Compositional Security for Task-PIOAs

Ran Canetti, Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Olivier Pereira

MIT Computer Science and Artificial Intelligence Laboratory

CSF, 6-8 July 2007, Venice, Italy

Outline

- 2 Time Bounds in Task-PIOA
- Olynomial Composition
- 4 Compositional Security

(日) (四) (注) (注)

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

<ロ> (四) (四) (三) (三)

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

イロト イポト イヨト イヨト

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

• Security game: e.g., IND-CPA, IND-CCA1, IND-CCA2.

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

- Security game: e.g., IND-CPA, IND-CCA1, IND-CCA2.
- *Simulation-based security*: e.g., Universally Composable (UC) Security, Reactive Simulatability (RSIM).

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

- Security game: e.g., IND-CPA, IND-CCA1, IND-CCA2.
- *Simulation-based security*: e.g., Universally Composable (UC) Security, Reactive Simulatability (RSIM).

Common theme: indistinguishability.

< 67 ▶

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

- Security game: e.g., IND-CPA, IND-CCA1, IND-CCA2.
- *Simulation-based security*: e.g., Universally Composable (UC) Security, Reactive Simulatability (RSIM).

Common theme: *indistinguishability*. Differences:

• security games are easier to prove;

Analysis of Cryptographic Protocols

Three main targets:

- correctness
- efficiency
- security

How do we define security?

- Security game: e.g., IND-CPA, IND-CCA1, IND-CCA2.
- *Simulation-based security*: e.g., Universally Composable (UC) Security, Reactive Simulatability (RSIM).

Common theme: *indistinguishability*. Differences:

- security games are easier to prove;
- simulation-based security is composable.

Simulation-Based Security

 $\label{eq:product} \begin{array}{l} \text{``securely emulates''} \\ \phi \leq_{\mathsf{E}} \psi \ \Leftrightarrow \end{array}$

イロト イヨト イヨト イヨト

Simulation-Based Security

"securely emulates"

 $\phi \leq_{\textit{E}} \psi \ \Leftrightarrow$

$\forall Adv \exists Sim \forall Env Adv \|\phi\| Env \approx Sim \|\psi\| Env$

イロト イヨト イヨト イヨト

Simulation-Based Security

"securely emulates" $\phi \leq_{\mathsf{E}} \psi \Leftrightarrow$

 $\forall Adv \exists Sim \forall Env Adv \|\phi\| Env \approx Sim \|\psi\| Env$

- ϕ : *real* protocol
- ψ : *ideal* protocol
- \approx : indistinguishable (perfectly, statistically, computationally)

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

イロト イヨト イヨト イヨト

-2

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

Proof. Let Adv be given. Choose Sim such that

 $\forall Env \quad Adv \|\phi\| Env \approx Sim \|\psi\| Env$

イロト イポト イヨト イヨト

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

Proof. Let Adv be given. Choose Sim such that

 $\forall Env \; Adv \|\phi\| Env \approx Sim \|\psi\| Env$

Let *Env* be given. Set $Env' := \eta ||Env|$.

イロト イポト イヨト イヨト

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

Proof. Let Adv be given. Choose Sim such that

 $\forall Env \quad Adv \|\phi\| Env \approx Sim \|\psi\| Env$

Let *Env* be given. Set $Env' := \eta || Env$. Then

 $Adv \|\phi\|\eta\|$ Env $\approx Adv \|\phi\|$ Env' $\approx Sim \|\psi\|$ Env' $\approx Sim \|\psi\|\eta\|$ Env.

・ロト ・ 同ト ・ ヨト ・ ヨト

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

Proof. Let Adv be given. Choose Sim such that

 $\forall Env \quad Adv \|\phi\| Env \approx Sim \|\psi\| Env$

Let *Env* be given. Set $Env' := \eta || Env$. Then

 $Adv \|\phi\|\eta\|$ Env $\approx Adv \|\phi\|$ Env' $\approx Sim \|\psi\|$ Env' $\approx Sim \|\psi\|\eta\|$ Env.

Hidden hurdles: associativity, compatibility, ...

・ロト ・ 同ト ・ ヨト ・ ヨト

Composability: One-Page Proof

Theorem. If $\phi \leq_E \psi$, then $\phi \|\eta \leq_E \psi \|\eta$.

Proof. Let Adv be given. Choose Sim such that

 $\forall Env \quad Adv \|\phi\| Env \approx Sim \|\psi\| Env$

Let *Env* be given. Set $Env' := \eta || Env$. Then

 $Adv \|\phi\|\eta\|$ Env $\approx Adv \|\phi\|$ Env' $\approx Sim \|\psi\|$ Env' $\approx Sim \|\psi\|\eta\|$ Env.

