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Introduction

Formal Methods: mathematically based techniques for the speci-
fication, development and verification of software and hardware sys-
tems.

FOLDOC [FOL]

This thesis is written in the broad context of formal methods, which emerged as a
branch of computer science aimed at improving the quality of computer systems,
especially those in safety-critical applications. As we have experienced in the
past few decades, the complexity of these systems grows very rapidly, owing
to increased demand as well as advances in computing capabilities. Formal
methods research takes on the challenge of improving such systems, by providing
a wide range of tools and techniques to manage complexity.

Formal methods have been studied for all stages of system development: de-
sign, implementation and analysis. Arguably, the most effective application of
formal methods occurs in the design stage, where formal languages are used
to give a precise description of the desired system. Much work has also been
done to streamline the transition from specification to implementation. In both
operational and denotational settings, for example, formal specifications can be
refined in an incremental fashion, until they reach a level of detail suitable for
realization in actual software or hardware.

Mathematical rigor receives the greatest attention during the final stage, anal-
ysis and verification. The promise here is that mathematical proofs guarantee
correct behavior in real life. Therefore we try to provide clear, mathematical se-
mantics for both formal specifications and actual implementations. To facilitate
reasoning, inference rules are developed and proven sound with respect to the
proposed semantics, allowing us to move between different levels of abstraction.

Most of this Ph.D. work is carried out in the context described in the preceding
paragraph. More specifically, we study semantic models for randomized, dis-
tributed computation. The basic approach is to extend well-establish theories
of distributed computation with probabilistic elements. Aside from technical
complications, the involvement of randomization poses an additional challenge:
justifying, somehow, the leap from mathematics to the physical reality that we
claim to model.

1



2 Chapter 1 Introduction

Probabilities and Nondeterminism

A large number of modeling frameworks have been proposed or adapted for the
purpose of analyzing stochastic behavior in computer systems. For example, the
traditional theory of (discrete- and continuous-time) Markov chains finds many
applications in the area of performance and reliability analysis [KS76, Ste94,
Hav98, Tri02].

Such applications often follow a common modeling paradigm: probability dis-
tributions are used to model uncertainties in the computation environment,
for example, the arrival rate of jobs and the size and complexity of each job
(measured in terms of processing time). We are then interested in estimating
parameters such as expected waiting time and percentage of missed deadlines
over a given period of time. To do so, one often needs to limit the types of
probability distributions to a few well-behaved families, such as Poisson and
exponential. Without these restrictions, the availability of solution techniques
becomes very limited.

The models considered in this thesis are developed in a different tradition,
namely, the analysis of distributed algorithms. Here randomness is used by
the processes themselves to achieve certain goals. For instance, processes cast
randomly generated votes to reach consensus, or they choose a neighbor at ran-
dom to propagate information without flooding the network. In this setting,
the computation environment is extremely unpredictable and it does not always
makes sense to assume a fixed pattern of events.

For example, we may not have a good reason to believe that message delays
experienced on a network can be faithfully modeled by an exponential distribu-
tion with parameter λ. Or that each of m pending messages are equally likely
to be the first one delivered. Furthermore, when we do make such underlying
assumptions, it is often impractical to perform experiments on an actual system
so that our assumptions can be validated. Without this last step, it is difficult
to assess what contributions we have actually made by performing a formal
analysis.

Thus, nondeterminism is often considered a “safer” option, when we have no
information over certain aspects of the object system and/or the external en-
vironment. Moreover, nondeterministic choices allow us to model systems at
higher levels of abstraction, leaving many implementation details unspecified.
These reasons motivate the development of many models that combine nonde-
terministic and probabilistic behaviors [Var85, PZ86, CY90, YL92, PZ93, SL95,
BdA95, DEP02], as alternatives to purely probabilistic models like Markov
chains. Many of these newer models are based on the theory of Markov de-
cision processes (MDPs), which is used extensively in planning and artificial
intelligence [Put94, Ber95]. The models studied in the thesis also fall into this
category.

While the presence of nondeterminism is desirable for modeling purposes, it
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leads to complications in semantic definitions and analysis. Namely, in or-
der to obtain well-defined probability distributions from a specification that
contains both nondeterministic and probabilistic choices, one must somehow
“untangle” these two types of choices. This is usually done by means of adver-
saries/schedulers1, which resolve all nondeterministic choices in a specification.

In our view, the resolution of nondeterministic choices (also called “schedul-
ing”) is a fundamental issue in semantic studies, because different scheduling
mechanisms associate different sets of probability distributions to a particular
specification. That implies the same specification may have different properties
depending on how nondeterministic choices are resolved. Therefore, we feel the
need to devote more attention to the notion of adversaries. (Hence the title
“Reconciling Nondeterministic and Probabilistic Choices”.)

In particular, we study mathematical properties of adversaries, which are for-
malized as functions mapping execution histories to available next transitions.
Moreover, we try to understand how different definitions of parallel composition
translate into different assumptions on the behavior of adversaries. This allows
us to identify some key properties of adversaries (e.g., history-dependence) that
affect compositionality of trace-style semantics. Last but not least, we try to
make a connection between the notions of adversaries captured by our formal
definitions and those that are actually used in distributed computing, for exam-
ple, in the areas of security protocols and randomized consensus.

Main Topics and Contributions

This thesis is organized into three parts. In Part I, we work with Segala’s (sim-
ple) Probabilistic Automata (PA) model [Seg95b] and prove many technical the-
orems regarding adversaries and their induced probability distributions. These
results are then used to extend the testing semantics proposed by Stoelinga
and Vaandrager [SV03]. In Part II, we introduce our own variant of Probabilis-
tic Input/Output Automata (PIOA) and use that as a basis of two specialized
models, both of which come with a compositional trace-style semantics. Finally,
Part III presents a randomized consensus algorithm, together with a manual cor-
rectness proof and a mechanized analysis using the probabilistic model checker
PRISM [PRI].

These three parts are technically independent and can be read in any order.
Below we summarize each of them in greater detail.

Part I

The PA model is a straightforward extension of the familiar notion of labeled
transition systems. In particular, every automaton has a discrete state space and

1These are referred to as policies in the setting of MDPs.
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discrete transitions from each state. If multiple transitions are available from the
same state, then the choice among them is nondeterministic. Probabilities are
introduced within transitions; namely, the target of each transition is a discrete
probability distribution on next states, as opposed to a single next state.

In this setting, an adversary is a function that maps finite computation paths
to available next transitions. Such a function induces a probability distribution
on computation paths (here called a probabilistic execution) and hence a proba-
bility distribution on traces (here called a trace distribution). These probability
distributions can be viewed very naturally as trees with probabilistic branching,
and they are the main objects of study in Part I.

In Chapter 4, we give an explicit characterization of probabilistic executions,
which allows us to manipulate probabilistic executions directly, without refer-
ence to the adversaries that induce them. This result is used in two useful
constructions: convex combinations and limits.

Chapter 5 is concerned with finite approximation of infinite behavior, which is
a main theme of Part I. Specifically, we define order structures on three levels:
adversaries, probabilistic executions and trace distributions. The orderings we
use are quite unusual, in that they are not based on the ≤ relation on real
numbers. Instead, they are “flat” in nature, resembling the prefix relation on
sequences and the subtree relation based on truncation of branches. This gives
rise to algebraic order structures, whose compact elements can be characterized
in a very natural way. (In contrast, orderings induced by the usual ≤ relation
on real numbers are not algebraic.)

The limit construction of Chapter 4 is used in Chapter 5 to prove existence
of least upper bounds. Another application of the same construction is found
in Chapter 6, where trace distributions are viewed as points in an appropriate
metric space and we show that the limit of a convergent sequence of trace
distributions is again a trace distribution.

Finally, Chapter 7 extends the testing scenario of [SV03] with a notion of fi-
nite tests. We prove that, for all image finite processes, our testing equivalence
coincides with the trace distribution equivalence of [Seg95b]. This is an im-
provement over [SV03], which requires that processes are finitely branching. A
good portion of the technical machineries developed in previous chapters are
applied here, showing that any infinite behavior can be reduced to its finite
“sub-behaviors” and hence finite tests have sufficient distinguishing power over
infinite processes.

Although Part I is written for the PA model, our technical developments actually
take place in the more fundamental settings of ordered sets and metric spaces.
Therefore, we believe that the same ideas and results can be adapted to other
settings, where semantic objects of interest are probabilistic trees similar to our
probabilistic executions and trace distributions.

Acknowledgment Chapter 7 is joint work with Mariëlle Stoelinga and Frits
Vaandrager. The other chapters in Part I have also benefited from their com-
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ments and suggestions. We thank them for many interesting conversations and
for their help in preparing the joint paper [CSV06].

Part II

The trace distribution equivalence and testing equivalence discussed in Part I
are examples of semantic relations. These relations provide a formal way of
specifying which aspects in the behavior of a system are considered relevant
and which others can be safely ignored. For instance, trace distribution equiv-
alence focuses on correlations between observable actions and ignores internal
branching structures, so long as they do not affect action correlations.

In Part II, we turn our attention to parallel composition of probabilistic pro-
cesses. This operator captures the idea of running several components simulta-
neously, with possible interactions among them.

The combination of semantic relation and parallel composition forms a basis
of many useful methods in formal analysis and verification. For example, a
large system can be specified as the parallel composition of smaller and more
tangible subsystems. Each subsystems can then be specified at different levels
of abstraction, provided these levels fall under a particular semantic relation.
Thus, it is important to ensure that properties of the composed system are
preserved under substitution of subsystems. This is typically formalized as a
compositionality theorem.

In a probabilistic setting, parallel composition can be defined in many different
ways, depending on which type of adversaries are used to resolve choices between
parallel components. We argue that, in order to achieve compositionality in a
trace-style setting, adversaries should not have access to local information of
individual components. This idea turns out to be difficult to formalize, because
it requires a clear distinction between information that is globally available and
information that is completely internal to a component.

We propose two frameworks in which local information can be hidden from the
adversary. Both of these are based on the PIOA model presented in Chap-
ter 9. Although PIOAs have appeared in many other papers [WSS94, PSL00,
BPW04b], we introduce here a new formulation based on reactive and genera-
tive transition structures (cf. [vGSS95]). This yields a clear and concise model,
which encompasses most existing versions of PIOAs. In addition, we define
the notions of input/output (I/O) schedulers and their induced execution trees,
generalizing respectively the notions of adversaries and probabilistic executions
discussed in Part I. A basic parallel composition operator is also given, which
is based on action synchronization and does not attempt to resolve nondeter-
ministic choices between parallel components.

In Chapter 10, we present the Switched PIOA model, which uses a token struc-
ture to eliminate global nondeterministic choices. This token structure ensures
that, at any point in time, there is at most one active component in a system
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and this unique component determines the next active component. Thus, global
scheduling is performed jointly by all local schedulers, which have access to local
information only. We then define the notion of switched probabilistic systems,
which are switched PIOAs paired with sets of “acceptable” I/O schedulers.

We give a trace-style semantics for switched probabilistic systems, using the
notion of likelihood assignments. Likelihood assignments are generalizations of
trace distributions of Part I. This semantics is shown to be compositional with
respect to a parallel operator that combines local I/O schedulers into a joint
I/O scheduler. Thus, the approach taken in Chapter 10 can be characterized
as “schedule-and-compose”, where local nondeterministic choices are resolved
before the components are placed in parallel.

Chapter 11 follows a similar strategy, but without the token structure. In-
stead, several axioms are imposed on the reactive and generative transition
structures, so that branching only occurs when it is meant to be globally visible
(i.e., the branches carry different visible action labels). These axioms capture
a local-oblivious assumption on adversaries, which is well-known in the area of
randomized consensus [CIL94, AB04].

For the model of Chapter 11, we also define a trace-style semantics based on
likelihood assignments. It is proven to be compositional with respect to a
“schedule-and-compose” operator similar to that in Chapter 10. This proof
is more involved because the absence of a token structure gives the adversary
more freedom in selecting the next transition.

Acknowledgment Chapter 10 is joint work with Roberto Segala, Nancy Lynch
and Frits Vaandrager [CLSV04a, CLSV06]. We are greatly indebted to their
inputs and encouragements. We also thank Martijn Hendriks for discussions
regarding Chapter 11. He is a coauthor of [CH05], which is closely related to
Chapter 11.

Part III

Finally, we turn to more practical matters and present a randomized algorithm
for asynchronous wait-free consensus using multi-writer multi-reader (MWMR)
shared registers. This algorithm is based on earlier work by Chor, Israeli and Li
(CIL) and is correct under the assumption that processes can perform a random
choice and a write operation in one atomic step. This is a restricted form of the
local-oblivious assumption adopted in Chapter 11.

The expected total work for our algorithm is shown to be O(N log(logN)),
compared with O(N2) for the CIL algorithm, and O(N logN) for the best known
weak adversary algorithm. The efficiency results mainly from the use of MWMR
registers, which also allows us to achieve consensus with high probability using
O(logN) space.

In addition to giving a manual correctness proof, we model check instances of
our algorithm using the probabilistic model checking tool PRISM.
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Acknowledgment Part III is essentially taken from [Che05b]. We thank James
Aspnes for his inspiring article [Asp03] and many helpful comments. Also we
thank David Parker for support in using PRISM, as well as Jaap-Henk Hoepman
and the anonymous referees at OPODIS 05 for their comments and suggestions.
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2

Preliminaries

This section provides a summary of basic mathematical notions necessary for
our development. In particular, we review materials from real analysis [KF70,
Rud87], probability theory [Coh80, Rud87], statistics [CB90, Tri02] and order
theory [DP90].

Basic Notations

Given two sets X and Y , we write X+Y for the disjoint union of X and Y and
X × Y for the Cartesian product, where the projection maps are denoted proj1
and proj2, respectively. The product of an indexed family {Xi | i ∈ I} of sets
is denoted

∏
i∈I Xi, with projection maps proji. When I is clear from context,

we write ~x for a typical member of
∏
i∈I Xi and xi for proji(~x).

Given an equivalence relation ≡ on X , the quotient of X under ≡ (written
X/ ≡) is the partition of X induced by ≡. The coset [x] in this quotient is the
equivalence class containing x.

The set of all partial functions from X to Y is denoted X ⇀ Y . The symbol ∅
denotes the empty function (as well as the empty set). For each f ∈ X ⇀ Y ,
we write Dom(f), Cod(f) and Range(f) for the domain, codomain and range of
f , respectively. If x 6∈ Dom(f), we sometimes write f(x) = ⊥. We say that f is
total if X = Dom(f) and we use X → Y to denote the set of all total functions
from X to Y .

Metric Spaces

We encounter many times in this thesis the notion of “limits”. They come in
two flavors: (i) limit of a sequence of points in some metric space and (ii) limit
of an increasing sequence in a partially ordered set. We now recall the former,
while the latter is treated in Section 2.

Let P denote the set of non-negative real numbers. A metric space is a pair
〈X, dist〉 where X is a set and the function dist : X × X → P satisfies the
following: for all x, y ∈ X ,

11



12 Chapter 2 Preliminaries

(1) identity : dist(x, y) = 0 if and only if x = y;

(2) symmetry : dist(x, y) = dist(y, x); and

(3) triangle inequality : dist(x, z) ≤ dist(x, y) + dist(y, z).

We give two familiar examples of metric spaces.

Example 2.0.1. The n-dimensional space Rn (n ∈ N) together with the Eu-
clidean distance function:

dist(~x, ~y) :=

√√√√
n∑

i=0

(xi − yi)2.

Example 2.0.2. The infinite dimensional space [l, u]ω (l, u ∈ R with l < u)
together with the distance function:

dist(~x, ~y) := sup
i∈N
|xi − yi|.

Given an arbitrary metric space 〈X, dist〉, we define the usual notion of an
(open) ε-ball around a point x:

Bε(x) := {y ∈ X | dist(x, y) < ε}.

A sequence of points {xi | i ∈ N} in X converges to a limit x ∈ X if, for every
ε > 0, there is Nε ∈ N such that xi ∈ Bε(x) for all i ≥ Nε. Equivalently, we
may require limi→∞ dist(x, xi) = 0. It is trivial to check that limits must be
unique and that all subsequences converge to the same limit.

The following is a special case of the famous Bolzano-Weierstraß Theorem.

Theorem 2.0.1. Every bounded infinite sequence over R has a convergent sub-
sequence.

Probability Spaces

Let Ω be a set. A collection F of subsets of Ω is said to be a σ-field over Ω if
F satisfies the following properties:

(1) Ω ∈ F ;

(2) if X ∈ F , then Ω \X is also in F (closure under complement); and

(3) if {Xi | i ∈ N} ⊆ F , then
⋃
i∈NXi is also in F (closure under countable

union).

We have the following familiar theorem about σ-fields.
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Theorem 2.0.2. Let S be any family of subsets of Ω. There exists a smallest
σ-field F over Ω such that S ⊆ F . In that case, we say that F is generated by
S.

A probability measure on a σ-field F is a countably additive function m : F →
[0, 1] such that m(Ω) = 1. Countable additivity says, given any disjoint family
{Xi | i ∈ N} ⊆ F , it must be the case that

m(
⋃

i∈N
Xi) =

∑

i∈N
m(Xi).

If m is a probability measure, the triple 〈Ω, F , m〉 is said to form a probability
space. The set Ω is called the sample space and members of F are called events.

Example 2.0.3. The powerset of Ω, P(Ω), is a σ-field over Ω. Consider a
function µ : Ω → [0, 1] such that

∑
s∈Ω µ(s) = 1. Then µ induces a function

m : P(Ω)→ [0, 1] as follows:

m(X) :=
∑

s∈X
µ(s).

It is easy to check that m is countably additive, hence a probability measure on
P(Ω).

Such a function µ is often called a discrete probability distribution over the set
Ω. The support of µ is defined to be the set Supp(µ) := {s ∈ Ω | µ(s) 6=
0}. Note that the support of a discrete probability distribution is a countable
set. If Supp(µ) is a singleton {s}, then µ is called a Dirac distribution and is
often written as Dirac(s). If Ω is finite, then the distribution Unif(Ω) assigns
probability 1

|Ω| to every s in Ω. The set of all discrete probability distributions

over Ω is denoted by Disc(Ω).

Similarly, we define a sub-probability measure to be a countably additive function
m : F → [0, 1] such that m(Ω) ≤ 1. Thus a discrete sub-distribution is a
function µ : Ω → [0, 1] such that

∑
s∈Ω µ(s) ≤ 1. The set of all such sub-

distributions is denoted SubDisc(Ω).

Example 2.0.4. Let Ω be the two element set {0, 1} and let µ be a discrete
probability distribution over Ω. Write p for µ(1). This describes a Bernoulli
distribution with parameter p. The two possible outcomes 1 and 0 are often
referred to as success and failure, respectively.

If µ is a discrete distribution on a set X and Y is a superset of X , we shall freely
regard µ as a discrete distribution on Y , where µ(y) := 0 for all y ∈ Y \ X .
Similarly for sub-distributions.

Let {Xi | i ∈ I} be an indexed family of sets and suppose we have {µi | i ∈ I},
where each µi is a discrete distribution on Xi. We form the product distribution,
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denoted
∏
i∈I µi, as follows:

(
∏

i∈I
µi)(~s) :=

∏

i∈I
µi(si).

This is easily shown to be a discrete distribution on
∏
i∈I Xi. Conversely, given

any distribution µ on
∏
i∈I Xi and i ∈ I, one can form the ith-projection of µ,

denoted proji(µ), by:

proji(µ)(s) :=
∑

~t:ti=s

µ(~t).

We have the obvious identity: proji(
∏
j∈I µj) = µi.

Statistics

Let 〈Ω, F , m〉 be a discrete probability space generated by the function µ : Ω→
[0, 1]. A random variable is a function X : Ω → R. Intuitively, it is a rule that
assigns a numerical value to each possible outcome of an experiment. Given
x ∈ R, let [X = x] denote the event {s ∈ Ω | X(s) = x}. The probability mass
function (pmf) associated with X is defined by

pX(x) := m([X = x]) =
∑

s∈[X=x]

µ(s).

Often we write P[X = x] for pX(x). Similarly, we let [X ≥ x] denote the event
{s ∈ Ω | X(s) ≥ x} and write P[X ≥ x] for

∑
s∈[X≥x] µ(s).

The expectation (or expected value) of X , denoted E[X ], is given by the sum

E[X ] :=
∑

x∈Range(X)

x P[X = x].

The variance of X , denoted Var[X ], is defined as

Var[X ] := E[(X −E[X ])2] =
∑

x∈Range(X)

(x−E[X ])2 P[X = x].

Example 2.0.5. A Bernoulli variable is a random variable X with range {0, 1}.
Intuitively, it classifies each outcome of an experiment as either success or failure.
The value P[X = 1] = p is called the parameter of the Bernoulli variable. It is
routine to derive E[X ] = p and Var[X ] = p(1− p).

We have the following important inequality.

Theorem 2.0.3. (Chebyshev’s inequality). For every random variable X and
t > 0,

P[|X −E[X ]| ≥ t] ≤ Var[X ]

t2
.
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Next we consider hypothesis testing. This is a common method of statistical
inference, which refers broadly to the practice of estimating characteristics of
an entire population based on evidence produced by a sample drawn from that
population. The starting point is a pair of complementary hypotheses: the null
hypothesis and the alternative hypothesis. These are complementary statements
about the probability distribution in question. A hypothesis test is a rule that
specifies which sample values lead to the decision that the null hypothesis is
accepted (thus the alternative hypothesis is rejected). This subset of the sample
space is called the acceptance region, while its complement is called the rejection
region. We say that a false negative (or false rejection, type I ) error is committed
if the null hypothesis is true but the test procedure concludes otherwise. Dually,
a false positive (or false acceptance, type II ) error is committed if the null
hypothesis is false but is accepted by the test procedure. A test is said to be of
level α (α ∈ [0, 1]) if the probability of committing a type I error is at most α.

Partial Orders

A partially ordered set (or poset) is a set P endowed with a binary relation
≤, which is reflexive, (weakly) antisymmetric and transitive. Given a subset
X ⊆ P , we write

∨
X for the least upperbound of X , if it exists.

A non-empty subset D of P is directed if every finite subset D′ of D has an
upperbound in D. The least upperbound of a directed set (if it exists) is often
called a directed limit. The poset P forms a complete partial order (CPO) if it
has a bottom element ⊥ and all directed limits. A function f : P → Q between
CPOs P and Q is monotone if, for all p, p′ ∈ P , p ≤ p′ implies f(p) ≤ f(p′).
We say that f is continuous if it is monotone and, for every directed D ⊆ P ,
we have f(

∨
D) =

∨
f(D). (Note that, given any monotone f , the image f(D)

of a directed set D is again directed.)

An increasing sequence of elements p0 ≤ p1 ≤ p2 ≤ . . . in P is called a chain.
Chains are typical examples of directed sets and we write limC for the least
upperbound of a chain C. In fact, any directed limit can be converted to the
limit of a chain with the same cardinality.

Theorem 2.0.4. A poset P with ⊥ is a CPO if and only limC exists for every
non-empty chain C.

Finally, an element c ∈ P is compact if, for every directed set D such that
c ≤ ∨D, there exists p ∈ D with c ≤ p. A CPO P is said to be algebraic if for
all p, the set {c | c ≤ p and c compact} is directed and p is in fact the limit of
this set.

Example 2.0.6. Let X<ω (resp., Xω) denote the set of finite (resp., infinite)
sequences over a setX . Then the union of these two sets, denotedX≤ω, forms an
algebraic CPO under the prefix ordering v. The compact elements are precisely
the finite sequences.
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Example 2.0.7. Consider X ⇀ Y , the set of partial functions from X to Y .
We define the information ordering on X ⇀ Y as follows: f ⊆ g if and only if
(i) Dom(f) ⊆ Dom(g) and (ii) for all x ∈ Dom(f), f(x) = g(x). In other words,
the graph of f is a subset of the graph of g, hence the relation is also called the
subset ordering. This gives rise to an algebraic CPO whose compact elements
are partial functions with finite domain.

Infinite Sequences over [0, 1]

We define a flat ordering on [0, 1]ω as follows: σ ≤[ σ′ if and only if for all
i ∈ N, σi 6= 0 implies σi = σ′i. This ordering is very much analogous to the
subset ordering in Example 2.0.7, since infinite sequences over [0, 1] can be
viewed as functions from N to [0, 1] and we can interpret σi = 0 as “σ undefined
at i”. Given an arbitrary directed limit in this poset, we can always convert
it to the limit of an ω-chain. This is a strengthening of Theorem 2.0.4 for the
special case of [0, 1]ω.

Lemma 2.0.5. Let D be an arbitrary (not necessarily countable) directed subset
of [0, 1]ω. There is an ω-chain {σ0, σ1, . . .} ⊆ D such that limk∈N σk =

∨D.

Proof. First we construct a sequence σ′0, σ
′
1, . . . as follows: for each i ∈ N, choose

σ′i ∈ D such that σ′i(i) = (
∨D)(i). This is possible due to the definition of ≤[.

Then

– set σ0 to be σ′0;

– for i+ 1, set σi+1 to be any upperbound of {σ0, . . . , σi, σ
′
i+1} in D.

Since D is directed, this ω-chain is well-defined. One can easily check that its
limit in fact equals the least upperbound of D.

Lemma 2.0.5 is used to prove Theorem 2.0.6 about infinite sums. Let I be an
arbitrary index set and let {{ci,j}j∈N | i ∈ I} be a set of ω-sequences over [0, 1].
Assuming the infinite sums converge, it is true in general that

∨

i∈I

∑

j∈N
ci,j ≤

∑

j∈N

∨

i∈I
ci,j .

We claim that equality holds under the assumption that {{ci,j}j∈N | i ∈ I} is
directed with respect to ≤[. This can be seen as a special form of the well-known
Monotone Convergence Theorem.

Theorem 2.0.6. Assume that {{ci,j | j ∈ N} | i ∈ I} is a directed subset
of [0, 1]ω and for all i,

∑
j∈N ci,j converges to a limit in [0, 1]. Then the sum∑

j∈N
∨
i∈I ci,j converges and

∨

i∈I

∑

j∈N
ci,j =

∑

j∈N

∨

i∈I
ci,j .
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Proof. For convergence, we show that all finite partial sums
∑

0≤j≤N
∨
i∈I ci,j

are bounded above by
∨
i∈I
∑

j∈N ci,j . (In that case equality must also hold.)

By Lemma 2.0.5, we can choose an ω-chain {Dk | k ∈ N} ⊆ {{ci,j | j ∈
N} | i ∈ I} such that

∨
i∈I{ci,j | j ∈ N} = limk∈NDk. Notice (limk∈NDk)(j) =

limk∈NDk(j), thus

∑

0≤j≤N

∨

i∈I
ci,j =

∑

0≤j≤N
(lim
k∈N

Dk)(j) =
∑

0≤j≤N
lim
k∈N

Dk(j)

= lim
k∈N

∑

0≤j≤N
Dk(j) =

∨

k∈N

∑

0≤j≤N
Dk(j).

This is below
∨
i∈I
∑

j∈N ci,j , because each Dk equals {ci,j | j ∈ N} for some
i ∈ I.

An obvious corollary of Theorem 2.0.6 concerns the set of discrete probabilistic
sub-distributions.

Corollary 2.0.7. Let S be a countable set. The set SubDisc(S) of discrete
probabilistic sub-distributions over S is a CPO with respect to the flat ordering.

Proof. Via an enumeration of S, we view SubDisc(S) as a subset of [0, 1]ω.
Clearly the everywhere-0 distribution is a bottom element. Given any directed
subset ∆, we apply Theorem 2.0.6 to

{{D(j) | j ∈ N} | D ∈ ∆}

and conclude that the (pointwise) join of ∆ is also a sub-distribution.
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Probabilistic Automata

Throughout Part I of this thesis, a probabilistic process is a (simple) probabilistic
automaton as introduced by Segala and Lynch [Seg95b, SL95]. This extends the
usual nondeterministic automata model by allowing probabilistic information
at the target of each transition. More precisely, every transition leads to a
probability distribution over possible next states, rather than a single state.
This section presents relevant definitions and basic results concerning semantic
objects associated with probabilistic automata. In Part II, we will consider
variations of the probabilistic automata model, for example, with input/output
distinction and bundle transitions.

For simplicity, we consider systems with no internal or hidden actions. All
external actions are taken from a countable set Act, which has a fixed enumer-
ation {bi | i ∈ N} throughout this thesis. Given l ∈ N, we write Actl for the
list b0, . . . , bl−1. The set of finite (resp. infinite) traces is denoted Act<ω (resp.
Actω), while the set of all traces is Act≤ω. Also, we write ε for the empty trace.

Definition 3.0.1. A probabilistic automaton (PA) is a triple A = (S, s0,∆)
where

– S is the set of states,

– s0 ∈ S is the initial state, and

– ∆ ⊆ S × Act×Disc(S) is the transition relation.

We write s
a−→ µ for (s, a, µ) ∈ ∆. Also, we write s

a,µ t whenever s
a−→ µ and

µ(t) > 0. To avoid confusion, we sometimes refer to the components of A as
SA, s0

A and ∆A.

Intuitively, we can view target distributions in the transition relation ∆ as a
form of probabilistic branching; that is, we think of s

a,µ t as a nondeterministic

transition s
a−→ µ followed by a probabilistic transition µ

µ(t)−→ t. In this way,
we obtain an informal notion of the underlying nondeterministic automaton of
A, where we “forget” probabilistic information (i.e., µ(t)) at each probabilistic
transition. Thus inspired, we define paths in a PA A as follows.

19
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Definition 3.0.2. A path π of A is a (finite or infinite) sequence of the form
s0a1µ1s1a2µ2s2 . . . such that:

– each si (resp., ai, µi) denotes a state (resp., action, distribution over
states);

– s0 is the initial state1;

– if π is finite, then it ends with a state;

– si
ai+1,µi+1 si+1, for each non-final i.

The length of a finite path π, denoted |π|, is the number of action symbols
occurring in it.

The set of all paths (finite and infinite) of A is denoted Path(A), while the set
of finite paths is denoted Path<ω(A). We write Path≤k(A) for the set of paths
with length at most k. The last state of a finite path π is written last(π). The
trace of π, denoted by tr(π), is defined to be the sequence of actions appearing
along π: a1a2a3 . . .. Given F ⊆ Path<ωA and a ∈ Act, we write Succ(F, a) for
the set of paths π′ of the form πaµs with π ∈ F . Similarly for Succ(F, β) with
β ∈ Act<ω.

As in the case of nondeterministic automata, we are interested in certain finite-
ness properties in the branching structure.

Definition 3.0.3. A PA A is finitely (resp. countably) branching if, for each

state s, the set {〈a, µ〉 | s a−→ µ} is finite (resp. countable). It is image finite if

for each state s and action a, the set {µ | s a−→ µ} is finite.

Thus, each state in a finitely branching PA has finitely many outgoing transi-
tions, while a state in an image finite PA may have infinitely many. In both
cases, the set {t | sa,µ t for some a, µ} maybe infinite, since a target distribu-
tion µ may have infinite support. As a result, given a finite trace β ∈ Act<ω,
a finitely branching (or image finite) PA may have infinitely many paths with
trace β. This is different from the case of nondeterministic automata.

Since Act is countable by assumption, image finiteness is a stronger condition
than countable branching. Throughout Part I, we take countable branching as
our basic assumption. However, image finiteness becomes necessary in some
place, when we wish to prove convergence properties.

Note that every transition in a PA leads to a discrete distribution on states,
which has a countable support. Therefore, the set of finite paths of a countably
branching PA is countable. We often take advantage of this fact by imposing
an enumeration.

1In other terminology, paths may start from non-initial states.
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3.1 Adversaries and Probabilistic Executions

We now turn to behaviors of PAs. In the non-probabilistic case, an execution
(or path) is obtained by resolving all nondeterministic choices in a deterministic
fashion. For a PA, we resolve nondeterministic choices by means of an adversary
(sometimes called a scheduler). Given any finite history leading to the current
state, an adversary returns a discrete sub-distribution over the set of available
next transitions. Therefore, our adversaries are (i) randomized, (ii) history-
dependent, and (iii) partial, in the sense that they may choose to halt the
execution at any time.

Definition 3.1.1. A (randomized, history-dependent and partial) adversary E
of A is a function

E : Path<ω(A)→ SubDisc(Act×Disc(SA))

satisfying, for each finite path π, E(π)(a, µ) > 0 implies last(π)
a−→ µ.

We write Adv(A) for the set of all adversaries of A. Intuitively, an adversary
E tosses a coin to choose the next transition at every step of the computation
of A. Thus E induces a purely probabilistic “computation tree”. This idea is
captured by the notion of a probabilistic execution.

Definition 3.1.2. Let E be an adversary of A. The probabilistic execution
induced by E, denoted QE , is the function from Path<ω(A) to [0, 1] defined
recursively by

QE(s0) = 1,

QE(πaµs) = QE(π) · E(π)(a, µ) · µ(s).

The set of all probabilistic executions of A is written as PExec(A). Essentially,
the function QE assigns probabilities to finite paths according to decisions made
by the adversary E. We shall interpret “QE(π) = p” as: under the control of
adversary E, the automaton A follows path π with probability p. Notice, it
need not be the case that A halts after π. Moreover, if π v π′, then the event
“A follows π′” implies the event “A follows π”. Therefore QE is not a discrete
distribution on the set of finite paths. However, QE does induce a probability
space over the sample space Path(A) as follows.

Definition 3.1.3. Let π ∈ Path<ω(A) be given. The cone generated by π is
the following set of paths: Cπ := {π′ ∈ Path(A) | π v π′}.

Let ΩA := Path(A) be the sample space and let FA be the smallest σ-field
generated by the collection {Cπ | π ∈ Path<ω(A)}. The following theorem
states that QE induces a unique probability measure on FA [Seg95b].

Theorem 3.1.1. Let E be an adversary of A. There exists a unique probability
measure mE on FA such that mE(Cπ) = QE(π) for all π ∈ Path<ω(A).
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The measure mE of the preceding theorem gives rise to a probability space
(ΩA,FA,mE). In the literature, many authors define probabilistic executions
to be such probability spaces. For our development, it is more natural to reason
with the function QE , rather than the induced probability space. By virtue of
Theorem 3.1.1, these two definitions are equivalent.

3.2 Trace Distributions

External behaviors of a PA A are obtained by removing the non-visible elements
from probabilistic executions. Since we do not deal with internal actions, we
remove states and distributions of states. This yields a trace distribution of A,
which assigns probabilities to certain sets of traces.

We define trace distributions via a lifting of the trace operator tr : Path<ω(A)→
Act<ω.

Definition 3.2.1. Let an adversary E of A be given and consider the proba-
bilistic execution QE : Path<ω(A) → [0, 1]. The trace distribution induced by
E is the function tr(QE) : Act<ω → [0, 1] given by

tr(QE)(β) :=
∑

π∈tr-1(β)

QE(π).

Notice, because we have no internal actions, the cones Cπ1 and Cπ2 are disjoint
whenever π1 and π2 are distinct paths in tr-1(β). Therefore, we have

∑

π∈tr-1(β)

QE(π) =
∑

π∈tr-1(β)

mE(Cπ) = mE(
⋃

π∈tr-1(β)

Cπ) ∈ [0, 1].

This ensures that tr(QE) is well-defined. We usually write DE for tr(QE) and,
when it is desirable to leave the adversaryE implicit, we use variablesD, K, etc.
The set of trace distributions of A is denoted by TrDist(A), and we define trace
distribution inclusion as follows: A ≤td B if and only if TrDist(A) ⊆ TrDist(B).
Trace distribution equivalence is thus: A ≡td B if and only if TrDist(A) =
TrDist(B).

Similar to the case of probability executions, each DE induces a probability
measure on the sample space Ω := Act≤ω. Here the σ-field F is generated by
the collection {Cβ | β ∈ Act<ω}, where Cβ := {β′ ∈ Ω | β v β′}.

Theorem 3.2.1. Let E be an adversary of A. There exists a unique probability
measure mE on F such that mE(Cβ) = DE(β).

Again, mE gives rise to a probability space 〈Ω, F , mE〉, which is elsewhere
called the trace distribution induced by E. We refer to [Seg95b] for these alter-
native definitions and the proofs of Theorems 3.1.1 and 3.2.1.
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In general, mE is not a discrete measure. However, for every k ∈ N, mE induces
a discrete probability distribution on Act≤k. We now describe how this is done.
First, note that every singleton set {β}, with β ∈ Act<ω, is a member of F .
This is because {β} can be rewritten as Cβ \

⋃
a∈Act Cβa, which is measurable

since Act is countable. Now, given β ∈ Act≤k, we define PE,k[β] to be:

– mE(Cβ), if the length of β is exactly k;

– mE({β}), otherwise.

The following proposition confirms that PE,k is in fact a discrete probability

distribution on Act≤k.

Proposition 3.2.2. For every k ∈ N and every adversary E, the function
PE,k : Act≤k → [0, 1] is a discrete probability distribution over Act≤k.

Proof. We need to verify that
∑
β∈Act≤k PE,k[β] = 1.

By Theorem 3.2.1, we know that mE(Cβ) = DE(β) for every β ∈ Act<ω. In
case k = 0, it is sufficient to note that PE,k[ε] = mE(Cε) = DE(ε) = 1. Assume

k ≥ 1. The following holds for every β ∈ Act<k:

PE,k[β] = mE({β}) = mE(Cβ)−
∑

a∈Act

mE(Cβa) = DE(β) −
∑

a∈Act

DE(βa).

On the other hand, we have:

∑

β∈Act≤k

PE,k[β] =

k∑

i=0

∑

β∈Acti

PE,k[β] = (

k−1∑

i=0

∑

β∈Acti

PE,k[β]) +
∑

β∈Actk

PE,k[β].

According to the length of β, we make appropriate substitutions for PE,k[β]
and obtain:

∑

β∈Act≤k

PE,k[β] = (

k−1∑

i=0

∑

β∈Acti

(DE(β) −
∑

a∈Act

DE(βa))) +
∑

β∈Actk

DE(β)

= (

k−1∑

i=0

(
∑

β∈Acti

DE(β) −
∑

β∈Acti

∑

a∈Act

DE(βa))) +
∑

β∈Actk

DE(β)

= (

k−1∑

i=0

(
∑

β∈Acti

DE(β) −
∑

β∈Acti+1

DE(β))) +
∑

β∈Actk

DE(β)

=
∑

β∈Act0

DE(β) = DE(ε) = 1
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Observe the slight difference in meaning between DE(β) and PE,k[β] for β ∈
Act<k. The former is the probability that “A performs the trace β”, without
specifying what happens after β. The latter is the probability that “A performs
exactly the trace β;” that is, A performs β and halts immediately afterwards.
Moreover, given traces β0 6= β1, the two events “A performs exactly β0” and
“A performs exactly β1” are mutually exclusive. This holds even when β0 is a
prefix of β1.

Since we restrict our attention to traces with length at most k, the function
PE,k gives a full description of the behavior of A while under the control of
adversary E. Notice that PE,k depends only on DE , therefore we often leave E
implicit and write PD,k when D = DE for some E.

3.3 Finite Adversaries

Let E be an adversary of a PA A. Given a finite path π, we say that π is E-
reachable if QE(π) 6= 0. Recall that adversaries may choose to halt an execution
at any point. This is reflected by the fact that E(π) is a sub-distribution on the
set of possible next transitions, so the probability of E halting after π is

1−
∑

〈a, µ〉∈Supp(E(π))

E(π)〈a, µ〉.

If E(π) has empty support, then we say E halts after path π. In that case,
QE(π′) = 0 for any proper extension π′ of π. We say that E has depth (at
most) k if E halts after every path of length k. This implies that every E-
reachable path has length at most k.

The notion of depth gives a bound on how far an adversary follows each path.
We also wish to talk about the degree of branching in an adversary. A typical
approach is to give a bound on the cardinality of Supp(E(π)) for all π. Here we
propose a different definition: E has breadth (at most) l if, for all paths π and
pairs 〈a, µ〉 in Act×Disc(SA), E(π)(a, µ) > 0 implies a ∈ Actl. Given such E,
an easy inductive argument shows that tr(π) ∈ (Actl)

<ω for every E-reachable
finite path π.

For all k, l ∈ N, let Adv(A, k, l) denote the set of adversaries of depth k and
breadth l. We say that E is a finite adversary if there exists k, l ∈ N such that
E ∈ Adv(A, k, l). In other words, E is finite if it has both finite depth and
finite breadth. The following proposition follows immediately from the relevant
definitions.

Proposition 3.3.1. Let E ∈ Adv(A, k, l) and π ∈ Path<ω(A) be given. If π is
E-reachable then tr(π) ∈ (Actl)

≤k.

Finite adversaries are extremely important in our development, because we rely
on reduction of infinite behavior to its finite approximations. This idea will
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become clear in Chapters 5 through 7. In the meantime, we make some simple
observations.

Proposition 3.3.2. If A is an image finite PA and E is an adversary of A
with finite breadth, then Supp(E(π)) is finite for every E-reachable π.

Proof. Suppose π is an E-reachable path in A. By finite breadth of E, there
are only finitely many a ∈ Act such that E assigns non-zero probability to
transitions labeled a. Let such a be given. By image finiteness, there are
only finitely many a-transitions available at π. Therefore, Supp(E(π)) must be
finite.

Proposition 3.3.3. There exist image finite PA A and adversary E of A such
that Supp(E(π)) is finite for all π but E has infinite breadth.

Proof. Consider a single-state automaton with countably many loops such that
no two loops carry the same label. Let E be an adversary that always chooses
(with probability 1) a transition carrying a fresh label . Then Supp(E(π)) is a
singleton for all π and yet E has infinite breadth.

Propositions 3.3.2 and 3.3.3 tell us that the finite breadth condition is strictly
stronger than the requirement that Supp(E(π)) is finite for all E-reachable π.
As we show in Chapters 5 and 6, the conjunction of finite breadth and depth
captures the “correct” notion of finiteness, which gives rise to an algebraic CPO
structure on TrDist(A) and allows us to prove metric convergence properties.

We extend the notion of finiteness to probabilistic executions: QE is finite if
there is an E′ such that E′ is finite and QE = QE′ . The set of probabilistic
executions induced by adversaries from Adv(A, k, l) is denoted PExec(A, k, l).
Finite trace distributions are defined analogously: DE is finite just in case there
is a finite E′ such that DE = DE′ . The set of trace distributions induced by
adversaries from Adv(A, k, l) is denoted TrDist(A, k, l) and we write A ≤k,ltd B
whenever TrDist(A, k, l) ⊆ TrDist(B, k, l). Also, we use Adv(A, k,−) to denote
the set of all adversaries with depth k (and arbitrary breadth). The same
convention applies also to Adv(A,−, l), PExec(A, k,−), etc.

We end this section with some observations regarding discrete probability dis-
tributions PE,k with E ∈ Adv(A, k, l). The first remark is a corollary of Propo-
sition 3.2.2.

Corollary 3.3.4. Let k, l ∈ N and E ∈ Adv(A, k, l) be given. Let PE,k,l de-
note the restriction of PE,k to (Actl)

≤k. Then PE,k,l is a discrete probability
distribution over (Actl)

≤k.

Proof. This follows from the definition of PE,k and Propositions 3.2.2 and 3.3.1.
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Again, when we wish to leave the adversary E implicit, we write PD,k,l for
PE,k,l where D = DE . Also, the subscript l is often omitted when it is clear
from context.

The second remark is, if two trace distributions from TrDist(A, k, l) induce the
same discrete distribution on (Actl)

≤k, then they must be identical.

Proposition 3.3.5. The function P−,k : TrDist(A, k, l) → Disc((Actl)
≤k) is

one-to-one.

Proof. We will give a left inverse of P−,k. Let D ∈ TrDist(A, k, l) be given.
Define a function D′ : (Actl)

≤k → [0, 1] as follows:

D′(β) =
∑

βvβ′;β′∈(Actl)≤k

PD,k[β′].

With a (backwards) inductive argument on the length of β ∈ (Actl)
≤k, it is easy

to check that D = D′.

Using essentially the same proof, we obtain the analogous result for trace dis-
tributions in TrDist(A, k,−).

Proposition 3.3.6. The function P−,k : TrDist(A, k,−)→ Disc(Act≤k) is one-
to-one.
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Characterizing Probabilistic
Executions

This chapter presents some useful results on probabilistic executions and trace
distributions. First we give an explicit characterization for the set of probabilis-
tic executions of a given PA A. This characterization is then used to prove that
the set of trace distributions of A is closed under convex combinations. Finally,
we describe a method of constructing an adversary from an infinite sequence of
adversaries.

4.1 Characterization Theorem

By definition, a probabilistic execution QE is a mapping from Path<ω(A) to
[0, 1], induced by some adversary E of a PA A. Hence we can view Q as an
operator from the set of adversaries of A to the function space Path<ω(A) →
[0, 1]. This section provides an explicit characterization of the range of Q. In
other words, given an arbitrary function Q : Path<ω(A) → [0, 1], we determine
whether Q = QE for some adversary E of A.

Clearly, if Q is induced by some E, it must satisfy the following properties.

(1) Q(s0) = 1 and, whenever π is a prefix of π′, we have Q(π) ≥ Q(π′) (i.e., Q
is antitone with respect to the prefix ordering).

(2) Given π, a, µ, s0, s1 such that last(π)
a−→ µ and s0, s1 ∈ Supp(µ), we have

Q(πaµs0)

µ(s0)
=
Q(πaµs1)

µ(s1)
.

We call this property the consistency of Q.

(3) Given π ∈ Path<ω(A) with Q(π) 6= 0, let Sπ denote the set of (a, µ) such

that last(π)
a−→ µ. For each (a, µ) ∈ Sπ, fix any sa,µ ∈ Supp(µ). Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)
≤ 1.

27
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(Notice, if Q is consistent, the choice of sa,µ does not affect the summand.)

To see that these conditions are not only necessary but also sufficient to char-
acterize the set of probabilistic executions, we note the following. Condi-
tion (1) expresses that, if π v π′, then the event “A follows π′” is included
in the event “A follows π′”. Also, any probabilistic execution begins at the
start state s0 with probability 1. Condition (2) is more subtle. Recall that
QE(πaµs) = QE(π) · E(π)(a, µ) · µ(s). If Q(π) > 0, we can recover the value

E(π)(a, µ) from Q by taking the quotient Q(πaµs)
Q(π)·µ(s) for some state s ∈ Supp(µ),

provided any choice of s yields the same quotient. This is precisely Condi-
tion (2). Condition (3) then says the sum of E(π)(a, µ) over all possible transi-

tions last(π)
a−→ µ must be under 1 (i.e., E(π) is a discrete sub-distribution on

Sπ).

Given a function Q with these properties, we construct an adversary EQ as
follows: for π, a and µ, define EQ(π)(a, µ) to be

– 0, in case Q(π) = 0 or last(π)
a−→ µ is not a transition in A;

– Q(πaµs)
Q(π)·µ(s) otherwise, where s is any state in Supp(µ).

By Conditions (2) and (3), EQ is well-defined and EQ(π) is a discrete sub-

distribution for every π. Moreover, EQ(π)(a, µ) 6= 0 only if last(π)
a−→ µ is

a transition in A, therefore EQ is an adversary for A. It remains to prove
Q = QEQ (so that we have a right inverse of the operation Q).

Lemma 4.1.1. For all π ∈ Path<ω(A), we have Q(π) = QEQ(π).

Proof. By induction on the length of π. If π consists of just the initial state,
then Q(π) = 1 = QEQ(π).

Now consider π′ of the form πaµs. If Q(π) = 0, then Q(π′) = 0 by Condition 1.
Also by induction hypothesis, QEQ(π) = Q(π) = 0. Hence QEQ(π′) = QEQ(π) ·
EQ(π)(a, µ) ·µ(s) = 0 = Q(π′), regardless of the values of EQ(π)(a, µ) and µ(s).

Otherwise, we may choose π′′ as in the definition of EQ(π)(a, µ). Let s′ denote
last(π′′). Then

QEQ(π′) = QEQ(π) ·EQ(π)(a, µ) · µ(s) definition QEQ

= Q(π) · Q(π′′)
Q(π) · µ(s′)

· µ(s) I.H. and definition of EQ(π′)(a, µ)

=
Q(π′′) · µ(s)

µ(s′)

= Q(π′). consistency of Q
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This completes the proof of the following characterization theorem.

Theorem 4.1.2 (Characterization of Probabilistic Executions). For all
Q : Path<ω(A)→ [0, 1], Q is the probabilistic execution induced by some adver-
sary E of A if and only if Q satisfies Conditions (1), (2) and (3).

4.2 Convex Combinations

We now use Theorem 4.1.2 to show that both PExec(A) and TrDist(A) are closed
under convex combinations.

Lemma 4.2.1. Let p ∈ [0, 1] be given and let E0 and E1 be adversaries of A.
There exists an adversary E of A such that QE = p ·QE0

+(1− p) ·QE1
.

