP se-
quence matching process by selecting a flexible tree-based cost-
aware query execution plan in place of the fixed-order NFA eval-
uation. However, no particular technique has been proposed to
address the sequence aggregation problem. Rather, in these CEP
systems, aggregations would be applied as a post-pattern-detection
step, resulting in inefficient solution.

Aggregations over Stream Data. Traditional aggregation over
data streams has also been extensively studied in the literature.

239

0.423	
0.465	

0.51	
0.56	

0.62	

0.128 0.132 0.146 0.16 0.168

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Shared Query Length (l)

Prefix-Share

Non Share

(a) Sharing Prefix Varying l

0.0345

0.0446

0.0641

0.0758

0.0894

0.0090 0.0123

0.0220

0.0318
0.0379

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

2 3 4 5 6

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Shared Query Number (k)

Prefix-Share

Non-Shared

(b) Sharing Prefix Varying k

0.0316
0.0359

0.0410
0.0463

0.0510

0.0240 0.0242 0.0251 0.0252 0.0256

0.000

0.020

0.040

0.060

0.080

2 3 4 5 6

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Shared Length (l)

CC

NonShare

(c) Chop-Connect Varying l

0.0210

0.0289
0.0338

0.0385 0.0400

0.0387
0.0443

0.0560

0.0689

0.0768

0.000

0.020

0.040

0.060

0.080

2 3 4 5 6

A
v

er
a

g
e

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Shared Query Number (k)

CC

NonShare

(d) Chop-Connect Varying k

Figure 16: Evaluating performance of shared A-Seq

[7, 8] propose incremental techniques that avoid re-computation
among overlapping sliding windows. In the stream context without
applying sliding window, [20] maintains aggregates using multi-
ple levels of temporal granularity: older data is aggregated using
coarser granularity while more recent data is aggregated with fine
detail. However, these state-of-the-art aggregation techniques com-
puted aggregation over individual data events of the stream rather
than over detected complex sequences. In other words, in our CEP
context, these methods could only be plugged in the two-step ag-
gregation operators as the second step− resulting in inefficient per-
formance as demonstrated in our experiments.

Aggregation in Static Sequence Databases. For static sequence
databases, SQL-style languages support order-aware join opera-
tions among data records along with aggregation functions [10, 1].
However, these works assume that the data is statically stored and
indexed prior to processing. Also, the notion of sequence is defined
by time-based predicates instead of by continuously arriving event
streams. Thus, they focus on designing operators that effectively
utilize disk-and-buffer resources to support such time-based predi-
cates. In contrast, A-Seq targets dynamic stream data where results
are produced instantaneously and continuously upon the arrival of
data. In fact A-Seq aims to discard all data upon arrival when pos-
sible. [1, 16] support range-based aggregation, where independent
data records within a certain time range are aggregated. A-Seq
instead works at a higher level, where aggregates are over multi-
records matches rather than an individual record match. Moreover,
in [13, 15], aggregations are specified for patterns with recursion,
however, again on independent data records.

Data Mining of Sequential Patterns. Unlike query process-
ing that supports the efficient processing of a particular pattern, se-
quential pattern mining aims to discover all subsequences of any
length that frequently arise over sequential data. Typically, they
use a PF-Tree structure and the Apriori principle to find all fre-
quent subsequences [4, 5, 12, 14]. Clearly, the problem introduced
by those works is distinct from ours. First, in CEP context, the
pattern query of interest is pre-specified by users. Thus our task
is to search for occurrences of one given sequence pattern rather
than to discover all possible frequent patterns. Second, the notion
of sliding window semantics is typically not adopted in sequential
pattern mining. Thus, solutions to tackle efficient data purging or
result updating are not required. Lastly, existing sequential pattern
mining does not handle CEP specific problems including negation,
predicates, etc.

8. CONCLUSION
This work is the first to support high performance processing of

CEP aggregation queries. Our A-Seq solution pushes the aggrega-
tion computation into the pattern detection process. It gracefully

tackles the CEP-specific challenges including window constraints,
negation, and predicates. Compared to the state-of-the-art two-
step solution, A-Seq is lightweight, thus achieving several orders
of magnitude savings in both CPU and memory resources. Effec-
tive techniques for aggregation computation sharing among multi-
query workloads are also proposed for multi-query optimization.
Currently, we assume that stream events arrive in order. In the fu-
ture we will extend our A-Seq solution to also handle out-of-order
event stream.

9. REFERENCES
[1] L. A and S. D. and. Aquery: Query language for ordered data, optimization

techniques, and experiments. In VLDB, pages 345–356, 2003.
[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Imme. Efficient pattern matching

over event streams. In SIGMOD, pages 147–160, 2008.
[3] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White.

Cayuga: A general purpose event monitoring system. In CIDR, pages 412–422,
2007.

[4] J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal, and M. Hsu. Freespan:
frequent pattern-projected sequential pattern mining. In KDD, pages 355–359,
2000.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. In KDD, pages 53–87, 2004.

[6] I. inetats. Stock trade traces. In
http://davis.wpi.edu/dsrg/stockData/eventstream3.txt.

[7] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for streamed
aggregation. In SIGMOD, pages 623–634, 2006.

[8] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and
evaluation techniques for window aggregates in data streams. In SIGMOD,
pages 311–322, 2005.

[9] M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and
A. Mehta. E-cube: multi-dimensional event sequence analysis using
hierarchical pattern query sharing. In SIGMOD, pages 889–900, 2011.

[10] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. OLAP on
sequence data. In SIGMOD, pages 649–660, 2008.

[11] Y. Mei and S. Madden. Zstream: a cost-based query processor for adaptively
detecting composite events. In SIGMOD, pages 193–206, 2009.

[12] L. F. Mendes and B. D. J. Han. Stream sequential pattern mining with precise
error bounds. In ICDM, pages 941–946, 2008.

[13] I. Motakis and C. Zaniolo. Temporal aggregation in active database rules. In
SIGMOD, pages 440–451, 1997.

[14] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu.
Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern
growth. In ICDE, pages 215–224, 2001.

[15] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Abidi. Expressing and optimizing
sequence queries in database systems. In ACM Trans. on Database Systems,
pages 282–318, 2004.

[16] P. Seshadri, M. Livny, and R. Ramakrishnan. Seq: Design and implementation
of a sequence database system. In VLDB, pages 99–110, 1996.

[17] I. Timko, M. H. Böhlen, and J. Gamper. Sequenced spatio-temporal aggregation
in road networks. In EDBT, pages 48–59, 2009.

[18] S. Wang, M. Hao, et al. Chaos: A data stream analysis architecture for
enterprise applications. In 2009 IEEE conference on commerce and enterprise
computing, pages 33–40, 2009.

[19] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In SIGMOD, pages 407–418, 2006.

[20] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger. Temporal aggregation
over data streams using multiple granularities. In EDBT, pages 646–663, 2002.

240