Hidden hurdles: associativity, compatibility, ...

Most importantly, pprox must be preserved under substitutions.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Two Layers of Composability Claims

Hard: Composability in the underlying model of concurrent computation.

Easy: Composability in the security layer.

Stop Being Sloppy ...

A protocol ϕ is a family $\{\phi_1, \phi_2, \dots, \phi_k, \dots\}$, indexed by *security* parameter k.

Canetti et al. Compositional Security

イロト イヨト イヨト イヨト

-2

 $\phi = \{\phi_1, \phi_2, \dots, \phi_k, \dots\}$ is said to have *polynomially bounded* description if there is a polynomial p(k) such that, for all k,

- every constituent (e.g., state, action, task) of ϕ_k can be
 - encoded with fewer than p(k) bits and
 - recognized in fewer than p(k) Turing steps;

 $\phi = \{\phi_1, \phi_2, \dots, \phi_k, \dots\}$ is said to have *polynomially bounded* description if there is a polynomial p(k) such that, for all k,

- every constituent (e.g., state, action, task) of ϕ_k can be
 - encoded with fewer than p(k) bits and
 - recognized in fewer than p(k) Turing steps;
- all single-step transitions of φ_k can be computable in at most p(k) Turing steps;

 $\phi = \{\phi_1, \phi_2, \dots, \phi_k, \dots\}$ is said to have *polynomially bounded* description if there is a polynomial p(k) such that, for all k,

- ullet every constituent (e.g., state, action, task) of ϕ_k can be
 - encoded with fewer than p(k) bits and
 - recognized in fewer than p(k) Turing steps;
- all single-step transitions of φ_k can be computable in at most p(k) Turing steps;
- all relevant (probabilistic) Turing machines can be encoded with fewer than p(k) bits.

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

 $\phi = \{\phi_1, \phi_2, \dots, \phi_k, \dots\}$ is said to have *polynomially bounded* description if there is a polynomial p(k) such that, for all k,

- ${\ensuremath{\bullet}}$ every constituent (e.g., state, action, task) of ϕ_k can be
 - encoded with fewer than p(k) bits and
 - recognized in fewer than p(k) Turing steps;
- all single-step transitions of φ_k can be computable in at most p(k) Turing steps;
- all relevant (probabilistic) Turing machines can be encoded with fewer than p(k) bits.

Caution: This is *not* polynomial-time in the traditional sense. Bounded description $\neq \Rightarrow$ bounded runtime. (Distinctive feature of task-PIOA!)

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Computational Implementation

$$\begin{split} \phi \leq_{\mathsf{neg},\mathsf{pt}} \psi &\Leftrightarrow \forall p, q_1 \; \exists q_2, \epsilon \; \forall k \\ &\forall p(k) \text{-bounded environment } Env \\ &\forall q_1(k) \text{-bounded task schedule } \rho_1 \\ &\exists q_2(k) \text{-bounded task schedule } \rho_2 \\ &| \mathbf{P}_{\mathsf{acc}}(\phi_k \| Env, \rho_1) - \mathbf{P}_{\mathsf{acc}}(\psi_k \| Env, \rho_2) | \leq \epsilon(k) \end{split}$$

Computational Implementation

$$\begin{split} \phi \leq_{\mathsf{neg},\mathsf{pt}} \psi &\Leftrightarrow \forall p, q_1 \; \exists q_2, \epsilon \; \forall k \\ &\forall p(k) \text{-bounded environment } Env \\ &\forall q_1(k) \text{-bounded task schedule } \rho_1 \\ &\exists q_2(k) \text{-bounded task schedule } \rho_2 \\ &| \mathbf{P}_{\mathsf{acc}}(\phi_k \| Env, \rho_1) - \mathbf{P}_{\mathsf{acc}}(\psi_k \| Env, \rho_2) | \leq \epsilon(k) \end{split}$$

Theorem. If $\phi \leq_{\text{neg,pt}} \psi$, then $\phi \|\eta \leq_{\text{neg,pt}} \psi \|\eta$.