Proof. Define Q := p ·QE0
+(1−p) ·QE1

. By Theorem 4.1.2, it suffices to verify
Conditions (1), (2) and (3) of Section 4.1. The first two are straightforward.
For Condition (3), let π, Sπ and {sa,µ | 〈a, µ〉 ∈ Sπ} be given as stated. Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)

=
∑

(a,µ)∈Sπ

p ·QE0
(πaµsa,µ) + (1− p) ·QE1

(πaµsa,µ)

Q(π) · µ(sa,µ)

=
∑

(a,µ)∈Sπ

p ·QE0
(π) ·E0(π)(a, µ) + (1− p) ·QE1

(π) · E1(π)(a, µ)

Q(π)

=
p ·QE0

(π) · (∑(a,µ)∈Sπ E0(π)(a, µ))

Q(π)

+
(1− p) ·QE1

(π) · (∑(a,µ)∈Sπ E1(π)(a, µ))

Q(π)

≤ p ·QE0
(π) + (1− p) ·QE1

(π)

Q(π)
= 1

The next lemma says that tr preserves convex combinations. It follows immedi-
ately from the definition of tr : PExec(A)→ (Act<ω → [0, 1]) (cf. Section 3.2).

Lemma 4.2.2. Let p ∈ [0, 1] be given and let E0 and E1 be adversaries of A.
Then

tr(p ·QE0
+(1− p) ·QE1

) = p · tr(QE0
) + (1− p) · tr(QE1

).

Theorem 4.2.3. The set of trace distributions of A is closed under convex
combinations.
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Proof. By Lemmas 4.2.1 and 4.2.2.

We have a corollary concerning the discrete probability distributions PD,k and
PD,k,l (cf. Sections 3.2 and 3.3).

Corollary 4.2.4. For all k, l ∈ N, the sets {PD,k | D ∈ TrDist(A)} and
{PD,k,l | D ∈ TrDist(A, k, l)} are closed under convex combinations.

Proof. By Theorem 4.2.3 and the definition of PD,k.

4.3 Limit Construction

In this section, we give a construction that yields an adversary E from any
infinite sequence {Ei | i ∈ N} of adversaries. This is done roughly as follows.
First, we construct an infinite decreasing sequence of sequences:

(i) set the initial sequence {E0
j | j ∈ N} to be {Ei | i ∈ N};

(ii) for each n ∈ N, define a subsequence {En+1
j | j ∈ N} of {Enj | j ∈ N}.

While choosing the appropriate subsequences, we obtain a function

Q : Path<ω(A)→ [0, 1]

such that Q is the probabilistic execution induced by some adversary E. Once
we specify our notion of convergence, such E is an obvious candidate for the
limit of {Ei | i ∈ N}.
By assumption, A is countably branching, hence Path<ω(A) is countable. Let
{πn | n ∈ N} be an enumeration of that set. Given n ∈ N, the sequence
{QEnj

(πn) | j ∈ N} is an infinite sequence in [0, 1]. By Theorem 2.0.1, there is a

convergent subsequence. Let {En+1
j | j ∈ N} be a subsequence of {Enj | j ∈ N}

such that {QEn+1
j

(πn) | j ∈ N} converges. Define

Q(πn) := lim
j∈N

QEn+1
j

(πn).

Given an adversary Enj as above, let index(Enj ) denote the index of Enj in the
original sequence {Ei | i ∈ N}. In other words, index(Enj ) = f1(f2(. . . fn(j) . . .)),
where each fn : N→ N specifies the subsequence chosen in stage n.

The idea here is, at each stage n, we decide the value of Q at path πn. Moreover,
we remove those adversaries whose probabilistic executions (evaluated at πn) fail
to converge to Q(πn), taking care that we still have infinitely many adversaries
left. As a consequence, at every stage after n, the probabilistic executions of
remaining adversaries converge to the same limit at πn. This claim is formalized
in the following lemma.
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Lemma 4.3.1. For all n < n′, {QEn
′

j
(πn) | j ∈ N} converges to Q(πn).

Proof. For all n < n′, {En′j | j ∈ N} is a subsequence of {Enj | j ∈ N}. Hence
sequence {QEn

′
j

(πn)}j∈N converges to the same limit as {QEnj
(πn)}j∈N, namely,

to Q(πn).

Corollary 4.3.2. Let S ⊆ N be finite. For all n ∈ S, {Q
E

max(S)+1
j

(πn) | j ∈ N}
converges to Q(πn).

The meaning of Corollary 4.3.2 is best explained by: “finitely many is the same
as just one.” Instead of taking the defining sequence of Q(πn) for each n, we can
simply go to a much later stage in the construction where, for each n ∈ S, the
weight on πn is guaranteed to converge to the right value. Notice it is essential
that S is finite. With this idea in mind, we prove that Q satisfies Conditions (1),
(2) and (3) as in Section 4.1; then we apply Theorem 4.1.2 to conclude there is
an adversary E with QE = Q.

Lemma 4.3.3 (Condition (1)). Let π, π′ ∈ Path<ω(A) be given. Suppose π
is a prefix of π′, then Q(π) ≥ Q(π′). Moreover, Q(s0) = 1.

Proof. The second claim follows from the definition of Q. For the first, we
choose n, n′ ∈ N such that π = πn and π′ = πn′ . Let N := max(n, n′). Since
every EN+1

j is an adversary of A, we have QEN+1
j

(π) ≥ QEN+1
j

(π′). Therefore,

by Corollary 4.3.2,

Q(π) = lim
j∈N

QEN+1
j

(π) ≥ lim
j∈N

QEN+1
j

(π′) = Q(π′).

The following lemmas verify Conditions (2) and (3).

Lemma 4.3.4 (Condition (2)). Let n, n1, n2 ∈ N be given. Suppose πn1 =

πnaµs1, πn2 = πnaµs2, lastπn
a−→ µ and s1, s2 ∈ Suppµ. Then

Q(πn1)

µ(s1)
=
Q(πn2)

µ(s2)
.

Proof. Let N := max(n1, n2). By Corollary 4.3.2 and the consistency of QEN+1
j

,

we have

Q(πn1)

µ(s1)
= lim

j∈N

QEN+1
j

(πn1 )

µ(s1)
= lim

j∈N

QEN+1
j

(πn2)

µ(s2)
=
Q(πn2)

µ(s2)
.
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Lemma 4.3.5 (Condition (3)). Let π be a path in Path<ω(A) such that

Q(π) 6= 0. Recall that Sπ denotes the set {(a, µ) | lastπ
a−→ µ}. For each

(a, µ) ∈ Sπ, let sa,µ ∈ Suppµ be given. Then

∑

(a,µ)∈Sπ

Q(πaµsa,µ)

Q(π) · µ(sa,µ)
≤ 1.

Proof. Let {(ak, µk)}k∈N be a (possibly finite) enumeration of Sπ. It suffices to
show that all finite partial sums are below 1. Let K ∈ N be given. For each
0 ≤ k ≤ K, let nk be the index of πakµksak,µk in the enumeration {πn | n ∈ N}.
Similarly, let n be the index of π. Define N to be max{n0, . . . , nK , n}+1. Then
by Corollary 4.3.2 we have

K∑

k=0

Q(πnk)

Q(π) · µk(sak,µk )
=

K∑

k=0

limj∈NQENj
(πnk )

Q(π) · µk(sak ,µk)

By the definition of QENj
, this becomes

K∑

k=0

lim
j∈N

QENj
(π) ·ENj (π)(ak , µk) · µk(sak,µk )

Q(π) · µk(sak,µk )

=

K∑

k=0

lim
j∈N

QENj
(π) · ENj (π)(ak , µk)

Q(π)

= lim
j∈N

QENj
(π)

Q(π)

K∑

k=0

ENj (π)(ak , µk) finite sum

≤ lim
j∈N

QENj
(π)

Q(π)
ENj (π) subdistribution

= 1. Corollary 4.3.2

Proposition 4.3.6. Suppose A is countably branching. Let {Ei | i ∈ N} be a
sequence of adversaries of A and let Q : Path<ω(A) → [0, 1] be constructed as
in the present section. Then there exists E ∈ Adv(A) such that Q = QE.

Proof. By Theorem 4.1.2 and Lemmas 4.3.3, 4.3.4 and 4.3.5.

So far we have presented a construction that yields an adversary from any given
countable sequence of adversaries. Let us now consider two examples in which
this construction fails to provide a sensible “limit”.

Example 4.3.1. Consider the infinitely branching automaton A drawn in Fig-
ure 4.1, where all transitions are labeled with symbol a and all target distribu-
tions are Dirac distributions. Consider this sequence {Ek | k ∈ N} of adversaries:
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Figure 4.1: An automaton that is not image finite (cf. Example 4.3.1).

each Ek follows the kth branch of A with probability 1 and halts at the end of
that branch. Thus, the trace distribution of Ek assigns 1 to every prefix of ak,
which denotes the length-k trace containing all a’s. Intuitively, the limit of this
sequence of trace distributions should assign 1 to the infinite trace aω; yet such
an adversary cannot be constructed, simply because A has no infinite paths. In
fact, our limit construction yields the everywhere-0 adversary.

Example 4.3.2. Consider automaton A as in Example 4.3.1 and Figure 4.1.
Take the following sequence {Ek | k ∈ N} of adversaries: (i) at the start state,

each Ek schedules the k-th transition with probability 2k−1
2k

and halts with

probability 1
2k

; (ii) every Ek halts completely after one step. This sequence of
adversaries induce the following sequence of trace distributions: for every k ∈ N,

DEk(a) = 2k−1
2k and DEk(β) = 0 for every other non-empty trace β. Intuitively,

this is a converging sequence whose limit assigns 1 to the trace a. However,
the limit of {Ek | k ∈ N}, as constructed in the present section, is again the
everywhere-0 adversary.

In Chapter 5, we will prove CPO properties of PExec(A) and TrDist(A) for
image finite A. In particular, that shows image finiteness is sufficient to remove
Counterexample 4.3.1. In Chapter 6, we prove that image finiteness implies
TrDist(A, k, l) forms a closed set in the metric space [0, 1]Act<ω via the limit
construction of the present section. Thus Counterexample 4.3.2 is also removed.
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Order Structures

The concept of approximations is ubiquitous in the studies of mathematics and
computer science. A fundamental example is the real numbers, where every
member can be approximated by a sequence of rational numbers. Moreover,
every continuous function on the reals is completely specified by its valuation
on the rationals. This is extremely important because the rationals have finite
representations and therefore can be manipulated by a machine in a straight-
forward fashion.

In this chapter, we consider approximations of a more “discrete” character.
Recall the prefix ordering on sequences (Example 2.0.6). This order structure
induces a very simple notion of approximation: any sequence β is “approxi-
mated” by its finite prefixes. Similarly, in the case of subset ordering on partial
functions (Example 2.0.7), a function g is “approximated” by its sub-functions,
namely, functions f such that, if f is defined on x, then g is also defined on x
and f(x) = g(x).

Generalizing these ideas, one can define a “subtree” ordering on the set of
computation trees of a nondeterministic automaton. Each computation tree
can be viewed as a prefix-closed set of paths of the automaton. This in turn
can be viewed as a function from the universal set of paths to {0, 1} (namely,
the characteristic function of a subset). The subtree ordering is then induced
pointwise by the obvious ordering on {0, 1}. Pictorially, a tree T1 is a subtree
of another tree T2 if and only if T1 can be obtained from T2 by pruning away
certain branches.

Our notions of approximation for probabilistic processes are extensions of the
subtree ordering to a probabilistic setting. As we shall see, the various semantic
objects (i.e., adversaries, probabilistic executions and trace distributions) asso-
ciated with a PA A can be viewed as functions with codomain [0, 1]. Therefore,
we can define orderings pointwise, based on the flat ordering on [0, 1]: p ≤[ p′
if and only if, p 6= 0 implies p = p′.

More precisely, we use ≤[ to define partial orders on these three sets: Adv(A),
PExec(A) and TrDist(A). We show that in the first two cases we obtain algebraic
CPOs. The same holds in the third case, if we assume in addition that A is image
finite. The compact elements of Adv(A) are those adversaries that return 0 on
all but a finite number of triples 〈π, a, µ〉. The compact elements of PExec(A)

35
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are those generated by compact adversaries. Finally, the compact elements of
TrDist(A) are precisely the finite trace distributions defined in Section 3.3.

We also prove that the operator Q : Adv(A) → PExec(A) is continuous and
bottom preserving. On the other hand, the operator tr : PExec(A)→ TrDist(A)
is not continuous, as illustrated by a counterexample.

Related Work

In a process algebraic setting, one can prove an Approximation Induction Prin-
ciple (AIP), which says that inclusion of finite traces implies inclusion of all
traces [BK86, BBK87]. This holds because every automaton (or transition sys-
tem) induced by an algebraic term is image finite. As illustrated in Exam-
ple 5.0.3 below, the AIP fails when we include automata that are not image
finite.

Example 5.0.3. Consider the automaton A in Figure 4.1 (cf. Example 4.3.1).
Construct A′ by adding an infinite a-path to A. Then every finite trace of A′
is a trace of A, but clearly the infinite trace aω is not a trace of A.

In the PhD thesis [Sto02a], Stoelinga proved the following AIP for probabilistic
processes, giving a useful tool for proving trace distribution inclusion. A very
similar result was observed by Segala [Seg96], who presented an informal proof
sketch. The proof in [Sto02a] involves an explicit construction of the desired
adversary of B, relying on the fact that B is finitely branching.

Theorem 5.0.7. Let A and B be PAs and let B be finitely branching. If A ≤k,−td

B for all k ∈ N, then A ≤td B.

The present chapter recasts and extends the development of [Sto02a] in an order
theoretic setting, relaxing the finite branching requirement to image finiteness.
(Note that Theorem 5.0.7 is a corollary of the fact that TrDist(A) forms a CPO.)
Since nondeterministic automata are degenerate cases of probabilistic automata,
Example 5.0.3 suggests that image finiteness is a necessary assumption for the
claim that TrDist(A) forms a CPO.

We now point out some fundamental differences between our treatment of ap-
proximations and that found in [DGJP03] for labeled Markov processes (LMPs).
To begin, we note that the theory of LMPs is based on a reactive interpretation
of discrete events. Namely, the action labels represent various input events that
may be received from the environment and the transitions describe how the
system “reacts” to these inputs. Because of this interpretation, their notion of
behavioral equivalence is inherently branching: two systems are “bisimilar” if
they react to every input in “bisimilar” ways. Their finite-state approximations
are then obtained from the fixed-point computation of bisimulation, by refining
the state partition at each step and adding more transitions.
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In contrast, we work with a linear notion of behavioral equivalence, based on
probability distributions on computation paths and traces. Our finite approxi-
mations are obtained by truncating infinite behavior. In the case of trace distri-
butions, we truncate both in depth and in breadth. Although our formal model
is time-abstract, truncating in depth can be thought of as halting the system
after a finite amount of time. On the other hand, truncating in breadth can be
thought of as disabling irrelevant actions; that is, we choose l large enough so
that all interesting actions are contained in Actl.

Our order-theoretic definitions are similar to those in [Vat01], which studies
properties of distribution functions (a generalized notion of language) generated
by finite-state probabilistic automata. However, since our model is intended
for verification, we allow infinitely many states, actions and transitions. This
renders our development more complicated than [Vat01].

5.1 Adversaries

We define the flat ordering on Adv(A): E ≤[ E′ if, for all finite executions π,
action symbols a and state distributions µ, E(π)(a, µ) 6= 0 implies E(π)(a, µ) =
E′(π)(a, µ). As the name suggests, this is essentially the same ordering on [0, 1]ω

defined in Section 2.

First we show that Adv(A), ordered by ≤[, is closed under directed joins.
Let D be a directed subset of Adv(A). Given π ∈ Path<ω(A), a ∈ Act and

µ ∈ Disc(SA), define Ê(π)(a, µ) :=
∨
E∈D E(π)(a, µ). In other words, Ê is the

pointwise join of D in the function space Path<ω(A) × Act×Disc(SA) → [0, 1].

Our task is to show that Ê is an adversary.

Fix π ∈ Path<ω(A). Notice that Ê(π) assigns non-zero probability to 〈a, µ〉 if
and only if some E in D does. Hence

〈a, µ〉 ∈ Supp(Ê(π))⇒ ∃E ∈ D, 〈a, µ〉 ∈ Supp(E(π)) ⇒ last(π)
a−→ µ.

It remains to show Ê(π) is a sub-distribution.

Lemma 5.1.1. For all finite executions π, the function Ê(π) is a probabilistic
sub-distribution over Act×Disc(SA).

Proof. Let Xπ denote the set {〈a, µ〉 | last(π)
a−→ µ} ⊆ Act×Disc(SA). Since

Act is countable and A is countably branching assumption, Xπ is also countable.
Moreover, E(π) is a sub-distribution over Xπ for every adversary E.

Since D is directed, the set {E(π) | E ∈ D} is also directed. We can now apply

Corollary 2.0.7 to conclude that Ê(π) is also a sub-distribution over Xπ.

Theorem 5.1.2. Let A be a countably branching PA. The set of adversaries of
A, ordered by ≤[, is a CPO.
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Proof. By Lemma 5.1.1, the set Adv(A) equipped with the flat ordering is closed
under directed limits. Clearly, the everywhere-0 adversary is a bottom element
in this structure. Therefore we have a CPO.

Compact Elements in Adv(A)

We now show that 〈Adv(A), ≤[〉 is in fact an algebraic CPO structure. First
we identify the compact elements.

Definition 5.1.1. Let an adversary E be given. We say that E is compact if
the set {〈π, a, µ〉 | E(π)(a, µ) 6= 0} is finite.

Lemmas 5.1.3 and 5.1.4 below show that Definition 5.1.1 indeed characterizes
the compact elements of the CPO 〈Adv(A), ≤[〉.

Lemma 5.1.3. Let E ∈ Adv(A) be given and assume that E is compact in the
sense of Definition 5.1.1. Let D be a directed set in 〈Adv(A), ≤[〉 such that
E ≤[

∨D. Then there exists adversary E ′ ∈ D with E ≤[ E′.

Proof. For each 〈π, a, µ〉 with E(π)(a, µ) 6= 0, choose E ′π,a,µ ∈ D such that
E′(π)(a, µ) = E(π)(a, µ). This is possible because, by assumption, E ≤[

∨D.
Since E is compact, the set {E ′π,a,µ | E(π)(a, µ) 6= 0} is finite. This is a subset of
the directed set D, hence it has an upper bound E ′ in D. Clearly, E ≤[ E′.

Lemma 5.1.4. Let E ∈ Adv(A) be given and assume that E is not compact
in the sense of Definition 5.1.1. There exists a directed set D in 〈Adv(A), ≤[〉
such that E ≤[

∨D and yet E′ �[ E for every E′ ∈ D.

Proof. By assumption, the set XE = {〈π, a, µ〉 | E(π)(a, µ) 6= 0} is infinite. It
is countable since Act is countable and A is countably branching. Consider an
enumeration {〈πi, ai, µi〉 | i ∈ N} of XE . For every i ∈ N, define Ei as follows:

– Ei(π)(a, µ) = E(π)(a, µ) whenever 〈π, a, µ〉 = 〈πj , aj , µj〉 for some j ≤ i;

– Ei(π)(a, µ) = 0 otherwise.

Clearly, this is a chain with limit E. Yet, for every i, Ei �[ E because

Ei(πi+1)(ai+1, µi+1) = 0 6= E(πi+1)(ai+1, µi+1).

It remains to prove that, for every adversary E, the set of compact elements
below E is directed and the join is precisely E.
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Lemma 5.1.5. Let E be an adversary of A. Let KE denote the set of compact
elements below E; that is,

KE := {E′ | E′ compact in the sense of Definition 5.1.1 and E′ ≤[ E}.

Then KE is directed and E =
∨
KE.

Proof. As in the proof of Lemma 5.1.4, we enumerate the set

XE = {〈π, a, µ〉 | E(π)(a, µ) 6= 0}

as {〈πi, ai, µi〉 | i ∈ N} and define {Ei | i ∈ N} using this enumeration. Let F
be a finite subset of KE and let E′ ∈ F be given. Since E′ ≤[ E, we know that

XE′ = {〈π, a, µ〉 | E′(π)(a, µ) 6= 0} ⊆ XE .

Since E′ is compact and F is finite, we may choose M ∈ N such that
⋃
E′∈F XE′

is included in {〈πi, ai, µi〉 | 0 ≤ i ≤ M}. Then EM is an upperbound of F in
KE. Therefore KE is directed. Finally, we note that

∨
KE = ∨i∈NEi = E.

This completes the proof of the following theorem.

Theorem 5.1.6. Given a countably branching PAA, the structure 〈Adv(A), ≤[〉
is an algebraic CPO.

5.2 Probabilistic Executions

For PExec(A), we also consider a flat ordering: Q1 ≤[ Q2 if, for all π ∈
Path<ω(A), Q1(π) 6= 0 implies Q1(π) = Q2(π). As in the case of adversaries,
we want to show that 〈PExec(A), ≤[〉 forms a CPO.

Let D be a directed subset of PExec(A). We claim that the pointwise join of
D in the function space Path<ω(A) → [0, 1] is also a probabilistic execution.
By Theorem 4.1.2, it suffices to show

∨D satisfies the three properties in Sec-
tion 4.1. Conditions (1) and (2) follow directly from the definition of pointwise
joins. Lemma 5.2.1 below verifies Condition (3).

Lemma 5.2.1. Let π ∈ Path<ω(A) be given and suppose (
∨D)(π) 6= 0. Let Sπ

denote the set of pairs 〈a, µ〉 such that last(π)
a−→ µ. For each 〈a, µ〉 ∈ Sπ, fix

any sa,µ ∈ Supp(µ). Then

∑

〈a,µ〉∈Sπ

(
∨D)(πaµsa,µ)

(
∨D)(π) · µ(sa,µ)

≤ 1.

Proof. First we apply Lemma 2.0.5 to obtain an ω-chain C = {Qi | i ∈ N} ⊆ D
such that

∨
C =

∨D. Since C is increasing,
∨
C(π) = limi∈NQi(π) for every
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π ∈ Path<ω(A). Since C is increasing and (
∨
C)(π) 6= 0, we may assume

without loss of generality that Qi(π) 6= 0 for all i. Then

∑

〈a, µ〉∈Xπ

∨
C(πaµsa,µ)∨
C(π) · µ(sa,µ)

=
∑

〈a, µ〉∈Xπ

limi∈NQi(πaµsa,µ)

limi∈NQi(π) · µ(sa,µ)

=
∑

〈a, µ〉∈Xπ
lim
i∈N

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)
non-zero denominator

=
∨

F∈Pfin(Xπ)

∑

〈a, µ〉∈F
lim
i∈N

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)

=
∨

F∈Pfin(Xπ)

lim
i∈N

∑

〈a, µ〉∈F

Qi(πaµsa,µ)

Qi(π) · µ(sa,µ)
finite sum

≤ 1 every Qi satisfies Condition (3)

We may now conclude that the set PExec(A) equipped with the flat ordering is
a CPO.

Theorem 5.2.2. For a countably branching PA A, the set of probabilistic ex-
ecutions of A forms a CPO under ≤[. The bottom element is the probabilistic
execution generated by the everywhere-0 adversary.

Continuity of Operator Q

Recall that Q is an operator from Adv(A) to PExec(A). So far, both the domain
and codomain of Q have been given a CPO structure. Naturally, we proceed
with a proof that Q is continuous. It is trivial to note that Q is also strict (i.e.,
bottom preserving).

Lemma 5.2.3. The operator Q is monotone.

Proof. Let E1 ≤[ E2 be given. We show that QE1
≤[ QE2

, by induction on
the length of execution π. The base case is trivial. Take an execution π′ of
the form πaµs and assume QE1

(π′) 6= 0. Then QE1
(π) 6= 0; applying the

inductive hypothesis, we have QE1
(π) = QE2

(π). On the other hand, we have
E1(π)(a, µ) 6= 0 and E1 ≤[ E2, thus E1(π)(a, µ) = E2(π)(a, µ). Hence

QE1
(π′) = QE1

(π) · E1(π)(a, µ) · µ(s) = QE2
(π) · E2(π)(a, µ) · µ(s) = QE2

(π′).
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An important property of monotone operators is the following: the image of any
directed set is again directed. Therefore, it makes sense to talk about the join
of a directed image. The following lemma confirms that Q indeed commutes
with directed join.

Lemma 5.2.4. Let D be a directed set of adversaries. We have
∨
E∈DQE =

QWD.

Proof. Induction on the length of execution π. Since QE(s0) = 1 for every
adversary E, the base case is trivial. For the inductive step, take an execution
of the form πaµs and let Ê denote

∨D. The following holds:

Q bE(πaµs) = Q bE(π) · Ê(π, a, µ) · µ(s)

=
∨

E∈D
QE(π) ·

∨

E′∈D
E′(π, a, µ) · µ(s) I.H. and definition Ê

=
∨

E,E′∈D
QE(π) ·E′(π, a, µ) · µ(s)

=
∨

E∈D
QE(π) ·E(π, a, µ) · µ(s) D directed and Lemma 5.2.3

=
∨

E∈D
QE(πaµs).

This yields the following theorem.

Theorem 5.2.5. The operator Q : Adv(A)→ PExec(A) is strictly continuous.

Compact Elements in PExec(A)

We proceed to characterize compact elements in the CPO 〈PExec(A), ≤[〉. For
motivation, let us first consider a concrete example.

Example 5.2.1. Consider an automaton A with state space {s0, s1, s2, . . .},
where s0 is the unique start state. The transition relation consists of a single
triple 〈s0, a, µ〉, where µ assigns probability 1

2i to each si. Let E be the ad-

versary that schedules the transition s0
a−→ µ with probability 1. Consider the

probabilistic execution QE . The only probabilistic execution strictly below QE

is the bottom element of 〈PExec(A), ≤[〉, which assigns 0 to every non-empty
finite path. Therefore QE is compact in 〈PExec(A), ≤[〉, despite the fact that
QE(s0aµsi) 6= 0 for every i ∈ N.

In light of Example 5.2.1, we cannot characterize compact elements in PExec(A)
by simply counting the number of finite paths with non-zero probability mass.
Thus we explore another possibility, namely, images of compact elements in



42 Chapter 5 Order Structures

〈Adv(A), ≤[〉. This seems very natural since PExec(A) is the image of Adv(A)
under the continuous operator Q.

Example 5.2.2. It is not true in general that a continuous function always
maps compact elements to compact elements, even if the function is onto. This
is because there may be more directed sets in the codomain than there are in
the domain. Consider

{⊥,>0,>1} ∪ {〈0, n〉 | n ∈ N} ∪ {〈1, n〉 | n ∈ N},

where ⊥ is a bottom element below two independent copies of N>. We can map
this onto

{⊥,>}∪ {〈0, n〉 | n ∈ N} ∪ {〈1, n〉 | n ∈ N}
with the lexicographic ordering. We do so by taking >1 to > and merging >0

with 〈1, 0〉. This is a continuous map, but 〈1, 0〉 is compact in the domain and
not compact in the codomain.

As it turns out, the operator Q behaves more nicely than the continuous map in
Example 5.2.2. In particular, every Q ∈ PExec(A) has a “canonical” inverse in
Adv(A), namely, the adversary EQ constructed in Section 4.1. These canonical
inverses enjoy an important property: if Q ≤[ Q′, then EQ ≤[ EQ′ . In other
words, the canonical inverse operation is also monotone. As a consequence, it
gives rise to a special preimage operation that preserves directedness. These
claims are proven in Lemma 5.2.6 and Corollary 5.2.7 below.

Lemma 5.2.6. Let Q,Q′ ∈ PExec(A) be such that Q ≤[ Q′. Then EQ ≤[ EQ′ .

Proof. Suppose we have 〈π, a, µ〉 with EQ(π)(a, µ) 6= 0. We will prove that
EQ(π)(a, µ) = EQ′(π)(a, µ).

Since EQ(π)(a, µ) 6= 0, it follows from the definition of EQ that Q(π) 6= 0. Since
Q ≤[ Q′, this implies Q′(π) = Q(π) 6= 0. Now take any s ∈ supp(µ). We have

Q(πaµs) = QEQ(πaµs)

= QEQ(π) · EQ(π)(a, µ) · µ(s) = Q(π) ·EQ(π)(a, µ) · µ(s) 6= 0,

therefore Q′(πaµs) = Q(πaµs) 6= 0. Finally, by the definitions of EQ and EQ′ ,
we have

EQ(π)(a, µ) =
Q(πaµs)

Q(π) · µ(s)
=

Q′(πaµs)
Q′(π) · µ(s)

= EQ′(π)(a, µ).

Corollary 5.2.7. Let D be a directed subset of PExec(A) and let Q<(D) denote
the set {EQ | Q ∈ D}, where EQ is constructed from Q as in Section 4.1. Then
Q<(D) is a directed subset of Adv(A) and QW

Q<(D) =
∨

(D).
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Proof. Since D is directed and the canonical inverse operation is monotone
(Lemma 5.2.6), it is immediate that Q<(D) is directed. The second claim then
follows from continuity of Q (Theorem 5.2.5).

Intuitively, a canonical inverse EQ always halts after a path π that is not reach-
able. Therefore, by restricting our attention to canonical inverses, we ignore all
the “noise”, and thus inconsistencies, at unreachable paths. This in fact yields
an isomorphism between CPO’s.

Lemma 5.2.8. The map E− : PExec(A)→ Q<(PExec(A)) is a set isomorphism
with inverse Q.

Proof. By Lemma 4.1.1, we know that Q = QEQ for all Q ∈ PExec(A). Equiv-
alently, E− : PExec(A) → Adv(A) is one-to-one. It follows immediately that
E− : PExec(A)→ Q<(PExec(A)) is a set isomorphism with inverse Q.

Lemma 5.2.9. The poset 〈Q<(PExec(A)), ≤[〉 is a sub-CPO of 〈Adv(A), ≤[〉.

Proof. It is easy to check that E− takes the bottom element of PExec(A) to the
everywhere-0 adversary. Therefore 〈Q<(PExec(A)), ≤[〉 has the same bottom
element as 〈Adv(A), ≤[〉.
Let D ⊆ Q<(PExec(A)) be directed. Since Q is monotone, the image of D
under Q is again directed and has a join. Let Q denote that join. We claim
that EQ is the join of D in Adv(A).

Let E′ ∈ D be given. Then QE′ ≤[ Q. By Lemmas 5.2.6 and 5.2.8, we have
E′ = EQE′ ≤[ EQ.

Now let E be an upperbound of D in Adv(A). By monotonicity of Q, we have
that QE is an upperbound of the image of D under Q, thus Q ≤[ QE . Again by
Lemmas 5.2.6 and 5.2.8, we have EQ ≤[ EQE

= E. This completes our proof

that EQ is the join of D. Therefore Q<(PExec(A)) is closed under directed joins
and these joins coincide with those in Adv(A).

Proposition 5.2.10. The CPOs 〈PExec(A), ≤[〉 and 〈Q<(PExec(A)), ≤[〉 are
isomorphic via Q and E−.

Proof. By Theorem 5.2.5 and Lemmas 5.2.8 and 5.2.9, it suffices to show that
E− is strictly continuous. In the proof of Lemma 5.2.9, we saw that E− preserves
bottom element and, by Lemma 5.2.6, E− is monotone. Thus it remains to show
E− commutes with directed joins.

Let D ⊆ PExec(A) be directed. By the proof of Lemma 5.2.9, we know that∨
Q<(D) = EQ, where Q is the join of the image of Q<(D) under Q. Since Q

is a bijection, this image is precisely D. Thus

EWD = EQ =
∨

Q<(D) =
∨
{EQ | Q ∈ D}.
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We now return to the discussion of compact elements in 〈PExec(A), ≤[〉. By
virtue of Lemma 5.2.9 and Proposition 5.2.10, 〈PExec(A), ≤[〉 is isomorphic to
a sub-CPO of 〈Adv(A), ≤[〉. It is easy to see that, for every Q ∈ PExec(A),

EQ compact in 〈Adv(A), ≤[〉 ⇒ EQ compact in 〈Q<(PExec(A)), ≤[〉
⇔ Q compact in 〈PExec(A), ≤[〉.

In general, a compact element of a sub-CPO is not necessarily compact in the
original CPO. (Given any non-compact element, we can take the sub-CPO con-
sisting of only that element and ⊥.) In our case, however, we do have the other
implication. To prove this, we need the following auxiliary lemma.

Lemma 5.2.11. For every E ∈ Adv(A), we have EQE
≤[ E.

Proof. Let 〈π, a, µ〉 be given such that EQE
(π)(a, µ) 6= 0. By the definition of

E−, we know that QE(π) 6= 0 and

EQE
(π)(a, µ) =

QE(πaµs)

QE(π) · µ(s)
,

where s is any state in Supp(µ). Therefore, by the definition of QE(πaµs), we
can conclude that E(π)(a, µ) = EQE

(π)(a, µ).

Lemma 5.2.12. Let Q ∈ PExec(A) be given and assume that Q is compact in
PExec(A). Then EQ is compact in Adv(A).

Proof. Let D ⊆ Adv(A) be directed and assume that EQ ≤[
∨D (join taken in

Adv(A)). By Proposition 5.2.10 and continuity of Q, we have

Q = QEQ ≤[ QWD =
∨
{QE | E ∈ D}.

By compactness of Q, we may choose E ∈ D such that Q ≤[ QE . Using
Lemma 5.2.11 and monotonicity of E−, we have EQ ≤[ EQE

≤[ E.

This completes our characterization of compact elements in 〈PExec(A), ≤[〉.
Proposition 5.2.13. A probabilistic execution Q is compact in PExec(A) if
and only if EQ is compact in Adv(A).

Corollary 5.2.14. Let E ∈ Adv(A) be given. If E is compact in Adv(A), then
QE is compact in PExec(A).

Proof. By Lemma 5.2.11, EQE
≤[ E. Using the definition of compactness in

Adv(A), we infer that EQE
is also compact in Adv(A). By Proposition 5.2.13,

QE is compact in PExec(A).

Finally, we show that, for every probabilistic execution Q, the set of compact
elements below Q is directed and the join is precisely Q.
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Lemma 5.2.15. Let Q be a probabilistic execution of A. Let KQ denote the
set of compact elements below Q; that is,

KQ := {Q′ | Q′ compact in PExec(A) and Q′ ≤[ Q}.

Then KQ is directed and Q =
∨
KQ.

Proof. Let F be a finite subset of KQ and let Q′ ∈ F be given. By Propo-
sition 5.2.13, EQ′ is compact in Adv(A). Moreover, EQ′ ≤[ EQ. Therefore
{EQ′ | Q′ ∈ F} is a finite set of compact elements of Adv(A) below EQ. By
Theorem 5.1.6, there is compact E (in Adv(A)) below EQ such that EQ′ ≤[ E
for every Q′ ∈ F .

By Corollary 5.2.14, QE is compact in PExec(A). Since E ≤[ EQ, we have
QE ≤[ QEQ = Q. Moreover, Q′ = QEQ′

≤[ QE for every Q′ ∈ F . Thus QE is

an upperbound of F in KQ.

It remains to show Q =
∨
KQ. Let E′ be a compact element of Adv(A) with

E′ ≤[ EQ. By Corollary 5.2.14, QE′ is compact. Moreover, QE′ ≤[ QEQ = Q.
Therefore QE′ ∈ KQ. By Theorem 5.1.6, we have

Q = QEQ = QWKEQ =
∨
{QE′ | E′ compact and E′ ≤[ EQ} ≤[

∨
KQ.

The other inequality is trivial.

This completes the proof of the following theorem.

Theorem 5.2.16. Given a countably branching PA A, the poset 〈PExec(A), ≤[〉
is an algebraic CPO.

5.3 Trace Distributions

Finally, we treat the case of trace distributions. Define ≤[ in exactly the same
way: given D1, D2 ∈ TrDist(A), we say that D1 ≤[ D2 if for all β ∈ Act<ω,
D1(β) 6= 0 implies D1(β) = D2(β).

We wish to prove that the structure 〈TrDist(A), ≤[〉 is a CPO. Notice, the trace
distribution generated by the everywhere-0 adversary is the bottom element
in 〈TrDist(A), ≤[〉. It assigns 1 to the empty trace ε and 0 to every other
β ∈ Act<ω. It remains to show 〈TrDist(A), ≤[〉 is closed under directed joins.

This claim does not hold in general, as illustrated in Example 4.3.1 of Section 4.3.
However, as we show in this section, it is sufficient to assume that A is image
finite (cf. Definition 3.0.3). We begin by examining properties of adversaries of
an image finite automaton.
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Image Finite Automata and Bounded Adversaries

Every adversary E for an image finite automaton A is bounded in the following
sense: given any finite trace β and a small, positive error ε, it is possible to find
a finite set F ⊆ tr-1(β) such that QE assigns probability at most ε outside of
F (i.e., the probability masses concentrate on F ). The finite set F is a uniform
bound, in that it depends only on β and ε, but not on the choice of adversary
E. Existence of such a uniform bound is the key to avoiding counterexamples
such as that in Example 4.3.1.

We now give a formal proof of this boundedness claim. Lemma 5.3.1 is a simple
measure-theoretic observation: the event “executing trace β after following one
of the paths in F” is strictly included in the event “following one of the paths
in F”. Therefore the first event has smaller measure. Notice this claim does
not require image finiteness.

Lemma 5.3.1. For all F ⊂ Path<ω(A) and β ∈ Act<ω, we have

∑

π∈F
QE(π) ≥

∑

π′∈Succ(F,β)

QE(π′),

provided both sums converge.

Proof. By induction on the length of β. If β is the empty sequence, then
Succ(F, β) = F and the inequality trivially holds. Consider βa and let π′ ∈
Succ(F, βa) be given. By definition of QE , we have the following.

∑

π′∈Succ(F,βa)

QE(π′)

=
∑

π′′∈Succ(F,β)

∑

µ:last(π′′)
a−→µ

∑

s∈Suppµ

QE(π′′) ·E(π′′)(a, µ) · µ(s)

=
∑

π′′∈Succ(F,β)

QE(π′′) · (
∑

µ:last(π′′)
a−→µ

E(π′′)(a, µ) ·
∑

s∈Supp µ

µ(s))

=
∑

π′′∈Succ(F,β)

QE(π′′) · (
∑

µ:last(π′′)
a−→µ

E(π′′)(a, µ))

Since E is a sub-distribution, the inner sum is at most 1 and the whole expression
is at most

∑
π′′∈Succ(F,β) QE(π′′). Applying the induction hypothesis, this is at

most
∑

π∈F QE(π).

Lemma 5.3.2 below says, given a particular path π and action a, we can find a
finite set of paths F such that:

– every path in F extends π with an a-transition;

– every probabilistic execution QE must “concentrate” on F .
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The key assumption here is image finiteness of A, which dictates that only
finitely many a-transitions are available at last(π). For each such transition
〈last(π), a, µ〉, we pick out a finite set of points in the support of µ so that µ
“concentrates” on that set. This yields a finite set of paths for each µ and,
taking a union over µ’s, we obtain the finite set F . The idea is, no matter
how an adversary E distributes probabilities among the µ’s, the probability of
landing in F is high due to the effect of each µ.

Lemma 5.3.2. Assume A is image finite. Let ε > 0 be given. For all finite
path π and action symbol a, there exists finite F ⊆ Succ(π, a) such that for all
adversary E,

∑
π′∈Succ(π,a)\F QE(π′) ≤ ε.

Proof. Since A is image finite, there are finitely many µ’s such that last(π)
a−→

µ. Call them µ0, . . . , µn−1. For each 0 ≤ i ≤ n − 1, choose a finite subset
Fi ⊆ Supp(µi) such that

∑

s∈Supp(µi)\Fi
µi(s) ≤

ε

n
.

Define F to be
⋃

0≤i≤n−1{πaµis | s ∈ Fi}. Clearly F is finite. For any adversary
E, we have

∑

π′∈Succ(π,a)\F
QE(π′)

=

n−1∑

i=0

∑

s∈Supp(µi)\Fi
QE(π) · E(π)(a, µi) · µi(s)

≤
n−1∑

i=0

∑

s∈Supp(µi)\Fi
µi(s) QE(π) ≤ 1;E(π)(a, µi) ≤ 1

≤ n · ε
n

= ε.

Lemma 5.3.2 can be thought of as boundedness for a single step. Now we
generalize it to finitely many steps.

Lemma 5.3.3. Assume A is image finite. Let ε > 0 and β ∈ Act<ω be given.
There exists finite Fβ ⊆ tr-1(β) such that for all adversaries E,

∑

π∈tr-1(β)\Fβ
QE(π) ≤ ε.

Proof. We proceed by induction on the length of β. If β is the empty sequence,
then take Fβ to be the singleton {s0}.
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Consider a finite trace βa and assume the induction hypothesis holds for β.
Choose finite Fβ such that for all E, dE :=

∑
π∈tr-1(β)\Fβ QE(π) ≤ ε

2 . By
Lemma 5.3.1, we have for all E,

∑

π′∈Succ(tr-1(β)\Fβ,a)

QE(π′) ≤ dE ≤
ε

2
.

If Fβ is empty, then

∑

π′∈tr-1(βa)\∅
QE(π′) =

∑

π′∈tr-1(βa)

QE(π′)

=
∑

π′∈Succ(tr-1(β),a)

QE(π′)

=
∑

π′∈Succ(tr-1(β)\Fβ ,a)

QE(π′)

≤ ε

2
≤ ε.

Therefore we may set Fβa to be ∅.
Otherwise, let π0, . . . , πn−1 be an enumeration of Fβ and let 0 ≤ i ≤ n − 1 be
given. By Lemma 5.3.2, we may choose Fi ⊆ Succ(πi, a) such that for all E,

cE,i :=
∑

π′∈Succ(πi,a)\Fi
QE(π′) ≤ ε

2n
.

Let F be
⋃

0≤i≤n−1 Fi. We have for all E,

∑

π∈tr-1(βa)\F
QE(π)

=
∑

0≤i≤n−1

∑

π′∈Succ(πi,a)\Fi
QE(π′) +

∑

π′∈Succ(tr-1(β)\Fβ ,a)

QE(π′)

≤ (
∑

0≤i≤n−1

cE,i) + dE

≤ n · ε
2n

+
ε

2
= ε.

Directed Joins

For the rest of this section, we assume that A is image finite. First we show
the join of an ω-chain of trace distributions is again a trace distribution. Let
{Ei | i ∈ N} be a sequence of adversaries for A such that the set C := {DEi | i ∈
N} forms a chain. We need to find an adversary E such that DE =

∨ C, where
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∨ C is the pointwise join. For convenience, let Di denote DEi and let D̂ denote∨ C.
Let {πn | n ∈ N} be an enumeration of Path<ω(A). We apply the construction
of Section 4.3 to {Ei | i ∈ N} and {πn | n ∈ N} to obtain a sequence {{Enj | j ∈
N}}n∈N of sequences of adversaries for A and Q ∈ PExec(A). We claim that

the trace distribution associated with Q is precisely D̂, thus any adversary E
inducing Q also induces D̂.

Lemma 5.3.4. For all β ∈ Act<ω, tr(Q)(β) =
∑
π∈tr-1(β)Q(π) ≤ D̂(β).

Proof. Let β ∈ Act<ω be given. Let S be the set of n such that tr(πn) = β. It

suffices to prove for all finite Y ⊆ S,
∑
n∈Y Q(πn) ≤ D̂(β).

Let N := max(Y ). By definition of Q and Corollary 4.3.2, we have

Q(πn) = lim
j∈N

QEn+1
j

(πn) = lim
j∈N

QEN+1
j

(πn).

Thus, moving the finite sum into the limit, we have
∑

n∈Y
Q(πn) =

∑

n∈Y
lim
j∈N

QEN+1
j

(πn) = lim
j∈N

∑

n∈Y
QEN+1

j
(πn).

For each j ∈ N, we have
∑
n∈Y QEN+1

j
(πn) ≤ DEN+1

j
(β) ≤ D̂(β), hence the

limit is also below D̂(β).

Lemma 5.3.5. For all β ∈ Act<ω, tr(Q)(β) =
∑
π∈tr-1(β)Q(π) ≥ D̂(β).

Proof. Let β ∈ Act<ω be given. Without loss of generality, assume that D̂(β) 6=
0. It suffices to show, for arbitrary 0 < ε < D̂(β),

∑
π∈tr-1(β)Q(π) ≥ D̂(β)− ε.

Let such ε be given. By Lemma 5.3.3, choose finite F ⊆ tr-1(β) such that for
all i ∈ N, Di(β)−∑π∈F QEi(π) ≤ ε.
Clearly,

∑
π∈tr-1(β)Q(π) ≥∑π∈F Q(π). We will prove that the latter is greater

than or equal to D̂(β) − ε. Since F is finite, we may choose N ∈ N such that
F ⊆ {π0, . . . , πN}. Now we have
∑

π∈F
Q(π) =

∑

{n | πn∈F}
Q(πn) =

∑

{n | πn∈F}
lim
j∈N

QEn+1
j

(πn)

=
∑

{n | πn∈F}
lim
j∈N

QEN+1
j

(πn) Lemma 4.3.1

= lim
j∈N

∑

{n | πn∈F}
QEN+1

j
(πn) F finite

≥ lim
j∈N

(Dindex(EN+1
j )(β)− ε) choice of F

= (lim
j∈N

Dindex(EN+1
j )(β))− ε

= D̂(β)− ε C increasing chain
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Corollary 5.3.6. For all β ∈ Act<ω, tr(Q)(β) =
∑

π∈tr-1(β)Q(π) = D̂(β).

The following proposition summarizes the results we have obtained so far.

Proposition 5.3.7. Let A be an image finite PA and let C be an increasing
ω-chain of trace distributions. Then

∨ C is also a trace distribution of A.

Theorem 5.3.8. Let A be an image finite PA and let D be an arbitrary directed
subset of TrDist(A). Then

∨D is also a trace distribution of A.

Proof. By Proposition 5.3.7 and Lemma 2.0.5.

Corollary 5.3.9. Given an image finite PA A, TrDist(A) is a CPO whose
bottom element is generated by the everywhere-0 adversary.

Compact Elements in TrDist(A)

Next we try to characterize compact elements in TrDist(A). Recall that the trace
function tr : Path<ω(A) → Act<ω can be lifted to a function tr : PExec(A) →
TrDist(A) (Definition 3.2.1). The trace distribution function D : Adv(A) →
TrDist(A) is simply the composition of the following:

Adv(A)
Q−→ PExec(A)

tr−→ TrDist(A).

As we saw in Section 5.2, the CPO 〈PExec(A), ≤[〉 is isomorphic to a sub-
CPO of 〈PExec(A), ≤[〉 via the continuous function Q and its right inverse E−.
Therefore, the compact elements in PExec(A) are essentially given by those in
Adv(A). Unfortunately, this nice property no longer holds when we move from
PExec(A) to TrDist(A).

Example 5.3.1. Consider the automaton A in Example 5.2.1. We add the
following loops to the transition relation:

{〈si, b, Dirac(si)〉 | i ∈ N and i 6= 0}.

Let E be the adversary that

– first schedules the transition s0 a−→ µ with probability 1;

– then, at each s0aµsi, schedules si
b−→ Dirac(si) with probability 1;

– halts after the b-loop.

Clearly, E is not compact in Adv(A). However, DE is compact in TrDist(A),
because it assigns 1 to the three traces {ε, a, ab} and 0 to all others.
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Example 5.3.1 suggests that the order structures on PExec(A) and TrDist(A),
respectively, do not correspond closely via the map tr. In fact, tr is not monotone
(Example 5.3.2), although it does preserve directed joins (Proposition 5.3.10).
It is also trivial to check that tr preserves bottom.

Example 5.3.2. Consider an automaton A with state space {s0, s1, s2} and
two transitions 〈s0, a, Dirac(s1)〉 and 〈s0, a, Dirac(s2)〉. Let E1 be the adversary
that schedules 〈s0, a, Dirac(s1)〉 with probability 1

2 and halts otherwise. Let E2

be the adversary that schedules each of the two transitions with probability 1
2 .

Clearly, QE1
≤[ QE2

. However, it is not the case that DE1 ≤[ DE2 , since
DE1(a) = 1

2 6= 1 = DE2(a). Therefore tr is not monotone.

Proposition 5.3.10. Let D be a directed subset of PExec(A). Given any β ∈
Act<ω,

tr(
∨
D)(β) =

∨

Q∈D
tr(Q)(β).

Proof. By definition,

tr(
∨
D)(β) =

∑

π∈tr-1(β)

(
∨
D)(π) =

∑

π∈tr-1(β)

∨

Q∈D
Q(π).

Since the set of finite paths in A is countable and D is directed, we can view
{{Q(π) | π ∈ tr-1(β)} | Q ∈ D} as a directed subset of [0, 1]N. Moreover, each
Q in D is a probabilistic execution, hence

∑
π∈tr-1(β)Q(π) converges to a value

in [0, 1]. Therefore, we can apply Theorem 2.0.6 to conclude:

∑

π∈tr-1(β)

∨

Q∈D
Q(π) =

∨

Q∈D

∑

π∈tr-1(β)

Q(π) =
∨

Q∈D
tr(Q)(β).

These observations dictate that we must start afresh in characterizing compact
elements of TrDist(A). This leads to the notions of finite adversaries intro-
duced in Section 3.3. We now give a formal proof that finite trace distributions
(i.e., those induced by finite adversaries) are precisely the compact elements in
TrDist(A). Moreover, TrDist(A) forms an algebraic CPO structure under ≤[.
Essentially, a trace distribution DE is finite in the sense of Section 3.3 if it
assigns zero probability to all but a finite number of traces. Lemma 5.3.11
below says that all finite trace distributions are compact in the order-theoretic
sense. Lemma 5.3.12 is the converse.

Lemma 5.3.11. Let DE be a finite trace distribution and let D be a directed
set of trace distributions such that DE ≤[

∨D. Then there exists adversary E ′

with DE′ ∈ D and DE ≤[ DE′ .
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Proof. Let F denote the set of traces {β ∈ Act<ω | DE(β) 6= 0}. By virtue of
Proposition 3.3.1, F is a subset of (Actl)

k for some k, l in N. Hence F is finite.

Since DE ≤[
∨D, we may choose, for each β ∈ F , an adversary Eβ with

DEβ ∈ D and DEβ (β) = DE(β). Since D is directed and F is finite, we may
choose E′ such that DE′ is in D and is an upperbound of {DEβ | β ∈ F}.
Clearly DE ≤[ DE′ .

Lemma 5.3.12. Let E be a adversary of A with DE not finite. There exists a
directed set D of trace distributions of A such that DE =

∨D and yet DE′ <[
DE for all DE′ ∈ D.

Proof. Let {β0, β1, . . .} be a prefix-preserving enumeration of Act<ω. That is,
if βm is a prefix of βn, then m ≤ n. This is always possible for the set of finite
words over a countable alphabet. For each n ∈ N, construct a adversary En as
follows: for all π, a and µ,

– En(π)(a, µ) = E(π)(a, µ) if tr(π)a is in β0, . . . , βn;

– En(π)(a, µ) = 0 otherwise.

Informally, each En makes the same decisions as E until it reaches a trace not
in β0, . . . , βn, at which point it halts. Since {βn | n ∈ N} preserves prefix, it is
easy to verify that {DEn | n ∈ N} satisfies these two conditions:

– for all m ≤ n, DEn(βm) = DE(βm);

– for all m > n, DEn(βm) = 0.

Clearly, each DEn is finite. Since DE is infinite, we have DEn <[ DE for all
n ∈ N. Also {DEn | n ∈ N} is an increasing chain whose limit is precisely DE ,
hence DE must not be compact.

This completes the proof of the following proposition.

Proposition 5.3.13. For every D ∈ TrDist(A), D is compact in 〈TrDist(A), ≤[
〉 if and only if D is finite in the sense of Section 3.3.

To show that 〈TrDist(A), ≤[〉 is algebraic, we need one more lemma. Namely,
every element in TrDist(A) is the (directed) join of all compact elements below
it.

Lemma 5.3.14. Let E be a adversary of A. Let KE denote the set of compact
elements below DE; that is,

KE := {DE′ | DE′ finite and DE′ ≤[ DE}.

Then KE is directed and DE =
∨
KE.
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Proof. Again we make use of the prefix-preserving enumeration {βn | n ∈ N}.
Take {En | n ∈ N} as in the proof of Lemma 5.3.12. Given a finite subset F of
KE, we can find N ∈ N such that for all DE′ ∈ F and n ≥ N , DE′(βn) = 0.
This is because F is finite and each DE′ is finite. Then DEN is an upperbound
of F . Moreover, DEN is finite, hence in KE . This shows KE is directed.

Finally, by the definition of ≤[, we have for all n:
∨
KE(βn) = DEn(βn) =

DE(βn).

Theorem 5.3.15. Given an image finite PA A, the structure 〈TrDist(A), ≤[〉
is an algebraic CPO and the compact elements are precisely the finite trace
distributions.

Proof. By Corollary 5.3.9, Proposition 5.3.13 and Lemma 5.3.14.

We end this section with a comparison between our development and that by
Segala [Seg96]. In his proposal of the Approximation Induction Principle, trace
distributions are ordered pointwise by the usual ordering on R, rather than our
flat ordering. Since the real numbers are complete, this alternative also gives
rise to a CPO on TrDist(A), provided A is image finite. It also enjoys the
pleasant property that the operator tr : PExec(A)→ TrDist(A) is monotone (cf.
Example 5.3.2). However, there is a major disadvantage: the resulting structure
on TrDist(A) is not algebraic. This is illustrated in the following example.

Example 5.3.3. Consider an automaton A with state space {s0, s1} and a
single transition 〈s0, a, Dirac(s1)〉. Let E be the adversary E that assigns prob-
ability 1 to that transition. Consider the sequence E0, E1, . . . of adversaries
where each Ek chooses the a-transition with probability 1− 2−k and halts with
probability 2−k. Clearly, this infinite sequence converges monotonically to E
under Segala’s ordering; yet E 6= Ek for all k. Therefore E is not a compact
element. Similarly, one can show that every non-trivial trace distribution is not
compact.
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Metric Convergence

In Chapter 5, we imposed an order structure on TrDist(A) and proved that it
is closed under directed limits. Those limits are of a very “discrete” character,
thanks to our definition of the flat ordering. In the present chapter, we study
limits of trace distributions in a different setting. Namely, we view each trace
distribution of A as a point in the metric space [0, 1]Act<ω , where the distance
between two points is given by

dist(~u,~v) := sup
β∈Act<ω

|uβ − vβ |.

Recall from Section 4.3 the construction of a probabilistic execution Q from
any infinite sequence {Ei | i ∈ N} of adversaries. This construction is a key
ingredient in our proof that 〈TrDist(A), ≤[〉 is closed under directed limits (cf.
Section 5.3). In particular, it is applied to a sequence of adversaries whose trace
distributions form an increasing chain C. Assuming image finiteness, the trace
distribution associated with Q is shown to be the join of C (cf. Corollary 5.3.6).

It turns out that the same construction can be used to obtain a limiting prob-
abilistic execution in the metric setting. It is applied in a very similar fashion:
given a sequence of adversaries whose trace distributions converges to a point
~u in [0, 1]Act<ω , we construct Q as in Section 4.3 and show that the trace dis-
tribution associated with Q is precisely ~u. In light of Example 4.3.2, this result
relies on the assumption that A is image finite. Therefore, we assume image
finiteness throughout this chapter.

In Section 6.1, we show that TrDist(A, k, l) forms a closed set in [0, 1]Act<ω .
This fact will be used in Chapter 7 to establish the equivalence between trace
distribution semantics and our finite testing semantics. In Section 6.2, we prove
the analogous claim for TrDist(A, k,−).

6.1 Finite Breadth

Let {Ei | i ∈ N} be a sequence of adversaries and, for each i ∈ N, let Di

denote the trace distribution DEi . Since every Di can be viewed as a point in

[0, 1]Act<ω , it makes sense to speak of convergence of {Di | i ∈ N} with respect

55
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to the metric dist.

Definition 6.1.1. We say that {Ei | i ∈ N} is a trace convergent sequence
of adversaries whenever {Di | i ∈ N} is a convergent sequence in the space

〈[0, 1]Act<ω , dist〉. That is, there exists D ∈ [0, 1]Act<ω such that

∀ε ∃N ∀i ≥ N dist(Di, D) ≤ ε.

Expanding the definition of dist, this becomes

∀ε ∃N ∀i ≥ N ∀β ∈ Act<ω |Di(β)−D(β)| ≤ ε.

The goal of this section is to show that, given a trace convergent sequence
{Ei | i ∈ N} ⊆ TrDist(A, k, l), the limit point D is also a trace distribution in
TrDist(A, k, l). We do so by first constructing a probabilistic execution Q from
{Ei | i ∈ N} using the procedure described in Section 4.3. Then we consider the
adversary EQ, as defined in Section 4.1. We will prove that EQ is in Adv(A, k, l)
and DE is the limit of {Di | i ∈ N}.
We need a rather technical lemma, which is a modification of Lemma 5.3.3.
Very roughly, Lemma 5.3.3 says: given any finite trace β, it is possible to
find a finite set F of paths with trace β so that every probabilistic execution is
“concentrated” on F . In the following modified version, we restrict our attention
to adversaries of finite breadth (i.e., those from TrDist(A,−, l)). This allows us
to strengthen the conclusion of Lemma 5.3.3 to the existence of a uniform bound
for all β ∈ Act≤k.

Lemma 6.1.1. Suppose A is image finite. For every ε > 0, there exists finite,
non-empty Pk,ε ⊆ Path≤k(A) such that for all E ∈ Adv(A,−, l) and for all

β ∈ Act≤k,
∑
π∈tr-1(β)\Pk,ε QE(π) ≤ ε.

Proof. We proceed by induction on k. For every ε, take P0,ε to be the singleton
{s0}. Now suppose the claim holds for k. Let ε > 0 be given and choose a finite,
nonempty set Pk, ε

2
as stated. Let m > 0 be its cardinality. Consider the set

S :=
⋃

|π|=k,π∈Pk, ε
2

{〈last(π), a, µ〉 | last(π)
a−→ µ and a ∈ Actl}.

Since A is image finite, S is a finite union of finite sets, hence also finite. If S is
empty, set Pk+1,ε to be Pk, ε2 . Otherwise, let n > 0 be the cardinality of S. For
each µ occurring in S, choose a finite set Xµ ⊆ Supp(µ) such that

∑

s∈Supp(µ)\Xµ
µ(s) ≤ ε

2mn
.

Then set Pk+1,ε to be

Pk, ε
2
∪ {πaµs | π ∈ Pk, ε

2
and |π| = k and 〈last(π), a, µ〉 ∈ S and s ∈ Xµ}.
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We will prove that Pk+1,ε satisfies the desired condition.

Let E ∈ Adv(A,−, l) and β ∈ Act≤k+1 be given. Notice, if β contains a symbol
not in Actl, then by Proposition 3.3.1 QE(π) = 0 for all π ∈ tr-1(β). Thus we
may assume that β ∈ (Actl)

≤k+1. Moreover, if β has length at most k, then
tr-1(β) \ Pk+1,ε = tr-1(β) \ Pk, ε

2
. This is because every path π ∈ Pk+1,ε \ Pk, ε

2

(if it exists) must have length k + 1. Therefore, we have

∑

π∈tr-1(β)\Pk+1,ε

QE(π) =
∑

π∈tr-1(β)\Pk, ε
2

QE(π) ≤ ε

2
≤ ε.

Note that the equality tr-1(β) \ Pk+1,ε = tr-1(β) \ Pk, ε2 also holds when we have
S = ∅. Therefore the same reasoning applies.

We now focus on the case in which β ∈ (Actl)
k+1 and S is non-empty. Suppose

β is of the form β′a. By the choice of Pk, ε
2
, it contains paths with length at

most k, thus Pk, ε2 ∩ tr-1(β) = ∅. We can then partition Y := tr-1(β) \ Pk+1,ε

into two sets:

Y0 := {πaµs ∈ Y | π 6∈ Pk, ε2 or |π| 6= k or 〈last(π), a, µ〉 6∈ S},

Y1 := {πaµs ∈ Y | π ∈ Pk, ε2 and |π| = k and 〈last(π), a, µ〉 ∈ S and s 6∈ Xµ}.
It is easy to check that Y0 = {πaµs ∈ Y | π 6∈ Pk, ε2 }. Then by Lemma 5.3.1 and
the induction hypothesis, we have

∑

π∈Y0

QE(π) ≤
∑

π′∈tr-1(β′)\Pk, ε
2

QE(π′) ≤ ε

2
.

On the other hand,
∑

π∈Y1

QE(π) =
∑

πaµs∈Y1

QE(π) ·E(π)(a, µ) · µ(s)

≤
∑

πaµs∈Y1

µ(s)

≤
∑

π∈Pk, ε
2

∑

〈last(π), a, µ〉∈S

∑

s∈Supp(µ)\Xµ
µ(s)

≤ m · n ·
∑

s∈Supp(µ)\Xµ
µ(s)

≤ m · n · ε

2mn
=
ε

2
.

Therefore,

∑

π∈tr-1(β)\Pk+1,ε

QE(π) =
∑

π∈Y0

QE(π) +
∑

π∈Y1

QE(π) ≤ ε

2
+
ε

2
= ε.
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We are now ready to prove that every trace convergent sequence in TrDist(A, k, l)
has a limiting trace distribution.

Proposition 6.1.2. Let A be an image finite PA and let k, l ∈ N be given. Let
{Ei | i ∈ N} be a sequence of trace convergent adversaries from Adv(A, k, l) and
write Di for DEi . Let Q be constructed as in Section 4.3 and let E denote EQ
(cf. Section 4.1). Then DE is the limit of {Di | i ∈ N} in the space [0, 1]Act<ω .
That is,

∀ε ∃N ∀i > N ∀β ∈ Act<ω |Di(β)−DE(β)| ≤ ε.
Also, E ∈ Adv(A, k, l).

Proof. By Proposition 3.3.1, we have Di(β) = 0 = DE(β) for all β 6∈ (Actl)
≤k

and i ∈ N. Hence we may focus on traces in (Actl)
≤k. Let ε > 0 be given.

Choose finite, non-empty Pk, ε
3

as in Lemma 6.1.1 and let m := |Pk, ε
3
|. Moreover,

by trace convergence of {Ei | i ∈ N}, we may choose M0 such that for all
i, j > M0, dist(Di, Dj) <

ε
3 .

Recall from Section 4.3 that we have an enumeration {πn | n ∈ N} of Path<ω(A).
Let M := max{n | πn ∈ Pk, ε

3
}+ 1. Then by Corollary 4.3.2, we have

∀π ∈ Pk, ε3 lim
j∈N

QEMj
(π) = QE(π).

For each π ∈ Pk, ε3 , choose jπ such that

∀j > jπ |QEMj
(π) −QE(π)| < ε

3m
.

Let L be the least number such that L > max{jπ | π ∈ Pk, ε3 } and index(EML ) >

M0. Let N := indexEML . Write Y0 for tr-1(β) ∩ Pk, ε
3

and Y1 for tr-1(β) \ Pk, ε
3
.

Then for all i > N and β ∈ (Actl)
≤k,

|Di(β) −DE(β)|
≤ |Di(β)−DN (β)| + |DN(β) −DE(β)|
≤ ε

3
+ |

∑

π∈tr-1(β)

QEML
(π) −

∑

π∈tr-1(β)

QE(π)|

≤ ε

3
+ |

∑

π∈Y0

QEML
(π)−

∑

π∈Y0

QE(π) +
∑

π∈Y1

QEML
(π) −

∑

π∈Y1

QE(π)|

≤ ε

3
+
∑

π∈Y0

|QEML
(π)−QE(π)| + |

∑

π∈Y1

QEML
(π) −

∑

π∈Y1

QE(π)|

≤ ε

3
+m · ε

3m
+
ε

3
= ε,

where:

– the second inequality follows from the fact that index(EML ) > M0; and
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– the last inequality follows from the fact that L > max{jπ | π ∈ Pk, ε
3
} and

the choice of Pk, ε3 .

Finally, we prove that E ∈ Adv(A, k, l). By the definition of E, E(π)(a, µ) 6= 0
implies Q(π) 6= 0. Therefore E(π)(a, µ) 6= 0 also implies DE(tr(π)a) 6= 0. At
the beginning of this proof, we saw that DE(β) = 0 whenever β 6∈ (Actl)

≤k.
Therefore, E(π)(a, µ) 6= 0 implies that |π| < k and a ∈ Actl. This completes
our proof.

Corollary 6.1.3. Let A be image finite. For all k, l ∈ N, the set TrDist(A, k, l)
is a closed subset of 〈[0, 1]Act<ω , dist〉.

Next we prove the analogous result for induced probability distributions (as
defined in Section 3.2).

Lemma 6.1.4. Suppose A is image finite. Let {Pi | i ∈ N} ⊆ {PD,k | D ∈
TrDist(A, k, l)} be a convergent sequence in Act<ω with limit point P . Then P
is a discrete distribution on Act<ω.

Proof. Clearly, P [β] = 0 for all β 6∈ (Actl)
≤k. On the other hand, since (Actl)

≤k

is a finite set, we have

∑

β∈(Actl)≤k

P [β] =
∑

β∈(Actl)≤k

lim
i∈N

Pi[β] = lim
i∈N

∑

β∈(Actl)≤k

Pi[β] = 1.

Lemma 6.1.5. Let A be image finite. Let k, l ∈ N and {Pi | i ∈ N} ⊆
{PD,k | D ∈ TrDist(A, k, l)} be given. Suppose {Pi | i ∈ N} is a convergent
sequence in Act<ω with limit point P . For each i, choose Di so that Pi = PDi,k.
Then {Di | i ∈ N} is also a convergent sequence in Act<ω. Moreover, P = PD,k,
where D is the limit of {Di | i ∈ N}.

Proof. Recall from Proposition 3.3.5 that, for each i ∈ N and β ∈ (Actl)
≤k, we

have

Di(β) =
∑

βvβ′;β′∈(Actl)≤k

Pi[β
′].

Define D from P with the same formula. Notice this is a finite sum, therefore
D is the limit of {Di | i ∈ N}.

Corollary 6.1.6. Let A be image finite. For all k, l ∈ N, the set {PD,k | D ∈
TrDist(A, k, l)} is also a closed subset of [0, 1]Act<ω .

Proof. By Corollary 6.1.3 and Lemma 6.1.5.
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6.2 Infinite Breadth

In the previous section, we showed that TrDist(A, k, l) is a closed subset of the

metric space [0, 1]Act<ω , where dist(~u,~v) is given by supβ∈Act<ω |uβ − vβ |. The
present section concerns the analogous result for TrDist(A, k,−).

We use the same broad strategy: given a trace convergent sequence {Ei | i ∈ N}
of adversaries, we construct a probabilistic execution Q as in Section 4.3 and
prove that tr(Q) is the appropriate limit. However, in the case of TrDist(A, k,−),
the trace distributions in question may assign nonzero probability to infinitely
many traces in Act<ω. This means we are working in an infinite-dimensional
space, where convergence properties are very different from those in the finite-
dimensional case. For instance, not every bounded sequence has a convergent
subsequence.

Example 6.2.1. Let {~ui | i ∈ N} be the following sequence in [0, 1]ω: for all
i, j ∈ N,

ui,j =

{
0 if j ≤ i,
1 otherwise.

Clearly, {~ui | i ∈ N} is bounded below by ~0 and above by ~1, but it has no
convergent subsequence. In particular, give any i 6= i′, dist(~ui, ~ui′) = 1.

This suggests the proof in Section 6.1 will not go through for Adv(A, k,−).
Indeed, Lemma 6.1.1 fails when we try to generalize it to Adv(A) (i.e., removing
the finite breadth condition).

Example 6.2.2. Let {bi | i ∈ N} be an enumeration of Act. Consider an
automaton A with state space {s0, s1, s2, . . .}, where s0 is the unique start
state. The transition relation consists of triples 〈s0, bi, Dirac(si)〉. It is trivial
to see that A is image finite. For each i, let Ei be the adversary that schedules

the transition s0
bi−→ Dirac(si) with probability 1. Given any finite subset F of

Path≤1(A), we can choose i large enough so that the path s0bi Dirac(si)si is not
in F . Then

∑
π∈tr-1(bi)\F QEi(π) = QEi(s0bi Dirac(si)si) = 1.

Nonetheless, we are able to prove Proposition 6.2.2, which is an exact analog of
Proposition 6.1.2. The key observation is, in the proof of Proposition 6.1.2, we
never invoked the full assumption that {Ei | i ∈ N} is trace convergent. Instead,
we used the fact that every convergent sequence is a Cauchy sequence. That
is, if {Di | i ∈ N} converges to a limit, then there exists for every ε a number
Nε such that dist(Di, Dj) ≤ ε for all i, j > Nε. A typical proof of the converse
requires the fact that very bounded sequence has a convergent subsequence,
which, as we saw in Example 6.2.1, fails in our setting.

To use the full power of trace convergence, we proceed with a contradiction
proof. Namely, we assume that {Di | i ∈ N} converges to the “wrong” limit D,
where D 6= tr(Q). This allows us to choose a particular β ∈ Act<ω such that
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D(β) and tr(Q)(β) are separated by a non-zero distance δ. Using this β, we are
able to derive a contradiction based the construction of Q.

We need an auxiliary lemma, which strengthens Lemma 5.3.3.

Lemma 6.2.1. Assume A is image finite. Let β ∈ Act<ω and ε > 0 be given.
Suppose there is an adversary E0 such that DE0(β) ≥ ε . Then for all ε′ < ε,
there exists non-empty finite set F ⊆ tr-1(β) such that for all adversaries E,∑
π∈tr-1(β)\F QE(π) ≤ ε′.

Proof. By Lemma 5.3.3, we can choose finite F ⊆ tr-1(β) such that for all
adversaries E,

∑
π∈tr-1(β)\F QE(π) ≤ ε′. It remains to show F is non-empty. If

F is empty, then

DE0(β) =
∑

π∈tr-1(β)

QE0
(π) =

∑

π∈tr-1(β)\F
QE0

(π) ≤ ε′ < ε.

This is a contradiction.

Proposition 6.2.2. Let A be an image finite PA and let k ∈ N be given. Let
{Ei | i ∈ N} be a sequence of trace convergent adversaries from Adv(A, k,−) and
write Di for DEi . Let Q be constructed as in Section 4.3 and let E denote EQ
(cf. Section 4.1). Then DE is the limit of {Di | i ∈ N} in the space [0, 1]Act<ω .

Proof. Let D denote the limit of {Di | i ∈ N}. Such D exists because, by
assumption, {Ei | i ∈ N} is trace convergent. For the sake of contradiction,
suppose that D 6= DE . Then dist(D,DE) > 0, which implies there exists β
such that |D(β)−DE(β)| > 0. Choose such β and let δ denote |D(β)−DE(β)|.
We claim that there is adversary E0 with DE0(β) ≥ δ

2 . If E satisfies this

property, set E0 to E. Otherwise, DE(β) < δ
2 ; then it must be the case that

D(δ) > DE(β) + δ ≥ δ. By the definition of convergence, we may choose i
such that |D(β) − Di(β)| ≤ δ

2 . Then we can take E0 to be Ei. Now we can
apply Lemma 6.2.1 and choose non-empty finite set F ⊆ tr-1(β) such that for
all adversaries E,

∑
π∈tr-1(β)\F QE(π) ≤ δ

3 . Let m := |F |.
Let {πn | n ∈ N} be the enumeration of Path<ω(A) used in the construction of
Q. Let M := max{n | πn ∈ F}+ 1. Then by Corollary 4.3.2, we have

∀π ∈ F lim
j∈N

QEMj
(π) = QE(π).

For each π ∈ F , choose jπ such that

∀j > jπ |QEMj
(π)−QE(π)| < δ

3m
.

Separately, since {Di | i ∈ N} converges to D, we may choose N such that
dist(D,Di) ≤ δ

3 for all i > N . Let L be the least number such that L >
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max{jπ | π ∈ Pk, ε
3
} and index(EML ) > N . Set L̂ := index(EML ). Now we have:

|D(β) −DE(β)|
≤ |D(β)−DbL(β)|+ |DbL(β)−DE(β)|

≤ δ

3
+ |

∑

π∈tr-1(β)

QEML
(π)−

∑

π∈tr-1(β)

QE(π)|

≤ δ

3
+ |

∑

π∈tr-1(β)∩F
QEML

(π)−
∑

π∈tr-1(β)∩F
QE(π)

+
∑

π∈tr-1(β)\F
QEML

(π) −
∑

π∈tr-1(β)\F
QE(π)|

≤ δ

3
+

∑

π∈tr-1(β)∩F
|QEML

(π)−QE(π)|

+ |
∑

π∈tr-1(β)\F
QEML

(π)−
∑

π∈tr-1(β)\F
QE(π)|

≤ δ

3
+m · δ

3m
+ |

∑

π∈tr-1(β)\F
QEML

(π) −
∑

π∈tr-1(β)\F
QE(π)|

≤ δ

3
+
δ

3
+
δ

3
= δ.

The second inequality follows from the fact that index(EML ) > N . The fifth
follows from the fact that L > max{jπ | π ∈ Pk, δ3 }. The last is by Lemma 6.2.1.

This yields a contradiction, therefore it must be the case that D=DE .

Finally, we check that EQ is in fact an adversary in Adv(A, k,−).

Lemma 6.2.3. Let k ∈ N be given and suppose {Ei | i ∈ N} is a sequence of
adversaries from Adv(A, k,−). Let Q be the probabilistic execution constructed
from {Ei | i ∈ N} as in Section 4.3 and let E denote EQ (cf. Section 4.1). Then
for all β ∈ Act<ω, |β| > k implies tr(Q)(β) = 0. Moreover, EQ ∈ Adv(A, k,−).

Proof. Let π ∈ Path<ω(A) be given. By the construction of Q, Q(π) > 0
implies QEi(π) > 0 for some i, which in turn implies | tr(π)| ≤ k. Therefore,
tr(Q)(β) = 0 whenever |β| > k. This proves the first claim.

By the definition of E, E(π)(a, µ) 6= 0 implies Q(π) 6= 0. Therefore

E(π)(a, µ) 6= 0 ⇒ Q(πaµs) 6= 0⇒ DE(tr(π)a) 6= 0,

where s is any state in Supp(µ). Hence, by the first claim of the present lemma,
E(π)(a, µ) 6= 0 implies |π| = | tr(π)| < k. This proves EQ ∈ Adv(A, k,−).

Corollary 6.2.4. Let A be image finite. For all k ∈ N, the set TrDist(A, k,−)

is a closed subset of 〈[0, 1]Act<ω , dist〉.
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Proof. By Proposition 6.2.2 and Lemma 6.2.3.





7

Testing Semantics

7.1 Introduction

A fundamental idea in concurrency theory is that two processes are deemed
equivalent if they cannot be distinguished by external observation. Varying the
power of the external observer, different notions of behavioral equivalence arise.
For processes modeled as labeled transition systems (LTS’s), this idea has been
thoroughly explored: a large number of behavioral equivalences have been char-
acterized via intuitive testing scenarios, also called button-pushing experiments.

In a typical button-pushing experiment, we envision a machine equipped with
a display and a series of buttons. The process under observation resides within
this machine and its activities, represented by action symbols, are shown on the
display. An external observer may influence the execution of this process by
pressing one or more buttons at various times. The simplest example of such
an experiment is the trace machine in Figure 7.1, which has an action display
but no buttons. It turns out to be sufficient for characterizing the well-known
trace equivalence for LTS’s.

b

Figure 7.1: The trace machine.

Button-pushing experiments are desirable for a number of reasons. First, they
provide a simple and intuitive way to understand behavioral equivalences that
are defined more abstractly, e.g., via process algebras or in terms of satisfac-
tion of logical formulas. Second, they provide a unified setting for comparing
these behavioral equivalences. We refer to Van Glabbeek [vG01] for an excellent
overview of results in this area of comparative concurrency semantics. Finally,
in a button-pushing experiment, interactions between process and observer take
place exclusively via the predefined interface, namely, display and buttons. This

65
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is in keeping with the tradition of modular reasoning, which requires that pro-
cesses evolve independently from their environments, aside from explicit inputs.

This chapter presents such a testing scenario for probabilistic processes. (For
our purposes, a probabilistic process may make discrete random choices as well as
nondeterministic choices.) This task calls for a nontrivial extension of existing
testing scenarios for LTS’s, because one must specify a means to “observe”
probability distributions. For that end, we develop an extension of the trace
distribution machine proposed in [SV03, Sto02a], where null hypothesis tests
are used to provide a link between

– probability distributions derived in an abstract semantics and

– sample observations collected from the trace distribution machine.

c

reset

Figure 7.2: The trace distribution machine.

The distinguishing feature of the trace distribution machine (depicted in Fig-
ure 7.2) is a reset button, which restarts the machine from its initial state. This
allows an observer to record traces from multiple runs of the machine. These
runs are assumed to be independent; that is, random choices in one run are not
correlated with those in another run. However, it is not assumed that nonde-
terministic choices are resolved in exactly the same way, therefore each run is
governed by a possibly different probability distribution.

The semantics of this reset button poses a challenge in the design of hypothesis
tests. Even though one can compute frequencies of traces from a sample of
m runs, it is not immediately clear what information has been obtained about
the m possibly distinct probability distributions. As it turns out, this frequency
statistic provides a very natural estimator for the average of the m distributions.
Thus these m distribution are treated collectively: a typical null hypothesis
states that a sample consisting of m runs is generated by a particular sequence
of m distributions. These hypothesis tests induce a notion of observational
equivalence that coincides with the trace distribution equivalence of [Seg95b].
Therefore, this testing scenario can be viewed as an intuitive justification of the
more abstract notion of trace distribution equivalence.

Another challenging issue is infinite behaviors of probabilistic processes. These
may include non-terminating runs, as well as states with infinitely many out-
going transitions. In contrast, experiments on the trace distribution machine
are of a finite character: an observer can record only finitely many symbols
from a single run and can observe only finitely many runs. To overcome this
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discrepancy, the authors of [SV03] impose the restriction that all probabilistic
processes in question must be finitely branching. That is, every state enables
at most finitely many transitions, regardless of action labels. Moreover, an Ap-
proximation Induction Principle is proved to justify the reduction of an infinite
probabilistic behavior to its finite “sub-behaviors”.

The present chapter builds upon the results of [SV03]. We introduce an extended
trace distribution machine, shown in Figure 7.3 below. This machine allows the
observer to suppress all but a finite number of actions, so that each experiment
is associated with a fixed, finite sample space. The observational equivalence
induced by this new testing scenario also coincides with Segala’s trace distribu-
tion equivalence, but for a wider class of processes, namely, for all image finite
processes. A process is said to be image finite if, for each state s and action
a, only finitely many a-transitions are enabled in s. In particular, if the action
alphabet Act is infinite, then a state s may enable infinitely many transitions
(say, one for each action label a). Therefore, image finiteness is strictly weaker
than finite branching.

a
reset 1 2

...
0

Figure 7.3: The extended trace distribution machine.

Following [SV03], our technical work is carried out in the framework of proba-
bilistic automata (PA), as discussed in Chapter 3. This framework has seen
many applications in the analysis of distributed algorithms [Agg94, LSS94,
PSL00, SV99]. More importantly, its relative simplicity frees us from partic-
ular features that may hamper the portability of our results. Indeed, we focus
on semantic objects induced by PAs, as opposed to the automata themselves.
These objects are probability distributions on computation paths (the so-called
probabilistic executions) and probability distributions on traces (the so-called
trace distributions).

As we saw in Chapters 5 and 6, probabilistic executions and trace distributions
can be viewed very naturally as trees with probabilistic branching, so that our
technical developments quickly migrated towards the more fundamental settings
of ordered sets and metric spaces. We believe these developments can be easily
adapted to other settings where the semantic objects of interest are such prob-
abilistic trees, regardless of the particular framework under which these trees
are induced.

Finally, we point out that the present chapter can be seen as an application
of the extensive technical machinery we have developed so far in this thesis
for probabilistic automata. Notably, the following facts are key ingredients in
the proof that our testing semantics coincides with Segala’s trace distribution
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semantics (Theorem 7.4.5).

– For all k, l ∈ N, the set {PD,k,l | D ∈ TrDist(A, k, l)} of discrete probabil-
ity distributions on (Actl)

≤k is closed under convex combinations (Corol-
lary 4.2.4).

– If A is image finite, then, for all k, l ∈ N, the set

{PD,k | D ∈ TrDist(A, k, l)}

is a closed subset of [0, 1]Act<ω (Corollary 6.1.6).

– IfA is image finite, TrDist(A) forms an algebraic CPO under≤[ and the set
of compact elements is precisely

⋃
k,l∈N TrDist(A, k, l) (Theorem 5.3.15).

Related Work

Aside from the trace distribution machine of [SV03], several testing preorders
and equivalences for probabilistic processes have been proposed in the litera-
ture [Chr90, Seg96, GN98, CDSY99, JY02]. All these papers study testing re-
lations in the style of De Nicola and Hennesy [NH84]. That is, a test is defined
as a (probabilistic) process that interacts with a system via shared actions and
reports either success or failure. The various testing relations are then obtained
by comparing success probabilities. Unlike [SV03] or the present chapter, these
papers do not describe how success probabilities can be observed from an exter-
nal point of view. Therefore, in our opinion, these relations are not completely
observational. In that sense, our work is more closely related to the seminal
paper of Larsen and Skou [LS91], where probabilistic bisimulation is character-
ized by a testing scenario based on hypothesis testing. Technically, the setting
in [LS91] is more restrictive than ours because of their minimal deviation as-
sumption, which imposes a uniform lower bound on all transition probabilities
and hence an upper bound on the probabilistic branching degree.

Also closely related is the fast emerging field of statistical model checking [YS02,
YKNP04, SVA04, You05]. Traditionally, a probabilistic model checker does its
job by exploring the state space and computing numerically all relevant prob-
abilities. In statistical model checking, the idea is instead to collect sample
runs from the model. Properties of interest are formulated as test hypotheses
and, by increasing the number of sample runs, one can control the probabil-
ity of producing an erroneous answer to the model checking question. So far,
statistical model checking techniques have been developed for discrete and con-
tinuous time Markov chains [YKNP04, SVA04], semi-Markov processes [SVA04]
and stochastic discrete event systems [YS02, You05]. In most of these models,
the notions of delay and relative timing are treated explicitly, whereas in our
approach nondeterminism is used to model timing uncertainty. Much of our
effort goes to show that standard techniques in hypothesis testing can be used
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to distinguish processes even in the presence of nondeterminism, as long as all
nondeterministic choices are within a closed set.

Our development differs in another way from many other works on stochastic
systems (e.g., [Eda95, BK98, DEP02]), which focus more on functional behav-
iors of these processes and hence probability distributions on the state space.
These distributions are conditional upon occurrences of events, which are often
interpreted as inputs to a system. In contrast, we focus on probability distri-
butions on computation paths and traces, therefore we must take into account
probability distributions on events, in addition to distributions on states. In this
respect, our development is closer to [Vat01], which studies properties of dis-
tribution functions (a generalized notion of language) generated by finite-state
probabilistic automata. One may argue this distinction between state-based and
action-based reasonings is inconsequential, yet our experience suggests the slight
difference in interpretation can lead to divergence in the methods of analysis and
eventually in the types of application domains.

Organization

In Section 7.2, we explain on an informal level the design and motivation of
our testing scenario. Section 7.3 presents the technical definition of acceptable
observations. The main characterization theorem is proven in Section 7.4 and
concluding remarks follow in Section 7.5. We refer our reader to Chapters 2
and 3 of this thesis for mathematical preliminaries and basic definitions of the
probabilistic automata framework.

7.2 Hypothesis Tests

Before presenting our results on a technical level, we give an informal overview
of the proposed testing scenario. To keep things simple and focused, we explain
the design of hypothesis tests for the trace distribution machine. The extended
version is treated in Section 7.2.4.

We view the ensuing discussion a contribution of the present chapter, although
the trace distribution machine itself is not. In particular, we distinguish between
two interpretations of nondeterministic choices: angelic vs. demonic. Such a
clear and systematic treatment is absent in [SV03, Sto02a].

7.2.1 Button-Pushing Experiments

As described in Section 7.1, a typical button-pushing experiment consists of a
process operating inside a black box. Given a process A, such an experiment
induces a set Obs(A) of all observations that are possible/acceptable under A.
This in turn yields an observational equivalence: two LTS’s A1 and A2 are
equivalent if and only if Obs(A1) = Obs(A2).
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Consider for instance the trace machine shown in Figure 7.1, which characterizes
trace semantics for image finite LTS’s [vG01]. This machine has no buttons at
all, thus the observer cannot influence its execution. During a single experiment,
the observer records the contents of the display over time, yielding a finite trace
of the process inside the machine. Gathering all possible observations, we obtain
a testing scenario that corresponds to trace equivalence.

Example 7.2.1. The LTS’s A1 and A2 in Figure 7.4 below are trace equivalent
and have the same observations with respect to the trace machine: ε (the empty
trace), a, ab and ac.

·
a
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a

��7777777

·
b

��

·
c

��· ·

·
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��·
b

���������
c

��7777777

· ·

Figure 7.4: LTS’s A1 and A2.

To obtain a testing scenario for probabilistic processes, a reset button is added
to the trace machine, allowing the observer to undo all changes and restart from
the initial state [SV03]. The resulting trace distribution machine is depicted in
Figure 7.2. An experiment on the trace distribution machine is carried out as
follows.

(1) First, the observer fixes the type of the experiment: two natural numbers k
and m. The first specifies the maximum length of each run and is referred
to as the depth of the experiment. The second specifies the number of runs
to be executed and is referred to as the width.

(2) The observer then starts the machine by pushing the reset button.

(3) As the machine executes, the action symbols appearing on the display are
recorded in succession.

(4) When the display becomes empty, or when the observer has recorded k
actions, the machine is reset and recording starts in a fresh column.

(5) The experiment stops when m runs of the machine have been recorded.

Table 7.5 below illustrates a sample that may be obtained in a type-〈2, 6〉
experiment conducted on the process A1 from Figure 7.1. (In our setting, LTS’s
are degenerate probabilistic processes.)

So far, we have described how to collect a sample from the trace distribution ma-
chine. The next step is to use hypothesis testing to define the set of type-〈k, m〉
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1 2 3 4 5 6
a a a a a a
c b c b c c

Figure 7.5: A possible type-〈2, 6〉 sample from A1 of Figure 7.4.

acceptable observations of A, denoted Obs(A, k,m), for a given process A and
sample type 〈k, m〉. Then Obs(A) is defined to be the union

⋃
k,m Obs(A, k,m).

In this way, two processes A1 and A2 are distinguished in our semantics if and
only if there exists sample type 〈k, m〉 such that Obs(A1, k,m) 6= Obs(A2, k,m).

As we mentioned in Section 7.1, this task is complicated by the semantics of the
reset button. Namely, nondeterministic choices may be resolved differently in
the various runs of an experiment, so that the traces recorded from these runs
need not be identically distributed. These nondeterministic choices are said to
be demonic, because we have no control over them.

To facilitate understanding, we first consider hypothesis tests in the weaker
setting of angelic nondeterministic choices, where we do assume control. In
Section 7.2.3, we explain how these tests can be adapted to the original setting
of demonic choices.

7.2.2 Hypothesis Testing: Angelic Nondeterminism

Consider a type-〈k, m〉 experiment on a probabilistic processA with finite action
alphabet1 Act. Let Act≤k denote the set of traces with length at most k. Suppose
we can make sure that nondeterministic choices are resolved in the same way
in all m runs, so that every run is associated with the same discrete probability
distribution D on Act≤k.

Fix trace β in Act≤k. We can view the m runs of this experiment as m in-
dependent Bernoulli trials as follows: during each run, a success occurs if the
record for that run contains exactly β; otherwise, we have a failure. By our
assumption of angelic nondeterminism, these trials are identically distributed
and the common parameter θ is precisely D(β).

It is well-known that the frequency of successes from a Bernoulli sample is a
sufficient statistic for the parameter θ. Intuitively, the number of successes in a
sample contains all the information about θ that is present in the sample. This
suggests we define our hypothesis test in terms of the frequency of successes. In
fact, sine Act≤k is finite, we can do so for all traces β simultaneously, by devising
a test with this null hypothesis: “the underlying probability distribution is D.”
This hypothesis is accepted if, for every β, the frequency of successes in the

1This finiteness restriction on Act can be replaced by a finite branching condition on
processes [SV03]. In Section 7.2.4, we discuss the extended trace distribution machine, which
accommodates for image finite processes with countably infinite action alphabet.
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actual outcome is in the interval [D(β) − r,D(β) + r]; otherwise, it is rejected.
Here r is some appropriate real number between 0 and 1. To discuss how we
choose r, we need to bring in some terminology.

Since hypothesis tests are concerned with yes/no questions, there are two pos-
sible types of errors: false rejection and false acceptance. A good test should
guarantee that the probability of committing either error is low. However, it
is often hard to control these errors independently. In some cases, it is proven
to be impossible to control false acceptance uniformly among all alternative
parameters, while conforming to a certain tolerance of false rejection (cf. Chap-
ter 8 of [CB90].) Therefore one typically starts with tests that control false
rejections, while keeping false acceptance small. We adopt the same strategy,
namely, given any α ∈ [0, 1], we define tests with probability of false rejection
at most α. These tests are said to have level α.

It may seem desirable to have tests that never commit false rejection errors (i.e.,
level 0). However, this strategy leads to rather uninteresting tests, because it
forces acceptance whenever the actual outcome has nonzero probability under
the null hypothesis. To avoid such triviality, one typically fixes a small but
nonzero level, e.g., α = 0.05. This quantity α determines the size of the accep-
tance region, which is the set of outcomes that lead to acceptance of the null
hypothesis. In particular, an acceptance region should contain just enough pos-
sible outcomes so that the probability of false rejection is below α. A smaller
acceptance region would violate the level-α requirement, while a larger one
would lead to higher probability of false acceptance errors.

In our case, the size of the acceptance region depends on the value r and
we choose the smallest r that give rise to a level-α test. Now we can de-
fine Obs(D, k,m) to be this acceptance region, namely, the set of possible
outcomes such that the frequency of successes for every β is in the interval
[D(β)− r,D(β) + r]. The set of acceptable type-〈k, m〉 observations for A is in
turn given as

⋃
D Obs(D, k,m), where D ranges over all possible distributions

induced by A. The following example illustrates such hypothesis tests for a fair
coin and a biased coin, respectively.

Example 7.2.2. Consider the two probabilistic processes A1 and A2 in Fig-
ure 7.6 below. We interpret the symbol a as the action of flipping a coin, while
b and c announce on which side the coin lands. Then A1 models a fair coin, i.e.,
the uniform distribution on the set {ab, ac}. Similarly, A2 models a coin with
bias 1

3 for heads, i.e., a distribution assigning probability 1
3 to the trace ab and

2
3 to the trace ac.

Suppose α is set at 0.05 and we consider experiments of type 〈2, 100〉. In other
words, we observe 100 runs of length 2 each. The acceptance region for A1

consists of sequences in which the traces ab occurs between 41 and 59 times,
while in the acceptance region for A2 the trace ab occurs between 24 and 42
times. If ab is actually observed 45 times, we answer “yes” in the test for A1

and “no” in the test for A2. Therefore, A1 and A2 are distinguished in the
testing semantics.
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Figure 7.6: Fair coin vs. biased coin.

Intuitively, the distinguishing power of this testing scenario is a direct conse-
quence of the well-known (weak) law of large numbers. Given any small ε, we
can toss a coin sufficiently many times so that it is extremely unlikely to observe
a sample mean that deviates from the true bias by more than ε. This allows us
to “separate” the acceptance regions of two coins with different biases.

It is interesting to note that the observational equivalence, thus obtained, is
independent of the choice of α, because we have the freedom to vary the number
of runs. In general, as α decreases, we must enlarge the acceptance regions for
the two processes in question, possibly increasing the overlap between them.
Therefore more runs need to be performed so that we can find sample points
residing in the difference of the two acceptance regions.

7.2.3 Hypothesis Testing: Demonic Nondeterminism

In the angelic case, a width-m experiment on the trace distribution machine
can be likened to tossing the same coin m times. Our testing scenario thus boils
down to the problem of distinguishing two coins with different biases. In the
demonic case, a width-m experiment can be likened to tossing a sequence of
m coins with possibly different biases, and our testing scenario reduces to the
following (slightly more complicated) problem.

Suppose we have a sequence S of coins with biases p0, p1, p2, . . . such that every
pi is in a closed interval I ⊆ [0, 1]. Given any m, we devise a hypothesis test
for the first m coins in S as follows: a length-m sequence of heads and tails
leads to a “yes” answer if and only if the frequency of heads falls in the interval
[p− r, p+ r]. Here p is the average of p0, . . . , pm−1 and r is chosen as before to
guarantee a level-α test.

Suppose there is another coin with bias q 6∈ I and, for each m, we construct a
test for m tosses of the new coin in exactly the same way. (Here the midpoint
of the interval is simply q.) The question we try to answer is: is there an m for
which there exists a sample point that leads to a “yes” answer in the test for
p0, . . . , pm−1 but a “no” answer in the test for q, . . . , q?

Again, we can appeal to the weak law of large numbers in the second test,
with repeated tosses of the same coin. As it turns out, the same intuition also
applies in the first test, despite the fact that the pi’s are possibly different. In



74 Chapter 7 Testing Semantics

Section 4.1, we prove an analog of the weak law of large numbers for independent
Bernoulli variables, replacing the bias of a single coin with the average bias of
m different coins (Lemma 7.4.2). This key observation, together with the fact
that p and q are separated by the closed interval I , allows us to separate two
acceptance regions just as in the angelic case.

Using the same trick of treating all traces in Act≤k simultaneously, we gener-
alize the above argument on coin tosses to trace distributions. It is therefore
important that the set of all trace distributions of a probabilistic process forms
a convex closed set.

7.2.4 Extension to Countably Infinite Action Alphabet

So far we have worked with processes with finite action alphabet, so that each
length-k run has finitely many possible outcomes (namely, traces in Act≤k).
This is an important property because it allows us to generalize our separation
argument from one particular trace to all possible traces. To preserve this prop-
erty in the case of countably infinite action alphabet, we add buttons 0, 1, 2, . . .
to the trace distribution machine in Figure 7.2, yielding the extended trace
distribution machine. This is depicted in Figure 7.3.

At the start of each experiment (i.e., Step (1) in Section 7.2.1), the observer fixes
not only the depth and width of the experiment, but also the breadth. This is
done by pressing exactly one of the buttons l ∈ N, indicating that only the first
l actions {b0, b1, . . . , bl−1} of the alphabet2 are enabled during the entire exper-
iment. We then proceed exactly as before. This new feature of action switches
can be thought of as a “finite testing policy”: each experiment focuses on a
finite number of possibilities. Since the observer may free an arbitrarily large
number of actions, this is a sufficient method of exploring the entire structure.

Notice, the type of an experiment now has three arguments: k, l and m.
Given a process A, Obs(A) is defined as the union

⋃
k,l,m Obs(A, k, l,m), where

Obs(A, k, l,m) is the set of type-〈k, l, m〉 acceptable outcomes of A. This in-
duces an observational equivalence that coincides with Segala’s trace distri-
bution equivalence, provided the processes are image finite. The image-finite
requirement is necessary for the various convergence properties that are essen-
tial in our proofs. (This is very much analogous to the situation of LTS’s and
the trace machine.)

From now on, we studies exclusively image finite processes and the extended
trace distribution machine. For brevity, we shall omit the word ”extended”.

2We assume a fixed enumeration of Act (cf. Chapter 3).
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7.3 Observations

We begin this section by recalling the procedure of sample collection from a
trace distribution machine. Then we identify samples that are acceptable if the
trace distribution machine operates as specified by a probabilistic automaton A.
A sample O falls into this category just in case there exists a possible sequence
of trace distributions D0, . . . , Dm−1 under which O is an acceptable outcome.
Such samples will constitute the set of observations of A. To save space, we use
~D to denote (syntactically) D0, . . . , Dm−1. Similarly for ~D′, ~K, etc.

7.3.1 Sampling

We associate with each experiment a triple 〈k, l, m〉 of natural numbers. We
call this the type of the experiment, which specifies some parameters in the data
collection procedure. More precisely, an observer conducts a depth-k, breadth-l
and width-m experiment on a trace distribution machine as follows.

(1) First, the observer presses the button labeled by l, activating the actions in
Actl.

(2) The observer then starts the machine by pushing the reset button.

(3) As the machine executes, the action symbols appearing on the display are
recorded in succession.

(4) When the display becomes empty, or when the observer has recorded k
actions, the machine is reset and recording starts in a fresh column.

(5) The experiment stops when m runs of the machine have been recorded.

During such an experiment, an observer records a sequence β0, . . . , βm−1, where
each βi is a sequence of actions symbols from Actl and has length at most k.
We call such a record O a sample of depth k, breadth l and width m (or simply
a sample of type 〈k, l, m〉). A trace β is said to appear in β0, . . . , βm−1 if β = βi
for some i. When k, l and m are clear from context, we will write U for the
universe of all possible samples of type 〈k, l, m〉; that is, U := ((Actl)

≤k)m.

We assume the trace distribution machine is governed by a PA A. During
each run, the trace distribution machine chooses a trace β according to some
trace distribution D of A. When the observer presses the reset button, the
machine returns to the initial state of A and starts over with a possibly different
trace distribution. Since all actions outside Actl are blocked, and each time the
machine is allowed to perform at most k steps, a run of the trace distribution
machine is governed by a trace distribution from TrDist(A, k, l). Thus, each
sample O of width m is generated by a sequence of m trace distributions from
TrDist(A, k, l).
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Let us focus for a moment on a single run. Recall from Chapter 3 that every
trace distribution D ∈ TrDist(A, k, l) induces a discrete probability distribution
PD,k on (Actl)

≤k. For every β ∈ (Actl)
≤k, PD,k[β] equals:

– D(β), if the length of β is exactly k;

– D(β) −∑a∈Actl
D(βa), otherwise.

In other words, PD,k[β] gives the probability that the observer records exactly
the trace β during the current run. The first clause corresponds to the case in
which the observer resets the machine because k symbols have been recorded,
while the second correspond to the case in which the display becomes empty
after β.