(日) (四) (注) (注)

Computational Implementation

$$\begin{split} \phi \leq_{\mathsf{neg},\mathsf{pt}} \psi &\Leftrightarrow \forall p, q_1 \; \exists q_2, \epsilon \; \forall k \\ &\forall p(k) \text{-bounded environment } Env \\ &\forall q_1(k) \text{-bounded task schedule } \rho_1 \\ &\exists q_2(k) \text{-bounded task schedule } \rho_2 \\ &| \mathbf{P}_{\mathsf{acc}}(\phi_k \| Env, \rho_1) - \mathbf{P}_{\mathsf{acc}}(\psi_k \| Env, \rho_2) | \leq \epsilon(k) \end{split}$$

Theorem. If $\phi \leq_{\text{neg,pt}} \psi$, then $\phi \|\eta \leq_{\text{neg,pt}} \psi \|\eta$. Proof. Set $Env' := \eta \|Env$ and use associativity.

(D) (A) (A)

Polynomial Composition

What if we compose multiple instances?

(E.g., a parent process that invokes dynamically multiple copies of the same protocol.)

i-th copy of
$$\phi$$
: $\phi_i = \{(\phi_i)_1, \dots, (\phi_i)_k, \dots\}$
i-th copy of ψ : $\psi_i = \{(\psi_i)_1, \dots, (\psi_i)_k, \dots\}$

Polynomial Composition

What if we compose multiple instances?

(E.g., a parent process that invokes dynamically multiple copies of the same protocol.)

i-th copy of
$$\phi$$
: $\phi_i = \{(\phi_i)_1, \dots, (\phi_i)_k, \dots\}$
i-th copy of ψ : $\psi_i = \{(\psi_i)_1, \dots, (\psi_i)_k, \dots\}$

Let b be a polynomial. $(\hat{\phi})_k := (\phi_1)_k \| \dots \| (\phi_{b(k)})_k$ $(\hat{\psi})_k := (\psi_1)_k \| \dots \| (\psi_{b(k)})_k$

▲□ ▶ ▲ ■ ▶ ▲

Polynomial Composition

What if we compose multiple instances?

(E.g., a parent process that invokes dynamically multiple copies of the same protocol.)

i-th copy of
$$\phi$$
: $\phi_i = \{(\phi_i)_1, \dots, (\phi_i)_k, \dots\}$
i-th copy of ψ : $\psi_i = \{(\psi_i)_1, \dots, (\psi_i)_k, \dots\}$

Let b be a polynomial. $(\hat{\phi})_k := (\phi_1)_k \| \dots \| (\phi_{b(k)})_k$ $(\hat{\psi})_k := (\psi_1)_k \| \dots \| (\psi_{b(k)})_k$

"Theorem". If $\phi_i \leq_{\text{neg,pt}} \psi_i$ for every *i*, then $\hat{\phi} \leq_{\text{neg,pt}} \hat{\psi}$.

. . .

Naive Solution

Repeated application of the binary composition theorem.

 $\begin{aligned} & (\phi_1)_k \| ((\phi_2)_k \| \dots \| (\phi_{b(k)})_k \| Env) \\ & (\psi_1)_k \| ((\phi_2)_k \| \dots \| (\phi_{b(k)})_k \| Env) \\ & (\phi_2)_k \| ((\psi_1)_k \| (\phi_3)_k \| \dots \| (\phi_{b(k)})_k \| Env) \\ & (\psi_2)_k \| ((\psi_1)_k \| (\phi_3)_k \| \dots \| (\phi_{b(k)})_k \| Env) \end{aligned}$

 $(\psi_1)_k \| ((\psi_2)_k \| \dots \| (\psi_{b(k)})_k \| Env)$

・ 同 ト・ ・ ヨート・ ・ ヨート

Naive Solution

Schedule length bounds: $\forall q_1 \exists q_2$ $\forall q_2 \exists q_3$ $\forall q_3 \exists q_4 \dots$

<ロ> (四) (四) (三) (三)

Naive Solution

Schedule length bounds:

 $\begin{array}{c} \forall q_1 \ \exists q_2 \\ \forall q_2 \ \exists q_3 \\ \forall q_3 \ \exists q_4 \ \dots \end{array}$

Problem!

 q_i 's may grow exponentially: $\forall i \ q_{i+1} = 2 \cdot q_i$ Schedule length bound for $\hat{\psi}$ is $\hat{q}(k) = 2^{b(k)} \cdot q_1(k)$. Not polynomial.

→ 同→ → モト → モト

Naive Solution

Schedule length bounds:

 $\begin{array}{c} \forall q_1 \ \exists q_2 \\ \forall q_2 \ \exists q_3 \\ \forall q_3 \ \exists q_4 \ \dots \end{array}$

Problem!

 q_i 's may grow exponentially: $\forall i \ q_{i+1} = 2 \cdot q_i$ Schedule length bound for $\hat{\psi}$ is $\hat{q}(k) = 2^{b(k)} \cdot q_1(k)$. Not polynomial.