Now we put together the m runs in an experiment. Note that each run involves
two distinct types of choices: first the machine chooses a trace distribution D,
then D in turn chooses a trace β. We do not make any assumptions on the first
type of choices. However, once Di is chosen for run i, Di is solely responsible for
selecting a trace βi. That is, for any i 6= j, the choice of βi by Di is independent
from the choice of βj by Dj . Therefore, assuming trace distributions ~D are
chosen, the probability of generating a depth-k sample O = β0, . . . , βm−1 can
be expressed as:

P ~D,k[O] :=

m−1∏

i=0

PDi,k[βi].

For a set O of such samples, we have P ~D,k[O] :=
∑

O∈OP ~D,k[O].

7.3.2 Frequencies

Our statistical analysis is based on the frequencies with which finite traces from
(Actl)

≤k appear in a sample O. Formally, the frequency of β in O is given by:

freq(O)(β) :=
|{i | 0 ≤ i < m and β = βi}|

m
.

Although each run is governed by a possibly different distribution, we can still
obtain useful information from frequencies of traces. This is done as follows.
Fix k, l, m, ~D and β ∈ (Actl)

≤k. For each 0 ≤ i ≤ m− 1, we say that a success
occurs at the i-th run just in case the observer records exactly β at the i-th
run. Thus, the probability of a success at the i-th run is given by PDi,k[β].
This can be viewed as a Bernoulli distribution with parameter PDi,k[β]. Let
Xi denote such a random variable. Then the random variable Z := 1

m

∑m
i=1 Xi

represents the frequency of successes in the m trials governed by ~D. Moreover,
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using linearity of expectation, the expected value of this frequency is:

E
~D,k
β := EZ

= E(
1

m

m−1∑

i=0

Xi)

=
1

m

m−1∑

i=0

E(Xi)

=
1

m

m−1∑

i=0

PDi,k[β].

Notice, both freq(O) and E
~D,k can be viewed as points in the metric space

[0, 1]Act≤k with distance function dist(~u,~v) := supβ∈Act≤k |uβ − vβ |. Thus the

distance dist(freq(O),E
~D,k) provides a very natural way to quantify the devia-

tion between freq(O) and E
~D,k. This plays a central role in classifying acceptable

outcomes of ~D.

7.3.3 Acceptable Outcomes: Motivation

Returning to our original goal, we would like to define a set of acceptable out-
comes of A. This is done by defining a set of acceptable outcomes for each
sequence ~D of trace distributions. Thus, in the terminology of hypothesis test-
ing, we develop a test with this null hypothesis: the sample O is generated by
the sequence ~D.

Fix an α ∈ (0, 1) as the desired level of the test. Also fix the sample type

〈k, l, m〉. The set Obs( ~D, k, l,m, α) of acceptable outcomes should then satisfy
the following:

1. P ~D,k[Obs( ~D, k, l,m, α)] ≥ 1− α, and

2. P ~D′,k[Obs( ~D, k, l,m, α)] is minimized for different choices of ~D′ with ~D′ 6=
~D.

Condition 1 says the probability of false rejection (i.e., rejecting O as a sample

generated by ~D while it is such) is at most α. Condition 2 says the probability

of false acceptance (i.e., accepting O as a sample generated by ~D while it is
not) should be reasonably small. Note that the probability of false acceptance

depends highly upon the choice of ~D′. Loosely speaking, if ~D and ~D′ are very
close to each other, then the probability of false acceptance becomes very high.

The design of our test stems from the concept of interval estimation. After each
experiment, we try to make an educated guess about the trace distributions
governing our machine, based on the sample just observed.
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In case the m trials are identically distributed, i.e., controlled by the same
trace distribution D, one typically uses freq(O)(β) as an estimator for the value
PD,k[β]. (By virtue of Proposition 3.3.5, this also gives an estimator for D.)
Since the probability of making exactly the right guess is small, an interval
around freq(O)(β) is used to guarantee that the guess is correct with probability
1− α, where α is the prescribed level. That is, if freq(O)(β) is observed, then
our guess is PD,k[β] falls in the interval [freq(O)(β) − r, freq(O)(β) + r], where
r depends on the level α.

Inverting this interval around PD,k[β], we obtain a set of values for freq(O)(β),
namely, the interval [PD,k[β]− r,PD,k[β] + r]. If a frequency from this interval
is actually observed, then our guess about PD,k[β] would be correct. Thus, a
frequency vector freq(O) is deemed acceptable if for all β, freq(O)(β) is within
the appropriate interval around PD,k[β].

In the formal definitions that follow, the situation is slightly different: we do
not always have the same trace distribution in all m trials. Thus we cannot give
an estimate to the value PD,k[β] for a single trace distribution D. Instead, we

use freq(O)(β) as an estimator for E
~D,k
β = 1

m

∑m
i=1 PDi,k[β], an average from

the m trace distributions.

7.3.4 Acceptable Outcomes: Definition

As explained above, we accept a sample O if freq(O) is within some distance

r of the value E
~D,k. Our task is to find an appropriate r ∈ [0, 1] such that

Condition 1 is satisfied. Moreover, for Condition 2, we need to minimize r in
order to reduce the probability of false acceptance.

Recall that the (closed) ball centered at E
~D,k with radius r is given by:

Br(E
~D,k) := {v ∈ [0, 1](Actl)

≤k | ∀β ∈ (Actl)
≤k, |v(β)−E

~D,k
β | ≤ r}.

Then freq-1(Br(E
~D,k)) is the set of samples whose frequencies deviate from the

average E
~D,k by at most r.

Definition 7.3.1. Fix k, l,m ∈ N and a sequence ~D of trace distributions from
TrDist(A, k, l). Let

r̄ := inf{r | P ~D,k[freq-1(Br(E
~D,k))] > 1− α}.

The set of type-〈k, l, m〉 acceptable outcomes of ~D (with level α) is defined to
be:

Obs( ~D, k, l,m, α) := freq-1(Br̄(E
~D,k)) = {O | dist(freq(O),E

~D,k) ≤ r̄}.
The set of type-〈k, l, m〉 acceptable outcomes of A (with level α) is then:

Obs(A, k, l,m, α) :=
⋃

~D∈(TrDist(A,k,l))m
Obs( ~D, k, l,m, α).
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Example 7.3.1. Let Act be {a, b, c} and α be 0.05. Consider the automata A
in Figure 7.7, with a nondeterministic choice between two branches. Let ~D be
a sequence of 10 trace distributions generated by: four adversaries that choose
the left branch with probability 1 and six that choose the right branch with
probability 1.

Then the average of the 10 induced trace distributions assign the value 0.4 to a
and 0.3 to each of b and c. Notice the frequency of a in every possible outcome
is 0.4. Thus the following two outcomes have the greatest distance from the
average: the one in which b never occurs and the one in which c never occurs. It
is easy to verify that Obs( ~D, 1, 3, 10, 0.05) contains all but these two outcomes.

·
a

���������� ===

b, 12��=====
TTTTT

c, 12
))TTTTTTTTTTTTTT

· · ·

Figure 7.7: Nondeterministic branching

It is interesting to note that, while our notion of acceptable outcomes captures
the clustering of samples around the expected value, it often fails to capture
individual outcomes with relatively high probability. We illustrate this point
with the following example.

Example 7.3.2. Consider an almost fair coin, say, with 0.51 for heads and 0.49
for tails. Suppose we toss this coin 10 times. The most likely outcome, all heads,
has frequency vector 〈1, 0〉, which lies very far from the expected frequency of
〈0.51, 0.49〉. In fact, it is easy to check that for α = 0.005, this most likely
outcome is rejected.

Finally, we define our notion of observation preorder based on acceptable out-
comes.

Definition 7.3.2. Let A,B be probabilistic automata and let α ∈ (0, 1) be
given. We write A ≤α B if, for all k, l,m ∈ N, Obs(A, k, l,m, α) is a subset of
Obs(A, k, l,m, α). We say that A and B are observationally indistinguishable
up to level α just in case A ≤α B and B ≤α A.

7.4 Characterization of Trace Distribution Semantics

Let us briefly recapitulate our development. Our goal is to show that the testing
preorder defined in Section 7.3.4 coincides with trace distribution inclusion, as
defined in Section 3.2. In Section 5.3, we established that the set of trace
distributions of an image finite automaton forms an algebraic CPO. Therefore
the following are equivalent for image finite automata A and B:
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– A ≤td B;

– for all k, l ∈ N, A ≤k,ltd B.

By virtue of this observation, it suffices to prove the following finitary charac-
terization theorem.

Theorem 7.4.1. Let A and B be image finite probabilistic automata. Let α ∈
(0, 1) and k, l ∈ N be given. We have TrDist(A, k, l) ⊆ TrDist(B, k, l) if and only
if, for all m, Obs(A, k, l,m, α) ⊆ Obs(B, k, l,m, α).

Since Obs(A, k, l,m, α) is entirely defined in terms of TrDist(A, k, l) and param-
eters k, l, m and α, the “only if” direction of Theorem 7.4.1 is trivial. For the
converse, we assume there is D ∈ TrDist(A, k, l) \ TrDist(B, k, l) and our goal is
to find m ∈ N and a sample O ∈ Obs(A, k, l,m, α) \Obs(B, k, l,m, α).

Intuitively, we obtain such O by running the trace distribution machine repeat-
edly under D. For each m ∈ N, let Dm denote the length-m sequence in which
every element is D. Recall from Section 7.3.4 that an outcome is acceptable if its
frequency vector deviates minimally from the expected frequency vector. Our
claim is, as the number of trials increases, the amount of deviation allowed de-
creases to 0. In other words, given any small δ > 0, we can find m ∈ N such that
any acceptable outcome of a width-m experiment must have a frequency vector
within distance δ of the expectation. This claim, together with the fact that we
can always separate the point PDm,k from the set {P ~K,k | ~K ∈ TrDist(B, k, l)}
(Corollaries 4.2.4 and 6.1.6), allows us to distinguish acceptable outcomes of
Dm from those generated by trace distributions in TrDist(B, k, l).
Before presenting the formal proofs, let us further motivate our approach by
considering again the coin-flipping example. Suppose A is the fair coin and we
conduct 100 experiments on A. In this case, every outcome is just as likely
as every other outcome. Yet a frequency vector close to 〈0.5, 0.5〉 (for example
〈0.49, 0.51〉) is much more likely to be observed than a frequency vector far away
from 〈0.5, 0.5〉 (for example 〈0.01, 0.99〉). This is because there are many more
outcomes with frequency 〈0.49, 0.51〉 than there are outcomes with 〈0.01, 0.99〉.
As we increase the number of trials, this clustering effect intensifies and the
probability of observing a frequency vector with large deviation becomes very
small.

This simple idea also applies in the case of m independent coin flips, where
each coin may have a different bias. This is formalized in the following lemma,
which is an analog of the weak law of large numbers for independent Bernoulli
variables.

Lemma 7.4.2. Let α ∈ (0, 1) and δ > 0 be given. There exists M ∈ N such that
for all m ≥M and sequences X1, . . . , Xm of independent Bernoulli variables,

P[|Z −EZ| ≥ δ] ≤ α,

where Z = 1
m

∑m
i=1Xi represents the success frequency in these m trials.
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Proof. Take M ≥ 1
4δ2α and let m,X1, . . . , Xm be given as stated. Assume that

each Bernoulli variable Xi has parameter pi ∈ [0, 1]. First note that for all
p ∈ [0, 1], p(1− p) ≤ 1

4 . Then

Var[Z] = Var[
1

m

m∑

i=1

Xi] =
1

m2

m∑

i=1

Var[Xi]

=
1

m2

m∑

i=1

pi(1− pi) ≤
1

m2

m∑

i=1

1

4
=

1

4m
.

By Chebychev’s inequality (Theorem 2.0.3), we have

P[|Z −EZ| ≥ δ] ≤ 1

δ2
Var[Z] ≤ 1

δ2
· 1

4m
≤ 1

δ2
· 1

4M
≤ 4δ2α

4δ2
= α.

In our case, successes correspond to occurrences of a particular trace β: if
the machine operates according to trace distributions ~D, then each run i cor-
responds to a Bernoulli variable with parameter PDi,k[β] (see Section 7.3.2).
Thus Lemma 7.4.2 gives the following corollary.

Corollary 7.4.3. Given any δ > 0, there exists M ∈ N such that for all m ≥M ,
β ∈ Act≤k and sequences ~D of trace distributions in TrDist(A),

P ~D,k[{O ∈ U | | freq(O)(β) −E
~D,k
β | ≥ δ}] ≤ α.

Now we consider all sequences β ∈ (Actl)
≤k at the same time. This is where we

must restrict to sequences over Actl (rather than Act), since otherwise we are
concerned with infinitely many β’s.

Lemma 7.4.4. Given any δ > 0, there exists M ∈ N such that for all m ≥M
and sequences ~D of trace distributions in TrDist(A, k, l),

P~D,k[freq-1(Bδ(E
~D,k))] ≥ 1− α.

Proof. Let n be the cardinality of (Actl)
≤k. By Corollary 7.4.3, we may choose

M such that for all m ≥M , β ∈ Act≤k and sequences ~D of trace distributions
in TrDist(A),

P ~D,k[{O ∈ U | | freq(O)(β) −E
~D,k
β | ≥ δ}] ≤ α

n
.
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Then for all m ≥M and sequences ~D, we have

P~D,k[freq-1(Bδ(E
~D,k))]

= P~D,k[{O ∈ U | ∀β | freq(O)(β) −E
~D,k
β | < δ}] definition of dist

= 1−P ~D,k[{O ∈ U | ∃β | freq(O)(β) −E
~D,k
β | ≥ δ}]

≥ 1−
∑

β∈(Actl)≤k

P ~D,k[{O ∈ U | | freq(O)(β) −E
~D,k
β | ≥ δ}]

≥ 1− n · α
n

= 1− α choice of M

We are now ready for the proof of Theorem 7.4.1.

Proof of Theorem 7.4.1. The “only if” direction is trivial. For the converse,
assume there is D ∈ TrDist(A, k, l) \ TrDist(A, k, l). Let δ denote the distance

between the point PDm,k and the set { 1
m

∑m−1
0 P ~K,k | ~K ∈ TrDist(B, k, l)}. By

Corollaries 4.2.4 and 6.1.6, δ must be non-zero.

By Lemma 7.4.4, we can find MA and MB such that for all m ≥ max(MA,MB)

and all sequences of trace distributions ~K in TrDist(B, k, l),

PDm,k[freq-1(B δ
3
(EDm,k))] ≥ 1− α

2
> 1− α

P ~K,k[freq-1(B δ
3
(E

~K,k))]) ≥ 1− α

2
> 1− α.

Therefore, we have

Obs(Dm, k, α) ⊆ freq-1(B δ
3
(EDm,k)) = freq-1(B δ

3
(PDm,k))

and, for all sequences ~K in TrDist(B, k, l),

Obs( ~K, k, α) ⊆ freq-1(B δ
3
(E

~K,k)) = freq-1(B δ
3
(
m−1∑

0

1

m
P ~K,k)).

Since dist(PDm,k,
∑m−1

0
1
m P ~K,k) ≥ δ, we have

B δ
3
(PDm,k) ∩B δ

3
(

m−1∑

0

1

m
P ~K,k) = ∅.

Therefore Obs(Dm, k, α) 6⊆ Obs(B, k, l, α).

Theorem 7.4.5. Let A and B be image finite probabilistic automata and let
α ∈ (0, 1) be given. We have A ≤td B if and only if A ≤α B.
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Proof. We have the following chain of equivalences:

A ≤td B
⇔ A ≤k,ltd B for all k, l ∈ N Theorem 5.3.15

⇔ Obs(A, k, l,m, α) ⊆ Obs(B, k, l,m, α) for all k, l,m ∈ N Theorem 7.4.1

⇔ A ≤α B definition of ≤α

7.5 Conclusions

The work on trace distribution machine presents a first step in developing sta-
tistical testing techniques for systems with nondeterministic behavior. We show
that, under some appropriate finiteness assumptions, nondeterministic choices
are “harmless”. The rationale behind this statement is that we can view a
nondeterministic choice among events as a weighted sum of those events, but
with unknown weights. Therefore the behavior of a process is represented by a
convex closed set of distributions, rather than a single distribution. This retains
many of the nice properties of purely probabilistic processes and we are able to
use hypothesis tests to characterize an existing semantic equivalence.

We see much potential in applying our ideas to “black-box” verification, where
we have little or no control over the system of interest. Given such a system, one
can construct a probabilistic automaton as the test hypothesis and use samples
generated from the actual system to either accept or reject the hypothesis. This
method provides rigorous guarantees regarding error probabilities.

We define very simple hypothesis tests in this chapter, because we do not have
a special problem in mind and thus cannot make use of any domain knowledge.
In practice, one can design more powerful tests (i.e., those that also control false
positive errors) using specific properties of the distributions involved. Also, it
may be sufficient to consider simple or one-sided hypotheses, for which standard
methods exist for finding uniformly most powerful tests. (In contrast, our tests
have composite and two-sided alternative hypotheses.)
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8

Discussions

As explained in Chapter 1, nondeterminism is a convincing way of modeling
uncertainties in a distributed environment, therefore we focus on models that
combine nondeterministic and probabilistic choices. There we also talked about
the notions of semantic equivalence and parallel composition, and why they are
important for formal verification. In this chapter, we elaborate on these issues.

Let us start with a motivating example, taken from [Seg95b, LSV03].

·Early
a
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·
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·
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1
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Figure 8.1: Probabilistic automata Early, Late and Coin

As its name suggests, automaton Early forces the choice between b and c at
the very beginning of an execution, as we choose one of the two available a-
transitions. On the other hand, automaton Late allows us to postpone this deci-
sion until after the a-transition. Automaton Coin will act as a context (or envi-
ronment) for automata Early and Late. It has a probabilistic a-transition leading
to a uniform distribution on two states, one of which enables a d-transition while
the other enables an e-transition.

Consider the trace distribution semantics of [Seg95b], where each possible be-
havior is a probability space on the set of traces that is induced by a history-
dependent adversary (cf. Chapter 3). It is easy to see that Early and Late are
equivalent in this semantics, because every trace distribution of Early can be
emulated in Late by postponing the choice between b and c and vice versa by
making the same choice earlier.

However, under the parallel composition mechanism of [Seg95b, LSV03], the
composites Early ‖Coin and Late ‖Coin are not trace distribution equivalent.
Figure 8.2 below illustrates a trace distribution of Late ‖Coin that cannot be
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mimicked in Early ‖Coin.

· d //· b //·
pp

1
2

77ppppp
NN

1
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·

e
//·

c
//·

a

Figure 8.2: Non-substitutivity of trace distribution equivalence

This trace distribution assigns probability 1
2 to each of these traces: adb and

aec. It is induced by an adversary that chooses the b-transition in Late if and
only if the random choice in Coin results in the left state. Such total correlations
between actions d and b, and between actions e and c, cannot be achieved by an
adversary for the composite Early ‖Coin, because doing so requires the adversary
to predict the outcome of the coin toss in Coin.

This example shows that Segala’s trace distribution semantics is not compo-
sitional: two equivalent automata behave differently when they are placed in
the same context. The idea of a distinguishing context is further developed
in [LSV03], showing that the difficulty with compositionality is in some sense
inherent to trace-style semantics. The particular technical result is that the
coarsest pre-congruence refining trace distribution preorder (induced by inclu-
sion of sets of trace distributions) coincides with a probabilistic simulation pre-
order. Put more simply, compositionality forces us into the realm of branching-
style semantics, where internal branching structures can be used to distinguish
processes.

A good portion of this PhD work is directed towards a better understanding
of the relationship between trace-style semantics and compositionality. We will
argue that the result of [LSV03] is a consequence of the type of adversaries used
to define trace distributions (cf. Sections 11.1 and 11.2). These adversaries have
too much “observational power”, in that they can use internal state and history
of all components to make scheduling decisions. Although such adversaries (or
policies) are standard in the setting of Markov decisions processes, we claim that
they are not always meaningful when we try to model distributed processes.

To further motivate our interest in compositionality issues, we discuss in Sec-
tion 8.1 the connection between modularity and compositionality. Section 8.2
then explains why we are interested primarily in trace-style semantics, such as
the trace distribution semantics we saw in Chapters 3 and 7. In Section 8.3, we
recall the interleaving interpretation of parallel composition and compare a few
existing approaches in defining parallel composition for probabilistic processes.
Finally, we outline in Section 8.4 our own approaches to the problem, which will
be presented in detail in Chapters 10 and 11.
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8.1 Modularity and Compositionality

In a distributed environment, system components communicate with each other
via some well-defined mechanism. For instance, they access shared memory lo-
cations or send messages to each other on an asynchronous network. Apart from
this communication, the evolution of each individual component is assumed to
be independent from the behavior of other components. This independence
assumption is a foundation for the so-called modular approaches to system de-
velopment and analysis, where large and complex systems are decomposed into
(or built up from) smaller and more tangible subsystems.

Modular methods are popular in various stages of the development process,
including design, implementation and analysis. They often come in two flavors.

(i) Vertical decomposition: starting from some abstract specification of de-
sired behavior, one can incrementally replace higher level specifications
with lower level ones that contain more and more implementation details,
provided each substitution involves only components that fall under cer-
tain behavioral equivalence (or inclusion) relation.

(ii) Horizontal decomposition: starting from a specification of desired behav-
ior, one can decompose the required system into smaller, more tangible
units that operate in parallel, provided the composition of these subsys-
tems is behaviorally equivalent to (or included in) the original system.

In both cases, it is essential that our formal models come with a convincing no-
tion of parallel composition, one that reflects our intuitions about independent
evolution of parallel components. This requirement usually takes the form of
a semantic compositionality theorem, relating the parallel composition opera-
tor to the relevant notion of system behavior. Here we distinguish “semantic”
compositionality from the “syntactic” version, which simply states that a paral-
lel composition operator is definable in a particular formal framework, without
reference to the associated notion of observable behavior. Syntactic definability
alone is not sufficient to validate modular reasoning as described in (i) and (ii)
above.

Compositionality issues have been well-studied for nondeterministic models of
distributed computation. For probabilistic processes, however, a careful study
of parallel composition is somewhat harder to find. Many articles that do de-
fine parallel composition operators for probabilistic processes fail to provide an
explanation of the intuitive meaning of these operators, much less a semantic
compositionality theorem. A survey on such syntactic definability of parallel
composition can be found in [SdV04]. In Section 8.3 below, we give a compari-
son of several frameworks that do address the issue of semantic compositionality.
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8.2 Linear vs. Branching Semantics

In the literature, one can find a great variety of probabilistic process semantics,
most of which are extensions of familiar semantic notions for labeled transition
systems. Earlier proposals include probabilistic bisimulation [LS91] and testing
preorder [YL92], followed by probabilistic simulation [SL95, LSV03], observa-
tional testing preorder [SV03] and many others.

Overall, semantics of a more branching character, such as bisimulation and sim-
ulation, have been more common than their linear counterparts, such as trace
distribution preorder [Seg95b]. One likely reason is that a trace-style semantics
requires one to resolve all nondeterministic choices by means of specifying an
adversary. Once coupled with an adversary, a system becomes purely proba-
bilistic and can be analyzed as a discrete-time Markov chain. Process behavior
is then defined by quantifying over all possible adversaries. And, as we men-
tioned before, different classes of adversaries may be defined by varying their
powers, leading to different notions of trace-style semantics.

In comparison, branching-style semantics are easier to define and more pleasant
to work with. For instance, in order to establish bisimilarity between two pro-
cesses, one simply defines a binary relation on states (or on state distributions)
and proves that the proposed relation satisfies certain transfer properties. Most
importantly, these transfer properties are typically local, concerning only the
states in relation and their near successors.

Despite the apparent advantages of branching-style semantics, we remain inter-
ested in trace-style semantics for a number of reasons. First, many fundamental
questions in verification are posed in terms of probabilities of observable events.
For example, in a leader election algorithm, we may wish to calculate a lower
bound for the probability of electing a leader during the first round. Ques-
tions such as this can be answered very naturally in a trace-style semantics,
where we reason directly with probability distributions on traces. In contrast, a
branching-style semantics only allows us to establish correspondences between
specifications, without reference to probabilities of complex events (e.g., those
that express causal dependencies between different actions). Indeed, branching-
style semantics are often used as proof tools for trace-style semantics. For
instance, a common technique for proving trace distribution inclusion is to es-
tablish the existence of a probabilistic simulation. In this sense, trace-style
semantics are more fundamental compared to their branching counterparts.

Moreover, we believe that trace-style semantics capture more closely the idea of
externally visible behavior, because they abstract away from state information.
This is important in, for example, the setting of black-box testing, where we often
have no convenient access to the actual architecture of a system and hence no
state information is available.

Finally, as shown in [SAGG+93, DGRV00], we are often willing to say that a low-
level automaton implements a high-level one, even if there exists no bisimulation
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relation between them. In other words, trace-style equivalence is useful when
bisimilarity is considered too fine.

8.3 Existing Approaches

Most existing proposals of parallel composition for probabilistic processes are
based on the interleaving interpretation of parallel composition:

(i) every atomic step of a composite system is an atomic step of one of its
components;

(ii) the scheduling among components is arbitrary1.

Sometimes, components may synchronize on shared actions; that is, simulta-
neous executions are allowed if all transitions involved carry the same action
label. However, distinct actions are never carried out at the same time. They
are instead interleaved in arbitrary order as in (ii) above.

In other words, the parallel composition of two component executions is treated
as a nondeterministic choice among all possible interleavings. This is gener-
ally regarded as a simplifying assumption, because it reduces the complexity of
single-step evolution. In a probabilistic setting, some extra machinery is needed
to resolve these nondeterministic choices introduced by parallel composition.
Below we attempt to summarize a few prominent approaches.

– Parameterized composition [JLY01, DHK98]. Each (binary) composition
operator ‖p is parameterized with a real number p ∈ [0, 1], indicating the
bias towards the left process. Sometimes a family of such operators are
considered, with p ranging over some subset of [0, 1]. Each ‖p is essentially
a very static adversary, resolving the choice between two processes in
exactly the same way at every step.

We find this approach unsatisfactory in two aspects. First, there is no
obvious reason that one should privilege a single number p ∈ [0, 1] as a
faithful representative of the underlying situation between two processes.
Even if we consider all possible ‖p’s in the family, the quantification re-
mains at a high level and does not enter into the reasoning of individual
executions. That is, within a single execution, the left process will always
receive bias p and the right process bias 1−p, regardless of activities both
in and around the processes.

Second, these operators have some unpleasant technical properties. For
example, the operator ‖p is not associative except for degenerate cases in
which p equals 0 or 1. And, unless we adopt the uniform distribution (i.e.,

1In order to remove trivial counterexamples of progress properties, one often needs to
impose an appropriate fairness constraint on the scheduling. This is important in actual
verification, although it is not treated explicitly in this thesis.
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p = 1
2 ), the operator ‖p is not commutative. These properties are quite

contrary to our intuitions about parallel processes.

– Real-time delay [WSS94]. Each state s of a process is associated with a
delay parameter δs. Upon entering a state, every process draws a real-time
delay from an exponential distribution with parameter δs. Among a group
of parallel processes, the process with the shortest delay performs the next
move. Since exponential distributions are memoryless, one can calculate
the bias towards each component from the delay parameters of all compo-
nents. In particular, one need not keep track of how long a component has
already delayed in the currect state when a global transition takes place.
Therefore, this approach essentially uses history-independent adversaries
to resolve nondeterministic choices arising from parallel composition.

Here we find it questionable that the delay patterns of processes can be
universally characterized by exponential distributions. Furthermore, in
actual applications, one must supply a parameter δs for each state s. It
is again unclear how this can be done feasibly. Therefore, in our opinion,
this theory has very limited utility in the setting of verification.

– Compose-and-schedule [DHK98, Seg95b]. Nondeterministic choices re-
main unresolved in the composition of parallel processes. Eventually, a
possible behavior of the composite is obtained by specifying a history-
dependent adversary, which has access to internal history of every compo-
nent and is responsible for resolving local nondeterministic choices (i.e.,
those within each component) as well as global nondeterministic choices
(i.e., those between parallel components).

Clearly, the last approach (compose-and-schedule) is the most robust, in that
scheduling decisions may depend on dynamic behaviors of the entire system.
However, as illustrated in Figure 8.2, history-dependent adversaries can create
causal dependencies across different components, interfering with the modular-
ity assumption mentioned in Section 8.1.

If we move to the less robust approach of history-independent scheduling, it
is indeed possible to define a trace-style semantics [WSS94]. Nonetheless, we
continue to explore alternative solutions, because (i) we are skeptical about the
assumptions made in [WSS94], and (ii) we feel that there is ample middle ground
between history-dependent scheduling of [Seg95b] and the history-independent
version of [WSS94].

Finally, we mention an approach that deviates somewhat from the usual inter-
leaving interpretation. In the models of [dAHJ01, vGSS95], components may
make simultaneous moves, even if they are not involved in action synchroniza-
tion. Assuming independence of coin tosses, the probability of a composite move
can be calculated simply by multiplying the probabilities of all atomic moves
involved. In this setting, it is also possible to obtain a compositional trace-style
semantics [dAHJ01]. However, synchronous (or lock-step) execution is a non-
trivial assumption in distributed computing [Lyn96]. Some important problems,
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such as distributed consensus, are solvable in the synchronous setting but not
in the asynchronous setting. The model of [dAHJ01] does not provide a very
natural setting for analyzing algorithms designed for asynchronous networks.

8.4 Our Approaches

Our main goal is to develop a modeling framework that (i) supports composi-
tional reasoning and (ii) is sufficiently robust for modeling randomized compu-
tation in a distributed environment. We come with two proposals in this thesis,
both of which are shown to have a compositional trace-style semantics.

The first proposal, presented in Chapter 10, uses the idea of distributed schedul-
ing. A token-structure is imposed among processes in order to eliminate global
scheduling conflicts. In this way, scheduling decisions are entirely local: they
are based on local information and they affect local actions.

Chapter 11 presents the second proposal, which returns to centralized scheduling
with a version of the so-called partial-information adversaries. These adversaries
may use dynamic information in their scheduling decisions, but certain aspects
of the history and/or current state are hidden from them. In particular, we
impose additional axioms on the transition structures, so that local information
is hidden from the adversary.

We stress that Chapters 10 and 11 are independent, although both rely on basic
definitions of Probabilistic I/O Automata given in Chapter 9.





9

Probabilistic I/O Automata

In this chapter, we extend the probabilistic automata framework (cf. Chapter 3)
with input/output (I/O) distinction, following the tradition of Input/Output
Automata (IOA) of Lynch and Tuttle [LT89]. This will serve as the basis of our
developments in Chapters 10 and 11.

Variations of probabilistic I/O automata have appeared in many places, for
example, [PSL00, WSS94, BPW04b]. Although all of these models go by the
same name, the actual definitions diverge significantly. The present chapter
aims to provide a clean and unifying formulation.

9.1 Basic Definitions

We assume a fixed, countably infinite alphabet Act of action symbols. Inspired
by [vGSS95], we define reactive and generative transition structures as follows.

Definition 9.1.1. Let S be a set of states and let X ⊆ Act be given.

(i) A reactive transition structure on 〈S, X〉 is a function

R : S ×X → P(Disc(S)).

(ii) A generative transition structure on 〈S, X〉 is a function

G : S → P(Disc(X × S)).

A state s ∈ S blocks (input) action a ∈ X if R(〈s, a〉) = ∅. And s is said to be
quiescent if G(s) = ∅.

A reactive transition structure R describes a system that reacts to input signals.
Given a state s and an action a, R(〈s, a〉) yields a set of discrete distributions
on S. Thus we allow non-deterministic choices over possible distributions on
end states, while each such distribution specifies an effect of randomization
on system evolution. We use variables µ, ν, etc., for these state distributions.
Figure 9.1 below illustrates two such reactive systems.

95
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Figure 9.1: Examples of Reactive Transition Systems

On the other hand, a generative transition structure G describes a system that
evolves in an active fashion. That is, every state s enables a (possibly empty)
set of transition bundles, where each bundle is a discrete distribution on Act×S.
Again, we have non-deterministic choices over bundles, while each bundle spec-
ifies a random choice over next transitions. We use variables f, g, etc., for these
transition bundles. Figure 9.2 illustrates two such generative systems.
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Figure 9.2: Examples of Generative Transition Systems

Next, we use I/O distinction to combine the reactive and generative system
types, yielding our notion of probabilistic I/O automata. Notice that we impose
I/O distinction not only on the action signature, but also on the transition
structure.

Definition 9.1.2. A probabilistic I/O automaton (PIOA) A is a tuple

〈SA, s0
A, IA, OA, HA, RA,GA〉

where:

1. SA is a set of states with initial state s0
A ∈ SA;

2. {IA, OA, HA} are pairwise disjoint subsets of Act, referred to as: input,
output and hidden actions, respectively;

3. RA is a reactive transition structure on 〈SA, IA〉 and GA is a generative
transition structure on 〈SA, OA ∪HA〉.

The automaton A is said to be closed if IA is empty and open otherwise. As
usual, input and output actions are visible, while output and hidden actions are
locally controlled. The union IA ∪ OA ∪ HA is often denoted by ActA. Notice
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that we omit the input enabling axiom of IOA (i.e., all inputs are accepted at
every state). This flexibility facilitates our introduction of switched PIOAs in
Chapter 10.

For simplicity, we will assume that SA is countable. Also we assume that
RA(〈s, a〉) and GA(s) are countable for all s ∈ SA and a ∈ IA.

9.1.1 Branches

Recall from Chapter 3 that a path in a probabilistic automaton is a possibly
infinite sequence of the form s0a1µ1s1 . . ., satisfying the obvious reachability
conditions. In the present development, paths are enriched with additional
information from the reactive and generative transition structures. They are also
given a new name: execution branches. This is in keeping with the terminology
of execution trees, which we introduce in Definition 9.3.3 below. To improve
readability, symbols appearing on a branch are separated by dots.

Definition 9.1.3. Let A be a PIOA and let s ∈ SA be given. We use joint re-
cursion to define the set of execution branches from s, denoted Bran(s), together
with the function last : Bran(s)→ SA.

– The length-one sequence containing s (written s) is in Bran(s) and is called
the empty branch. We define last(s) := s.

– For all r ∈ Bran(s), a ∈ IA, µ ∈ RA(〈last(r), a〉) and s′ ∈ Supp(µ), we
have r.a.µ.s′ ∈ Bran(s). Moreover, last(r.a.µ.s′) := s′.

– For all r ∈ Bran(s), f ∈ GA(last(r)) and 〈a, s′〉 ∈ Supp(f), we have
r.f.a.s′ ∈ Bran(s). Moreover, last(r.f.a.s′) := s′.

A branch r is said to be a one-step prefix of another branch r′, denoted r v1 r′,
if r′ if of the form r.a.µ.s′ or r.f.a.s′.

The trace of a branch r is defined in the usual way:

– tr(s) := ε,

– tr(r.a.µ.s′) := tr(r).a (in this case a ∈ IA), and

– tr(r.f.a.s′) is tr(r).a if a ∈ OA and tr(r) if a ∈ HA.

If r ∈ Bran(s0
A), it is said to be rooted. We also We write Bran(A) for Bran(s0

A).

Notice that execution branches are always finite, because Bran(s) is given by
a recursive definition. Also, since A has countable state space and transition
structure, we know that Bran(s) is countable.

An infinite branch from s is simply an infinite subset of Bran(s) that is linearly
ordered by the prefix ordering v on sequences. We write Bran≤ω(s) for the set
of finite and infinite branches from s. Similarly, Bran≤ω(A) := Bran≤ω(s0

A).
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Minimal Branches

Below we introduce an important class of branches: minimal branches. Minimal-
ity is important because distinct minimal branches with the same trace always
represent mutually exclusive events. When we consider branches that are not
necessarily minimal, distinct branches with the same trace may be prefix-related
(i.e., one event is strictly included in the other).

Definition 9.1.4. Let A be a PIOA and let s ∈ SA be given.

– A branch r ∈ Bran(s) is said to be minimal if every proper prefix of r in
Bran(s) has a strictly shorter trace. We write Branmin(s) for the set of
minimal branches in Bran(s) and Branmin(A) for Branmin(s0

A).

– For each α ∈ Act<ωA , let tr-1(α) denote the set {r ∈ Bran(A) | tr(r) = α}
and let tr-1

min(α) denote the set {r ∈ Branmin(A) | tr(r) = α}.

Notice, the empty branch s0
A is minimal. For non-empty r, it is minimal if and

only if its last action label is visible.

Reachability

It is often convenient to speak of reachability with non-zero probability, ab-
stracting way from the actual probability distributions. Given s, s′ ∈ SA and
a ∈ ActA, we say that s′ is reachable (in one step) from s via action a, denoted

s
a−→ s′, just in case:

– s.a.µ.s′ ∈ Bran(s) for some µ, or

– s.f.a.s′ ∈ Bran(s) for some f .

Similarly, a state s is reachable if there exists r ∈ Bran(A) such that last(r) = s.

9.1.2 Sub-Automata

Given two PIOAs A and B with the same action signature, one can speak
of A being a sub-automaton of B. Intuitively, it means A can be obtained
from B by removing certain states and/or transitions. This is made precise in
Definition 9.1.5 below.

Definition 9.1.5. Suppose A and B are PIOAs with the same action signature
{I, O,H}. We say that A is a sub-automaton of B, denoted A ⊆ B, if

– SA ⊆ SB and s0
A = s0

B ;

– for all s ∈ SA and a ∈ I , RA(〈s, a〉) ⊆ RB(〈s, a〉) and GA(s) ⊆GB(s).
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9.2 Composition of PIOAs

We start with the usual notion of compatibility: two PIOAs A and B are said
to be compatible if OA ∩ OB = ActA ∩HB = ActB ∩HA = ∅. In other words,
we have (i) A and B have pairwise disjoint sets of locally controlled actions,
and (ii) A may not synchronize with hidden actions of B and vice versa. These
conditions ensures that A and B are sufficiently independent. In the sequel, we
require that automata under parallel composition must be pairwise compatible.

9.2.1 Examples

Let us give some examples to illustrate how we intend to compose reactive and
generative transition structures. Consider automata A, B and C in Figure 9.3
and assume that action a is in the signatures of all three automata, while b is
in the signatures of B and C only.
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Figure 9.3: Automata A, B and C
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Figure 9.4: Parallel CompositeA‖B

First we consider A‖B. Here both A and B are reactive, therefore their com-
posite is constructed in a straightforward manner via synchronization of shared
actions. In particular, if input a is provided, then both A and B react and move
to corresponding new states. If, on the other hand, b is provided, then only B
reacts and A simply stutters (i.e., no transition takes place). This is illustrated
in Figure 9.4.

Next we add C to the parallel composition. Now the composite exhibits gen-
erative behavior, because both actions a and b are locally controlled by C. In
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A‖B‖C, these action each take place with probability 1
2 , just as in C. If a is

chosen, then all three components participate in the transition. Otherwise, b is
chosen and only B and C participate. This is illustrated in Figure 9.5.
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Figure 9.5: Parallel Composite A‖B‖C

Finally, we consider the case where two or more automata enable locally con-
trolled bundles. Figure 9.6 illustrates an automaton D with a single output
bundle labeled d. When C and D are composed, there is simply a nondetermin-
istic choice between the two bundles.
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Figure 9.6: Automata D and C‖D

Despite their simplicity, these examples demonstrate our basic idea of parallel
composition: in each step of the composite, at most one component behaves
actively, while all others react to the action performed by the active compo-
nent. Nondeterministic choices are used to model situations in which multiple
components exhibit generative behavior.

9.2.2 Composition

We continue with formal definitions. First recall from Chapter 2 the definition
of the product of a family of probability distributions.

Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs. For readability,
we replace all subscripts Ai with i. (The same convention will be adopted
throughout the rest of this thesis.) The parallel composite of {Ai | 1 ≤ i ≤ n},
denoted �ni=1 Ai, is the PIOA B with the following state space and action
signature:
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1. SB :=
∏n
i=1 Si with s0

B := 〈s0
1, . . . , s

0
n〉;

2. IB :=
⋃n
i=1 Ii \

⋃n
i=1 Oi, OB :=

⋃n
i=1Oi, and HB :=

⋃n
i=1 Hi;

The reactive transition structure RB and the generative transition structure
GB are given in Definition 9.2.1 and Definition 9.2.2, respectively.

Definition 9.2.1. Let ~s ∈ SB and a ∈ IB be given. We define RB(〈~s, a〉) ⊆
Disc(SB) to be the set of all discrete distributions of the form

∏n
i=1 µi for some

family ~µ ∈ ∏n
i=1 Disc(Si) satisfying:

– if a 6∈ Ii, then µi = Dirac(si);

– otherwise, µi ∈ Ri(〈si, a〉).

In other words, each process Ai stutters if the given input a is not in the sig-
nature of Ai. Otherwise, a distribution µi is selected nondeterministically from
Ri(〈si, a〉) and a state ti is selected randomly according to µi. A product con-
struction on state distributions µi then yields a typical member of RB(〈~s, a〉).
This reflects our assumption that processes evolve independently,

The definition of GB forB =�ni=1 Ai is slightly more complicated, where exactly
one component Bj is generative and all others are reactive.

Definition 9.2.2. Let ~s ∈ SB and 1 ≤ j ≤ n be given. Let Nj denote the index
set (OB ∪ HB) × {i | 1 ≤ i ≤ n, i 6= j}. Suppose we have a transition bundle
gj ∈ Gj(sj) and a family ~µ ∈ ∏〈a, i〉∈Nj Disc(Si) of state distributions so that:

for all 〈a, i〉 ∈ Nj ,

– if a 6∈ Ii, then µa,i = Dirac(si);

– otherwise, µa,i ∈ Ri(〈si, a〉).

Then gj and ~µ are said to generate the following distribution f on (OB ∪HB)×
SB : for all 〈a, ~t〉,

f(〈a, ~t〉) := gj(〈a, tj〉) ·
∏

i6=j
µa,i(ti).

With slight abuse of notation, we write f = gj ×
∏
〈a, i〉∈Nj µa,i.

We define Gj
B(~s) ⊆ Disc((OB ∪HB)×SB) to be the set of all bundles f so that

f is generated by some gj ∈ Gj(sj) and some ~µ ∈ ∏〈a, i〉∈Nj Disc(Si) satisfying

the conditions above. Then GB(~s) :=
⋃

1≤j≤n Gj
B(~s).

Here an active component Aj is selected, as well as a transition bundle gj locally
controlled by Aj . Both choices are nondeterministic. Once gj is specified, a
pair 〈a, tj〉 is chosen randomly according to gj . The other processes Ai either
stutter or react to the action performed by Aj , whichever dictated by their
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action signatures. Note that the choice of the family ~µ is nondeterministic and
is independent from the particular pair 〈a, tj〉 drawn from gj .

Lemma 9.2.1 below shows that the new bundles f constructed in Definition 9.2.2
are in fact well-defined discrete distributions.

Lemma 9.2.1. The bundle f in Definition 9.2.2 is well-defined.

Proof. We need to verify that f is a discrete distribution on (OB ∪HB)× SB .
First consider fixed a ∈ Oj ∪Hj . By the definition of f , we have

∑

~t∈SB

f(〈a, ~t〉) =
∑

t1∈S1

. . .
∑

tn∈Sn
gj(〈a, tj〉) ·

∏

i6=j
µa,i(ti).

We can rearrange the sums and factor out gj(〈a, tj〉) to obtain:

∑

tj∈Sj
gj(〈a, tj〉) · (

∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti)).

Since each µa,i is a discrete distribution on Si, an easy inductive argument shows
that ∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti) = 1.

Then we have
∑
~t∈SB f(〈a, ~t〉) =

∑
tj∈Sj gj(〈a, tj〉).

Now notice that f(〈a, ~t〉) = 0 whenever a 6∈ Oj ∪Hj . Therefore,

∑

〈a,~t〉∈(OB∪HB)×SB

f(〈a, ~t〉) =
∑

a∈Oj∪Hj

∑

~t∈SB

f(〈a, ~t〉)

=
∑

a∈Oj∪Hj

∑

tj∈Sj
gj(〈a, tj〉) calculation above

= 1 gj discrete distribution

Therefore f is a discrete distribution on (OB ∪HB)× SB .

This completes the definition of parallel composition for PIOAs. We write �n
for the n-ary composition operator and, when n = 2, we omit the superscript
and use infix notation. Due to symmetries in our definitions, it is easy to see
that � is commutative. We claim that � is also associative, because both
(A � B) � C and A � (B � C) are isomorphic to �3 {A,B,C}. We omit the
details.

Finally, we make a remark on synchronization deadlocks in parallel composi-
tion. These occur when two components can decide individually whether they
are willing to synchronize. For example, consider a case in which component A
sends a message to component B with probability p, but B accepts the mes-
sage with some probability q < 1. Then, with probability p(1 − q), there is a
communication failure.
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In the literature, one typically uses a normalization mechanism to collect and
redistribute deadlock probabilities. Here we are able to avoid this cumbersome
step, by imposing I/O distinction directly on the transition structures. The
definition of reactive structures (cf. Definition 9.1.1) enforces that every input
is either completely blocked (i.e., R(〈s, a〉) = ∅) or received with probability 1.

In practice, one may wish to add an input enabling axiom to uniformly disal-
low input blocking. This is done, for example, in Chapter 11 of the current
thesis. For generality of the underlying PIOA model, we have decided against
the inclusion of such an axiom. Indeed, in the switched PIOA model of Chap-
ter 10, input blocking is an intended feature of an active component (i.e., one
possessing the unique activity token).

9.2.3 Projection

In Chapter 2, we described projection operators for discrete distributions on a
product space. These extend immediately to projection operators for composite
transition bundles of Definitions 9.2.1.

Definition 9.2.3. Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs
and let B denote �ni=1 Ai. Let ~s ∈ SB , a ∈ IB and µ ∈ RB(~s, a) be given.
The jth-projection of µ is the discrete distribution projj(µ) on Si, as defined in
Chapter 2.

Using the same idea, we define projection on bundles given in Definition 9.2.2.
To avoid confusion, we write projL for the left projection in a binary Cartesian
product, instead of proj1.

Definition 9.2.4. Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs
and let B denote �ni=1 Ai. Let ~s ∈ SB and f ∈ GB(~s) be given. Let j
be the unique index such that projL(Supp(f)) ⊆ Oj ∪ Hj (equivalently, f ∈
Gj
B(~s)). The jth-projection of f , denoted projj(f), is the discrete distribution

on (Oj ∪Hj)× Sj given by:

projj(f)(〈a, t〉) :=
∑

~t∈SB : tj=t

f(〈a, ~t〉).

For every a ∈ projL(Supp(f)) and i 6= j, the 〈a, i〉th-projection of f , denoted
proja,i(f), is the discrete distribution on Si given by:

proja,i(f)(t) :=

∑
~t∈SB : ti=t, tj=u

f(〈a, ~t〉)
projj(f)(〈a, u〉) ,

where u is any state in Sj such that projj(f)(〈a, u〉) 6= 0.

Lemmas 9.2.2 and 9.2.3 below show that these projection operators are in fact
well-defined.
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Lemma 9.2.2. The distribution projj(f) in Definition 9.2.4 is well-defined and
is in Gj(sj).

Proof. By the definition of GB(~s), we may choose gj ∈ Gj(sj) such that f is
generated by gj . It suffices to show projj(f) = gj . Let 〈a, t〉 ∈ (Oj ∪Hj) × Sj
be given. By definition,

projj(f)(〈a, t〉) =
∑

~t∈SB : tj=t

f(〈a, ~t〉) =
∑

~t∈SB : tj=t

gj(〈a, tj〉) ·
∏

i6=j
µa,i(ti).

We can rearrange the sums and factor out gj(〈a, tj〉) to obtain:

projj(f)(〈a, t〉) = gj(〈a, t〉) · (
∑

t1∈S1

. . .
∑

tj−1∈Sj−1

∑

tj+1∈Sj+1

. . .
∑

tn∈Sn

∏

i6=j
µa,i(ti)).

Since every µa,i is a discrete distribution on Si, the second factor equals 1.
Hence projj(f)(〈a, t〉) = gj(〈a, t〉).

Lemma 9.2.3. The distribution proja,i(f) in Definition 9.2.4 is well-defined.
Also, if a ∈ Ii, then proja,i(f) ∈ Ri(〈si, a〉); otherwise, projai(f) = Dirac(si).

Proof. By the definition of GB(~s), we may choose µa,i ∈ Disc(Si) and gj ∈
Gj(sj) such that f is generated by µa,i and gj . It suffices to show proja,i(f) =
µa,i. Let t ∈ Si be given. By definition, proja,i(f)(t) equals

∑
~t∈SB : ti=t, tj=u

f(〈a, ~t〉)
projj(f)(〈a, u〉) =

∑
~t∈SB : ti=t, tj=u

(gj(〈a, tj〉) ·
∏
k 6=j µa,k(tk))

projj(f)(〈a, u〉) .

Factoring out gj(〈a, u〉) and µa,i(t), the numerator becomes

gj(〈a, u〉) · µa,i(t) ·
∑

~t∈SB : ti=t, tj=u

∏

k 6=i,j
µa,k(tk)).

Again the third factor is easily seen to be 1 and hence the numerator equals
gj(〈a, u〉)·µa,i(t). Moreover, we saw in the proof of Lemma 9.2.2 that projj(f) =
gj , therefore the denominator equals gj(〈a, u〉). Now we have

proja,i(f)(t) =
gj(〈a, u〉) · µa,i(t)

gj(〈a, u〉)
= µa,i(t).

Notice we haven’t used any additional assumption on u, therefore the equality
holds regardless of the choice of u.

Given these projection operators on transition bundles, it is straightforward to
define projection on execution branches.

Definition 9.2.5. Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible PIOAs
and let B denote �ni=1 Ai. Let ~s ∈ SB and 1 ≤ i ≤ n be given. We define,
recursively, the i-th projection operator on Bran(~s) as follows:
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– proji(〈s0
1, . . . , s

0
n〉) := s0

i ;

– proji(r.a.µ.~t) equals

• proji(r).a.proji(µ).ti, if a ∈ Ii;
• proji(r), otherwise;

– proji(r.f.a.~t) equals

• proji(r).proji(f).a.ti, if i is the unique index with projL(Supp(f)) ⊆
Oi ∪Hi;

• proji(r).a.proja,i(f).ti, if a ∈ Ii;
• proji(r), otherwise.

These projected branches are well-defined by virtue of Lemma 9.2.4 below.

Lemma 9.2.4. Let 1 ≤ i ≤ n be given. For all q ∈ Bran(~s), we have

1. proji(last(q)) = last(proji(q));

2. if q is r.a.µ.~t and a ∈ Ii, then proji(µ) ∈ Ri(〈last(proji(r)), a〉) and ti ∈
Supp(proji(µ));

3. if q is r.f.a.~t and a ∈ Oi ∪ Hi, then proji(f) ∈ Gi(last(proji(r))) and
〈a, ti〉 ∈ Supp(proji(f));

4. if q is r.f.a.~t and a ∈ Ii, then proja,i(f) ∈ Ri(〈last(proji(r)), a〉) and
ti ∈ Supp(proja,i(f));

Proof. We proceed by induction on the length of r. The base case is trivial.

Consider a branch of the form r.a.µ.~t and let ~u denote last(r). By the in-
duction hypothesis, we have proji(last(r)) = ui = last(proji(r)). Recall that
µ =

∏n
i=1 proji(µi). We have two cases.

– a ∈ Ii. Then by Definition 9.2.1 we have proji(µ) ∈ Ri(〈ui, a〉). Since ~t ∈
Supp(µ), it must be that ti ∈ Supp(proji(µ)). Moreover, proji(last(q)) =
ti = last(proji(q)).

– a 6∈ Ii. Then by Definition 9.2.1 we have proji(µ) = Dirac(ui). Since
~t ∈ Supp(µ), it must be that ti = ui. Therefore proji(last(q)) = ti = ui =
last(proji(r)) = last(proji(q)).

Now we consider a branch of the form r.f.a.~t. Again, let ~u denote last(r) and
we have proji(last(r)) = ui = last(proji(r)) by the induction hypothesis. By
Definition 9.2.2 we may choose unique j such that f = gj ×

∏
〈a, i〉∈Nj µa,i for

some gj ∈ Gj(uj) and family {µa,i}〈a, i〉∈Nj ∈
∏
〈a, i〉∈Nj Disc(Si). We have

three cases.
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– i = j. Then we have proji(f) = gi ∈ Gi(ui). Since 〈a, ~t〉 ∈ Supp(f), it
must be that 〈a, ti〉 ∈ Supp(gi) = Supp(proji(f)). Moreover,

proji(last(q)) = ti = last(proji(q)).

– i 6= j and a ∈ Ii. Then by Definition 9.2.2 we have proja,i(f) ∈ Ri(〈ui, a〉).
Since 〈a, ~t〉 ∈ Supp(f), it must be that ti ∈ Supp(proja,i(f)). Moreover,
proji(last(q)) = ti = last(proji(q)).

– i 6= j and a 6∈ Ii. Then by Definition 9.2.2 we have proja,i(f) = Dirac(ui).

Since 〈a, ~t〉 ∈ Supp(µ), it must be that ti = ui. Then proji(last(q)) = ti =
ui = last(proji(r)) = last(proji(q)).

9.3 Probabilistic Systems

As we saw in Chapter 8, history-dependent adversaries with full observational
power can produce problematic schedules in a parallel composition (Figure 8.2).
In Chapter 11, we will argue that such schedules are results of inconsistent mod-
eling and should be excluded from our semantics. To exclude these schedules
in a systematic manner, we pair each PIOA with a set of acceptable schedules,
forming a probabilistic system (Definition 9.3.2 below).

First, we make explicit the notion of schedules in an I/O setting. This is an
extension of the notion of adversaries described in Chapter 3.

Definition 9.3.1. Let A be a PIOA. An input scheduler σ for A is a partial
function

σ : Bran(A)× IA ⇀ Disc(SA)

such that: for all 〈r, a〉 ∈ Bran(A) × I , if σ(〈r, a〉) is defined, then it is in
RA(〈last(r), a〉). An output scheduler ρ for A is a partial function

ρ : Bran(A) ⇀ Disc((OA ∪HA)× SA)

such that: for all r ∈ Bran(A), if ρ(r) is defined, then it is in GA(last(r)). An
I/O scheduler for A is then a pair 〈σ, ρ〉 where σ is an input scheduler for A
and ρ is an output scheduler for A.

I/O schedulers remove certain types of non-deterministic choices in A. The
input scheduler σ specifies the reactive schedule: given a finite history r and
an input signal a that is not blocked in last(r), σ selects a distribution from
RA(〈last(r), a〉). Similarly, the output scheduler ρ specifies the generative sched-
ule: given a finite history r, ρ selects a bundle from GA(last(r)) if last(r) is not
quiescent.
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Notice that the output scheduler may stop all generative behavior by setting
ρ(r) to ⊥, even if GA(last(r)) is non-empty. Similarly, the input scheduler may
refuse an input a even if RA(〈last(r), a〉) is non-empty. Again, such freedom is
included here so that our underlying framework is as flexible as possible. De-
pending on one’s application, additional axioms may be imposed on the I/O
schedulers. For example, in Chapter 10 we require I/O schedulers to enable
all inputs while the automaton is in an inactive state (Definition 10.2.1); and
in Chapter 11 we require I/O schedulers to be determinant (Definition 11.3.1),
capturing the idea that actual implementations use deterministic input han-
dling policies. One could go even farther by requiring that I/O schedulers are
history-independent. Each such I/O scheduler corresponds to a deterministic
sub-automaton (cf. Definition 9.1.5) of the original automaton. This approach
is taken in [CCK+06b].

Using the notion of I/O schedulers, it is straightforward to define probabilistic
systems.

Definition 9.3.2. A probabilistic system A is a pair 〈A, S〉, where A is a PIOA
and S is a set of I/O schedulers for A. Such a system is full if S is the set of
all I/O schedulers for A.

In the rest of this section, we define the execution tree induced by a triple
〈A, σ, ρ〉. This is analogous to a probabilistic execution in the PA framework
(cf. Chapter 3).

Definition 9.3.3. Let A be a PIOA and let 〈σ, ρ〉 be an I/O scheduler for A.
The execution tree generated by 〈A, σ, ρ〉 is the function Qσ,ρ : Bran(A)→ [0, 1]
defined recursively by:

– Qσ,ρ(s
0
A) = 1;

– given r′ of the form r.a.µ.s′,

• Qσ,ρ(r
′) := Qσ,ρ(r) · µ(s′), if µ = σ(〈r, a〉);

• Qσ,ρ(r
′) := 0, otherwise;

– given r′ of the form r.f.a.s′,

• Qσ,ρ(r
′) := Qσ,ρ(r) · f(〈a, s′〉), if f = ρ(r);

• Qσ,ρ(r
′) := 0, otherwise.

We say that a branch r is reachable under 〈σ, ρ〉 if Qσ,ρ(r) 6= 0.

Note that the input scheduler σ is the empty function whenever A is closed.
In that case, we write Qρ for Qσ,ρ. We claim that Qρ induces a probability

space over the sample space ΩA := Bran≤ω(A). The construction is completely
standard, so we provide an outline below and refer the reader to, for example,
[Seg95b] for details.
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(i) Each r ∈ Bran(A) generates a cone of executions as follows: Cr := {r′ ∈
Bran≤ω(A) | r v r′}.

(ii) Let FA denote the smallest σ-field on ΩA generated by the collection
{Cr | r ∈ Bran(A)}.

(iii) Construct a (unique) probability measure mρ on FA such that mρ[Cr] =
Qρ(r) for all r in Bran(A).

In this way, Qρ gives rise to the probability space (ΩA,FA,mρ).

For an open PIOA, an execution tree does not always induce a probability
measure, because it does not take into account the probabilities with which
various inputs are provided by the environment. For example, if r′ is of the
form r.a.µ.s′, the value Qσ,ρ(r

′) is computed from Qσ,ρ(r) and µ(s′), neither
of which contains information about the probability of a being provided as an
input.

Under the right conditions, one can prove that execution trees for an open PIOA
induce sub-probability distributions that are conditional upon occurrences of in-
puts. For example, in the case of switched PIOAs of Chapter 10, every execution
tree Qσ,ρ restricts to a sub-probability distribution on tr-1(α) for any finite trace
α (Proposition 10.2.1). A similar claim is proven in Chapter 11 for execution
trees induced by determinate I/O schedulers (Proposition 11.3.1).

Overall, the notion of execution trees plays an important role in our technical
development. It gives great flexibility in manipulating open components, which
are typically part of a parallel composition forming a closed PIOA. In the end,
we are assured that any probabilistic statement about the final, closed composite
is meaningful; that is, it is based on a well-defined probability measure.
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Distributed Scheduling

This chapter presents the framework of switched probabilistic input/output au-
tomata (or switched PIOAs), augmenting the original PIOA framework with an
explicit control exchange mechanism. Using this mechanism, we model a net-
work of processes passing a single token among them, so that the location of this
token determines which process is scheduled to make the next move. This to-
ken structure therefore implements a distributed scheduling scheme: scheduling
decisions are always made by the (unique) active component.

Distributed scheduling allows us to draw a clear line between local and global
nondeterministic choices. We then require that local nondeterministic choices
are resolved using strictly local information. This eliminates problematic sched-
ules that arise under the more common centralized scheduling scheme (cf. Fig-
ures 8.1 and 8.2). As a result, we are able to prove that our trace-style semantics
is compositional.

10.0.1 Token Structure

We propose a composition mechanism where local scheduling decisions are based
on strictly local information, while global scheduling conflicts are eliminated
using a control-passage mechanism. Note that the term control is used here in
the spirit of “control flow” in sequential programming: a component is said to
possess the control of a system if it is scheduled to actively perform the next
action. This should not be confused with the notion of controllers for plants, as
in control theory.

Intuitively, we model a network of processes passing a single token among them,
with the property that a process enables a locally controlled transition (i.e.,
non-input) only if it possesses the token. Thus, the location of this unique
token determines which process is scheduled to make the next move. We call
this model switched probabilistic input/output automata (or switched PIOAs for
short). It augments the probabilistic input/output automata (PIOA) model of
Chapter 9 with additional structures and axioms for control exchange.

In particular, we add a predicate active on the set of states, indicating whether
an automaton is active or inactive. We require that locally controlled actions are

109
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enabled only if the automaton is active. In other words, an inactive automaton
must be quiescent and can only accept inputs from the environment.

This activity status can be changed only by performing special control input and
control output actions. Control inputs correspond to an incoming token, thus
switching the automaton from inactive mode to active mode. And vice versa
for control outputs. We make sure that all such control synchronizations are
“handshakes”: at most two components may participate in a transition labeled
by a control action. Together with an appropriate initialization condition, this
ensures that at most one component is active at any point of an execution.

In this framework, scheduling decisions are always made locally: each process
is equipped with a local scheduler, which has access to local history and is
responsible for resolving local non-deterministic choices. Among other things,
the local scheduler chooses when to give up the activity token and to whom
the token is sent. This is precisely the sense in which our scheduling scheme is
distributed : global scheduling is performed collectively by all local schedulers.
This scheme eliminates the need for adversaries such as the one in Figure 8.2
and allows us to give a compositional trace-style semantics (Definition 10.2.4
and Theorem 10.4.1).

10.0.2 Related Work

Distributed scheduling (as opposed to centralized scheduling) has been a main-
stream approach in the area of security analysis [BPW04b, Can01], where infor-
mation flow is a sensitive issue. Compared with the interactive Turing machines
of [Can01] and asynchronous reactive systems of [BPW04b], our framework pro-
vides much better modeling flexibility, as we allow local nondeterministic choices
to accommodate both lack of information and implementation freedom. How-
ever, we must admit this is an unfair comparison, because the two frameworks
mentioned above are highly specialized for computational reasonings in cryp-
tography.

10.0.3 From Distributed to Centralized

For those who may be skeptical of distributed scheduling, we argue that central-
ized scheduling can be implemented in our framework by modeling adversaries
explicitly via an arbiter automaton. In other words, processes do not exchange
control among each others directly, but they do so via the arbiter. This arbiter
observes the whole system by means of action synchronization and it makes
scheduling decisions according to its observations. Since the input signature of
such an arbiter is completely flexible, this gives us a convenient way to specify
what information is available for inter-component scheduling. This approach
will be further discussed in Section 10.5, where we define controllable PIOAs.



10.1 Switched PIOAs 111

10.1 Switched PIOAs

We now augment the PIOA model of Chapter 9 with additional structures and
axioms, yielding the notion of switched PIOAs. These changes implement the
token structure described in Section 10.0.1, which eliminates global scheduling
conflicts by ensuring that:

(i) at any point of an execution, at most one component is active;

(ii) the currently active component always selects the next active component.

We begin with a distinction between active and inactive states of an automaton.
Then we designate special control actions and impose five switch axioms, for-
malizing our intuitions about control passage among components. This yields
Definition 10.1.1 below. For technical simplicity, we assume that Act is parti-
tioned into two sets: BAct (basic actions) and CAct (control actions). Both sets
are assumed to be countably infinite.

Definition 10.1.1. A switched PIOA is given by a PIOA A, together with
a function activeA : SA → {0, 1} and a set SyncA ⊆ OA ∩ CAct of synchro-
nized control actions such that the following (universally quantified) axioms are
satisfied.

(S1) activeA(s) = 0 ⇒ . GA(s) = ∅ ∧ ∀a ∈ IA. RA(〈a, s〉) 6= ∅

(S2) activeA(s) = 1 ⇒ . ∀a ∈ IA. RA(〈a, s〉) = ∅

(S3) (s
a−→ s′ ∧ a ∈ IA ∩ CAct) ⇒ activeA(s′) = 1

(S4) (s
a−→ s′ ∧ a ∈ (OA ∩ CAct) \ SyncA) ⇒ activeA(s′) = 0

(S5) (s
a−→ s′ ∧ a ∈ BAct∪HA ∪ SyncA) ⇒ activeA(s) = activeA(s′)

To increase readability, we classify the action symbols of A as follows:

– BIA := IA ∩ BAct (basic inputs);

– BOA := OA ∩ BAct (basic outputs);

– CIA := IA ∩ CAct (control inputs);

– COA := (OA ∩ CAct) \ SyncA (control outputs).

Essentially, we have a partition {BIA,BOA, HA,CIA,COA, SyncA} of ActA. We
say that A is initially active if activeA(s0

A) = 1. Otherwise, it is initially inactive.

The first two axioms constrain the behavior of A based on its activity status.
Essentially, Axiom (S1) says that an inactive automaton is a reactive machine,
therefore all inactive states of A must be quiescent and satisfy the usual input
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enabling assumption. On the other hand, an active automaton is a genera-
tive machine, therefore Axiom (S2) requires all active states of A to be input
blocking.

The last three axioms specify how actions of various types change the activity
status of an automaton. Axioms (S3) and (S4) say that control inputs lead to
active states and control outputs to inactive states. Axiom (S5) says that no
other actions may change the activity status.

Together, these five axioms describe an “activity cycle” for the automaton A:

(i) while in inactive mode, A does not enable locally controlled transitions,
although it may still receive inputs from its environment;

(ii) when A receives a control input it moves into active mode, where it may
perform hidden or output transitions, possibly followed by a control out-
put;

(iii) via this control output A returns to inactive mode.

This is captured in Lemma 10.1.1 below.

Lemma 10.1.1. Let A be a switched PIOA and let s, s′ in SA and a ∈ ActA be
given. Suppose that s

a−→ s′.

1. If a ∈ BIA, then activeA(s) = activeA(s′) = 0.

2. If a ∈ CIA, then activeA(s) = 0 and activeA(s′) = 1.

3. If a ∈ BOA ∪HA ∪ SyncA, then activeA(s) = activeA(s′) = 1.

4. If a ∈ COA, then activeA(s) = 1 and activeA(s′) = 0.

Proof. For Item (1), note that a ∈ IA. By the definition of s
a−→ s′, we

may choose distribution µ ∈ RA(〈s, a〉) such that s′ ∈ Supp(µ). Therefore,
by Axiom (S2), we know that that activeA(s) = 0. Applying Axiom (S5) we
have activeA(s) = activeA(s′) = 0. Item (3) follows similarly from Axioms (S1)
and (S5).

For Item (2), we first use Axiom (S2) to argue that activeA(s) = 0. More-
over, Axiom (S3) implies activeA(s′) = 1. Item (4) follows similarly from Ax-
ioms (S1), (S4).

To give some concrete examples of switched PIOAs, we return to automata Early,
Late and Coin of Figure 8.1. Their adaptations to the switched PIOA framework
are illustrated in Figure 10.1 below. We have chosen to assign actions b and c
to the basic output signature of Early′ and Late′, whereas a, d and e are basic
outputs of Coin′. Following conventions in process algebra, we use ? to indicate
input actions and ! to indicate output actions.
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Figure 10.1: Adaptations of Early, Late and Coin

Due to the additional predicate active, the state spaces have been doubled.
Active states are drawn in the foreground and inactive ones in the background.
Thus, Early′ and Late′ are initially inactive and Coin′ is initially active.

Each two-headed arrow indicates a control output from active to inactive and
a control input from inactive to active. We assume that Early′ and Late′ have
a sole control input go and a sole control output done; and vice versa for Coin′.
For a clearer picture, we have omitted the names of control actions, as well as
non-essential input loops.

10.2 External Behavior

Observe that switched PIOAs are defined as a special class of PIOAs. Therefore
all of the technical notions developed in Chapter 9 can be inherited. The present
section uses I/O schedulers to define a semantics of external behavior, while
Section 10.3 deals with parallel composition.

First we impose an input enabling axiom on input schedulers for a switched
PIOA. This reflects our intention that an inactive automaton is reactive, thus
willing to accept all inputs in its signature. Switched probabilistic systems are
then defined accordingly.

Definition 10.2.1. Let A be a switched PIOA. An I/O scheduler for A is a
pair 〈σ, ρ〉 satisfying:

– 〈σ, ρ〉 is an I/O scheduler for A in the sense of Definition 9.3.1;

– for all 〈r, a〉 ∈ Bran(A)× IA, if activeA(last(r)) = 0, then σ(〈r, a〉) 6= ⊥.
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A switched probabilistic system A is a pair 〈A, S〉 where A is a switched PIOA
and S is a set of I/O schedulers for A as defined above. Such a system is full if
S is the set of all I/O scheduler for A.

10.2.1 Conditional Probability Distributions

Recall from Section 9.3 that each I/O scheduler 〈σ, ρ〉 for A induces an execution
tree Qσ,ρ : Bran(A) → [0, 1]. We also commented that an execution tree in an
open PIOA does not always induce a probability measure, because it does not
take into account input probabilities.

We now show that, in the case of switched PIOAs, one can in fact make mean-
ingful probabilistic statements based on execution trees, as long as these state-
ments are conditioned upon occurrences of inputs. This claim is formalized in
Proposition 10.2.1 below.

Proposition 10.2.1. Let A be a switched PIOA and let 〈σ, ρ〉 be an I/O sched-
uler for A. Let α ∈ (IA ∪ OA)<ω be given and assume that tr-1(α) in A is
nonempty. Then the restriction of Qσ,ρ to tr-1

min(α) is a discrete sub-probability
distribution.

The proof of Proposition 10.2.1 relies on some auxiliary lemmas. First we show
that every non-minimal branch ends in an active state. This is essentially a
corollary of Lemma 10.1.1.

Lemma 10.2.2. Let A be any switched PIOA and let s be a state in A. For
every non-minimal branch r in Bran(s), activeA(last(r)) = 1.

Proof. Since r is non-minimal, it must be non-empty and of the form q.f.a.t
where a ∈ HA. Then we have last(q)

a−→ t. By Lemma 10.1.1, we know that
activeA(last(r)) = activeA(t) = 1.

Extending Lemma 10.2.2, we show that inputs transitions are never preceded
by hidden transitions.

Lemma 10.2.3. Let A be any switched PIOA and let s be a state in A. Let
r, r′ ∈ Bran(s) be given and suppose r′ is of the form r.a.µ.s′. Then r is minimal.

Proof. By the structure of r′ we know that a ∈ IA. Lemma 10.1.1 guarantees
that activeA(last(r)) = 0. Thus, by Lemma 10.2.2, r must be minimal.

Next we consider the case in which an output action a takes place after a trace
α. Notice, this lemma applies to PIOAs in general.

Lemma 10.2.4. Let A be a PIOA and let 〈σ, ρ〉 be an I/O scheduler for A. Let
α ∈ (IA∪OA)<ω and a ∈ OA be given. Suppose that tr-1(αa) in A is nonempty.
The following holds for every r ∈ tr-1

min(α).
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(i) Let C denote the set of branches r′ ∈ tr-1(α) such that r v r′ v r′′ for
some r′′ ∈ tr-1

min(αa). For each k ∈ N, let Ck denote the set of r′ ∈ C such
that r′ extends r with k transitions. Then

∑
r′∈Ck

Qσ,ρ(r
′) ≤ Qσ,ρ(r).

(ii)
∑

r′′∈tr-1min(αa), rvr′′ Qσ,ρ(r
′′) ≤ Qσ,ρ(r).

Proof. Observe that all of the infinite sums above are countable, since the state
space and transition structures of A are countable.

We prove Item (i) by induction on k. The base case is trivial since r is the
unique element in C0. Consider r′′ ∈ Ck+1. Since the last transition in r′′ is a
hidden transition, r′′ must be of the form r′.f.b.s′′ where r′ ∈ Ck and b ∈ HA.
By the definition of Qσ,ρ, we know that Qσ,ρ(r

′′) 6= 0 implies f = ρ(r′) and
〈b, s′′〉 ∈ Supp(f). Therefore we have the following.

∑

r′′∈Ck+1

Qσ,ρ(r
′′)

=
∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
Qσ,ρ(r

′) · ρ(r′)(〈b, t〉)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
(Qσ,ρ(r

′) ·
∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
ρ(r′)(〈b, t〉))

≤
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · 1

≤
∑

r′∈Ck

Qσ,ρ(r
′)

By the induction hypothesis, this is at most Qσ,ρ(r).

We move on to Item (ii). By the definition of minimality, every r′′ ∈ tr-1
min(αa) is

of the from r′.f.a.s′′ with r′ ∈ Ck for some k. Again, by the definition of Qσ,ρ,
we have Qσ,ρ(r

′′) 6= 0 implies f = ρ(r) and 〈a, s′′〉 ∈ Supp(f). This implies:

∑

r′′∈tr-1min(αa), rvr′′
Qσ,ρ(r

′′)

=

∞∑

k=0

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉).

Therefore, it suffices to show that all partial sums are less than or equal to
Qσ,ρ(r). To save space, let Lr′ denote

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
ρ(r′)(〈a, s′′〉),

and let Mr′ denote
∑

{〈b, t〉∈Supp(ρ(r′)) | r′.ρ(r′).b.t∈Ck+1}
ρ(r′)(〈b, t〉)).
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For each k ∈ N, we have

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · Lr′

≤
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) · (1−Mr′)

=
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′)−
∑

{r′∈Ck | ρ(r′)6=⊥}
Qσ,ρ(r

′) ·Mr′

≤
∑

r′∈Ck

Qσ,ρ(r
′) −

∑

r′∈Ck+1

Qσ,ρ(r
′),

where the last inequality follows from the proof of Item (i). Now, for all K ∈ N,

K∑

k=0

∑

{r′∈Ck | ρ(r′)6=⊥}

∑

{s′′ | 〈a, s′′〉∈Supp(ρ(r′))}
Qσ,ρ(r

′) · ρ(r′)(〈a, s′′〉)

≤
K∑

k=0

(
∑

r′∈Ck

Qσ,ρ(r
′) −

∑

r′∈Ck+1

Qσ,ρ(r
′))

=
∑

r′∈C0

Qσ,ρ(r
′) −

∑

r′∈CK+1

Qσ,ρ(r
′))

≤
∑

r′∈C0

Qσ,ρ(r
′) = Qσ,ρ(r).

Proof of Proposition 10.2.1. We proceed by induction on the length of α. If α
is empty, then tr-1

min(α) contains a unique element, namely, s0
A. Our claim holds

because by definition Qσ,ρ(s
0
A) = 1.

Consider α′ of the form αa. We have two cases.

– a ∈ IA. Let r′ ∈ tr-1
min(α′) be given. By the definition of minimality, r′

must be of the form r.a.µ.s′. By Lemma 10.2.3, r is minimal and hence in
tr-1

min(α). Moreover, by the definition of Qσ,ρ, we know that Qσ,ρ(r
′) 6= 0
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implies µ = σ(〈r, a〉). Therefore,
∑

r′∈tr-1min(α′)

Qσ,ρ(r
′)

=
∑

{r∈tr-1min(α) | σ(〈r, a〉)6=⊥}

∑

s′∈Supp(σ(〈r, a〉))
Qσ,ρ(r) · σ(〈r, a〉)(s′)

=
∑

{r∈tr-1min(α) | σ(〈r, a〉)6=⊥}
(Qσ,ρ(r) ·

∑

s′∈Supp(σ(〈r, a〉))
σ(〈r, a〉)(s′))

≤
∑

{r∈tr-1min(α) | σ(〈r, a〉)6=⊥}
Qσ,ρ(r)

≤
∑

r∈tr-1min(α)

Qσ,ρ(r) ≤ 1,

where the last inequality follows from the induction hypothesis.

– a ∈ OA. By Lemma 10.2.4, we have
∑

r′∈tr-1min(α′)

Qσ,ρ(r
′) =

∑

r∈tr-1min(α)

∑

r′′∈tr-1min(αa), rvr′′
Qσ,ρ(r

′′)

≤
∑

r∈tr-1min(α)

Qσ,ρ(r) ≤ 1.

Again, the last inequality follows from the induction hypothesis.

10.2.2 Likelihood Assignments

we define a trace-style notion of external behavior for switched probabilistic sys-
tems. In particular, we derive a likelihood assignment from each triple 〈A, σ, ρ〉,
where A is a switched PIOA and 〈σ, ρ〉 is an I/O scheduler for A in the sense
of Definition 10.2.1. This is analogous to the notion of trace distributions for
probabilistic automata (cf. Chapter 3).

Likelihood assignments are behavioral abstractions of execution trees. Roughly
speaking, the probability of observing a certain trace α ∈ (IA ∪ OA)<ω is the
probability of the automaton executing any branch with trace α. This can be
computed by summing the probabilities of all such branches in the execution
tree. As we mentioned at the end of Section 9.3, execution trees of open PIOAs
need not always induce probability measures. That is the reason we opt for
the term “likelihood”, rather than “probability”. Nonetheless, the method of
abstraction is completely analogous.

Likelihood assignments are defined via a lifting of the trace operator

tr : Bran(A)→ (IA ∪OA)<ω.
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Definition 10.2.2. Let A be a switched PIOA and let 〈σ, ρ〉 be an I/O sched-
uler for A in the sense of Definition 10.2.1. The likelihood assignment induced
by 〈A, σ, ρ〉, denoted Lσ,ρ, is the function tr(Qσ,ρ) : (IA ∪OA)<ω → [0, 1] given
as follows.

tr(Qσ,ρ)(α) :=
∑

r∈tr-1min(α)

Qσ,ρ(r).

This is well-defined by virtue of Proposition 10.2.1.

As with execution trees, we omit the input scheduler σ whenever A is closed.
In that case, each Lρ induces a probability measure on the sample space Ω :=
(IA ∪ OA)≤ω. The σ-field F on Ω is generated by the collection {Cα | α ∈
(IA ∪ OA)<ω}, where Cα := {α′ ∈ Ω | α v α′}. The measure mρ on F is
uniquely determined by the equations mρ[Cα] = Lρ(α) for all α ∈ (IA∪OA)<ω.

Thus, our notion of likelihood assignments generalizes the notion of trace distri-
butions proposed by Segala (cf. Chapter 3 of the present thesis and [Seg95b]).
This is analogous to the relationship between execution trees and probabilistic
executions.

Since probabilistic executions and trace distributions are not well-defined in
the presence of inputs, we have traditionally relied on closing contexts in order
to define the behavior of open automata [CLSV04a, CLSV04b]. Under that
approach, a possible behavior of an open automaton A is a trace distribution of
A‖C, where C is any closing context forA (i.e., C is compatible with A and every
input action of A is an output of C). This cumbersome step often complicates
our proofs of behavioral inclusion, obscuring ideas that are more fundamental.
For example, a hiding operator is used to remove extra output actions in a
closing context C (i.e., those that are not inputs to A), and we needed to prove
that such hiding is well-behaved with respect to parallel composition.

In contrast, there is no need to quantify over closing contexts under the cur-
rent setup, because execution trees and likelihood assignments are well-defined
for open automata. The quantification is implicit in our definitions, since an
execution tree can be seen as a collection of conditional sub-probability distri-
butions (cf. Proposition 10.2.1). This leads to a very simple and natural notion
of external behavior.

Definition 10.2.3. Let A = 〈A, S〉 be a switched probabilistic system. An
external behavior of A is a likelihood assignment Lσ,ρ induced by some 〈σ, ρ〉 ∈
S. We write ExtBeh(A) for the set of all external behaviors of A.

As usual, implementation is given by behavioral inclusion.

Definition 10.2.4. Switched probabilistic systems A = 〈A, S〉 and B = 〈B, T 〉
are said to be comparable if:

– activeA(s0
A) = activeB(s0

B) and

– IA = IB , OA = OB , and SyncA = SyncB .
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Given such comparable A and B, we say that A implements B if ExtBeh(A) ⊆
ExtBeh(B).

This concludes our treatment of external behavior for switched PIOAs. In the
next section, we consider parallel composition of switched PIOAs.

10.3 Parallel Composition

Recall from Section 9.2 the definition of parallel composition for PIOAs. It
is based on action synchronization and does not attempt to resolve nondeter-
ministic choices among parallel components. In the present section, we extend
that definition to switched PIOAs, taking care that the parallel composite still
satisfies all switch axioms.

Then, departing from the “compose-and-schedule” approach (cf. Section 8.3),
we describe how to compose I/O schedulers for compatible switched PIOAs to
form a single I/O scheduler for their composite. This in turn yields parallel
composition for switched probabilistic systems. Thus, our approach can be
described as “schedule-and-compose”, where parallel composition is imposed
after local schedules have been completely specified.

10.3.1 Composing Switched PIOAs

As usual, we need an appropriate notion of compatibility: switched PIOAs A
and B are said to be compatible if

– they are compatible as PIOAs;

– ActA ∩ SyncB = ActB ∩ SyncA = CIA ∩CIB = ∅;
– at most one of them is initially active.

Since switched PIOAs are special cases of PIOAs, one may apply the operator
� of Section 9.2 to compatible switched PIOAs. Unfortunately, the result does
not always satisfy all switch axioms. We give a simple example.

Example 10.3.1. Consider automataD and E in Figure 10.2 below and assume
that all actions shown are control actions.

If from the initial state the composite D � E receives an input signal a, then D
moves into an active state, s1, and E remains at its initial state. This is shown in
Figure 10.3. In state 〈s1, s

0
E〉, the composite is considered active, because D is.

However, an input transition with label b is still enabled, violating Axiom (S2).
Moreover, suppose in fact an input signal b is received from state 〈s1, s

0
E〉.

Then in the resulting state 〈s1, s2〉 both D and E are active. This state violates
Axiom (S4), because a single control output (say c) is not sufficient to deactivate
both components (Figure 10.3).
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s0
D

D

a?

55 s1

c!tt
GF ED@A BC s0

E

E

b?

55 s2

d!tt
GF ED@A BC

Figure 10.2: Automata D and E

〈s0
D , s

0
E〉

a? // 〈s1, s
0
E〉

b? // 〈s1, s2〉 c! // 〈s0
D , s2〉

Figure 10.3: A Potential Execution of D � E

This is a counterintuitive scenario: if the environment of D � E is itself a
switched PIOA, then it should have become inactive after providing the first
control input a, thus unable to provide the second control input b. In fact, it
is shown in [CLSV04b] that any state with more than one active components is
unreachable, provided the closing environment is also a switched PIOA. (The
proof involves lengthy inductive arguments and is omitted here.)

This example suggests that, when switched PIOAs are composed using the PIOA
parallel operator �, the resulting state space and reactive transition structure
both contain too many elements. Therefore, we are prompted to consider an
appropriate sub-automaton with fewer states and fewer input transitions, as in
Definition 10.3.1 below.

Definition 10.3.1. Let {Ai | i ∈ I} be a set of pairwise compatible switched
PIOAs. The parallel composite, ‖ni=1 Ai, is based on the sub-automaton B of
�ni=1 Ai obtained by

(i) removing all states in which more than one Ai’s are active;

(ii) removing all input transitions from states in which at least one Si is active.

Moreover, SyncB :=
⋃

1≤i≤n Synci ∪
⋃

1≤i,j≤n(CIi ∩COj), and activeB(~s) := 0 if
and only if activei(si) = 0 for all i.

Although the signature of B is completely specified in Definition 10.3.1, it is
instructive to provide a list of explicit identities.

Lemma 10.3.1. The following equalities hold:

– BIB =
⋃

1≤i≤n BIi \
⋃

1≤i≤n BOi;

– CIB =
⋃

1≤i≤n CIi \
⋃

1≤i≤n COi;
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– BOB =
⋃

1≤i≤n BOi;

– COB =
⋃

1≤i≤n COi \
⋃

1≤i≤n CIi.

Proof. By definition, IB =
⋃

1≤i≤n Ii \
⋃

1≤i≤n Oi. Since BAct and CAct are
disjoint, we have the desired properties about BIB and CIB .

Similarly, OB =
⋃

1≤i≤n Oi, therefore BOB =
⋃

1≤i≤n BOi and OB ∩ CAct =⋃
1≤i≤n COi. Applying the definitions of COB and SyncB , we have

COB =
⋃

1≤i≤n COi \
⋃

1≤i≤n CIi.

To show that such B is a well-defined PIOA, we need to verify (i) s0
B ∈ SB

and (ii) SB is closed under the reduced transition structures. Clearly, the first
claim holds by the definition of compatibility. The second is confirmed by
Lemmas 10.3.2 and 10.3.3 below.

For convenience, we partition SB into two sets:

– SB,0 is the set of all ~s such that activei(si) = 0 for all i;

– SB,1 is the set of all ~s such that activei(si) = 1 for exactly one i.

Lemma 10.3.2. Let ~s ∈ SB and a ∈ IB be given. For all µ ∈ RB(〈~s, a〉):

– a ∈ BIB implies Supp(µ) ⊆ SB,0;

– a ∈ CIB implies Supp(µ) ⊆ SB,1.

Proof. By definition, RB(〈~s, a〉) is empty whenever ~s ∈ SB,1. Therefore we may
assume that ~s ∈ SB,0. Let µ ∈ RB(〈~s, a〉) and ~s ′ ∈ Supp(µ) be given.

First assume a ∈ BIB . For every i, if a 6∈ Acti, it must be the case that si = s′i
and hence activei(si) = activei(s

′
i) = 0. Otherwise, we have a ∈ BIi and we may

apply Lemma 10.1.1 to conclude that activei(s
′
i) = 0. Therefore ~s ′ ∈ SB,0.

Now assume a ∈ CIB . By compatibility, a ∈ Actj for exactly one j. Choose
such j. By Lemma 10.1.1, we know activej(s

′
j) = 1. For all other i, a 6∈ Acti

and hence activei(si) = activei(s
′
i) = 0. This proves ~s ′ ∈ SB,1.

Lemma 10.3.3. Let ~s ∈ SB and f ∈ GB(~s) be given. For every 〈a, ~s ′〉 ∈
Supp(f);

– If a ∈ BOB ∪ SyncB ∪HB , then ~s ′ ∈ SB,1;

– If a ∈ COB, then ~s ′ ∈ SB,0.

Proof. By Axiom (1), we know that Gi(si) is empty for every i with activei(si) =
0. This implies s ∈ SB,1, because otherwise GB(~s) would be empty. Let j be
the unique index with activej(sj) = 1 and choose gj ∈ Gj(sj) such that f is
generated by gj . By Definition 9.2.2, a must be in Oj ∪ Hj . We have the
following cases.
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1. a ∈ Hj ∪ Syncj . Compatibility of switched PIOAs requires that a 6∈ Acti
for all i 6= j. This implies, for all i 6= j, si = s′i and hence activei(s

′
i) =

activei(si) = 0. On the other hand, we may apply Lemma 10.1.1 to Aj
and conclude that activei(s

′
j) = activei(sj) = 1. Therefore, ~s ′ ∈ SB,1.

2. a ∈ BOj . For every i such that a 6∈ Acti, we know that si = s′i and hence
activei(si) = activei(s

′
i) = 0. For every i such that i 6= j and a ∈ Acti,

it must be the case that a ∈ BIi, so we apply Lemma 10.1.1 to conclude
that activei(s

′
i) = 0. As in the previous case, we know activei(s

′
j) = 1.

Therefore, ~s ′ ∈ SB,1.

3. a ∈ COj ∩CIk for some k 6= j. By Lemma 10.1.1, we have activej(s
′
j) = 0

and activek(s′k) = 1. By the compatibility of switched PIOAs, there is
at most one such k. For all other indices i, activei(si) = activei(s

′
i) = 0.

Again we conclude ~s ′ ∈ SB,1.

4. a ∈ COB . By the definition of COB , we know that a 6∈ Acti for all i 6= j.
Hence activei(si) = activei(s

′
i) = 0 for all i 6= j. By Lemma 10.1.1, we

have activej(s
′
j) = 0. Thus, ~s ′ ∈ SB,0.

It remains to show that B satisfies all switch axioms.

Lemma 10.3.4. The PIOA B, together with activeB and SyncB, satisfies Ax-
ioms (S1) through (S5) in Definition 10.1.1.

Proof. Note that activeB(~s) = 0 if and only if ~s = SB,0. For Axiom (S1), let
~s ∈ SB,0 and a ∈ IB be given. Applying Axiom (S1) on each component, we
know that Gi(si) is empty for every i with activei(si) = 0 and hence GB(~s) = ∅.
On the other hand, for all i with a ∈ Ii, Axiom (S2) requires Ri(〈si, a〉) is non-
empty. Hence RB(〈~s, a〉) is non-empty. This proves that B satisfies Axiom (S1).

Axiom (S2) follows from the definition of RB . Axioms (S3) through (S5) follow
from Lemmas 10.3.2 and 10.3.3.

We adopt the same notational conventions as with �. Namely, ‖n denotes the
n-ary operator and ‖ denotes the (infix) binary operator. Again commutativity
is trivial. For associativity, it is easy to see that (A ‖ B) ‖ C has the same state
space as ‖3 {A,B,C}. Similarly for A ‖ (B ‖ C). The transition structures are
isomorphic because they are based on parallel composition of PIOAs, which is
associative.

10.3.2 Composing I/O Schedulers

The goal of this section is to extend the parallel operator ‖ to switched proba-
bilistic systems, therefore we consider composition of I/O schedulers. For that
end, we use the various notions of projection defined in Chapter 9 (Section 9.2).
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Definition 10.3.2. Let {Ai | 1 ≤ i ≤ n} be a set of pairwise compatible
switched PIOAs and let B denote ‖ni=1 Ai. Suppose we have, for each i, an
I/O scheduler 〈σi, ρi〉 for Ai. These I/O schedulers are said to generate the
following I/O scheduler 〈σ, ρ〉 for B. Let r ∈ Bran(B) be given and let ~s denote
last(r).

– If activeB(~s) = 1, then σ(〈r, a〉) := ⊥ for all a ∈ IB .

– If activeB(~s) = 0, then for all a ∈ IB , σ(〈r, a〉) :=
∏n
i=1 µi, where µi equals

Dirac(si) whenever a 6∈ Ii and σi(〈proji(r), a〉) otherwise.

– If activeB(~s) = 0, then ρ(r) := ⊥.

– If activeB(~s) = 1, then ρ(r) 6= ⊥ if and only ρj(projj(r)) 6= ⊥, where j
is the unique index with activej(sj) = 1. In that case, ρ(r) is the bundle
f = ρj(projj(r)) ×

∏
〈a, i〉∈Nj µa,i, where µa,i equals Dirac(si) whenever

a 6∈ Ii and σi(〈proji(r), a〉) otherwise.

Lemma 10.3.5. The I/O scheduler 〈σ, ρ〉 in Definition 10.3.2 is well-defined.

Proof. Let r ∈ Bran(B) and a ∈ IB be given. Let ~s denote last(r). First
we consider the case where RB(〈last(r), a〉) is non-empty. Since B satisfies
Axiom (S2), it must be the case that activeB(~s) = 0 and hence activei(si) = 0
for all i.

By Axiom (S1), Ri(〈si, a〉) is non-empty for all a ∈ Ii. By the definition of
input schedulers, this implies σi(〈proji(r), a〉) is defined and is in Ri(〈si, a〉).
By the definition of RB , we have that

∏n
i=1 µi is in RB(〈~s, a〉). This proves

that σ(〈r, a〉) is in RB(〈last(r), a〉) whenever RB(〈last(r), a〉) is non-empty.

Now assume that RB(〈last(r), a〉) is empty. By Axiom (S1), we may conclude
that activeB(~s) = 1, in which case σ(〈r, a〉) is by definition undefined for all
a ∈ IB . This completes the proof that σ is a well-defined input scheduler for B.

For the output scheduler ρ, we need to show that ρ(r) ∈ GB(last(r)) whenever
ρ(r) is defined. Therefore, we may focus on the case in which activeB(~s) = 1.
By the definition of SB , there is in fact unique j with activej(sj) = 1. Assume
without loss that ρj(projj(r)) is defined. By the definition of output schedulers,
ρj(projj(r)) ∈ Gj(sj).

Moreover, we know that activei(si) = 0 for all i 6= j. Fix a ∈ OB ∪ HB and
i 6= j. By Axiom (S1), Ri(〈si, a〉) is non-empty whenever a ∈ Ii. This implies
that σi(〈proji(r), a〉) is defined and is in Ri(〈si, a〉). Therefore, the family
{µa,i}〈a, i〉∈Nj satisfies the conditions in Definition 9.2.2 and thus the bundle f
generated by ρj(projj(r)) and {µa,i}〈a, i〉∈Nj is in GB(last(r)). This completes
the proof that ρ is a well-defined input scheduler for B.

Notice that Definition 10.3.2 and the proof of Lemma 10.3.5 rely on the defini-
tion of ‖ and switch axioms, therefore they do not apply to PIOAs in general.
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Roughly speaking, the parallel composition mechanism for PIOAs does not at-
tempt to resolve global non-determinism, therefore it is not possible to combine
two local schedules to form a single global schedule. The token structure of
switched PIOAs serves precisely the purpose of eliminating such global non-
determinism.

Definition 10.3.2 induces to a very natural notion of composition for switched
probabilistic systems.

Definition 10.3.3. Let {Ai | 1 ≤ i ≤ n} be a set of probabilistic systems where
Ai = 〈Ai, Si〉 and {Ai | 1 ≤ i ≤ n} are pairwise compatible switched PIOAs.
The parallel composite, denoted ‖ni=1 Ai, is the probabilistic system B = 〈B, T 〉
defined as follows:

– the underlying switched PIOA is B =‖ni=1 Ai;

– the set T of I/O schedulers contains precisely those 〈σ, ρ〉 generated by
some family {〈σi, ρi〉}1≤i≤n ∈

∏n
i=1 Si.

Again, we adopt notational conventions as in the case of ‖ for switched PIOAs.
Commutativity and associativity follow similarly.

Before ending this section, let us briefly revisit automata Early′, Late′ and Coin′

of Figure 10.1. Consider the full probabilistic systems induced by these au-
tomata (i.e., each automaton is paired with all possible local I/O schedulers).
We claim that, when Late′ and Coin′ are composed using Definition 10.3.3, it is
no longer possible to obtain the schedule depicted in Figure 8.2. This is because
the local I/O scheduler of Late′ must choose between b and c without “knowing”
the random outcome in Coin′. Extending this intuition, it is not hard to show
that Early′ ‖ Coin′ and Late′ ‖ Coin′ are equivalent in our external behavior
semantics.

10.4 Compositionality

We proceed to state and prove our main theorem: the external behavior seman-
tics for switched probabilistic systems (Definition 10.2.3) is compositional with
respect to the composition operator introduced in Definition 10.3.3.

Theorem 10.4.1. Let A = 〈A, S〉, C = 〈C, U〉 and D = 〈D, V〉 be switched
probabilistic systems. Assume that A and D are comparable and ExtBeh(A) ⊆
ExtBeh(D). Moreover, assume that C is compatible with both A and D. Then
ExtBeh(A ‖ C) ⊆ ExtBeh(D ‖ C).

To prove this theorem, we need quite a few auxiliary results. Recall from Defini-
tion 10.2.2 that likelihood assignments are defined in terms of minimal execution
branches. We will start with a pasting result on minimal branches in a parallel
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composite (Section 10.4.1, Lemma 10.4.4). Then, in Section 10.4.2, we con-
sider pasting results for execution trees and likelihood assignments. That lays
sufficient ground for the proof of Theorem 10.4.1 in Section 10.4.3.

Throughout the rest of this section, let A1 and A2 be compatible switched
PIOAs and define B := A1 ‖ A2. Moreover, let 〈σ1, ρ1〉 and 〈σ2, ρ2〉 be I/O
schedulers for A1 and A2, respectively, and let 〈σ, ρ〉 denote the I/O scheduler
for B generated by 〈σ1, ρ1〉 and 〈σ2, ρ2〉 (cf. Definition 10.3.2).

10.4.1 Minimal Execution Branches

Lemma 10.4.2 below says, when we project a minimal branch in B onto one of its
components, the result is always minimal. Lemma 10.4.3 states that, given r1 ∈
Branmin(A1) and r2 ∈ Branmin(A2) with matching traces, we can “zip” them
together in a unique way to form a minimal branch in B. Finally, Lemma 10.4.4
states that, given a fixed trace α, there is a bijective correspondence between

– tr-1
min(α) in B and

– the Cartesian product of tr-1
min(proj1(α)) in A1 and tr-1

min(proj2(α)) in A2.

Lemma 10.4.2. For every minimal branch r in Bran(B), both proj1(r) and
proj2(r) are minimal.

Proof. Without loss of generality, we consider only proj1(r). Recall that empty
branches are always minimal, so we may focus on non-empty branches.

Consider a minimal branch of the form r.a.µ.~t and let ~s denote last(r). Notice
that, a must be in IB , hence in I1 ∪ I2. There are two cases:

– a ∈ I1. Then proj1(r.a.µ.~t) = proj1(r).a.proj1(µ).t1, which is minimal
because a is visible.

– a 6∈ I1. Then proj1(r.a.µ.~t) = proj1(r). Note that µ ∈ RB(〈~s, a〉).
Therefore, by Axiom (2), we know that activeB(~s) = 0. This implies
active1(last(proj1(r))) = active1(s1) = 0. Therefore by Lemma 10.2.2 we
know proj1(r) is minimal.

Now we consider a minimal branch of the form r.f.a.~t and again let ~s denote
last(r). In this case, a must be in OB , hence in O1 ∪ O2. Here we have three
cases.

– a ∈ O1. Then proj1(r.f.a.~t) = proj1(r).proj1(f).a.t1, which is minimal
because a is visible.

– a ∈ I1. Then proj1(r.f.a.~t) = proj1(r).a.proja,1(f).t1, which is minimal
because a is visible.
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– a 6∈ I1. Then proj1(r.f.a.~t) = proj1(r). Moreover, note that f must be
generated by some g2 ∈ G2(s2). Therefore, by Axiom (2), we know that
active2(s2) = 1. By the definition of SB , we have active1(last(proj1(r))) =
active1(s1) = 0. Again, by Lemma 10.2.2, we know proj1(r) is minimal.

Lemma 10.4.3. Let α ∈ (IB ∪ OB)<ω be given. Let p be a minimal branch of
A1 such that tr(p) = proj1(α). Similarly for q in A2. There is a unique minimal
branch r of B such that proj1(r) = p, proj2(r) = q, and tr(r) = α.

Proof. We proceed by induction on the length of α. If α is empty, then, by
minimality, p and q are both empty. Take r to be the empty branch in B.

Consider αa. Let p′ be a minimal branch of A1 with trace proj1(αa) and let p
denote the unique minimal prefix of p′ with trace proj1(α). Similarly for q v q′
in A2. By induction hypothesis, choose a unique minimal branch r such that
proj1(r) = p, proj2(r) = q, and tr(r) = α.

First assume that a is in O1 ∪H1. We have two cases.

– a 6∈ I2. Then proj2(α) = proj2(αa). Therefore q = q′ and we take r′ to be
the unique extension of r in which A follows p′ and B idles after q.

– a ∈ I2. Then q′ ends with an a-transition. Let q0 be the one-step pre-
fix of q′. By Lemma 10.1.1, we know that active2(last(q0)) = 0. By
Lemma 10.2.2, q0 is minimal and hence coincides with q. Take r′ to be
the unique extension of r, in which A1 follows p′ and A2 idles after r until
the last step (i.e., the a-step).

The case in which a is locally controlled by A2 is symmetric. It remains to
consider the case where a is an input of B. Again, if a is not in the signature of
A1, then p = p′; otherwise, a ∈ I1 and we apply Lemma 10.1.1 and Lemma 10.2.2
to conclude that p is the one-step prefix of p′. Similarly for q and q′. Take r′

to be the unique (one-step) extension of r in which 1. Ai takes an a-step after
r, if a ∈ Ii; 2. Ai idles after r otherwise;

Lemma 10.4.4. Let X denote tr-1
min(α) in B. Moreover, let Y and Z denote

tr-1
min(proj1(α)) in A1 and tr-1

min(proj2(α)) in A2, respectively. There exists an
isomorphism zip : Y × Z → X whose inverse is 〈proj1, proj2〉.

Proof. By Lemma 10.4.2 and Lemma 10.4.3.

10.4.2 Execution Trees and Likelihood Assignments

For the rest of this section, let Q,Q1 and Q2 be abbreviations for Qσ,ρ,Qσ1,ρ1

and Qσ2,ρ2
, respectively. Similarly for L,L1 and L2. Lemma 10.4.5 below
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says an execution tree of the parallel composite can be obtained as a pointwise
product of the execution trees of the components. Lemma 10.4.6 then combines
Lemma 10.4.4 and Lemma 10.4.5 to show the analogous result for likelihood
assignments.

Lemma 10.4.5. For every r in Bran(B), we have

Q(r) = Q1(proj1(p)) ·Q2(proj2(p)).

Proof. If r is empty, Q(r) = 1 = Q1(proj1(r)) ·Q2(proj2(r)).

Consider r′ = r.a.µ.~t and let ~s denote last(r). By Definition 9.2.1, µ is of the
form µ1 × µ2, where µi = Dirac(si) whenever a 6∈ Ii. Define ci to be 0 if a ∈ Ii
but µi 6= σi(〈proji(r), a〉). Otherwise, ci is 1. Then we have

Q(r′) = Q(r) · µ(~t) · c1 · c2 definitions σ,Q

= Q1(proj1(r)) ·Q2(proj2(r)) · c1 · µ1(t1) · c2 · µ2(t2) I.H.

= Q1(proj1(r′)) ·Q2(proj2(r′)) definitions Q1,Q2

Next we consider r′ = r.f.a.~t and also let ~s denote last(r). Without loss of
generality, assume that f is generated by some g1 and {µb,2}〈b, 2〉∈N1

. Notice
that, if b 6∈ I2, then µb,2 must be Dirac(s2).

Now define c1 to be 0 if g1 6= ρ1(proj1(r)) and 1 otherwise. Similarly, define c2

to be 0 if a ∈ I2 but µa,2 6= σ2(〈proj2(r), a〉). Otherwise, c2 is 1. Similar to the
previous case, we have

Q(r′)

= Q(r) · f(〈a, ~t〉) · c1 · c2 definitions ρ,Q

= Q1(proj1(r)) ·Q2(proj2(r))

· c1 · g1(〈a, t1〉) · c2 · µa,2(t2) definition f and I.H.

= Q1(proj1(r′)) ·Q2(proj2(r′)) definitions Q1,Q2

Lemma 10.4.6. Let α ∈ (IB ∪ OB)<ω be given. We have

L(α) = L1(proj1(α)) · L2(proj2(α)).

Proof. Let X denote tr-1
min(α) in B. Let Y and Z denote tr-1

min(proj1(α)) in A1
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and tr-1
min(proj2(α)) in A2, respectively. We have

L(α) =
∑

r∈X
Q(r) definition L

=
∑

r∈X
Q1(proj1(r)) ·Q2(proj2(r)) Lemma 10.4.5

=
∑

p∈Y,q∈Z
Q1(p) ·Q2(q) Lemma 10.4.4

= (
∑

p∈Y
Q1(p)) · (

∑

q∈Z
Q2(q)) factorization

= L1(proj1(α)) · L2(proj2(α)). definition L1 and L2

10.4.3 Main Proof

Proof of Theorem 10.4.1. First note that, if A and D are comparable and C is
compatible with both A and D, then A ‖ C is comparable to D ‖ C.
Let L ∈ ExtBeh(A ‖ C) be given. We need to show that L is also in ExtBeh(D ‖
C). Let 〈σ, ρ〉 be an I/O scheduler for A ‖ C such that L = tr(Qσ,ρ). By
the definition of ‖ for probabilistic systems, we may choose 〈σA, ρA〉 ∈ S and
〈σC , ρC〉 ∈ U so that they generate 〈σ, ρ〉. Let LA and LC denote tr(QσA,ρA)
and tr(QσC ,ρC ), respectively.

On the other hand, we know that LA ∈ ExtBeh(A) ⊆ ExtBeh(D). Therefore,
we may choose 〈σD , ρD〉 ∈ V such that LD := tr(QσD ,ρD ) = LA. Let 〈σ′, ρ′〉
denote the I/O scheduler generated by 〈σD , ρD〉 and 〈σC , ρC〉 and write L′ for
tr(Qσ′,ρ′).

Now, let I denote IA‖C = ID‖C and O denote OA‖C = OD‖C . Applying
Lemma 10.4.6, we have, for all α ∈ (I ∪ O)<ω ,

L(α) = LA(projA(α)) · LC(projC(α)).

Since A and D have the same external signature, we know that projA(α) =
projD(α). Moreover, by the choice of 〈σD , ρD〉, we have LA = LD. Hence
LA(projA(α)) = LD(projD(α)).

Applying Lemma 10.4.6 again, we have

L(α) = LA(projA(α)) · LC(projC(α)) = LD(projD(α)) · LC(projC(α)) = L′(α).

This proves that L = L′ ∈ ExtBeh(D ‖ C).
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10.5 Centralized Scheduling with Arbiters

Our switched PIOA framework implements a distributed scheduling scheme:
components rely on a token structure to avoid conflicts and scheduling deci-
sions are always made by the (unique) active component. Some may argue that
such a scheduling scheme does not realistically represent situations such as asyn-
chronous message passing via an unpredictable network. In response, we outline
a setting in which a designated component takes on the role of an arbiter, which
is responsible for all global scheduling decisions in the system. In other words,
we use our switched PIOA framework to recreate a centralized interpretation
of component scheduling. The obvious advantage is that our external behavior
semantics is compositional and hence we can freely replace components with
others that are behaviorally equivalent.

First, we fix a nonempty, finite index set I and assume that the universal
set CAct of control actions is

⋃
i∈I{goi, donei}. We restrict our attention to

controllable automata, defined as follows.

Definition 10.5.1. Let A be a switched PIOA and let i ∈ I be given. We say
that A is controllable for i provided:

1. A is initially inactive;

2. CIA = {goi} and COA = {donei}.

In other words, A has a limited control interface, {goi, donei}, and must wait
for an activation signal at the beginning of each execution. Aside from these
restrictions, A is free to communicate with other components (not necessarily
the arbiter) via synchronization of basic actions.

Various requirements can be placed on the I/O schedulers for A. For example,
we may require that A performs at most one locally controlled action during
each activation. Or A may take a finite number of internal steps, possibly
followed by a visible action. The latter can be seen as a fairness condition, so
that no one component is allowed to retain the activity token indefinitely.

To compose a set of (pairwise compatible) controllable automata, we use an
arbiter automaton, which models uncertainties in the parallel environment.

Definition 10.5.2. Let X ⊆ BAct be given. An arbiter for 〈I, X〉 is a switched
PIOA Arb satisfying the following:

1. IArb = {donei | i ∈ I} ∪X and OArb = {goi | i ∈ I};

2. activeArb(s0
Arb) = 1.

Such an arbiter manages the flow of the activity token among components, so
that token exchange does not take place directly between components. This is
depicted in Figure 10.4 below.
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Figure 10.4: Arbitrated Composition

Different notions of parallel composition can be obtained by varying the choice of
local I/O schedulers as well as arbiters. A simple example is the parameterized
composition operator (cf. Section 8.3), which can be implemented with

– local I/O schedulers that always return control after one locally controlled
move and

– an arbiter that schedules goA with probability p and goB with probability
1− p.

More complex examples can be obtained by varying the parameter X in Defi-
nition 10.5.2. This determines the observational power of the arbiter, i.e., the
amount of information which can be used by the arbiter to make scheduling
decisions. Such flexibility can be very useful when we wish to limit scheduling
freedom in order to improve performance of algorithms. For example, the write-
oblivious adversary model of [Cha96] requires that random outcomes cannot be
used by adversaries until they are read by at least one process. This can be
modeled by excluding all parameterized write actions from the set X .

10.6 Conclusions

We have presented the switched PIOA framework, which is designed for the
purpose of modeling and analyzing stochastic systems. This framework accom-
modates both nondeterministic and probabilistic choices within components,
and the associated notion of parallel composition is based on asynchronous
communication under a distributed scheduling scheme. We define a trace-style
semantics for this framework and prove it is compositional.

Throughout our development, a main focus is the notion of scheduling, that
is, the mechanism with which non-deterministic choices are eliminated. Since
the choices between parallel components are often considered nondeterministic,
scheduling directly affects semantic behaviors of composite systems. However,
in our experience with the literature, scheduling mechanisms are often just men-
tioned in passing, without due justification. Therefore, we provide a summary
of some common scheduling schemes and try to compare them against our dis-
tributed scheduling scheme.

Compared to earlier versions [CLSV04a] and [CLSV04b], the current develop-
ment presents several technical improvements. First of all, we introduce a new
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formulation of PIOAs, applying I/O distinction to reactive and generative sys-
tem types. Moreover, we have modified some of the defining axioms for switched
PIOAs, simplifying the definition of external behavior. Finally, we provide a
more flexible mechanism for reasoning with systems with open inputs. In par-
ticular, the notions of execution trees and likelihood assignments are directly
defined for open components, without reference to closing contexts. This allows
us to eliminate some of the cumbersome proofs involving renaming and hiding.

As for future research, we see much potential in the proposal of arbiters and
controllable automata. We believe it can serve as a theoretical foundation in
many application areas, including distributed consensus and process coordina-
tion. In particular, we would like to explore possibilities in modeling noisy
scheduling [Asp00], as well as quantum-based and priority-based scheduling
[AM99].

We are also interested in adapting the testing scenario of [SV03] to switched
PIOAs. Since our semantics focuses on externally visible behavior, we expect
to be able to derive a characterization based on frequencies of external obser-
vations.
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Local-Oblivious Scheduling

In Chapter 8, we saw an example showing that the trace distribution semantics
for probabilistic automata is not compositional (cf. Figures 8.1 and 8.2). We
claimed that the main source of difficulty is the composition mechanism of prob-
abilistic automata, where nondeterministic choices are resolved by a history-
dependent adversary with perfect information. Such an adversary can make
decisions in one component using internal information of the other, thus creat-
ing a form of “covert communication” between components (i.e., communication
not described explicitly by action synchronization).

In this chapter, we explore the use of a weaker form of adversary, namely, local-
oblivious adversaries. These adversaries have access to dynamic information
that is visible from an external point of view. Local information, such as local
coin tosses that have not been used in any meaningful way, is hidden from these
adversaries. The main challenge is to capture these ideas formally, by impos-
ing additional axioms on transition structures and modifying the composition
mechanism. A semantic compositionality theorem follows quite easily once we
have carefully implemented the idea of local-oblivious scheduling.

11.1 Introduction

Mathematically, an adversary is a function taking a finite execution of a system
to an available next transition (or a convex combination of available transi-
tions, depending on the particular formalism). Such a function resolves all
non-deterministic choices in a system, so that random choices are the only re-
maining uncertainties. The probability of each execution is then completely
determined by the sequence of coin tosses generating that execution.

Conceptually, adversaries are important for analyzing worst-case performance
of distributed algorithms. One can image that the goal of an adversary is to
prevent the protocol parties from completing their joint computational task
(e.g., agreement). This is used to model adverse conditions in a real-life com-
putational environment; for example, network congestion and process failures.
By quantifying over all possible adversaries, we take into account the worst
combination of events that can happen during an execution.

133
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11.1.1 Adversary Models

As we mentioned in Chapter 8, different classes of adversaries can be obtained
by varying the amount of history information that can be used by an adversary.
Notice that, by restricting the knowledge of an adversary, we are essentially
quantifying over a smaller class of adversaries. Therefore, it is often possible
to obtain better complexity results by assuming that the adversaries “know”
less. This has been studied extensively in the area of randomized consensus
algorithms, where various forms of partial-information adversaries are referred
to as weak adversary models [Asp03, AB04]. (Naturally, the perfect-information
version is called the strong adversary model.)

Below we list a few common weak adversary models. They are primarily used
to sidestep lower bound results proven for the strong model. More discussions
and an example of a weak adversary algorithm can be found in Part III of this
thesis.

(1) An oblivious adversary is a predetermined list of process names, thus it is
completely independent of dynamic random choices [ABZ97].

(2) A value-oblivious adversary cannot observe values stored in memory regis-
ters and cannot distinguish operations that differ only in parameter [AKL99,
AB04].

(3) A write-oblivious adversary cannot observe any value written to a memory
register until that value has been read by some process [Cha96, Aum97].

(4) A local-oblivious adversary cannot observe any randomly chosen value until
it is written to a shared memory [CIL87, CIL94].

11.1.2 Formal Modeling

Despite its importance in randomized distributed algorithms, the notion of
scheduling has received little attention in the formal methods community. Most
modeling frameworks we have seen (cf. Section 8.3) fall into one the following
two categories.

– To make sure that parallel composition is well-defined, some particular
mechanism is used to resolve nondeterministic choices [WSS94, DHK98,
JLY01]. These mechanisms correspond to certain partial-information as-
sumptions, although they were not identified as such in the original publi-
cations. To our best knowledge, none of these hidden assumptions resem-
ble any weak adversary model actually used in the distributed computing
literature.

– Nondeterministic choices remain in the formal models, then by default
perfect-information adversaries (i.e., strong adversaries) are used in the
underlying semantics [Seg95b, BK98, DHK98].
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These observations suggest that scheduling has not been taken as a fundamental
aspect of probabilistic modeling frameworks. A notable exception is [MMS03],
where schedulers are modeled explicitly by Markov chains with an underlying se-
mantics of probabilistic polynomial time Turing machines1. In order to carry out
computational analysis of cryptographic protocols, these schedulers are required
to satisfy a host of independence assumptions, some of which (e.g., environment
independence) are clearly too strong for non-cryptographic analysis.

Another exception is [dA99], in which partial-information schedules (or policies)
are obtained via a partition of the state space. Such a partition is viewed as an
“indistinguishability” relation, and a partial information policy must make the
same decision if two state sequences are indistinguishable. This is essentially
the same idea behind partially observable MDPs (POMDPs), originally studied
in the context of reinforcement learning [KLA98].

We attribute the apparent simplicity of this POMDP approach to a rather strong
assumption that is found in both [dA99] and [KLA98]. Namely, indistinguish-
able states must have the same set of enabled actions. This assumption makes
sense in the original setting of planning, where an agent tries to choose among a
number of actions in such a way that its expected reward is always maximized.
However, it leads to transition structures that are too rigid for our modeling
purposes: in many randomized algorithms, random outcomes do affect enabled
operations. For example, in the cooperative sharing algorithm of Aumann and
Kapah-Levy [AKL99], processes use random choices to determine which buffers
will be read next.

While it is theoretically possible to relax the enabling assumption of [dA99], it
has not been carried out in the literature (as far as we know). We conjecture
that the resulting semantics is no longer simple and natural. This is because, if
the partial-information adversary schedules an action that is not enabled, then
certain rules must be invoked to produce a “default” behavior. Most likely, it
is a “null” action that do not cause any state changes2. This may still give the
adversary some back-door access to local information, because it can infer from
these “null” actions that certain operations are not enabled.

Thus, in our opinion, an explicit and systematic treatment of partial-information
scheduling is yet lacking in the formal methods literature. This makes it difficult
to formally verify the weak adversary algorithms mentioned earlier. Currently,
the best strategy is to model the algorithms in a perfect-information formalism
and then rely on ad-hoc tricks to enforce partial-information assumptions. This
is done, for instance, when we verify our own randomized consensus algorithm
using the model checker PRISM [Che05c, PRI] (cf. Chapter 12).

In the present chapter, we experiment with a new approach of obtaining partial-
information schedules. Namely, we restrict our framework in such a way that

1Other security-related formalisms, such as [Can01, BPW04b], follow a different modeling
paradigm: distributed scheduling. We refer to Chapter 10 for more discussions.

2This is similar to the approach taken in [CCK+06b], where scheduled actions that are not
enabled are simply absorbed/ignored.
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certain types of branching structures simply cannot be expressed. We argue that
the chosen branching structures correspond to local information that should be
hidden from the adversary. As a result, when we quantify over all possible
adversaries in the new framework, we obtain precisely those that are local-
oblivious.

The goal of this exercise is two-fold. First, local-oblivious scheduling is generally
regarded as a reasonable alternative to perfect-information scheduling, because
it does not weaken the adversary excessively. Therefore, a formal framework for
local-oblivious scheduling may prove useful in applications. Adding to the ap-
peal, we present a compositionality theorem for our trace-style semantics. This,
as discussed in Chapter 8, is not possible under perfect-information scheduling.

Second, we are hopeful that the same strategy can be used to model other
weak adversary assumptions. That is, given a particular weak adversary model,
we try to identify branching structures that correspond to hidden information.
Once these branching structures are removed from the specifications, we can
quantify as usual over all possible schedules, without violating the weak adver-
sary assumption. This may provide a reprieve from the intractability results
for partial-information model checking [dA99]. More precisely, it may help to
reduce certain partial-information problems to perfect-information ones, which
can then be modeled checked by a tool such as PRISM. (Of course, in light
of [dA99], this cannot be done in full generality, but partial results can often be
beneficial.)

11.1.3 Local-Oblivious Adversaries

Local-oblivious scheduling is the first weak adversary assumption used in the
randomized consensus literature [CIL87, CIL94]. The rationale behind it is very
simple: if a randomly chosen value simply sits in a local register, without being
operated on or communicated to another process, then we have no conceivable
reason to believe that it may affect global dynamics.

Our formal development takes place within the PIOA framework introduced
in Chapter 9. To capture the idea of local-oblivious scheduling, we follow two
essential steps:

(i) first, we impose several partial-information axioms on the transition struc-
tures of PIOAs, so that local information is hidden from the global adver-
sary;

(ii) then, we define parallel composition in the “schedule-and-compose” style
(cf. Chapter 10), so that local nondeterministic choices are resolved using
local information only.

Notice that, if all individual components are purely probabilistic, then Step (ii)
is not necessary. This is typically the case when we model a single protocol,
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where every participant is fully specified up to coin tosses. However, when
the target systems become more complex, we often try to abstract away from
implementation details by grouping together smaller components to form a big-
ger component. In that case, Step (ii) becomes significant, because it enforces
scoping rules for scheduling decisions. This allows us to separate global nonde-
terministic choices from local ones, without sacrificing the flexibility to treat a
composite of multiple components as yet a single component.

11.2 Partial-Information Axioms

Recall from Chapter 9 that a PIOA A is a tuple 〈SA, s0
A, IA, OA, HA, RA,GA〉,

where RA : SA × IA → P(Disc(SA)) is the reactive transition structure and
GA : SA → P(Disc((OA ∪HA)×SA)) is the generative transition structure (cf.
Definition 9.1.2). Throughout this chapter, we will assume that RA satisfies
the usual input-enabling axiom of IOA [LT89]. In that case, we say that A is
input-enabled.

– Input enabling: RA(s, a) 6= ∅ for all s ∈ SA and a ∈ IA.

In addition, we impose the following partial-information axioms.

(P1) For all s ∈ SA, a ∈ IA and µ ∈ RA(s, a), there is t ∈ SA such that
µ = Dirac(t).

(P2) For all s ∈ SA and f ∈ GA(s), if there exist a ∈ HA and t ∈ SA such that
f(a, t) > 0, then f = Dirac(〈a, t〉).

(P3) For all s ∈ SA and f ∈ GA(s), if there exist a ∈ OA and t1, t2 ∈ SA such
that f(a, t1) > 0 and f(a, t2) > 0, then t1 = t2.

Thus, we have essentially three types of transitions: input, hidden and output.
For the first two types of transitions, probabilistic branching is completely for-
bidden (Axioms (P1) and (P2)). For output transitions, probabilistic branching
is allowed only if all actions labels are distinct (Axiom (P3)).

Figure 11.1 below illustrates some examples of branching structures that are
ruled out by Axioms (P1), (P2) and (P3).
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Figure 11.1: Invisible probabilistic branching.
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Notice, all four examples in Figure 11.1 share a common trait: although the
specification contains no nondeterministic choices, there exist “truly distinct”
branches (or paths) with the same trace. Here “truly distinct” means that the
two branches are are incomparable under the prefix relation on branches.

In future discussions, we shall refer to this property as invisible probabilistic
branching. The idea is, even though these branches correspond to mutually
exclusive events, the difference cannot be observed from an external point of
view. In other words, branching structures of this type are internal aspects of
a system, which are abstracted away in a trace-style semantics.

It is not hard to see that the presence of invisible probabilistic branching gives
the adversary “backdoor” access to local information (hence our axioms are de-
signed specifically to eliminate invisible probabilistic branching). We illustrate
this point with the following example.

Example 11.2.1. Consider processes A, B and Coin0 illustrated in Figure 11.2.
Here A and B are racing to write their own preference values into a shared
memory register. The third process Coin0 tosses a fair coin and announces the
result by sending a one-bit message across a network to an unspecified recipient.
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s4
send(1) // s6
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GF ED
@A BC

Figure 11.2: Automata A, B and Coin0.

Notice, we have chosen a specification Coin0 that exhibits invisible probabilistic
branching (violating Axiom (P3)). Whenever the toss transition is scheduled,
we obtain two “truly distinct” branches with the same trace: one ending in state
s3 and the other ending in state s4.

Since adversaries are functions from finite branches to available next transi-
tions, the mere presence of two distinct branches allows the adversary to make
decisions based on the outcome of toss. For a concrete example, we define an
adversary A as follows.

(i) At the initial state 〈s0
A, s

0
B , s

0
C〉, A schedules the toss transition in Coin0.

(ii) At the branch 〈s0
A, s

0
B , s

0
C〉.f. toss .〈s0

A, s
0
B , s3〉, A schedules writeA fol-

lowed by writeB . (Here f is the transition bundle generated by the toss
transition in Coin0, with both A and B stuttering in the same state.)

(iii) At the branch 〈s0
A, s

0
B , s

0
C〉.f. toss .〈s0

A, s
0
B , s4〉, A schedules writeB fol-

lowed by writeA.



11.3 External Behavior 139

(iv) Finally, A schedules the send(−) transition in Coin0.

·writeA //·writeB //·send(0) //·
pp

1
2

77ppppp
NN

1
2

''NNNNN
·writeB //· writeA //·send(1) //·

toss

Figure 11.3: A probabilistic execution of A‖B‖Coin0.

Figure 11.3 depicts the probabilistic execution induced by A. Clearly, A is not
local-oblivious, because it uses the outcome of toss before that outcome is made
public via the send(−) action.

This example shows that the amount of local information available to an adver-
sary is very sensitive to the branching structures of our formal specifications.
This observation motivates our underlying approach of restricted branching.
Moreover, it is easy to construct a similar example if either Axiom (P1) or Ax-
iom (P2) is removed. Therefore, all three axioms are necessary in capturing the
notion of local-oblivious scheduling.

11.3 External Behavior

We define a notion of external behavior using I/O schedulers introduced in
Chapter 9. Recall that an input scheduler resolves nondeterministic choices
among input transitions carrying the same label, while an output scheduler
resolves nondeterministic choices among locally controlled transition bundles.
Since neither of these resolves nondeterministic choices between inputs and lo-
cal activities, an I/O scheduler for an open PIOA does not always induce a
probability measure.

In the case of switched PIOAs of Chapter 10, the token structure eliminates
nondeterministic choices between inputs and locally-controlled activities. There-
fore, an I/O scheduler for an open switched PIOA does induce a collection of
sub-probability measures (cf. Proposition 10.2.1). Here, we prove that Proposi-
tion 10.2.1 holds even without the token structure of Chapter 10, as long as we
strengthen our notion of I/O schedulers to eliminate nondeterministic choices
between inputs and hidden transitions.

Definition 11.3.1. Let A be an input-enabled PIOA satisfying Axioms (P1)–
(P3). An I/O scheduler 〈σ, ρ〉 for A is said to be determinate if the following
conditions hold for all r ∈ Bran(A).

(i) Either σ(r, a) = ⊥ for all a ∈ IA, or σ(r, a) 6= ⊥ for all a ∈ IA;

(ii) If ρ(r) is an output transition bundle, then σ(r, a) 6= ⊥ for all a ∈ IA.
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(iii) If ρ(r) is a hidden transition, then σ(r, a) = ⊥ for all a ∈ IA.

Thus, the behavior of a determinate I/O scheduler at a branch r falls into one
of the following four categories:

– All activities are halted. That is, ρ(r) = ⊥ and σ(r, a) = ⊥ for all a ∈ IA.
This models a completely terminated process.

– All locally-controlled activities are halted, but all inputs are still enabled.
That is, ρ(r) = ⊥, but σ(r, a) 6= ⊥ for all a ∈ IA. This models an idle
process that is waiting for an input signal.

– An output bundle is scheduled by ρ. In that case, all inputs are enabled
by σ. This models an active process ready to communicate with other
processes.

– A hidden transition is scheduled by ρ. In that case, all inputs are blocked
by σ. This models an active process that blocks inputs temporarily in
order to finish certain internal computation.

Intuitively, the last category reflects the fact that real-life implementations use
deterministic mechanisms to handle input events. For example, FIFO queues
may be used to store interrupting inputs, so that they can be handled when
internal computations are finished. Since we quantify over all determinate I/O
schedulers, we still take into account all possible situations (e.g., all input-
handling policies). Moreover, we will show in Lemma 11.3.4 that, if A is not
completely halted and not stuck in an infinite execution of hidden transitions,
then eventually all inputs are accepted.

Example 11.3.1. Consider the PIOA illustrated in Figure 11.4 on the left.
The execution tree shown in the middle is induced by an I/O scheduler that is
not determinate: at every branch, the output scheduler schedules the internal
loop but the input scheduler accepts the input a. A determinate I/O scheduler
would induce an execution tree such as the one shown on the right.
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·
·
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//
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99sssssss ·
. . .

τ
99rrrrrrr

a? %%LLLLLLL ·
·

a?
//

τ
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. . .

· τ // · a? // · τ // · τ // . . .

Figure 11.4: Interrupting inputs.
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We now state an analog of Proposition 10.2.1 for determinate I/O schedulers.
Observe that Proposition 11.3.1 fails without the addition assumption that
〈σ, ρ〉 is determinate. The execution tree illustrated in the middle of Figure 11.4
is a counterexample.

Proposition 11.3.1. Let A be an input-enabled PIOA satisfying Axioms (P1)–
(P3) and let 〈σ, ρ〉 be a determinate I/O scheduler for A. Let α ∈ (IA ∪OA)<ω

be given and assume that tr-1(α) in A is nonempty. Then the restriction of Qσ,ρ

to tr-1
min(α) is a discrete sub-probability distribution.

The proof of Proposition 11.3.1 relies on Lemma 11.3.2 below.

Lemma 11.3.2. Let A be an input-enabled PIOA satisfying Axioms (P1)–(P3)
and let 〈σ, ρ〉 be a determinate I/O scheduler for A. The following holds for all
r ∈ Bran(A).

(i) For every n ∈ N, there is at most one n-step extension r1 of r such that
tr(r1) = tr(r) and Qσ,ρ(r1) > 0. If such r1 exists, then Qσ,ρ(r1) = Qσ,ρ(r).

(ii) For every a ∈ IA, there is at most one r1 ∈ Branmin(A) such that r v r1,
tr(r1) = tr(r)a, and Qσ,ρ(r1) > 0. If such r1 exists, then Qσ,ρ(r1) =
Qσ,ρ(r).

Proof. We prove Item (i) by induction on n. The base case is trivial. For the
inductive step, suppose there are two such (n + 1)-step extensions r1 and r2.
By the induction hypothesis, there is at most one such n-step extension r′.
Therefore, it must be the case that r′ is a prefix of both r1 and r2. By the
definition of Qσ,ρ and Axiom (P2), we have r1 = r′.ρ(r′).τ.t = r2, where 〈τ, t〉
is the unique member of Supp(ρ(r′)). By the induction hypothesis, Qσ,ρ(r1) =
Qσ,ρ(r

′) = Qσ,ρ(r).

For Item (ii), suppose again there are two such branches r1 and r2. Let r′ ∈
Bran(A) be the longest common prefix of r1 and r2 such that tr(r) = tr(r′).
Clearly, r v r′. Consider the following three cases.

– r′ is a one-step prefix of both r1 and r2. Then, by the definition of Qσ,ρ

and Axiom (P1), we have r1 = r′.a.σ(r′).t = r2, where t is the unique
member of Supp(σ(r′)). Then Qσ,ρ(r1) = Qσ,ρ(r

′) = Qσ,ρ(r), where the
second equality follows from Item (i),

– r′ is a one-step prefix of neither r1 nor r2. Then, by the maximality of r′,
there exist r′1 v r1 and r′2 v r2 such that (i) both r′1 and r′2 extend r′ with
a hidden transition, (ii) r′1 6= r′2, and (iii) Qσ,ρ(r

′
1) > 0 and Qσ,ρ(r

′
2) > 0.

This yields a contradiction to Item (i).

– r′ is a one-step prefix of either r1 or r2, but not both. Without loss,
assume it is a one-step prefix of r1. By the definition of Qσ,ρ and Ax-
iom (P1), r1 must be of the form r′.a.σ(r′).t, where t is the unique member
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of Supp(σ(r′)). On the other hand, since r′ is not a one-step prefix of r2,
there exists r′2 v r2 such that r′2 is a one-step extension of r′, Qσ,ρ(r

′
2) > 0,

and tr(r′2) = tr(r′). This implies that ρ(r′) is a hidden transition, contra-
dicting our assumption that 〈σ, ρ〉 is determinate.

Proof of Proposition 11.3.1. We proceed by induction on the length of α. If α
is empty, then tr-1

min(α) contains a unique element, namely, s0
A. Our claim holds

because by definition Qσ,ρ(s
0
A) = 1.

Consider α′ of the form αa. We have two cases.

– a ∈ IA. Let r ∈ tr-1
min(α) be given. By Lemma 11.3.2, there is at most

one r′ ∈ tr-1
min(α′) with r v r′. Moreover, if such r′ exists, Lemma 11.3.2

guarantees that Qσ,ρ(r
′) = Qσ,ρ(r). Therefore,

∑

r′∈tr-1min(α′)

Qσ,ρ(r
′) ≤

∑

r∈tr-1min(α)

Qσ,ρ(r) ≤ 1,

where the second inequality follows from the induction hypothesis.

– a ∈ OA. Note that Lemma 10.2.4 applies to PIOAs in general. Therefore,
we have

∑

r′∈tr-1min(α′)

Qσ,ρ(r
′) =

∑

r∈tr-1min(α)

∑

r′∈tr-1min(αa), rvr′
Qσ,ρ(r

′)

≤
∑

r∈tr-1min(α)

Qσ,ρ(r) ≤ 1.

Again, the last inequality follows from the induction hypothesis.

By virtue of Proposition 11.3.1, we may define likelihood assignments as in
Chapter 10. Again, these are behavioral abstractions of execution trees and
are analogous to trace distributions for probabilistic automata. We refer to
Section 10.2.2 for a more detailed discussion.

Definition 11.3.2. Let A be an input-enabled PIOA satisfying Axioms (P1)–
(P3) and let 〈σ, ρ〉 be a determinate I/O scheduler for A. The likelihood as-
signment induced by 〈A, σ, ρ〉, denoted Lσ,ρ, is the function tr(Qσ,ρ) : (IA ∪
OA)<ω → [0, 1] given as follows.

tr(Qσ,ρ)(α) :=
∑

r∈tr-1min(α)

Qσ,ρ(r).
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External behavior and implementation can now be defined accordingly.

Definition 11.3.3. Let A = 〈A, S〉 be a probabilistic system such that: (i) A is
an input-enabled PIOA satisfying Axioms (P1)–(P3) and (ii) every 〈σ, ρ〉 ∈ S is
determinate. An external behavior of A is a likelihood assignment Lσ,ρ induced
by some 〈σ, ρ〉 ∈ S. We write ExtBeh(A) for the set of all external behaviors of
A.

Definition 11.3.4. Let A = 〈A, S〉 and B = 〈B, T 〉 be probabilistic systems
satisfying the two conditions in Definition 11.3.3. They are said to be comparable
if IA = IB and OA = OB . If, in addition, we have ExtBeh(A) ⊆ ExtBeh(B),
then A is said to implement B. This is denoted A ≤L B.

Below we make some useful observations about execution trees and likelihood
assignments.

Proposition 11.3.3. Let A be an input-enabled PIOA satisfying Axioms (P1)–
(P3) and let 〈σ, ρ〉 be a determinate I/O scheduler for A. The following holds
for every α ∈ (IA ∪ OA)<ω.

(i) There is at most one r ∈ tr-1
min(α) such that Qσ,ρ(r) > 0. (Clearly, if such

r exists, then Lσ,ρ(α) = Qσ,ρ(r); otherwise, Lσ,ρ(α) = 0.)

(ii) The set X = {r′ ∈ tr-1(α) | Qσ,ρ(r
′) > 0} is linearly ordered by the prefix

relation v.

(iii) If X is nonempty, then Qσ,ρ(r
′) = Qσ,ρ(r) for every r′ ∈ X, where r is

the unique minimal element in X.

Proof. We prove these claims simultaneously by induction on the length of α.
For the base case, Item (i) follows from the definitions of Qσ,ρ and Lσ,ρ, and
Items (ii) and (iii) follows from Item (i) of Lemma 11.3.2.

For the inductive step, consider α′ of the form αa. By the induction hypothesis,
there is at most one r ∈ tr-1

min(α) with Qσ,ρ(r) > 0. If such r does not exists,
then the claims for α′ hold trivially. Suppose otherwise; that is, there is unique
such r. Then, for every r′ ∈ tr-1(α′), Qσ,ρ(r

′) > 0 implies r v r′.
First we consider Item (i). If a ∈ IA, it is sufficient to apply Item (ii) of
Lemma 11.3.2. Therefore we may focus on the case in which a ∈ OA. Sup-
pose there are two distinct branches r1, r2 ∈ tr-1

min(α′) with Qσ,ρ(r1) > 0 and
Qσ,ρ(r2) > 0. By uniqueness of r, we know that r is a prefix of both r1 and r2.
Let r′ ∈ Bran(A) be the longest common prefix of r1 and r2. Clearly, r v r′.
We have the following three cases.

– r′ is a one-step prefix of both r1 and r2. Then, by the definition of Qσ,ρ

and Axiom (P3), we have r1 = r′.ρ(r′).a.t = r2, where t is the unique state
with 〈a, t〉 ∈ Supp(ρ(r′)). This contradicts the assumption that r1 6= r2.
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– r′ is a one-step prefix of neither r1 nor r2. Then, by the maximality of r′,
there exist r′1 v r1 and r′2 v r2 such that (i) both r′1 and r′2 extend r′ with
a hidden transition, (ii) r′1 6= r′2, and (iii) Qσ,ρ(r

′
1) > 0 and Qσ,ρ(r

′
2) > 0.

This yields a contradiction to Item (ii) of the induction hypothesis.

– r′ is a one-step prefix of either r1 or r2, but not both. Without loss, assume
it is a one-step prefix of r1. By the definition of Qσ,ρ and Axiom (P3), r1

must be of the form r′.ρ(r′).a.t, where t is the unique state with 〈a, t〉 ∈
Supp(ρ(r′)). In particular, we may conclude that ρ(r′) is not a hidden
transition. On the other hand, since r′ is not a one-step prefix of r2, there
exists r′2 v r2 such that r′2 is a one-step extension of r′, Qσ,ρ(r

′
2) > 0, and

tr(r′2) = tr(r′). This implies that ρ(r′) is a hidden transition, which is a
contradiction.

This finishes the proof of Item (i) for α′. Items (ii) and (iii) again follow from
Item (i) of Lemma 11.3.2.

Proposition 11.3.3 is a strong (and perhaps surprising) result. It says, given
a determinate I/O scheduler 〈σ, ρ〉 and a finite trace α, there is “essentially”
at most one branch r with trace α that is reachable under 〈σ, ρ〉. We say
“essentially” because there may in fact be more than one, but they differ in a
very limited way: if r1 and r2 have the same trace and are both reachable under
〈σ, ρ〉, then one must be a prefix of the other. This fact will prove essential in
our proof of compositionality.

The following lemmas are also used to prove compositionality. Lemma 11.3.4
says, if A has a nonempty input signature but at least one input is blocked,
then all inputs are blocked. Moreover, if A has any visible behavior, then all
inputs are eventually accepted. These are direct consequences of the definition
of determinate I/O schedulers.

Lemma 11.3.4. Let A be an input-enabled PIOA satisfying Axioms (P1)–(P3)
and let 〈σ, ρ〉 be a determinate I/O scheduler for A. Let α ∈ (IA ∪ OA)<ω be
given.

(i) Suppose there is a ∈ IA with Lσ,ρ(αa) = 0. Then the same holds for all
a ∈ IA.

(ii) Suppose there is a ∈ IA ∪OA with Lσ,ρ(αa) > 0. Then the same holds for
all a ∈ IA.

Proof. To prove Item (i), we assume for the sake of contradiction that there is
a′ ∈ IA with Lσ,ρ(αa

′) > 0. Then we may choose r′ ∈ tr-1
min(αa′) with Qσ,ρ(r

′) >
0. Let r denote the unique one-step prefix of r′. Then we know σ(r, a′) 6= ⊥.
By the definition of determinate I/O schedulers, we have σ(r, a′′) 6= ⊥ for all
a′′ ∈ IA. In particular, σ(r, a) 6= ⊥ and thus Qσ,ρ(r.a.σ(r, a).t) > 0, where t is
the unique state in Supp(σ(r, a)). This contradicts our assumption on a.
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For Item (ii), choose a ∈ IA∪OA with Lσ,ρ(αa) > 0. If a ∈ IA, then the desired
claim follows from Item (i) of the present lemma. Otherwise, we may choose
r′ ∈ tr-1

min(αa) with Qσ,ρ(r
′) > 0. Let r be the unique one-step prefix of r′.

Then Qσ,ρ(r
′) > 0 and ρ(r) is an output transition bundle. By the definition of

determinate I/O schedulers, we may conclude that σ(r, a′) 6= ⊥ for all a′ ∈ IA.
Then, for all a′ ∈ IA, Qσ,ρ(r.a

′.σ(r, a′).ta′) > 0, where ta′ is the unique state in
Supp(σ(r, a′)). Therefore Lσ,ρ(αa

′) > 0 for all a′ ∈ IA.

Lemma 11.3.5 is the obvious fact that, if some output action a occurs after a
trace α, then we can find a branch r0 with trace α such that an output bundle
containing a is executed after r0.

Lemma 11.3.5. Let A be an input-enabled PIOA satisfying Axioms (P1)–(P3)
and let 〈σ, ρ〉 be a determinate I/O scheduler for A. Let α ∈ (IA ∪ OA)<ω

and a ∈ OA be given. Suppose Lσ,ρ(αa) is nonzero. Then the set {r ∈
tr-1(α) | Qσ,ρ(r) > 0} has a unique maximal element, call it r0. Moreover,
ρ(r0) is an output bundle in GA(last(r0)) and there exists unique s′ ∈ SA such
that 〈a, s′〉 ∈ Supp(ρ(r0)).

Proof. Since Lσ,ρ(αa) is nonzero, there is r′ ∈ tr-1
min(αa) with Qσ,ρ(r

′) > 0.
Then, by the definition of Qσ,ρ, we know that r′ is of the form r0.ρ(r0).a.s′,
where ρ(r0) is an output bundle in GA(last(r0)) and s′ is the unique state with
〈a, s′〉 ∈ Supp(ρ(r0)). Also, we have tr(r0) = α and Qσ,ρ(r0) > 0, hence the set
{r ∈ tr-1(α) | Qσ,ρ(r) > 0} is nonempty. It remains to show r0 is indeed the
unique maximal element of this set.

By Proposition 11.3.3, this set is linearly ordered by prefix. Suppose it contains
some proper extension of r0. Let r′′ denote the shortest such proper extension.
Then r′′ is of the form r0.ρ(r0).b.s′′ with b ∈ HA and 〈b, s′′〉 ∈ Supp(ρ(r0)).
Since 〈a, s′〉 is also in Supp(ρ(r0)) , this yields a contradiction to Axiom (P2).
Therefore r0 must be maximal.

11.4 Parallel Composition and Compositionality

In Chapter 9, we defined parallel composition for PIOAs. Here we extend that
definition to probabilistic systems and prove that the implementation relation
introduced in Section 11.3 above is compositional.

11.4.1 Composition of Probabilistic Systems

Let us recall the intuition behind the notion of probabilistic systems: given a
probabilistic system 〈A, S〉, we think of the I/O schedulers in S as “acceptable”
schedules for A. When we compose two systems 〈A, S〉 and 〈B, T 〉, the under-
lying PIOA is defined to be A � B (cf. Section 9.2). The acceptable schedules
for A � B are those generated, in some appropriate sense, from schedules in S
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and T , respectively. Thus, our notion of parallel composition for probabilistic
systems is also along the lines of “schedule-and-compose” as in Chapter 10.

To carry out this development formally, we need to first make sure that all
axioms of the present chapter are preserved under the parallel operator �.

Proposition 11.4.1. Let A and B be compatible PIOAs. Assume both are
input-enabled and satisfy Axioms (P1)– (P3). Then the same hold for A � B.

Proof. For input enabling, let a be an input action of A � B. If a is in the
signature of A, then every state s of A enables an a-transition. Similarly for B.
By the definition of RA�B (Definition 9.2.1), every state of A � B enables an
a-transition.

Axiom (P1) also follows easily from the definition of RA�B . For Axiom (P2),
note that every hidden action a of RA�B is in the signature of either A or B,
but not both. Without loss of generality, suppose a is a hidden action of A. By
the definition of GA�B (Definition 9.2.2), B must stutter in every a-transition
of A � B. Since A satisfies Axiom (P2), this implies A � B also satisfies
Axiom (P2).

Finally, note that every output transition bundle f of A � B is generated by
an output transition bundle g of either A or B, but not both. Without loss,
suppose g is an output bundle of A. Since A satisfies Axiom (P3) and B satisfies
Axiom (P1), it is easy to see that f satisfies the condition in Axiom (P3).

Next, we make precise the meaning of “generated” I/O schedulers, using pro-
jection operators defined in Section 9.2.

Definition 11.4.1. Let A and B be compatible PIOAs. Assume both are
input-enabled and satisfy Axioms (P1)–(P3). Let 〈σ, ρ〉, 〈σA, ρA〉 and 〈σB , ρB〉
be determinate I/O schedulers for A � B, A and B, respectively. Then 〈σ, ρ〉
is said to be generated by 〈σA, ρA〉 and 〈σB , ρB〉 if the following hold for all
r ∈ Bran(A � B).

– For all a ∈ IA�B , if σ(r, a) 6= ⊥ then:

• if a ∈ IA, then σA(projA(r), a) is defined and equals projA(σ(r, a));

• similarly if a ∈ IB .

– If ρ(r) is a hidden transition, then:

• if ρ(r) is generated by a hidden transition in A, then ρA(projA(r)) is
defined and equals projA(ρ(r));

• similarly if ρ(r) is generated by a hidden transition in B.

– If ρ(r) is an output transition bundle, then the following hold.
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• If ρ(r) is generated by an output bundle in A, then ρA(projA(r)) is
defined and equals projA(ρ(r)). Moreover, for all a ∈ IB , if there
exists t ∈ SA�B with 〈a, t〉 ∈ Supp(ρ(r)), then σB(projB(r), a) is
defined and equals proja,B(ρ(r)).

• Similarly if ρ(r) is generated by an output bundle in B.

Notice that the same pair of I/O schedulers 〈σA, ρA〉 and 〈σB , ρB〉 may generate
many different I/O schedulers in the composite. This is because the choices
between A and B may be resolved differently by an implicit global adversary.
This is a sharp contrast to the composition of switched PIOAs, where a token
structure ensures that every pair of local I/O schedulers generate a unique I/O
scheduler for the composite (cf. Chapter 10).

We are now ready to define parallel composition for probabilistic systems.

Definition 11.4.2. Let A = 〈A, S〉 and B = 〈B, T 〉 be probabilistic systems.
Assume that:

– both are input-enabled and satisfy Axioms (P1)–(P3); and

– every 〈σ, ρ〉 ∈ S is determinate and the same holds for T .

The systems A and B are said to be compatible if A and B are as PIOAs. In
that case, their parallel composite, denoted A‖B, is the probabilistic system
〈A � B, U〉, where U is the set of all determinate I/O schedulers 〈σ, ρ〉 for
A � B such that 〈σ, ρ〉 is generated by some 〈σA, ρA〉 ∈ S and 〈σB , ρB〉 ∈ T
in the sense of Definition 11.4.1.

Using commutativity and associativity of �, it is routine to check that ‖ is
also commutative and associative. To illustrate some essential features of ‖,
we revisit Example 11.2.1, replacing Coin0 with a specification that does not
exhibit invisible probabilistic branching.

Example 11.4.1. Consider Coin1 shown in Figure 11.5. Notice, the states of

Coin1 Dirac(⊥)

toss

��
Unif({0, 1})

uu

1
2

send(0)

zzuuuuuuu
II

1
2

send(1)

$$IIIIIII

Dirac(0) Dirac(1)

GF ED
@A BC

Figure 11.5: Automaton Coin1.

Coin1 are represented by discrete probability distributions. Intuitively, Coin1
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models a randomized algorithm with a boolean state variable bit, which is ini-
tially ⊥. After the toss action, bit is assigned either 0 or 1, each with probability
1
2 ; hence the end state of toss is represented by the uniform distribution on {0, 1},
denoted Unif({0, 1}).
This modeling style captures the idea that, if the outcome of toss is considered
“local” (or “private”), then as far as the adversary is concerned the value of
bit is random at any time after toss and before send(−). Once the send(−)
action takes place, the value of bit is known to the adversary and therefore no
longer random. (This interpretation is similar to the notion of “belief states”
for POMDPs [KLA98].)

Now we compose Coin1 with automata A and B of Example 11.2.1, using the
new composition operator ‖. Since all three automata are purely probabilistic,
the associated probabilistic systems each contain just one schedule.

We argue that the total correlation illustrated in Figure 11.3 is no longer possi-
ble. To see this, we try to recreate scheduling decisions made by the adversary
A:

– First, the toss transition is scheduled.

– Immediately afterwards, a write action occurs (either writeA or writeB).
Since the toss transition does not cause any branching, there is a unique
execution with trace toss; namely,

〈s0
A, s

0
B , Dirac(⊥)〉.f. toss .〈s0

A, s
0
B , Unif({0, 1})〉.

(Again, f here is the transition bundle generated by the toss transition
in Coin1, with both A and B stuttering.) Therefore, at this point, the
adversary chooses either writeA or writeB , but not both.

– The remaining write transition is scheduled.

– Finally, the send(−) transition is scheduled.

This gives rise to two possible execution trees, illustrated in Figure 11.6. Neither
exhibits a total correlation between the temporal ordering of writeA and writeB
and the message content in send(−).

·
· toss //· writeA //· writeB //· rr

1
2

send(0)

99rrrrr
LL

1
2

send(1)

%%LLLLL

·

·
· toss //· writeB //· writeA //· rr

1
2

send(0)

99rrrrr
LL

1
2

send(1)

%%LLLLL

·

Figure 11.6: Two possible executions of A‖B‖Coin1.
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We examine one more possible scenario: send(−) occurs before either of the
write actions. In this case, the value of bit is revealed to the adversary through
the branching structure induced by the send(−) transition. As a result, the
adversary can use the message content to decide whether A or B wins. This is
depicted in Figure 11.7.

·writeA //·writeB //·
· toss //· rr

1
2

send(0)

99rrrrr
LL

1
2

send(1)

%%LLLLL

·
writeB

//·
writeA

//·

Figure 11.7: Random outcome available to adversary after announcement.

The scenario in Figure 11.7 shows that the adversary model associated with our
parallel operator ‖ is dynamic, in that the adversaries can in fact use dynamic
random outcomes. We have simply delayed its knowledge by restricting the
branching structures of our specifications.

Thus, we advocate the following for practical modeling: probabilistic branching
should be avoided unless an externally visible effect is intended. For example,
suppose we allow intentionally the possibility that the outcome of toss produces
an immediate effect on the system dynamics. Then the two branches of toss
should be labeled with different actions, as shown in Figure 11.8 below. It is
not hard to see that an execution tree similar to the one in Figure 11.3 is possible
in A‖B‖Coin2.

Coin2 ·
send(0)

//·
pp

toss(0), 12
77ppppp

NN

toss(1), 12
''NNNNN
·send(1) //·

GF ED
@A BC

Figure 11.8: Automaton Coin2.

This also explains our view that, in some situations (e.g., the original specifi-
cation Coin0), the combination of trace-style semantics and perfect-information
scheduling conveys conflicting intentions.

– On the one hand, the branching of toss is abstracted away in the trace-style
semantics. This suggests that such branching is local information and is
considered “irrelevant” with respect to the evolution of other components.
That is, such branching produces no effects outside the current component.

– On the other hand, adversaries have access to the branching of toss and
may use that information to schedule other components. This models
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situations in which the outcome of toss immediately produces an effect on
the dynamics of the whole system.

11.4.2 Auxiliary Results

First we prove two “decomposition” results: one for execution trees and one for
likelihood assignments. These are analogous to Lemmas 10.4.5 and 10.4.6 for
switched PIOAs.

Proposition 11.4.2. Let A and B be compatible PIOAs. Assume both are
input-enabled and satisfy Axioms (P1)–(P3). Let I denote IA�B and O denote
OA�B . Let 〈σ, ρ〉, 〈σA, ρA〉 and 〈σB , ρB〉 be determinate I/O schedulers for
A � B, A and B, respectively. Suppose 〈σ, ρ〉 is generated by 〈σA, ρA〉 and
〈σB , ρB〉 as in Definition 11.4.1. Then the following hold.

(i) For all r ∈ Bran(A � B), if Qσ,ρ(r) > 0, then

Qσ,ρ(r) = QσA,ρA(projA(r)) ·QσB ,ρB (projB(r)).

(ii) For every α ∈ (I ∪O)<ω, if Lσ,ρ(α) > 0, then

Lσ,ρ(α) = LσA,ρA(projA(α)) · LσB ,ρB (projB(α)).

Proof. We prove Item (i) by induction on the length of r. The base case is
trivial, since every execution tree assigns 1 to the empty execution.

Consider nonempty r′ with Qσ,ρ(r
′) > 0. We have three cases.

– r′ = r.a.σ(r, a).s′ for some a ∈ I and s′ ∈ Supp(σ(r, a)). If a ∈ IA, then
projA(r′) is of the form projA(r).a.projA(σ(r, a)).projA(s′); otherwise, it is
simply projA(r). Since 〈σ, ρ〉 is generated by 〈σA, ρA〉 and 〈σB , ρB〉, we
have projA(σ(r, a)) = σA(projA(r), a)).

Let cA denote σA(projA(r), a)(projA(s′)) if a ∈ IA and 1 otherwise. Simi-
larly for cB . By the definition of RA�B (Definition 9.2.1), we know that
σ(r, a)(s′) = cA · cB . Applying the induction hypothesis, we have:

Qσ,ρ(r
′) = Qσ,ρ(r) · σ(r, a)(s′)

= Qσ,ρ(r) · cA · cB
= QσA,ρA(projA(r)) ·QσB ,ρB (projB(r)) · cA · cB
= QσA,ρA(projA(r′)) ·QσB ,ρB (projB(r′))

– r′ = r.ρ(r).a.s′, where 〈a, s′〉 ∈ Supp(ρ(r)) and ρ(r) is generated by
some g ∈ GA(last(projA(r))). Since 〈σ, ρ〉 is generated by 〈σA, ρA〉 and
〈σB , ρB〉, we have ρA(projA(r)) = projA(ρ(r)) = g and hence

projA(r′) = projA(r).ρA(projA(r)).a.projA(s′).
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Let cA denote ρA(projA(r))(a, projA(s′)).

If a ∈ IB , then projB(r′) is of the form projB(r).a.proja,B(ρ(r)).projB(s′);
otherwise, it is simply projB(r). Moreover, since 〈σ, ρ〉 is generated by
〈σA, ρA〉 and 〈σB , ρB〉, we have proja,B(ρ(r)) = σB(projB(r), a) in case
a ∈ IB . Let cB denote σB(projB(r), a)(projB(s′)) if a ∈ IB and 1 otherwise.

By the definition of GA�B (Definition 9.2.2), we know that ρ(r)(a, s′) =
cA · cB . Applying the induction hypothesis, we have:

Qσ,ρ(r
′) = Qσ,ρ(r) · ρ(r)(a, s′)

= Qσ,ρ(r) · cA · cB
= QσA,ρA(projA(r)) ·QσB ,ρB (projB(r)) · cA · cB
= QσA,ρA(projA(r′)) ·QσB ,ρB (projB(r′))

– r′ = r.ρ(r).a.s′, where 〈a, s′〉 ∈ Supp(ρ(r)) and ρ(r) is generated by some
g ∈ GB(last(projB(r))). This is symmetric to the previous case.

This concludes the proof of Item (i).

For Item (ii), suppose we have α with Lσ,ρ(α) > 0. By Proposition 11.3.3, we
may choose a unique branch r ∈ tr-1

min(α) such that Lσ,ρ(α) = Qσ,ρ(r) > 0. By
Item (i), we have

Lσ,ρ(α) = Qσ,ρ(r) = QσA,ρA(projA(r)) ·QσB ,ρB (projB(r)).

Therefore, QσA,ρA(projA(r)) > 0. By Items (i) and (iii) of Proposition 11.3.3,
we have

QσA,ρA(projA(r))

= LσA,ρA(tr(projA(r))) = LσA,ρA(projA(tr(r))) = LσA,ρA(projA(α)).

Similarly for B. Therefore

Lσ,ρ(α) = LσA,ρA(projA(α)) · LσB ,ρB (projB(α)).

We have some more lemmas that will be used to prove compositionality. Intu-
itively, Lemma 11.4.3 says the following: if some output action a of component
A occurs with nonzero probability, then we may infer that an output bundle of
A is executed and hence every other action in the support of that bundle also
occurs with nonzero probability. Moreover, none of the actions occurring with
nonzero probability is in OB .

Lemma 11.4.3. Let A, B, I, O, 〈σ, ρ〉, 〈σA, ρA〉 and 〈σB , ρB〉 be given as
in Proposition 11.4.2. Let α ∈ (I ∪ O)<ω and a ∈ OA be given. Assume that
Lσ,ρ(αa) > 0. For every a′ ∈ OA, we have LσA,ρA(projA(α)a′) > 0 implies
Lσ,ρ(αa

′) > 0. Moreover, for every b ∈ OB , Lσ,ρ(αb) = 0.
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Proof. By Lemma 11.3.5, we may choose unique maximal r0 ∈ Bran(A � B)
and s′ ∈ SA�B with

– tr(r0) = α and Qσ,ρ(r0) > 0,

– ρ(r0) is an output bundle in GA�B(last(r0)); and

– 〈a, s′〉 ∈ Supp(ρ(r0)).

Since a ∈ OA, ρ(r0) must be generated by an output bundle in A. By Def-
inition 11.4.1, ρ(r0) is generated by ρA(projA(r0)). Note that tr(projA(r0)) =
projA(tr(r0)) = projA(α). Moreover, by Proposition 11.4.2 and the fact that
Qσ,ρ(r0) > 0, we have QσA,ρA(projA(r0)) > 0.

Now let a′ ∈ OA be given and assume that LσA,ρA(projA(α)a′) > 0. By
Lemma 11.3.5, we may choose unique maximal rA ∈ Bran(A) with tr(rA) =
projA(α) and QσA,ρA(rA) > 0. By maximality of rA, it must be the case
that projA(r0) v rA. Since ρA(projA(r0)) is an output bundle, this implies
projA(r0) = rA and therefore ρA(projA(r0)) = ρA(rA).

Note that Lemma 11.3.5 also guarantees the existence of tA ∈ SA with 〈a′, tA〉 ∈
Supp(ρA(rA)) = Supp(ρA(projA(r0))). Since ρ(r0) is generated by ρA(projA(r0)),
there is t ∈ SA�B with 〈a′, t〉 ∈ Supp(ρ(r0)), with projA(t) = tA. Then we have
Qσ,ρ(r0.ρ(r0).a′.t) > 0 and tr(r0.ρ(r0).a′.t) = αa′. This implies Lσ,ρ(αa

′) > 0.

Finally, Lσ,ρ(αb) = 0 for every b ∈ OB simply because ρ(r0) is generated by an
output bundle in A.

Lemma 11.4.4 says, if component A has a nonempty input signature but it
refuses all inputs indefinitely, then A no longer exhibits visible behavior. More-
over, if such A is composed with B, then the joint execution may continue only
if IA ⊆ OB and B does not attempt to synchronize with A.

Lemma 11.4.4. Let A, B, I, O, 〈σ, ρ〉, 〈σA, ρA〉 and 〈σB , ρB〉 be given as in
Proposition 11.4.2. Let α ∈ (I ∪ O)<ω be given. Assume that IA is nonempty
but LσA,ρA(projA(α)a) = 0 for all a ∈ IA.

(i) For all a′ ∈ OA, LσA,ρA(projA(α)a′) = 0.

(ii) Suppose there is b ∈ I ∪ O with Lσ,ρ(αb) > 0. Then IA ⊆ OB. Moreover,
for every b′ ∈ I ∪ O, Lσ,ρ(αb

′) > 0 implies b′ 6∈ IA ∪ OA.

Proof. For Item (i), suppose for the sake of contradiction there is a′ ∈ OA with
LσA,ρA(projA(α)a′) > 0. By Lemma 11.3.5, we may choose r0 ∈ Bran(A) such
that tr(r0) = projA(α), QσA,ρA(r0) > 0, and ρA(r0) is an output bundle.

Since 〈σA, ρA〉 is determinate, we know that σA(r0, a) 6= ⊥ for all a ∈ IA. By
assumption, IA is nonempty, hence we may choose a ∈ IA. Let t denote the
unique state in Supp(σ(r0, a)). Then QσA,ρA(r0.a.σ(r0, a).t) > 0, contradicting
the assumption that LσA,ρA(projA(α)a) = 0 for all a ∈ IA.
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For Item (ii), let such b be given. Choose r′ ∈ tr-1
min(αb) in A � B with

Qσ,ρ(r
′) > 0. Let r be the one-step prefix of r′. Then either σ(r, b) 6= ⊥ or

ρ(r) 6= ⊥. In both cases, the definition of determinate I/O schedulers implies
that σ(r, a) 6= ⊥ for all a ∈ I . Therefore, Lσ,ρ(αa) > 0 for all a ∈ I .

Suppose there exists a ∈ IA ∩ I . Applying Proposition 11.4.2, this implies
LσA,ρA(projA(α)a) > 0, contradicting the assumption on LσA,ρA . Therefore,
IA ∩ I is empty and thus IA ⊆ OB .

Finally, let b′ ∈ I ∪ O be given and assume that Lσ,ρ(αb
′) > 0. By Proposi-

tion 11.4.2, we know that LσA,ρA(projA(αb′)) > 0. If b′ ∈ OA, then projA(αb′) =
projA(α)b′, contradicting Item (i) of the present lemma. Similarly, b′ ∈ IA
contradicts the assumption on LσA,ρA . Therefore, b′ 6∈ IA ∪OA.

11.4.3 Compositionality Theorem

We now state and prove our main theorem. Namely, the external behavior
semantics for probabilistic systems is compositional.

Theorem 11.4.5. Let A = 〈A, S〉, B = 〈B, T 〉 and C = 〈C, U〉 be probabilistic
systems satisfying the following.

– A, B and C are input-enabled and satisfy Axioms (P1)–(P3).

– Every I/O scheduler in S is determinate, and the same holds for T and
U .

– A and B are comparable, and both are compatible with C.

Then we have A ≤L B implies A‖C ≤L B‖C.

The rest of Section 11.4.3 is devoted to the proof of Theorem 11.4.5. First, we
fix some notations and lay out the proof structure.

By the assumptions of Theorem 11.4.5, A‖C and B‖C are comparable. Let
I := IA�C = IB�C and O := OA�C = OB�C .

Let 〈σ0, ρ0〉 be a determinate I/O scheduler for A � C that is generated by
some 〈σA, ρA〉 ∈ S and 〈σC , ρC〉 ∈ U . For brevity, let L0, LA, LC denote
Lσ0,ρ0 , LσA,ρA , LσC ,ρC , respectively. Similarly for Q0, QA and QC .

By assumption, there is 〈σB , ρB〉 ∈ T such that LσB ,ρB = LA. Let LB de-
note LσB ,ρB and QB denote QσB ,ρB . Our goal is to construct a determinate
I/O scheduler 〈σ, ρ〉 for B � C such that 〈σ, ρ〉 is generated by 〈σB , ρB〉 and
〈σC , ρC〉. This will be done recursively.

Notice that, given r ∈ Bran(B � C), if 〈σ, ρ〉 has been specified at every proper
prefix of r, then Qσ,ρ(r) is well defined. This holds even for the empty branch
s0
B�C because Qσ,ρ(s

0
B�C) = 1 by definition.
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Along with the recursive construction of 〈σ, ρ〉, we prove the following claim
inductively.

(I) For every r ∈ Bran(B � C), if 〈σ, ρ〉 has been specified at every proper
prefix of r and Qσ,ρ(r) > 0, then

Qσ,ρ(r) = QB(projB(r)) ·QC(projC(r)).

Notice this holds trivially for the empty branch s0
B�C .

Recursive Construction of 〈σ, ρ〉

We now proceed with the construction. Let r ∈ Bran(B � C) be given and
assume 〈σ, ρ〉 is defined at every prefix of r. The following list of clauses is used
to determine 〈ρ, σ〉. By default, a later clause is entered only if all previous
clauses are not applicable. (That is, these clauses are prioritized in the order
given below.)

(1) Qσ,ρ(r) = 0, or L0(tr(r)a) = 0 for all a ∈ I ∪O.

Then ρ(r) := ⊥ and σ(r, a) := ⊥ for all a ∈ I .

(2) ρB(projB(r)) is a hidden transition and there exists a ∈ IB ∪ OB with
L0(tr(r)a) > 0.

We set ρ(r) to be the unique hidden transition in GB�C(last(r)) generated
by ρB(projB(r)) (where C stutters). Moreover, σ(r, a) := ⊥ for all a ∈ I .

(3) ρC(projC(r)) is a hidden transition and there exists a ∈ IC ∪ OC with
L0(tr(r)a) > 0.

Then ρ(r) is set to be the unique hidden transition in GB�C(last(r)) gen-
erated by ρC(projC(r)) (where B stutters). Moreover, σ(r, a) := ⊥ for all
a ∈ I .

(4) All remaining situations.

We consider first σ(r, a) for all a ∈ I and then ρ(r). In both cases, we need
to prove additional claims using the fact that none of the previous three
clauses apply.

For σ, we show that I ∩ IB 6= ∅ implies σB(projB(r), a) 6= ⊥ for all a ∈ IB .
Assume I ∩ IB is nonempty. Since Clause (2) does not apply, we have three
cases:

– ρB(projB(r)) = ⊥. If in addition σB(projB(r), a) = ⊥ for all a ∈ IB , we
may apply Proposition 11.3.3 to conclude that LB(tr(projB(r))a) = 0
for all a ∈ IB . By assumption on A and B, this implies: for all a ∈ IA,

LA(projA(tr(r))a) = LB(projB(tr(r))a) = LB(tr(projB(r))a) = 0.
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On the other hand, since Clause (1) does not apply, we may choose b ∈
I ∪O with L0(tr(r)b) > 0. Therefore, by Item (ii) of Lemma 11.4.4, we
know that IA ⊆ OC , thus I ∩ IB = I ∩ IA = ∅. This is a contradiction.

– ρB(projB(r)) is an output transition bundle. Then the desired claim
follows from the fact that 〈σB , ρB〉 is determinate.

– For all a ∈ IB∪OB , L0(tr(r)a) = 0. By assumption, I∩IB is nonempty,
therefore there is a ∈ I such that L0(tr(r)a) = 0. By Lemma 11.3.4,
we have L0(tr(r)a) = 0 for all a ∈ I . By Lemma 11.4.4, this implies
L0(tr(r)a) = 0 for all a ∈ O. These two statements contradict the fact
that Clause (1) does not apply.

By a similar argument, we have I ∩ IC 6= ∅ implies σC(projC(r), a) 6= ⊥ for
all a ∈ IC . Thus, for every a ∈ I , we may define µB to be σB(projB(r), a) if
a ∈ IB and Dirac(last(projB(r))) otherwise. Similarly for µC . Then we set
σ(r, a) to be µB × µC ∈ RB�C(last(r)).

Next we specify ρ(r). If L0(tr(r)a) = 0 for all a ∈ O, then ρ(r) := ⊥.
Otherwise, we may choose ar ∈ O such that L0(tr(r)ar) > 0. By Proposi-
tion 11.4.2, we have

LA(projA(tr(r)ar)) · LC(projC(tr(r)ar)) = L0(tr(r)ar) > 0.

Therefore LC(projC(tr(r)ar)) > 0 and

LB(projB(tr(r)ar)) = LA(projA(tr(r)ar)) > 0.

Also, we apply the induction hypothesis for Claim (I) to conclude that

QB(projB(r)) ·QC(projC(r)) = Qσ,ρ(r) > 0,

and hence QB(projB(r)) > 0 and QC(projC(r)) > 0.

Notice, ar is locally controlled by either B or C. We consider the case in
which ar ∈ OA = OB . The other case (i.e., ar ∈ OC) follows similarly, with
the roles of B and C interchanged.

Note that tr(projB(r)) = projB(tr(r)). Since ar ∈ OB ,

LB(projB(tr(r))ar) = LB(projB(tr(r)ar)) > 0.

Then Lemma 11.3.5 applies to B, 〈σB , ρB〉, projB(tr(r)) and ar. Choose
r0 ∈ Bran(B) as in Lemma 11.3.5. Since we have shown earlier that
QB(projB(r)) > 0, we may use the choice of r0 to conclude that projB(r) v
r0.

Also, since Clause (2) does not apply, either ρB(projB(r)) is not a hidden
transition, or L0(tr(r)a) = 0 for all a ∈ IB ∪ OB . The latter does not
hold because by assumption L0(tr(r)ar) > 0 and ar ∈ OB . Therefore
ρB(projB(r)) is not a hidden transition. This implies projB(r) = r0.
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Next we prove that, if there exists aC ∈ IC ∩OB and t ∈ SB with 〈aC , t〉 ∈
Supp(ρB(r0)), then σC(projC(r), a) 6= ⊥ for every a ∈ IC . Let such aC and
t be given. Then QB(r0.ρB(r0).aC .t) > 0 and hence

LA(projA(tr(r))aC) = LB(projB(tr(r))aC) = LB(tr(r0)aC) > 0.

Now we have: (i) ar ∈ OA, (ii) aC ∈ OA, (iii) L0(tr(r)ar) > 0, and
(iv) LA(projA(tr(r))aC ) > 0. Therefore, we may apply Lemma 11.4.3 to
conclude that L0(tr(r)aC) > 0.

For contradiction, suppose σC(projC(r), a) = ⊥ for some a ∈ IC . Then,
by the definition of determinate I/O schedulers, σC(projC(r), a) = ⊥ for all
a ∈ IC . Since Clause (3) does not apply, we have three cases:

– ρC(projC(r)) = ⊥. Since we also have σC(projC(r), a) = ⊥ for all
a ∈ IC , we may apply Proposition 11.3.3 to conclude that: for all
a ∈ IC ,

LC(projC(tr(r))a) = LC(tr(projC(r))a) = 0.

On the other hand, since Clause (1) does not apply, we may choose b ∈
I ∪O with L0(tr(r)b) > 0. Therefore, by Item (ii) of Lemma 11.4.4, we
know that L0(tr(r)b′) = 0 for all b′ ∈ IC ∪OC . This is a contradiction,
because by assumption aC ∈ IC and we have shown that L0(tr(r)aC) >
0.

– ρC(projC(r)) is an output transition bundle. Since 〈σC , ρC〉 is deter-
minate, it follows that σC(projC(r), a) 6= ⊥ for all a ∈ IC . This is a
contradiction.

– For all a ∈ IC ∪ OC , L0(tr(r)a) = 0. This is a contradiction, because
by assumption aC ∈ IC and we have shown that L0(tr(r)aC) > 0.

This completes the proof that, if there exists aC ∈ IC ∩OB and t ∈ SB with
〈aC , t〉 ∈ Supp(ρB(r0)), then σC(projC(r), a) 6= ⊥ for every a ∈ IC .

Now we may set ρ(r) to be the unique bundle in GB�C(last(r)) generated
by ρB(r0) and the family

{σC(projC(r), a) | a ∈ IC ∩ OB and ∃t ∈ SB 〈a, t〉 ∈ Supp(ρB(r0))}.

This completes the construction of 〈σ, ρ〉.

Inductive Proof of Claim (I)

For each of the four clauses in the construction of 〈σ, ρ〉, we need to prove
Claim (I) for every one-step extension r′ of r. Let such r′ be given and suppose
Qσ,ρ(r

′) > 0. Observe that the proof for Clause (1) is trivial.
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Proof for Clause (2) By the definition of Qσ,ρ and Axiom (2), r′ must be
of the form r.ρ(r).a.s′, where 〈a, s′〉 is the unique member of Supp(ρ(r)).
Observe that

ρ(r)(a, s′) = ρB(projB(r))(a, projB(s′))) = 1,

therefore Qσ,ρ(r
′) = Qσ,ρ(r) · ρ(r)(a, s′) = Qσ,ρ(r) and

QB(projB(r′)) = QB(projB(r).ρB(projB(r)).a.projB(s′))

= QB(projB(r)) · ρB(projB(r))(a, projB(s′))

= QB(projB(r)).

Then, by the induction hypothesis, we have

Qσ,ρ(r
′) = Qσ,ρ(r)

= QB(projB(r)) ·QC(projC(r))

= QB(projB(r′)) ·QC(projC(r′))

Proof for Clause (3) The same as for Clause (2), but with B and C inter-
changed.

Proof for Clause (4) Here we have three cases.

(i) r′ is of the form r.a.σ(r, a).s′ for some a ∈ I and s′ ∈ Supp(σ(r, a)).
By Axiom (P1), σ(r, a)(s′) = 1, thus Qσ,ρ(r

′) = Qσ,ρ(r).

If a ∈ IB , then by the definition of σ(r, a) we have:

projB(r′) = projB(r).a.projB(σ(r, a)).projB(s′)

= projB(r).a.σB(projB(r), a).projB(s′).

Again by Axiom (P1), we have σ(projB(r), a)(projB(s′)) = 1 and thus
QB(projB(r′)) = QB(projB(r)).

If a 6∈ IB , then projB(r′) coincides with projB(r) and we also have
QB(projB(r′)) = QB(projB(r)).

Applying the same argument to C, we obtain

QC(projC(r′)) = QC(projC(r)).

Therefore, by the induction hypothesis, we have

Qσ,ρ(r
′) = Qσ,ρ(r)

= QB(projB(r)) ·QC(projC(r))

= QB(projB(r′)) ·QC(projC(r′)).
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(ii) r′ is of the form r.ρ(r).a.s′ for some a ∈ OB ∪ HB and 〈a, s′〉 ∈
Supp(ρ(r)). By the construction of ρ and the definition of the gen-
erative transition structure GB�C (Definition 9.2.2), we know that

ρ(r)(a, s′) = c · ρB(projB(r))(a, projB(s′)),

where c equals σC(projC(r), a)(projC(s′)) if a ∈ IC and 1 otherwise.
In either case, we have QC(projC(r′)) = c ·QC(projC(r)).

On the other hand, we may infer the following from the construction
of ρ(r):

projB(r′) = projB(r).projB(ρ(r)).a.projB(s′)

= projB(r).ρB(projB(r)).a.projB(s′).

Therefore,

QB(projB(r′)) = QB(projB(r)) · ρB(projB(r))(a, projB(s′)).

Now we may apply the induction hypothesis to obtain:

Qσ,ρ(r
′)

= Qσ,ρ(r) · ρ(r)(a, s′)

= (QB(projB(r)) ·QC(projC(r))) · (c · ρB(projB(r))(a, projB(s′)))

= (QB(projB(r)) · ρB(projB(r))(a, projB(s′))) · (c ·QC(projC(r)))

= QB(projB(r′)) ·QC(projC(r′)).

(iii) r′ is of the form r.ρ(r).a.s′ for some a ∈ OC ∪ HC and 〈a, s′〉 ∈
Supp(ρ(r)). The proof is the same as in the previous case, with B
and C interchanged.

This concludes the proof of Claim (I).

Wrapping Up

It is routine to check that 〈σ, ρ〉, thus constructed, is a determinate I/O sched-
uler for B � C and is generated by 〈σB , ρB〉 and 〈σC , ρC〉. It remains to prove
Lσ,ρ = L0.

Lemma 11.4.6. For every α ∈ (I ∪O)<ω, Lσ,ρ(α) > 0 implies L0(α) > 0.

Proof. This claim holds trivially for the empty trace, since by definition ev-
ery likelihood assignment assigns 1 to the empty trace. Consider a trace α′

of the form αa′ and suppose Lσ,ρ(α
′) > 0. By Proposition 11.4.2 and the as-

sumptions of Theorem 11.4.5, we have LA(projA(α′)) = LB(projB(α′)) > 0 and
LC(projC(α′)) > 0.
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Moreover, we may choose minimal r′ ∈ Bran(B � C) with tr(r′) = α′ and
Qσ,ρ(r

′) > 0. Let r denote the unique one-step prefix of r′. Then we have
tr(r) = α and Qσ,ρ(r) > 0.

Consider the construction of 〈σ, ρ〉 at r. Clearly, Clause (1) does not apply.
For the sake of contradiction, suppose Clause (2) applies. Then ρB(projB(r))
is a hidden transition and ρ(r) is a hidden transition induced by ρB(projB(r)).
Since a′ is not a hidden action, we may conclude that a′ ∈ I . However, in
Clause (2), σ(r, a) is defined to be ⊥ for every a ∈ I . In particular, σ(r, a′) = ⊥,
contradicting the fact that Qσ,ρ(r

′) > 0.

A similar argument eliminates Clause (3), therefore we may focus on Clause (4).
We have three cases.

– a′ ∈ I . Since Clause (1) does not apply, there is b ∈ I∪O with L0(αb) > 0.
Applying Lemma 11.3.4, we know that L0(αa) > 0 for all a ∈ IA. In
particular, L0(αa′) > 0.

– a′ ∈ OA = OB . In that case, we know r′ is of the form r.ρ(r).a′.s′ for
some s′ with 〈a′, s′〉 ∈ Supp(ρ(r)). Since a′ ∈ OB , ρ(r) is generated by an
output bundle of B.

Since ρ(r) 6= ⊥, we know that L0(αa) = L0(tr(r)a) > 0 for some a ∈ O.
Choose the same ar used in the construction of ρ(r) in Clause (4). Then,
we may infer that ar is also in OA = OB .

Recall from earlier that LA(projA(α′)) > 0. This implies

LA(projA(α)a′) = LA(projA(α′)) > 0,

therefore we may apply Lemma 11.4.3 to α, ar and a′ and conclude that
L0(α′) = L0(αa′) > 0.

– a′ ∈ OC . As in the previous case, we argue that ρ(r) is generated by an
output bundle of C. Moreover, the action ar used in the construction of
ρ(r) in Clause (4) is also in OC .

Recall from earlier that LC(projC(α′)) > 0. Again by Lemma 11.4.3 we
have L0(α′) = L0(αa′) > 0.

Lemma 11.4.7. For every α ∈ (I ∪ O)<ω, L0(α) > 0 implies Lσ,ρ(α) > 0.

Proof. We proceed by induction on the length of α. The base case is trivial,
since by definition every likelihood assignment assigns 1 to the empty trace. For
the inductive step, consider α′ of the form αa′.

Suppose L0(α′) > 0. Then L0(α) > 0. By Proposition 11.4.2 and the assump-
tions of Theorem 11.4.5, we also have LA(projA(α′)) = LB(projB(α′)) > 0 and
LC(projC(α′)) > 0.
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By the induction hypothesis, Lσ,ρ(α) > 0. Then the set

X := {r ∈ Bran(B � C) | tr(r) = α and Qσ,ρ(r) > 0}

is nonempty. By Proposition 11.3.3, X is linearly ordered by prefix and has a
unique minimal element, call it r0.

Suppose for the sake of contradiction that X is infinite. Then either projB(X)
or projC is infinite. We treat only the case in which projB(X) is infinite. The
other is completely analogous.

Let r′0 be the shortest extension of r0 such that ρ(r′0) is a hidden transition
generated by some hidden transition in B. Such r′0 exists because projB(X) is
nonempty. Then Clause (2) is used in the construction of ρ(r′0) and we may
choose b0 ∈ IB ∪ OB with L0(αb0) = L0(tr(r′0)b0) > 0. By Proposition 11.4.2,
this implies

LB(projB(α)b0) = LB(projB(αb0)) > 0.

On the other hand, since Qσ,ρ(r) > 0 for every r ∈ X , we may apply Propo-
sition 11.4.2 to conclude that QB(rB) > 0 for every rB ∈ projB(X). More-
over, since tr(r) = α for every r ∈ X , we have tr(rB) = projB(α) for every
rB ∈ projB(X). This implies projB(X) is a subset of the following set:

XB := {rB ∈ Bran(B) | tr(rB) = projB(α) and QB(rB) > 0}.

Thus XB is also infinite.

Since 〈σB , ρB〉 is determinate, we may conclude that σB(rB , b) = ⊥ for all
b ∈ IB . Hence LB(projB(α)b) = 0 for every b ∈ IB . Moreover, by Lemma 11.3.5,
LB(projB(α)b) = 0 for every b ∈ OB . This contradicts our earlier claim that
LB(projB(α)b0) > 0. Therefore X must be finite.

Let r′ denote the maximal element of X and consider the construction of 〈σ, ρ〉
at r′. Clause (1) does not apply since Qσ,ρ(r

′) > 0 and L0(αa′) > 0. Clauses (2)
and (3) do not apply because of maximality of r′. Thus, we may focus on
Clause (4). We have three cases.

– a′ ∈ I . In Clause (4), σ(r′, a) 6= ⊥ for all a ∈ I . Let t be the unique state in
Supp(σ(r′, a′)). Then Qσ,ρ(r

′.a′.σ(r′, a′).t) > 0 and hence Lσ,ρ(αa
′) > 0.

– a′ ∈ OB . Then LB(projB(α)a′) = LB(projB(α′)) > 0.

By Lemma 11.4.3 and the fact that L0(αa′) > 0, we may infer that
L0(αc) = 0 for all c ∈ OC . Therefore, by the construction in Clause (4),
ρ(r′) is an output bundle generated by some output bundle in B. Thus,
there is some b ∈ OB such that Lσ,ρ(αb) > 0. Now we apply Lemma 11.4.3
again to conclude that Lσ,ρ(αa

′) > 0.

– a′ ∈ OC . The same as in the previous case, but with B and C inter-
changed.
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The following is a corollary of Lemma 11.4.6, Lemma 11.4.7 and Proposi-
tion 11.4.2.

Corollary 11.4.8. For every α ∈ (I ∪ O)<ω, Lσ,ρ(α) = L0(α).

Proof. By virtue of Lemmas 11.4.6 and 11.4.7, we may assume both Lσ,ρ(α) > 0
and L0(α) > 0. Then by Proposition 11.4.2 and the assumptions of Theo-
rem 11.4.5, we have

Lσ,ρ(α) = LB(projB(α)) ·LC(projC(α)) = LA(projA(α)) ·LC(projC(α)) = L0(α).

We have now completed the proof of Theorem 11.4.5.

11.5 Conclusions

In this chapter, we presented a probabilistic modeling framework, along with a
compositional trace-style semantics. The defining axioms of this new framework
is motivated by the notion of local-oblivious scheduling, which prevents the
adversary from learning local coin tosses “too early”.

Our notions of external behavior and parallel composition are similar to those
introduced in Chapter 10. In particular, we follow the same motto of “schedule-
and-compose”, where local nondeterministic choices must be fully resolved be-
fore a global parallel composition takes place. This key idea ensures that our
trace-style semantics is compositional.

Many interesting ideas remain to be worked out. For instance, in the formal
methods literature, it is typical that adversaries/policies/schedulers depend en-
tirely on the “past” (e.g., a state sequence and/or actions that have already
been executed). In the literature of distributed algorithms, adversaries may be
able to detect differences in enabled operations, that is, those that have not
yet been completed (cf. [Cha96, AB04]). This is used to model situations such
as slowdown in hardware access due to contention. It would be interesting to
develop more formally this notion of “future-dependent” adversaries.

Also, we have experienced quite some difficulty in finding a consistent way to
assign probabilities to various interleavings in a parallel composition. In our
view, this is due largely to the fact that interleaving is inherently timing related,
and yet our basic framework is untimed, abstracting away from properties such
as “some internal computations require more time than others.” This may occur,
for example, when division operations are performed on randomly chosen values,
so that internal random choices can in fact affect the outcome of interleaving.
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Therefore, we believe that our formal modeling will benefit from a move to a
timed setting, where relative timing can be treated explicitly.

Finally, we mention two possible extensions to the technical work presented
here. First, we would like to develop an algorithm that translate a given PIOA
specification into one that satisfies our three partial-information axioms. This
is because we recognize the fact that it may be less natural to write a specifi-
cation while conforming to those axioms. We expect the translation algorithm
to be similar to algorithms that compute the belief-state MDP from a given
POMDP [KLA98]. It is likely that we need to impose certain restrictions on the
original PIOA spec, e.g., an upperbound on the number of consecutive hidden
transitions.

Moreover, we would like to define a notion of probabilistic simulation for our
new framework, as a sound method for proving behavioral inclusion. Some pre-
liminary results (not yet published) have already been obtained for the simpler
case of closed PIOAs, that is, those without input actions.
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Randomized Wait-Free Consensus

We present a randomized algorithm for asynchronous wait-free consensus using
multi-writer multi-reader shared registers. This algorithm is based on earlier
work by Chor, Israeli and Li (CIL) and is correct under the assumption that
processes can perform a random choice and a write operation in one atomic
step. The expected total work for our algorithm is shown to be O(N log(logN)),
compared with O(N2) for the CIL algorithm, and O(N logN) for the best known
weak adversary algorithm. We also model check instances of our algorithm using
the probabilistic model checking tool PRISM.

12.1 Introduction

Distributed consensus refers to a class of problems in which a set of parallel
processes exchange messages in order to agree on a common preference. Initially,
each process is given an input value from a fixed, finite domain and, at the end
of the algorithm, each non-faulty process outputs a decision value. Correctness
requirements are typically formulated as follows.

– Validity : the output of any non-faulty process must have been the input
of some process.

– Agreement : all non-faulty processes decide on the same value.

– Termination: every non-faulty process decides after a finite number of
steps.

As shown in [FLP85], there exists no deterministic algorithm that solves dis-
tributed consensus in a setting of asynchronous communication with undetected
process failure. Nonetheless, many efficient solutions exist under stronger as-
sumptions (e.g., partial synchrony [DLS88] and failure detection [ACT00]) or
weaker correctness requirements (e.g., probabilistic termination [CIL87]).

Our algorithm falls into the category of randomized consensus algorithms, where
processes may use coin tosses to determine their course of actions. In this
setting, termination is weakened to a probabilistic statement: the set of all
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non-terminating executions has probability 0. We refer to [Asp03] for a com-
prehensive overview on randomized consensus.

The first randomized consensus algorithm was proposed by Ben-Or [BO83] and
was designed for a message-passing system. A few years later, Chor, Israeli and
Li published the first randomized consensus algorithm using shared [CIL87,
CIL94] using shared memory . It satisfies the following termination condition.

– Probabilistic wait-free termination: with probability 1, each non-faulty
process decides after a finite number of steps.

We adopt the same requirement. In fact, the logical structure of our algorithm
closely resembles that in [CIL94], while we borrow ideas from [Cha96] to reduce
the amount of shared and local data. We shall refer to [CIL94] as the original
CIL algorithm and our own as the modified CIL algorithm.

Adversary Models and Work Bounds

To prove probabilistic termination, we must reason about probability distribu-
tions on the set of executions. This is done by specifying the so-called adver-
saries, which are fictitious entities designed to model scheduling uncertainties in
a distributed environment. Mathematically, an adversary is a function mapping
each finite execution to an available next operation. Such a function resolves
all non-deterministic choices among parallel processes, thereby inducing a prob-
ability distribution on the set of executions. One can then ask if probabilistic
termination is satisfied according to this distribution. By quantifying over all
possible adversaries (of a certain strength), we obtain worst-case guarantees
similar to those in a non-probabilistic setting.

The strength of an adversary varies according to the amount of information it
can extract from a finite history. The strong adversaries have access to complete
history of all processes and shared registers. Some weaker forms, such as write-
oblivious and value-oblivious, delay the adversary’s knowledge of outcomes of
internal coin tosses. The oblivious adversaries are the weakest, unable to observe
any random outcomes and their subsequent effects on system dynamics.

Clearly, a stronger adversary model permits more possibilities and therefore
renders consensus more difficult. Consensus against strong adversaries is shown
to be Ω(N2/ log2N) in expected total work, where N is the number of processes
participating in the algorithm [Asp98]. The best known algorithms achieve ex-
pected O(N2 logN) total work [BR91] and O(N log2N) per process [AW96].
Against write-oblivious adversaries, one can achieve expected O(logN) per pro-
cess work and O(N logN) total work [Aum97]. Against value-oblivious adver-

saries, the fastest algorithm is O(N logN e
√

logN) in a single-writer single-reader
(SWSR) setting [AKL99]1.

1This is faster than other value-oblivious algorithms because SWSR is a weak primitive.
More discussion can be found in Section 12.7.
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Our adversary model takes the form of an atomicity assumption: processes can
perform a random choice and a write operation in one atomic step. In particular,
the process increments its round number if and only if the coin lands heads; then
immediately it writes 1 to the memory location mem(v, r), where v is the current
preference and r is the round number after the coin toss. This amounts to saying
that the adversary cannot distinguish between the two locations mem(v, r) and
mem(v, r + 1).

The original CIL algorithm relies on a similar assumption2 and achieves ex-
pected O(N2) total work [CIL94]. In the present paper, we replace the single-
writer multiple-reader (SWMR) registers of [CIL94] with multi-writer multi-
reader (MWMR) registers, thereby reducing the expected total work bound to
O(N log(logN)).

Since our adversaries are value-sensitive, every non-faulty process must perform
at least one read operation, otherwise we can easily construct an execution that
violates the agreement property. Therefore, expected total work in this model
is Ω(N), which is almost matched by our upper bound of O(N log(logN)).

We have adopted the worst case expected total work as our complexity mea-
sure, mainly because it is more natural to reason about the collective effect of
all processes on the shared memory. In fact, per process work in our case is
comparable to total work: if all but one process suffer crash failures, the lone
survivor carries the total work burden and performs expected Ω(N) tosses in
order to pull far enough ahead for termination. In this sense, our algorithm
is less efficient than [Cha96, Aum97], where polylogarithmic upper bounds are
given for per process work.

Probabilistic Model Checking

We model check instances of our algorithm using PRISM, which can check PCTL
(Probabilistic Computation Tree Logic) formulas against an MDP (Markov Deci-
sion Process) [PRI, BK98]. This tool has been applied to many randomized algo-
rithms, including the consensus algorithm of Aspnes and Herlihy [AH90, KNS01]
and Byzantine agreement [KN02].

Consensus algorithms are often hard to model check, because the state space
grows exponentially with the number of participating processes. In [KNS01],
PRISM is applied only to a shared-coin subroutine, while full correctness re-
lies on verification using Cadence SMV, as well as higher level manual proofs.
Unfortunately, the structure of our algorithm does not provide such convenient
isolation of probabilistic reasoning. Nevertheless, we are able to build models
of binary consensus with up to 4 processes and verify relevant properties.

2Since [CIL94] uses SWMR memory registers, while we use MWMR registers, the same
atomicity assumption has different meanings in the two settings. The version in [CIL94] says
the adversary cannot distinguish between the values r and r + 1 as they are written to the
same memory location.
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In Section 12.6, we briefly describe these models and give a summary of PRISM
results. In Section 12.7, we discuss our learning experience with PRISM and
some prospects in improving feasibility of model checking.

Overview

Section 12.2 describes in greater detail our computational setting and assump-
tions. Section 12.3 presents the algorithm and correctness proofs are given in
Sections 12.4 and 12.5. Section 12.6 is devoted to model checking and Sec-
tion 12.7 contains closing discussions.

12.2 System Model

We consider a system of N processes interacting asynchronously via shared
memory objects. Each process Pi is given as input an initial preference p0

i , which
belongs to a fixed, finite domain. Without loss of generality, this preference
domain is assumed to be ZK for some natural number constant K ≥ 2. As a
convention, we write ZK for {0, . . . ,K − 1} and Z+

K for {1, . . . ,K − 1}.
We take a state-based view of our system. The local state of a process is de-
termined by a valuation of all of its local variables, plus a program counter
indicating the next line of code to be executed. In fact, it is trivial to include
the program counter as an explicit variable, so that local state is fully deter-
mined by valuation of local variables. This is done in our PRISM models.

The global state is then determined by local states of all N processes, together
with contents of shared MWMR atomic registers. These registers are by defini-
tion linearizable [HW90], meaning that each memory operation can be viewed
as taking place at a particular instant in time, as opposed to an interval between
invocation and response. Under this assumption, each read access returns the
value written by the last write access in the linearized execution history.

A process executes a possibly infinite sequence of discrete steps, each consisting
of a change in local state and/or a memory operation. It may also exhibit a lim-
ited form of non-deterministic behavior: crashing at any point of its execution.
A crashed process may never recover and re-enter the algorithm.

An execution of the entire system is obtained by interleaving executions of
individual processes, where scheduling among processes is determined by an
adversary that satisfies the atomicity assumption stated in Section 12.1. That
is, if a process is scheduled to toss a coin, it must be allowed to write to the
memory before another process is given a turn. The worst-case complexity is
measured in terms of the expected number of read and write operations taken
by all processes, quantifying over all admissible adversaries.
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12.3 Modified CIL Algorithm

As in many other consensus algorithms [BO83, CIL94, AH90, Cha96], we make
use of a round structure. During each round, a process goes through a possibly
infinite sequence of phases, each of which is a complete pass through the main
while-loop.

In original CIL, the shared memory is configured into an array of N many
SWMR registers, one for every process. Each registeri contains two pieces of
information: round number ri and preference value pi. At the beginning of
each phase, process Pi copies the contents of all registerj (i 6= j) and stores
them locally. These entries are then examined to decide the next action of Pi:
output a decision value and terminate, toss a coin to advance to the next round,
or jump to a higher round.

The initial copying of each phase is the main source of inefficiency in original
CIL, because the copied data contain more information than necessary for de-
cision making. For example, Pi need not know exactly which Pj is in a higher
round, as long as it knows some Pj is. This observation is precisely the mo-
tivation of our move from SWMR memory to MWMR memory. Instead of a
race among processes, we envision a race among preference values, so that pro-
cesses participate anonymously and the number of read operations in the main
loop is reduced from O(N) to O(1). Moreover, consensus is achieved with high
probability using only O(logN) registers containing one bit each.

Our MWMR shared memory is configured into K arrays of bits, each of length
R+2, where R := 2dlogNe. (Recall that K is the size of the preference domain
and is a constant, while N is the number of participating processes.) In other
words, we have mem : ZR+2 × ZK → {0, 1}, and the entries can be interpreted
as follows.

– For all r ∈ Z+
R+1 and v ∈ ZK , mem(r, v) = 1 if and only if value v has

reached round r (i.e., some process holds/held preference v while in round
r). These entries are initialized to 0.

– We assume every value v participates in the race from round 0, therefore
mem(0, v) is initialized to 1. This prevents a process from deciding (erro-
neously) in round 1 before all processes “wake up” and join the protocol3.

– Round-(R+1) entries are initialized to 0 and are used for marking decision
values. That is, if a process decides on value v, it writes 1 to mem(R+1, v).

Each process Pi maintains a current preference pi and a round number ri. In-
tuitively, Pi “believes” that pi is a leading value and ri is the highest round
reached by pi. If Pi detects any value v in a round higher than ri, it updates its
“belief” by running a subroutine Jump. In this way, lagging values are quickly

3As noted in [CH05], original CIL contains this initialization error.
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abandoned by active processes and are eventually eliminated from the race.
(This notion is made precise in Definition 12.4.1 in Section 12.4.) Therefore
the number of contending preference values never increases and the algorithm
terminates when that number decreases to 1. If Pi sees pi at least two rounds
ahead in the race, the algorithm guarantees that every other contending value
has been eliminated, therefore Pi can safely terminate with pi.

Notice, biased coin tosses are used to break ties in the lead pack, so that with
probability 1 the number of contending preferences eventually reaches 1. This
technique is quite different from the more common approach of shared coin
subroutines, in which processes cast randomly generated votes to obtain a weak
shared-coin [AH90, BR91].

Although every non-faulty process is guaranteed (with probability 1) to termi-
nate after a finite number of steps, the round in which it terminates can become
arbitrarily high. This requires an unbounded number of registers and is infea-
sible. Therefore we stop our algorithm when it reaches a certain round without
successful termination, in which case we switch to a slower algorithm that re-
quires bounded memory. We call this the exit algorithm. For convenience, the
original CIL algorithm is chosen for this purpose4. We will show that any exit
algorithm is invoked with probability at most 1

N , therefore the higher cost of
original CIL does not affect overall expected complexity.

Figure 12.1(a) contains the pseudocode for process Pi. The numbered lines can
be described informally as follows.

(1) Check if some process has decided.

(2) If so, decide for the same value.

(3) Check if a value other than pi has reached round ri − 1.

(4) If not, write 1 to mem(R+ 1, pi) and terminate with output pi.

(5) Otherwise, if round R is reached, run the original CIL algorithm.

(6) Otherwise, check if some value has reached round ri + 1.

(7) If not, advance pi to the next round with probability 1
2N .

(8) Otherwise, run subroutine Jump to find a leading value.

Note that the atomicity assumption discussed in Section 12.1 applies at Line (7).
This prevents the adversary from selectively delaying write operations of pro-
cesses who are ready to advance its preference to the next round.

Figures 12.1(b) and 12.1(c) contain the subroutines ReadMem and Jump, re-
spectively. The former is used to read from the shared memory, while the later

4Technically, original CIL requires registers with unbounded size. However, according
to [CIL94], the probability of non-termination is already extremely small (2−56) when each
register is 128 bits.
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ModifiedCIL(i, p0
i )

local variables
// round number
ri ∈ ZR+2,
// preference
pi ∈ ZK ,
// decision value
di ∈ ZK+1,
// values read from memory
aheadi, behindi ∈ ZK+1

begin
pi := p0

i ; ri := 0;
while ri ≤ R do

(1) di := ReadMem(R + 1, K);
(2) if di 6= K then return di;

if ri > 0 then {
(3) behindi := ReadMem(ri − 1, pi);
(4) if behindi = K then {

mem(R + 1, pi) := 1;
return pi
}

(5) elseif ri = R then return
OriginalCIL(i, pi)
}

(6) aheadi := ReadMem(ri + 1,K);
if aheadi = K then {

(7) with probability 1
2N

do
ri := ri + 1;

mem(ri, pi) := 1
}

(8) else 〈ri, pi〉 := Jump(ri + 1, aheadi)
od

end

(a) Main Algorithm.

ReadMem(r, p)
local variables

// counter
k ∈ ZK ,
// preference value found
v ∈ ZK+1,

begin
k := 0; v := K;
while k < K and v = K do

if mem(r, k) = 1 and k 6= p then
v := k;

k := k + 1
od
return v

end

(b) Subroutine ReadMem.

Jump(r, p)
local variables

// confirmed round and preference
r′ ∈ ZR+1, p′ ∈ ZK ,
// current round and preference

l ∈ Z+
R+1, u ∈ ZK+1,

// counter
c ∈ ZR+1,

begin
if r ≥ R then return 〈r, p〉;
r′ := r; p′ := p; c := dlog(R − r)e;
while c > 0 do
l := r′ + 2c−1;
if l ≤ R then {
u := ReadMem(l,K);
if u 6= K then {
r′ := l; p′ := u
}
}

c := c− 1
od
return 〈r′, p′〉

end

(c) Subroutine Jump.

Figure 12.1: Modified CIL Algorithm
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is used to find a leading value. When called with parameters r and p, ReadMem
scans one-by-one the r-th entry of every bit vector, except for the p-th. In other
words, we would like to know if any process has reached round r with preference
other than p. It returns the first k such that both k 6= p and, at the time of
read access, mem(r, k) = 1. If no such k is encountered, ReadMem returns K.

In every pass through the while-loop of Figure 12.1(a), ReadMem is called with
at most three round numbers: R+1, ri−1, and ri+1. This does not reveal the
highest round ever reached by any value. Therefore, a separate subroutine Jump
is run when the process sees itself behind. This is a key difference between our
algorithm and original CIL: in exchange for fewer read operations in the main
loop, more work is needed for slower processes to catch up.

The subroutine Jump can be implemented in various ways. A simple solution
is to increment ri by 1 and then call ReadMem once to find the least k such
that mem(ri, k) = 1. This requires a constant amount of work per invocation
of Jump and is implemented in our PRISM models. However, a process lagging
way behind may need to step through the main loop as many as R times in order
to catch up. Hence we opt for a faster implementation, which is essentially a
binary search on mem. This involves O(log(logN)) operations per invocation of
Jump, but a process can correctly locate a leading value in one complete phase
(provided no further progress is made in the mean time).

12.4 Validity and Agreement

In this section, we treat all coin tosses as non-deterministic choices. Let s0

denote the initial state of our system, where all N processes as well as the
shared memory have been properly initialized. A path of the system is a finite
sequence of states s0s1 . . . sm where, for all j ∈ Zm, sj+1 can be obtained from
sj by allowing exactly one non-faulty process to execute its next instruction. A
state s is reachable if there is a path ending in s. Finally, a value k ∈ ZK is said
to be valid if there is i ∈ ZN such that k equals the input p0

i to process Pi.

We use record notation to indicate valuation of variables. For example, s.ri
denotes the round number of Pi in state s. If Pi is running a subroutine (e.g.,
ReadMem), we add subscript i to variables of that subroutine (e.g., s.ki and
s.vi). This should not cause any confusion because each process runs at most
one instance of any subroutine at any given point of the execution.

First we state some properties about mem and subroutines ReadMem and Jump.
Lemma 12.4.1 says that an entry in mem never changes from 1 to 0, and
Lemma 12.4.2 says that the return value of ReadMem is correct (although it
may be out-of-date). Similarly, Lemma 12.4.3 states the correctness of Jump.

Lemma 12.4.1. Let r ∈ ZR+2, v ∈ ZK and a path s0 . . . sm be given. Suppose
there is j ∈ Zm+1 with sj .mem(r, v) = 1. Then sj′ .mem(r, v) = 1 for all
j ≤ j′ ≤ m.
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Proof. A process writes to the shared memory only if it executes Lines (4)
or (7) in Figure 12.1(a). In either case, the value 1 is written. Therefore, once
mem(r, v) becomes 1, it retains that value in the rest of the path.

Lemma 12.4.2. Let r ∈ ZR+2, p, v ∈ ZK+1 and a path s0 . . . sm be given. If
the last step is ReadMem(r, p) returning v 6= K, then sm.mem(r, v) = 1.

Proof. The return value v of ReadMem is set to a value other than K only if
the if-then clause is executed. Let sj (0 ≤ j ≤ m) be the state from which
this instance of ReadMem reads from mem(r, v). Clearly, sj .mem(r, v) = 1. By
Lemma 12.4.1, this also holds in sm.

Lemma 12.4.3. Let r, r′′ ∈ ZR+1, p, p′′ ∈ ZK and a path s0 . . . sm be given.
Suppose the last step is Jump(r, p) returning 〈r′′, p′′〉. If mem(r, p) = 1 when
Jump(r, p) is called, then sm.mem(r′′, p′′) = 1.

Proof. We prove that mem(r′, p′) = 1 is an invariant of the while-loop in Jump.
By assumption, the claim holds for initial values r′ = r and p′ = p. Noticed
that 〈r′, p′〉 is updated only if the if-then clause is executed, in which case
v 6= K. Since v is the return value of ReadMem(l,K), we have by Lemma 12.4.2
that mem(l, v) = 1, hence mem(r′, p′) = 1 still holds after the update. Let
sj be the state immediately after the last update of 〈r′, p′〉. Then we know
sj .mem(r′′, p′′) = 1. By Lemma 12.4.1, this also holds in sm.

Lemma 12.4.4 below states that mem correctly reflects the preference history
of participating processes. Validity is then proven to be an invariant (Theo-
rem 12.4.5).

Lemma 12.4.4. Let a path s0 . . . sm be given.

(i) For all i ∈ ZN , sm.ri ≤ R implies sm.mem(sm.ri, sm.pi) = 1.

(ii) For all r ∈ Z+
R+2 and v ∈ ZK , sm.mem(r, v) = 1 implies there exist i ∈ ZN

and j ∈ Zm+1 such that sj .pi = v.

Proof. We proceed by induction on the length of paths. For the initial state s0,
recall that round-0 entries are initialized to 1 and all other entries 0, therefore
the two claims hold trivially.

Now we consider a path s0 . . . smsm+1. Suppose the last step is taken by process
Pi. Let r denote sm.ri and v denote sm.pi. Notice that only Lines (4), (7) and (8)
in Figure 12.1(a) update variables ri, pi and mem.

– Line (4). By Lemma 12.4.1, Item (i) is trivial because ri is not updated.
Item (ii) holds because the only entry of interest is mem(R + 1, sm.pi).
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– Line (7). If the coin toss fails, there is no state change other than the
program counter of Pi. Suppose the coin toss succeeds. For Item (i),
simply note that

sm+1.mem(sm+1.ri, sm+1.pi) = sm+1.mem(r + 1, v) = 1

because the two updates in Line (7) are assumed to be simultaneous. On
the other hand, Item (ii) also holds because sm+1.pi = v.

– Line (8). Item (i) follows from Lemma 12.4.3. Item (ii) follows from the
induction hypothesis.

Theorem 12.4.5. The following claims hold in every reachable state s.

(i) For every i ∈ ZN , s.pi is valid.

(ii) For every r ∈ Z+
R+2 and v ∈ ZK , s.mem(r, v) = 1 implies v is valid.

(iii) For every i ∈ ZN , if s.di 6= K then s.di is valid. Similarly for s.aheadi
and s.behindi.

Proof. We prove these claims simultaneously using induction on the length of
paths. First consider the initial state s0. For Item (i), every s0.pi is valid
because it is set to the input value p0

i . Item (ii) holds trivially because all but
round-0 entries are initialized to 0. Item (iii) is also trivial because all relevant
variables are initialized to K.

Now we consider a path s0 . . . smsm+1. Suppose the last is taken by process Pi.
We examine Figure 12.1(a) line by line for all possible actions of Pi.

– Line (1). In this case, one update is possible: di is set to the return
value v of ReadMem(R + 1,K). Suppose v is not K. Then we can apply
Lemma 12.4.2 to conclude that sm+1.mem(R+1, v) = 1. Since mem is not
updated in the last step, this also holds in sm. Applying the induction
hypothesis, we conclude that sm+1.di = v is valid.

– Line (2). In this case, Pi terminates by returning the value sm.di and
there are no variable updates. We simply apply the induction hypothesis.

– Lines (3) and (6). Similar to Line (2).

– Line (4). In this case, mem(R + 1, sm.pi) is set to 1. By the induction
hypothesis, sm.pi is valid. Therefore Items (ii) hold in sm+1. Item (iii)
follows from the inductive hypothesis.

– Line (7). Similar to Line (4).
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– Line (8). 〈ri, pi〉 is set to the return values of Jump. Notice that this
update is executed only if sm.aheadi 6= K. Therefore, we can conclude
that in Line (6) ReadMem returned a value v other than K. Moreover,
notice that from then on ri and aheadi have not be updated. Therefore, by
Lemmas 12.4.1 and 12.4.2, we know that mem(sm.ri + 1, sm.aheadi) = 1
at the time Jump is called. Applying Lemma 12.4.3, we have

sm+1.mem(sm+1.ri, sm+1.pi) = 1.

Since mem is not updated in the last step, we have

sm.mem(sm+1.ri, sm+1.pi) = 1.

Applying the induction hypothesis, we conclude that sm+1.pi is valid.

Corollary 12.4.6. The modified CIL algorithm in Figure 12.1 is valid, assum-
ing the exit algorithm (in this case, the original CIL algorithm) is valid.

Next we prove agreement. A key ingredient is a predicate Φ on global states.

Definition 12.4.1. Let v, v′ ∈ ZK and r ∈ Z+
R+1 be given. We say that v

eliminates v′ in round r in global state s (denoted s |= Φ(v, v′, r)) just in case
s.mem(r, v) = 1 and s.mem(r − 1, v′) = 0.

We state a string of lemmas leading to the claim that no two processes ter-
minating by Line (4) do so with conflicting decision values (Lemma 12.4.10).
First, we have the fact that, if an entry mem(r, v) is marked 1, then every entry
mem(r′, v) with r′ ≤ r is also marked 1. This is Lemma 12.4.7 below.

Lemma 12.4.7. Let s be a reachable state. For all r ∈ ZR+1 and v ∈ ZK , if
s.mem(r, v) = 1 then s.mem(r′, v) = 1 for all r′ ≤ r.

Proof. We proceed by induction on the length of paths. Clearly this holds at
the initial state s0. Consider a path of the form s0 . . . sm+1 and assume the
property holds for sm. The only case of interest is when mem(r, v) changes from
0 to 1 as the result of some process Pi executes Line (7) from sm. In that case,
we have sm.ri = r − 1 and sm.pi = v. By Lemma 12.4.4, we may infer that
sm.mem(r − 1, v) = 1. By the induction hypothesis, sm.mem(r′, v) = 1 for all
r′ ≤ r − 1. Using Lemma 12.4.1, we conclude that sm+1.mem(r′, v) = 1 for all
r′ ≤ r.

Lemma 12.4.8 says, if a value v′ is eliminated by another value v in round r,
then no process subsequently reaches round r with preference v′. Intuitively,
this holds because mem(r, v′) changes from 0 to 1 only when some process Pi
preferring v′ executes Line (7). Using the definition of Φ and Lemma 12.4.7, we
argue that implies that such a process does not reach Line (7).
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Lemma 12.4.8. Let v, v′ ∈ ZK and r ∈ Z+
R+1 be given. Consider a path

s0 . . . sm such that sj |= Φ(v, v′, r) for some j ∈ Zm+1. Then, for all j′ ∈
{j, . . . ,m}, sj′ .mem(r, v′) = 0.

Proof. By the definition of Φ, we have sj .mem(r−1, v′) = 0 and sj .mem(r, v) =
1. Using Lemma 12.4.7, we infer that sj .mem(r, v′) = 0. For contradiction,
suppose that the claim doesn’t hold. We focus on the least j ′ ≥ j with
sj′ .mem(r, v′) = 1. Then it must be the case that sj′−1.mem(r, v′) = 0 and
some process Pi executes Line (7) from sj′−1. Moreover, sj′−1.ri = r − 1 and
sj′−1.pi = v′.

On the other hand, using Lemma 12.4.4 and the fact that sj .mem(r−1, v′) = 0,
we know either sj .ri < r − 1 or sj .pi 6= v′. Therefore, Pi must have entered
the current phase after sj . Since mem(r, v) is 1 in every state following sj , the
invocation of ReadMem in Line (6) of the current phase of Pi must have returned
a value other than K. This contradicts the claim that Pi executes Line (7) in
the current phase.

Finally, if a process Pi terminates by Line (4) with value v in round r, then
every other v′ must have been eliminated by v in round r at some earlier state.
This is proven in Lemma 12.4.9.

Lemma 12.4.9. Consider a path s0 . . . sm+1. Suppose that in the last step some
process Pi terminates by executing Line (4). Let r denote sm.ri and v denote
sm.pi. For every v′ 6= v, there is j′ ∈ Zm+1 such that sj′ |= Φ(v, v′, r).

Proof. Let v′ 6= v be given and let sj denote the first state in which Pi enters
the current phase. Thus sj .ri = r and sj .pi = v. By Lemma 12.4.4 and
Lemma 12.4.1, we have sj′′ .mem(r, v) = 1 for all j ′′ ∈ {j, . . . ,m}.
Since Line (4) is executed, r must be non-zero and the invocation of ReadMem in
Line (3) must have returned K. Let sj′ be the state from which ReadMem reads
from mem(r−1, v′). Since the return value of ReadMem is K, we may infer that
sj′ .mem(r − 1, v′) = 0. Moreover, we have j ′ > j and hence sj′ .mem(r, v) = 1.
Therefore sj′ |= Φ(v, v′, r).

We are now ready for Lemma 12.4.10. The basic idea is, if two distinct decision
values exist, then they must have eliminated each other. By Lemma 12.4.8, this
is a contradiction.

Lemma 12.4.10. Let a path s0 . . . sm and j, j′ ∈ Zm+1be given. Assume that
process Pi terminates by Line (4) with output v from state sj and some other
process Pi′ does the same with output v′ from state sj′ . Then v = v′.

Proof. For the sake of contradiction, suppose v 6= v′. Let r and r′ denote the
final round numbers of Pi and Pi′ , respectively. Without loss of generality,
assume that r ≤ r′. By Lemma 12.4.9, we know that sj |= Φ(v, v′, r), therefore
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sj .mem(r, v) = 1 and sj .mem(r− 1, v′) = 0. On the other hand, sj′ .ri′ = r′ and
sj′ .pi′ = v′, so by Lemma 12.4.4 we have sj′ .mem(r′, v′) = 1.

First we consider the case in which j < j ′. By Lemma 12.4.8, we know that
sj′ .mem(r, v′) = 0. Applying Lemma 12.4.7, we have sj′ .mem(r′, v′) = 0, which
yields a contradiction.

Next we consider the case in which j ′ < j. By Lemma 12.4.1, we may infer
that sj .mem(r′, v′) = 1. By Lemma 12.4.7, this implies sj .mem(r − 1, v′) = 1,
contradicting the fact that sj |= Φ(v, v′, r).

It remains to consider termination by Line (2). Lemma 12.4.11 below implies
that every process terminating by Line (2) must be preceded by a process ter-
minating by Line (4) with the same decision. Using this claim, Theorem 12.4.12
is easily reduced to Lemma 12.4.10.

Lemma 12.4.11. Let v ∈ ZK and a path s0 . . . sm be given. Assume that
sm.mem(R+1, v) = 1. There is j ∈ Zm+1 such that some process Pi terminates
with decision value v by executing Line (4) from sj .

Proof. Let j be the index for the first state in this path such that sj .mem(R+
1, v) = 1. Since mem(R + 1, v) is initialized to 0, we know that j > 0. Let Pi
be the first process writing to mem(R + 1, v) from sj−1. Then Pi must have
terminated with decision value v by executing Line (4) from sj−1.

Theorem 12.4.12. Let a path s0 . . . sm be given. Assume that process Pi ter-
minates by executing either Line (2) or Line (4) from state sj (j ∈ Zm+1) and
its decision value is v. Similarly for Pi′ , sj′ and v′. Then v = v′.

Proof. We claim that there exist j ′′ ∈ Zm+1 and i′′ ∈ ZN such that Pi′′ ter-
minates with decision value v by executing Line (4) from sj′′ . If Pi terminates
by Line (4), then we simply set i′′ := i and j′′ := j. Otherwise, Pi terminates
by Line (2) and the invocation of ReadMem in Line (1) of the last phase of Pi
must have returned v 6= K. By Lemma 12.4.2 and Lemma 12.4.1, we know that
sm.mem(R + 1, v) = 1. We can then choose j ′′ and i′′ using Lemma 12.4.11.

The same claim also holds for v′. Now we apply Lemma 12.4.10 to infer that
v = v′.

12.5 Probabilistic Termination and Expected Complexity

Let us first consider the amount of work required during each phase of the
algorithm. (Recall that a phase is an entire pass through the while-loop in
Figure 12.1(a)). Notice each phase involves at most (i) three calls to ReadMem,
(ii) one write operation and (iii) one call to Jump. Each call to ReadMem requires
O(1) read operations, because the size K of the preference domain is a constant
in our analysis. Therefore, aside from Jump, each phase involves constant work.
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Consider the while-loop in Jump. Each pass through this loop involves at most
one call to ReadMem. Furthermore, this loop is executed at most logR+1 times.
Since R = 2dlogNe by definition, each call to Jump requires O(log(logN)) read
operations. This is then also the cost of a complete phase. Later on, we will
prove that the expected number of complete phases until at least one process
terminates successfully is O(N) and hence the expected number of read/write
operations is O(N log(logN)) (Lemma 12.5.5).

For any state s, let s.rmax denote the highest round reached by any process
in state s. In other words, s.rmax := maxi∈ZN s.ri. Since the two updates in
Line (7) of Figure 12.1(a) are performed in a single step, s.rmax is also the
largest r such that s.mem(r, v) = 1 for some value v ∈ {0, . . . ,K − 1}.
Lemma 12.5.1 below says, if no value advances to round rmax + 1, a lagging
process can catch up to round rmax in one complete phase. First we argue that
a lagging process reaches Line (8) in its first complete phase after sm. Then,
based on the while-loop in Jump, we construct a nested sequence of intervals
shrinking to the singleton {sm.rmax}. Therefore sm.rmax is the round number
returned by Jump.

Lemma 12.5.1. Let s0 . . . sm . . . sm′ be a path with m < m′. Assume that
sj .rmax = sm.rmax for every j ∈ {m, . . . ,m′}. Moreover, assume that Pi com-
pletes a phase between sm and sm′ without crashing, successfully terminating or
switching to the exit algorithm. Then sm′ .ri = sm.rmax.

Proof. For readability, write rmax for sm.rmax and r for sm.ri + 1. Consider
the first complete phase executed by Pi between sm and s′m. Without loss of
generality, assume that sm is the first state in that phase and that r ≤ rmax.

By assumption, Pi does not crash, terminate, or exit. Therefore it reaches
Line (6) in this phase. By Lemma 12.4.1 and Lemma 12.4.7, r ≤ rmax implies
there is v ∈ ZK such that sj .mem(r, v) = 1 for all j ∈ {m, . . . ,m′}. Hence the
invocation of ReadMem in Line (6) returns a value other than K and Pi executes
Line (8). It remains to show Jump returns rmax for the round number.

Note that Jump returns r if r ≥ R, in which case r = R = rmax. Otherwise, let c
denote dlog(R− r)e. The while-loop of Jump calculates the following sequence
{r′0, . . . , r′c} of natural numbers: r′0 is r and r′i+1 is

– r′i, if r′i + 2c−i > R or ReadMem(r′i + 2c−i,K) returns K;

– r′i + 2c−i, otherwise.

From this we obtain a nested sequence of intervals:

[r′0, r
′
0 + 2c), . . . , [r′i, r

′
i + 2c−i), . . . , [r′c, r

′
c + 20).

It is easy to see that rmax belongs to every one of these intervals and, since
the last is a singleton, we know r′c = rmax. This is precisely the round number
returned by Jump.
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In Lemma 12.5.2, we show that the probability of at least one process termi-
nating successfully within the next two rounds is bounded below by a constant,
provided rmax is at most R − 2. Moreover, this termination takes place before
15N complete phases are executed. The proof resembles the analysis given in
[CIL94]; namely, we consider two events:

– E1 is “a success occurs before 5N attempts to move from r to r + 1 are
made and all subsequent such attempts fail,” and

– E2 is “a success occurs before 5N attempts to move from r + 1 to r + 2
are made.”

We argue that the conjunction of E1 and E2 implies at least one process ter-
minates successfully in round r + 2 before 15N complete phases are executed.
Moreover, the probability of both E1 and E2 occurring is at least 0.511, using
the fact that {(1− 1

n )n}∞n=2 increases to the limit 1
e .

Lemma 12.5.2. Suppose ModifiedCIL starts from a reachable state s. Let r
denote s.rmax and suppose r ≤ R − 2. Then, with probability greater than
0.511, at least one process terminates successfully in a round no higher than
r + 2. Moreover, at most 15N complete phases are executed between s and the
successful termination.

Proof. By assumption, at least one process survives throughout the execution
of the algorithm. Therefore, if no successful termination ever takes place, the
algorithm stops only if all surviving processes reach round R and switch to
the exit algorithm. Without loss of generality, we assume that no successful
termination occurs in round r + 1 or lower.

Consider the first complete phase following s. There are two cases.

– It is executed by a process Pi in round < r. By Lemma 12.5.1, Pi reaches
round r by the end of this phase.

– It is executed by a process Pi in round r. Then Pi reaches Line (7) in this
phase and, with probability 1

2N , Pi advances to round r + 1.

Suppose that either the first case applies, or the second case applies but Pi
fails to advance to round r + 1. Then the same case distinction can be made
on the next complete phase. This repeats until all surviving processes have
reached round r and, after that point, every complete phase involves a coin
toss to advance to round r+ 1 until a success occurs. Moreover, since a lagging
process catches up to round r in one complete phase, at most N complete phases
following s are executed by processes in round strictly lower than r.

Consider the event E1, in which “a success occurs before 5N attempts to move
from r to r+ 1 are made” and “all subsequent attempts to move from r to r+ 1
fail.” Notice the first condition is equivalent to “it is not the case that all of the
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first 5N attempts to move from r to r + 1 fail,” which occurs with probability
1 − (1 − 1

2N )5N . By the reasoning above, this first success occurs before 6N
complete phases are executed following s.

Let Pi be the successful process, thus the first to reach round r + 1. By our
atomicity assumption, mem(r + 1, s.pi) is set to 1 as soon as Pi reaches round
r + 1. After that point, every other Pi′ tosses a coin at most once to advance
from r to r+ 1. This is because in the subsequence phase Pi′ sees it’s no longer
leading and therefore does not execute Line (7). As a result, the probability of
“all subsequent attempts to move from r to r+1 fail” is at least (1− 1

2N )N−1 and
hence the probability of E1 is at least (1− (1− 1

2N )5N )(1− 1
2N )N−1. Moreover,

after Pi reaches round r + 1, at most 2N − 2 complete phases are executed by
processes in round r or lower: at most N − 1 failed coin tosses to move from r
to r + 1 and at most N − 1 phases to catch up to r + 1.

By assumption, no successful termination takes place until a process has reached
round r + 2. Thus, every complete phase executed by a process in round r + 1
is a coin toss to move to round r + 2, until a success occurs. Let E2 denote the
event that “a success occurs before 5N attempts to move from r + 1 to r + 2
are made.” The probability of E2 given E1 is then 1− (1− 1

2N )5N . Similarly,
this success occurs before 6N + (2N − 2) + 5N = 13N − 2 complete phases are
executed following s and, after this success, at most 2N−2 complete phases are
executed by processes in round r + 1 or lower.

Therefore, given E1 and E2, at least one process executes a complete phase in
round r+2 before 15N complete phases are executed following s. Due to E1, no
process reaches round r+1 with preference value other than s.pi. Therefore the
first process to complete a phase in round r + 2 sees no disagreement in round
r+1 or higher. It then terminates successfully by Line (4). It remains to consider
the probability of both E1 and E2 occurring. Recall that {(1 − 1

n )n}∞n=2 is an
increasing sequence with limit 1

e . Therefore {(1 − 1
2n )n−1}∞n=2 is a decreasing

sequence with limit 1√
e

and {1− (1− 1
2n )5n}∞n=2 is a decreasing sequence with

limit 1− 1
e2.5 . Therefore, the probability of both E1 and E2 occurring is at least

(1− (1− 1

2N
)5N )2 · (1− 1

2N
)N−1 ≥ (1− 1

e2.5
)2 · 1√

e
> 0.511.

Notice Lemma 12.5.2 applies only to executions starting in round R − 2 or
lower. The next lemma covers rounds R − 1 and R, assuming a decision is
reached without switching to the exit algorithm.

Lemma 12.5.3. Suppose ModifiedCIL starts from a reachable state s. Let r
denote s.rmax and suppose R − 2 < r ≤ R. Assuming the exit algorithm is
not invoked, the (conditional) probability that at least one process terminates
successfully before 15N complete phases are executed after s is greater than
0.511.
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Proof. We use arguments similar to those in the proof of Lemma 12.5.2. First
suppose r = R. Then at most N − 1 complete phases are executed before
a process completes a phase in round R. Suppose Pi is the first to do so.
If Pi does not terminate by Line (4) in that phase, it must be the case that
mem(R − 1, v1) = mem(R − 1, v2) = 1 for some v1 6= v2. Then Pi, as well
as every other process that reaches round R, invokes the exit algorithm. By
assumption, this is not the case and hence Pi terminates by Line (4) in that
phase. Therefore, with probability 1, at least one process terminates before N
complete phases are executed.

If r = R− 1, then at most N − 1 complete phases are executed before a process
completes a phase in round R − 1. Similar to the previous case (r = R), if
the first process completing a phase in round R − 1 does not terminate by
Line (4) in that phase, every process reaching round R − 1 will try to advance
to round R by Line (7), until one of them succeeds. The probability of at least
one success before 4N attempts are made is 1− (1− 1

2N )4N , which is bounded
below by (1− 1

e2 ) > 0.864. After that success, the problem reduces to the case
where r = R and successful termination is guaranteed beforeN complete phases.
Therefore, with probability at least 0.864, at least one process terminates before
6N complete phases are executed.

We now prove probabilistic wait-free termination.

Theorem 12.5.4. If the exit algorithm is wait-free and satisfies probabilistic
termination, the same holds for ModifiedCIL.

Proof. By correctness of the exit algorithm, we may focus on the case in which
the exit algorithm is not invoked. Consider execution blocks of 15N complete
phases each. By Lemma 12.5.2 and Lemma 12.5.3, the probability of successful
termination within each block is at least 0.511. Thus, with probability 1, the
algorithm terminates successfully after a finite number of blocks. Since we have
made no assumption on the number of surviving processes, the algorithm is
wait-free.

Next, we turn to complexity considerations. First we consider the case in which
the exit algorithm is not invoked. As before, the execution is divided into blocks
of 15N complete phases and we argue that the expected number of blocks is at
most 2. Hence the expected number of complete phases is O(N). Since each
phase involves O(log(logN)) elementary operations, the expected number of
elementary operations O(N log(logN)).

Lemma 12.5.5. Assume that the exit algorithm is not invoked. The expected
number of elementary read/write operations until at least one process terminates
successfully is O(N log(logN)).
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Proof. Again we consider execution blocks of 15N complete phases each. The
expected number of blocks is:

∞∑

n=1

(n · 0.511 · (1− 0.511)n−1) =
∞∑

n=0

((n+ 1) · 0.511 · 0.489n).

Factoring out 0.511 and rearranging the summands, we have

∞∑

n=0

((n+ 1) · 0.511 · 0.489n)

= 0.511 · (
∞∑

n=0

0.489n +
∞∑

n=1

0.489n +
∞∑

n=2

0.489n + . . .)

= 0.511 · (
∞∑

n=0

0.489n + 0.489

∞∑

n=0

0.489n + 0.4892
∞∑

n=0

0.489n + . . .)

= 0.511 · (
∞∑

n=0

0.489n)2

= 0.511 · ( 1

0.511
)2 =

1

0.511
< 2.

Thus the expected number of complete phases is at most 30N . Moreover, there
are at most N − 1 incomplete phases. Since each phase involves O(log(logN))
elementary operations, the expected number of elementary operations is at most
O(N log(logN)).

If the exit algorithm is in fact invoked, we consider the expected number of
elementary operations both before and after switching. The former is shown
to be O(N(logN)(log(logN))) and, as proven in [CIL94], the latter is O(N2).
This implies the overall expected complexity in this case is O(N 2 log(logN)).

Lemma 12.5.6. Suppose the exit algorithm is the original CIL algorithm and
is invoked. The expected number of elementary read/write operations until at
least one process terminates successfully is O(N 2 log(logN)).

Proof. In this case the algorithm steps through all R rounds without successful
termination. Using a similar calculation as in the proof of Lemma 12.5.5, the
expected number of coin tosses to move from r to r + 1 is

∞∑

n=1

n(
1

2N
)(1− 1

2N
)n−1 = 2N.

Following each success, at most N − 1 phases are executed by processes lagging
behind. Therefore, the expected number of complete phases before switching
to original CIL is at most 3NR ≤ 6N(logN + 1). The expected number of
elementary operations before switching is then O(N(logN)(log(logN))).
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In [CIL94], it is shown that the expected number of elementary operations for
the original CIL algorithm is O(N 2). Therefore, the overall expected number
of elementary operations is O(N 2 log(logN)).

Lemma 12.5.7. Suppose the ModifiedCIL starts from the initial state s0. The
probability of failing to reach a decision in or before round R is at most 1/N .

Proof. By Lemma 12.5.2, this probability is at most (1 − 0.511)
R
2 . Since R =

2dlogNe, we have

(1− 0.511)
R
2 ≤ (1− 0.511)logN < (0.5)logN =

1

N
.

Putting together Lemmas 12.5.5, 12.5.6, and 12.5.7, we conclude that the ex-
pected complexity of ModifiedCIL is O(N log(logN)).

Theorem 12.5.8. Suppose ModifiedCIL starts from the initial state s0 and the
exit algorithm is original CIL. The expected number of elementary read/write
operations until at least one process terminates successfully is O(N log(logN)).

12.6 Model Checking

It is quite straightforward to specify our algorithm in PRISM’s state-based
input language. Each process is modeled as a module and the shared memory
is modeled using global variables. Two more global variables are used to keep
track of process failures and the number of completed phases.

We consider binary consensus (i.e., K = 2) with N = 2, 3, 4 processes. Pro-
cesses are assumed to disagree initially, therefore validity is trivial. Agree-
ment is satisfied in all models constructed. For probabilistic termination, we
ask PRISM to compute the (exact) minimum probability of at least one pro-
cess terminating successfully, given an allowance of R = 2dlogNe rounds and
15N · R2 = 15NdlogNe complete phases. This result is compared against our
analytic lower bound of 1− 1

N .

Below we present (portions of) our PRISM model. Figures 12.2 shows the front
matter, including declarations of global constants and global variables. The key
word “nondeterministic” indicates that the underlying model is that of Markov
decision processes. Figures 12.3 and 12.4 contain the PRISM code for a process
whose initial preference is 0. All other processes can be obtained from this one
using syntactic replacements. Model checking is then performed on the parallel
composition of all process modules.

In the case of N = 4, the model becomes too complex (with 2dlogNe = 4
rounds and 15NdlogNe = 120 complete phases). However, we discover that the
analytic bound of 1− 1

N = 0.750 is already met when we restrict to 40 complete
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//////////////////////////////////////////
// PRISM model for the modified CIL algorithm
// 4 processes
// bias = 1/2N = 0.125
// binary consensus, maximum round number R = 4 = 2 log N
// initial configuration: round, preference
// process 0 : 0,0
// process 1 : 0,1
// process 2 : 0,0
// process 3 : 0,1

//////////////////////////////////////////
nondeterministic

// number of processes
const int N=4;

// probability of advancing to next round prob = 1/2N
const double bias=0.125;

// number of preference values
const int K=2;

// protocol starts at round 0
// stops if decision is reached or round R is reached without decision
// R = 2 log N
const int R=4;

// maximum number of complete phases 15N*R/2=120
// can’t build the model with that many, so try something lower
const int numPhases=40;

//////////////////////////////////////////
// shared memory
// mem(i,b): a process in round i prefers/preferred b
// initial disagreement, no need to have mem00 and mem01
// mem(R+1,b) is used to indicate decision

global mem10 : [0..1] init 0;
global mem11 : [0..1] init 0;
global mem20 : [0..1] init 0;
global mem21 : [0..1] init 0;
global mem30 : [0..1] init 0;
global mem31 : [0..1] init 0;
global mem40 : [0..1] init 0;
global mem41 : [0..1] init 0;
global mem50 : [0..1] init 0;
global mem51 : [0..1] init 0;

// number of non-faulty processes
global NF : [1..N] init N;

// number of complete phases remaining
global q : [0..numPhases] init numPhases;

Figure 12.2: PRISM Model: Front Matter.
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///////////////////////////////////////////
// process0, preferring 0
// REMARK
// Jump is not modeled due to limitations in the PRISM language
// a lagging process walks one step at a time

module proc0

// preference value
p0 : [0..1] init 0;

// round number R=4
r0 : [0..R] init 0;

// status
s0 : [0..7] init 1;
// 0 crashed or switching to exit algorithm
// 1 read mem(R+1,0)
// 2 read mem(R+1,1)
// 3 read mem(r0-1,1-p0)
// 4 read mem(r0+1,0)
// 5 read mem(r0+1,1)
// 6 random-write
// 7 decided

///////////////////////////////////////////////
// crash failure
[] (NF>1) & (s0!=0) -> (NF’=NF-1) & (s0’=0);

// read from memory
// read mem(R+1,0)
[] (s0=1) & (mem50=1) & (q>=1) -> (s0’=7) & (p0’=0) & (q’=q-1);
[] (s0=1) & (mem50=0) & (q>=1) -> (s0’=2);

// read mem(R+1,1)
[] (s0=2) & (mem51=1) & (q>=1) -> (s0’=7) & (p0’=1) & (q’=q-1);
[] (s0=2) & (mem51=0) & (q>=1) -> (s0’=3);

// read mem(r0-1,1-p0)
// round-0 entries all initialized to 1
[] ((r0=0)—(r0=1)) & (s0=3) & (q>=1) -> (s0’=4);
[] (r0=2) & (s0=3) & (p0=0) & (mem11=0) & (q>=1) -> (s0’=7) & (mem50’=1) & (q’=q-1);
[] (r0=2) & (s0=3) & (p0=1) & (mem10=0) & (q>=1) -> (s0’=7) & (mem51’=1) & (q’=q-1);
[] (r0=2) & (s0=3) & (p0=0) & (mem11=1) & (q>=1) -> (s0’=4);
[] (r0=2) & (s0=3) & (p0=1) & (mem10=1) & (q>=1) -> (s0’=4);
[] (r0=3) & (s0=3) & (p0=0) & (mem21=0) & (q>=1) -> (s0’=7) & (mem50’=1) & (q’=q-1);
[] (r0=3) & (s0=3) & (p0=1) & (mem20=0) & (q>=1) -> (s0’=7) & (mem51’=1) & (q’=q-1);
[] (r0=3) & (s0=3) & (p0=0) & (mem21=1) & (q>=1) -> (s0’=4);
[] (r0=3) & (s0=3) & (p0=1) & (mem20=1) & (q>=1) -> (s0’=4);
[] (r0=4) & (s0=3) & (p0=0) & (mem31=0) & (q>=1) -> (s0’=7) & (mem50’=1) & (q’=q-1);
[] (r0=4) & (s0=3) & (p0=1) & (mem30=0) & (q>=1) -> (s0’=7) & (mem51’=1) & (q’=q-1);
[] (r0=4) & (s0=3) & (p0=0) & (mem31=1) & (q>=1) -> (s0’=0) & (q’=q-1);
[] (r0=4) & (s0=3) & (p0=1) & (mem30=1) & (q>=1) -> (s0’=0) & (q’=q-1);

// read mem(r0+1,0)
// This doesn’t happen in round 4
[] (r0=0) & (s0=4) & (mem10=1) & (q>=1) -> (r0’=r0+1) & (p0’=0) & (s0’=1) & (q’=q-1);
[] (r0=0) & (s0=4) & (mem10=0) & (q>=1) -> (s0’=5);
[] (r0=1) & (s0=4) & (mem20=1) & (q>=1) -> (r0’=r0+1) & (p0’=0) & (s0’=1) & (q’=q-1);
[] (r0=1) & (s0=4) & (mem20=0) & (q>=1) -> (s0’=5);
[] (r0=2) & (s0=4) & (mem30=1) & (q>=1) -> (r0’=r0+1) & (p0’=0) & (s0’=1) & (q’=q-1);
[] (r0=2) & (s0=4) & (mem30=0) & (q>=1) -> (s0’=5);
[] (r0=3) & (s0=4) & (mem40=1) & (q>=1) -> (r0’=r0+1) & (p0’=0) & (s0’=1) & (q’=q-1);
[] (r0=3) & (s0=4) & (mem40=0) & (q>=1) -> (s0’=5);

Figure 12.3: PRISM Model: Process with Preference 0, Part I.
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///////////////////////////////////////////
// process0, preferring 0, continued

// read mem(r0+1,1)
// This doesn’t happen in round 4
[] (r0=0) & (s0=5) & (mem11=1) & (q>=1) -> (r0’=r0+1) & (p0’=1) & (s0’=1) & (q’=q-1);
[] (r0=0) & (s0=5) & (mem11=0) & (q>=1) -> (s0’=6);
[] (r0=1) & (s0=5) & (mem21=1) & (q>=1) -> (r0’=r0+1) & (p0’=1) & (s0’=1) & (q’=q-1);
[] (r0=1) & (s0=5) & (mem21=0) & (q>=1) -> (s0’=6);
[] (r0=2) & (s0=5) & (mem31=1) & (q>=1) -> (r0’=r0+1) & (p0’=1) & (s0’=1) & (q’=q-1);
[] (r0=2) & (s0=5) & (mem31=0) & (q>=1) -> (s0’=6);
[] (r0=3) & (s0=5) & (mem41=1) & (q>=1) -> (r0’=r0+1) & (p0’=1) & (s0’=1) & (q’=q-1);
[] (r0=3) & (s0=5) & (mem41=0) & (q>=1) -> (s0’=6);

// leading with competition, toss coin to advance
// This doesn’t happen in round 4
[] (r0=0) & (p0=0) & (s0=6) & (q>=1) ->

quad bias:(r0’=r0+1)&(mem10’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=0) & (p0=1) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem11’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=1) & (p0=0) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem20’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=1) & (p0=1) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem21’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=2) & (p0=0) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem30’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=2) & (p0=1) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem31’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=3) & (p0=0) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem40’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);
[] (r0=3) & (p0=1) & (s0=6) & (q>=1) ->

bias:(r0’=r0+1)&(mem41’=1)&(s0’=1)&(q’=q-1) + (1.0-bias):(s0’=1)&(q’=q-1);

endmodule

Figure 12.4: PRISM Model: Process with Preference 0, Part II.
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phases. This suggests that we have made some overly conservative estimates
while deriving the analytic bound.

The table below summarizes our model checking results. We use PRISM version
2.1, running on a 1.4 GHz Pentium M machine with 500 Mb memory under
Linux 2.6. The MTBDD engine is used with a CUDD memory limit of 400 Mb.
Other parameters remain at default settings. All relevant files, including model
checking logs, can be found in [Che05a].

N R #Phases Model Agreement Termination
#States Time(s) Time(s) Time(s) MinProb AnalyticBd

2 2 30 42,320 4 0.025 6 0.745 0.511
3 4 90 12,280,910 213 0.094 2,662 0.971 0.667
4 2 60 45,321,126 429 0.078 602 0.755 0.511
4 4 40 377,616,715 5224 3.926 55,795 0.765 0.750

12.7 Conclusions

We have given a simple algorithm that solves asynchronous wait-free consensus
in expected O(N log(logN)) total work. We follow a value-based (as opposed
to process-based) approach and make use of MWMR atomic registers. This
strategy, also adopted in [Cha96, Aum97], leads to a significant reduction in
data handling and hence more efficient consensus algorithms. As a pleasant
side-effect, the reduction in both global and local data makes model checking
significantly more feasible, for it helps to avoid the typical state explosion prob-
lem.

MWMR memory is often regarded as a stronger primitive than SWMR memory.
Indeed, there are optimal implementations of MWMR from physical SWMR
registers using linear time and logarithmic space [IS92]. However, if one makes
comparisons from the basis of SWSR, then MWMR and SWMR become roughly
the same: when implemented from SWSR, both require linear time and loga-
rithmic space. Moreover, it is argued in [BPSV00] that SWMR memory requires
the hidden assumption of naming : existence of distinct identifiers known to all.
In that sense, MWMR is a weaker primitive compared to SWMR. This idea is
echoed by the fact that, unlike the original CIL algorithm, our version allows
processes to participate anonymously.

The MWMR strategy has another advantage, namely, flexibility in memory
usage. We have shown that, with high probability, consensus can be reached
using O(logN) many single-bit MWMR registers. (That is, the main algorithm
succeeds and thus the exit algorithm is not invoked.) This can be seen as a
temporary reprieve from the lower bound of Ω(

√
N) for the space requirement

of randomized consensus [FHS98]. In practice, one may be willing to accept a
small probability of failing to reach consensus, in which case we can remove the
exit algorithm altogether. The main algorithm can be repeated to increase the
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success probability, and memory is allocated only as needed.

To our best knowledge, our algorithm is faster (in terms of expected total
work) than all other algorithms for dynamic adversaries, with the exception
of [AKL99]. The algorithm of [AKL99] works in a SWSR setting and is shown

to be O(N logN e
√

logN ) in expected total work. To have a fair comparison, we
should take into account an emulation of MWMR from SWSR, thus adding a
linear slowdown to our complexity result.

However, the algorithm of [AKL99] is based on a primitive called cooperative
sharing, in which processes propagate knowledge by reading and writing entire
knowledge sets into registers. These knowledge sets grow throughout the ex-
ecution and may eventually contain the identifiers and input values of all N
processes. Therefore polynomial-size registers are necessary. In contrast, we re-
quire constant-size registers. Even if our registers are provided by an emulation
from SWSR, it is sufficient to have logarithmic-size registers [IS92].

For future work, we want to improve the per process work bound of our algo-
rithm. In [AW96], a similar improvement is achieved by allowing fast processes
to cast votes of increasing weights. However, their proofs rely on properties of
Martingale processes and cannot be adapted immediately to our setting. At
this time, we do not know if per process work is inherently high in our setting
(e.g., Ω( N

f(N)), where f is a polylogarithmic function).

Another possibility for future work is to consider contention cost, which mea-
sures the amount of conflict in memory access [AB04]. The contention cost for
ModifiedCIL is high because, in a roughly synchronous execution, all N pro-
cesses try to access a constant number of registers at the same time. It would
be interesting to modify the algorithm further to reduce contention.

Finally, we comment on model checking using PRISM. Although the current
limit seems to be 4 processes, we conjecture a vast improvement using a symme-
try reduction option, which is under development by the PRISM team. Before
symmetry reduction is available, manual abstraction can be used to increase fea-
sibility. That is, we manually construct an abstraction that captures core ideas
of an algorithm, while significantly decreasing the model size. We experimented
with such an abstraction of original CIL, by focusing on the shared memory and
filtering out local states of processes. Having done so, we were in fact able to
handle up to 10 processes. However, it is non-trivial to prove soundness of the
abstraction. Standard techniques such as probabilistic simulation are available
for this purpose, but substantial investment of time is required.

Overall, PRISM allows us to conduct experiments during the development stage
of an algorithm, with minimal learning effort. Although in most cases it still
cannot handle large instances of a full algorithm, it is perfectly feasible to model
check a subroutine or an abstract version. This already provides valuable in-
formation, especially to those who simply wish to gain more insight into an
algorithm.
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Conclusions

This PhD project began with the following question: “Can one define a compo-
sitional trace-style semantics for probabilistic automata?” This quickly led to an
even more fundamental question: “How should one define parallel composition
for probabilistic automata?” In order to answer these questions, we researched
the literature extensively and tried to understand the various treatments of
nondeterminism and scheduling.

An interesting observation is that different research communities have different
traditions and preferences for scheduling mechanisms. In the formal methods
community, for example, one tends to invent scheduling mechanisms that are
mathematically simple, so that scheduling does not add to the complexity of
verification. In contrast, the community of distributed computing is more will-
ing to sacrifice simplicity of scheduling for better performance of algorithms.
Various scheduling assumptions are introduced in order to sidestep lower bound
results, despite the fact that these assumptions complicate correctness proofs.
Yet another tradition is found in the area of cryptographic protocols, where
scheduling is designated to an adversarial entity.

These observations had some significant influences over our work. On the one
hand, we would like our formalisms to be mathematically simple and, if possible,
to resemble existing formalisms. This increases the likelihood that our work can
be integrated with other efforts in probabilistic verification, especially those in
tool development. On the other hand, we would like to be able to model the
various scheduling assumptions that are used in distributed computing, as well
as adversarial scheduling for cryptographic protocols. Ideally, this should be
done in a systematic manner, so that minimal effort is required to switch from
one scheduling assumption to another.

After several attempts, we have come to favor a two-leveled approach. On
the lower level, we aim for a basic framework that uses a simple scheduling
mechanism and supports compositional reasoning. Moreover, it is important
to keep in mind the possibility of mechanization, since correctness proofs of
distributed algorithms are notoriously labor intensive.

Then, within this basic framework, one can implement a scheduler component,
very much like the arbiter automaton described in Section 10.5. This scheduler
component can be viewed as a parameter that specifies the desired scheduling
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assumption. In other words, to switch from one assumption to another, one
simply needs to replace the scheduler component. Such flexibility will be the
main appeal of this two-leveled modeling paradigm.

We believe that the switched PIOA framework of Chapter 10 is very suitable for
implementing a two-leveled paradigm. On the lower level, the notion of (local)
I/O schedulers is a simple extension of the familiar notion of perfect-information
schedulers. On the higher level, one can use arbiter automata to specify which
part of the execution history may influence scheduling decisions.

The framework proposed in Chapter 11 is less flexible in this respect, because
we tried to hardwire a particular scheduling assumption (i.e., local-oblivious
scheduling) using a number of axioms. Nonetheless, it serves to confirm our
claim that compositionality can indeed be achieved if local scheduling is clearly
separated from global scheduling. The same idea may very well be carried out
in other formalisms in order to achieve compositionality.

To conclude, we believe we have made significant progress on the topic of com-
positionality. Although our proposals may still be too complex for practical
applications and tool implementation, we have identified the key issues that
made compositionality difficult to achieve. We hope that our ideas will inspire
further research in probabilistic verification and will contribute to the advances
of this field.
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Samenvatting (Dutch Summary)

Dit proefschrift gaat over probabilistische verificatie. Het primaire doel was om
modelleerraamwerken te ontwikkelen die kunnen worden gebruikt voor zowel de
specificatie als de verificatie van gedistribueerde algorithmen die gebruik maken
van randomisatie (kansen). De nadruk ligt op de semantische aspecten van zulke
raamwerken; wij pogen bijvoorbeeld om een precieze wiskundige semantiek te
geven aan de processen die definiëerbaar zijn in deze raamwerken, en wij bewi-
jzen standaard stellingen die ons in staat stellen om over semantische objecten
te redeneren en om deze te manipuleren.

In dit proefschrift worden kansen expliciet gëıntroduceerd door de deelnemende
partijen. Processen brengen bijvoorbeeld stemmen uit (iedere stem heeft een
bepaalde kans) om consensus te bereiken, of ze kiezen met een bepaalde kans
een buurman om informatie door te geven zonder het netwerk te overbelas-
ten. Omdat de omgeving zeer onvoorspelbaar is worden nondeterministische
keuzes gebruikt om onzekerheden met betrekking tot communicatie te mod-
elleren. Kortom, onze modellen kunnen typisch zowel nondeterministische als
probabilistische keuzes bevatten.

De aanwezigheid van nondeterminisme is gewenst vanuit het modelleerperspec-
tief, maar leidt tot complicaties bij de semantische definities en analyse. Om
namelijk goed gedefiniëerde kansdistributies te verkrijgen uit een specificatie die
zowel nondeterministische als probabilistische keuzes bevat moeten deze twee
“uit de knoop” worden gehaald. Dit wordt gewoonlijk gedaan door zogenaamde
tegenstanders/schedulers die alle nondeterministische keuzes oplossen.

Wij zijn van mening dat het oplossen van de nondeterministische keuzes (dit
wordt ook “scheduling” genoemd) een fundamenteel punt is in semantische stud-
ies omdat verschillende scheduling mechanismes ook verschillende kansdistribu-
ties aan een specificatie koppelen. Dit impliceert dat de eigenschappen van
een specificatie af kunnen hangen van de manier waarop de nondeterministische
keuzes worden opgelost. Daarom voelen wij de drang om meer aandacht aan de
notie van tegenstanders te besteden.

In het bijzonder bestuderen wij mathematische eigenschappen van tegenstanders
welke geformaliseerd zijn als functies die executiehistories aan beschikbare tran-
sities koppelen. Bovendien proberen wij te begrijpen hoe de verschillende defini-
ties van parallelle compositie zich vertalen in verschillende aannames over het
gedrag van de tegenstanders. Dit geeft ons de mogelijkheid om een aantal
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sleuteleigenschappen van tegenstanders te benoemen (zoals afhankelijkheid van
historie) die invloed hebben op de compositionaliteit van trace-stijl semantiek.
Als laatste proberen wij een link te leggen tussen de noties van tegenstanders
zoals die in onze formele definities bevat zijn en degenen die worden gebruikt
binnen gedistribueerde systemen zoals in de gebieden van security protocollen
en gerandomiseerde consensus algorithmes.

Dit proefschrift bestaat uit drie delen. In Part I werken wij met Segala’s (sim-
ple) Probabilistic Automata (PA) model [Seg95b] en bewijzen vele technische
stellingen over tegenstanders en hun gëınduceerde kansdistributies. Deze re-
sultaten zijn vervolgens gebruikt om de test-semantiek van Stoelinga en Vaan-
drager [SV03] uit te breiden. In Part II introduceren wij een variant van Prob-
abilistic Input/Output Automata (PIOA) en gebruiken deze als basis voor twee
gespecialiseerde modellen die beiden een compositionale trace-stijl semantiek
hebben. Als laatste wordt in Part III een consensus algorithme gepresenteerd
dat gebruik maakt van kansen. Het algorithme wordt handmatig correct be-
wezen en deels mechanisch geanalyseerd met de PRISM model checker [PRI].

(Special thanks to Martijn Hendriks, who translated this summary into the Dutch
language.)
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