Worse yet: error ϵ depends on schedule length bound q_i , so a different ϵ_i at every step! $\hat{\epsilon}(k) = \sum_{i=1}^{b(k)} \epsilon_i(k)$ still negligible?

Computational Implementation (Take 2)

 $\phi \leq_{\text{neg.pt}}^{\text{strong}} \psi \iff \forall q_1 \; \exists q_2 \; \forall p, q \; \exists \epsilon \; \forall k$ $\forall p(k)$ -bounded environment *Env* \forall task schedule ρ_1 such that $\operatorname{proj}_{\phi}(\rho_1)$ is $q_1(k)$ -bounded $\operatorname{proj}_{Fnv}(\rho_1)$ is q(k)-bounded \exists task schedule ρ_2 such that $\operatorname{proj}_{\mathcal{U}}(\rho_2)$ is $q_2(k)$ -bounded $\operatorname{proj}_{Env}(\rho_1) = \operatorname{proj}_{Env}(\rho_2)$ $|\mathbf{P}_{\mathsf{acc}}(\phi_k \| \mathsf{Env}, \rho_1) - \mathbf{P}_{\mathsf{acc}}(\psi_k \| \mathsf{Env}, \rho_2)| < \epsilon(k)$

Computational Implementation (Take 2)

Main changes.

• Separate schedule bounds.

(日) (四) (注) (注)

Computational Implementation (Take 2)

Main changes.

- Separate schedule bounds.
- q_2 independent of q.

(日) (四) (注) (注)

Computational Implementation (Take 2)

Main changes.

- Separate schedule bounds.
- q_2 independent of q.
- Environment tasks fixed.

・ 同 ト・ ・ ヨート・ ・ ヨート

Theorem. If $\phi_i \leq_{\text{neg,pt}}^{\text{strong}} \psi_i$ for every *i*, then $\hat{\phi} \leq_{\text{neg,pt}}^{\text{strong}} \hat{\psi}$

イロト イヨト イヨト イヨト

Theorem. If $\phi_i \leq_{\text{neg,pt}}^{\text{strong}} \psi_i$ for every i, then $\hat{\phi} \leq_{\text{neg,pt}}^{\text{strong}} \hat{\psi}$

Proof. Fix k. Define hybrid automata: $H_k^0, \ldots, H_k^i, \ldots, H_k^{b(k)}$. $H_k^i := (\psi_1)_k \| \ldots \| (\psi_i)_k \| (\phi_{i+1})_k \| \ldots \| (\phi_{b(k)})_k$

Theorem. If $\phi_i \leq_{\text{neg,pt}}^{\text{strong}} \psi_i$ for every *i*, then $\hat{\phi} \leq_{\text{neg,pt}}^{\text{strong}} \hat{\psi}$

Proof. Fix k. Define hybrid automata: $H_k^0, \ldots, H_k^i, \ldots, H_k^{b(k)}$. $H_k^i := (\psi_1)_k \| \ldots \| (\psi_i)_k \| (\phi_{i+1})_k \| \ldots \| (\phi_{b(k)})_k$ Note that $H_k^0 = (\hat{\phi})_k$ and $H_k^{b(k)} = (\hat{\psi})_k$.

 $\textit{Theorem. If } \phi_i \leq^{\text{strong}}_{\text{neg,pt}} \psi_i \textit{ for every } i, \textit{ then } \hat{\phi} \leq^{\text{strong}}_{\text{neg,pt}} \hat{\psi}$

Proof. Fix k. Define hybrid automata: $H_k^0, \ldots, H_k^i, \ldots, H_k^{b(k)}$. $H_k^i := (\psi_1)_k \| \ldots \| (\psi_i)_k \| (\phi_{i+1})_k \| \ldots \| (\phi_{b(k)})_k$ Note that $H_k^0 = (\hat{\phi})_k$ and $H_k^{b(k)} = (\hat{\psi})_k$.

$$\begin{aligned} |\mathbf{P}_{\mathsf{acc}}((\hat{\phi})_{k} \| \mathsf{Env}, \rho_{1}) - \mathbf{P}_{\mathsf{acc}}((\hat{\psi})_{k} \| \mathsf{Env}, \rho_{b(k)+1})| \\ &\leq |\mathbf{P}_{\mathsf{acc}}(H_{k}^{0} \| \mathsf{Env}, \rho_{1}) - \mathbf{P}_{\mathsf{acc}}(H_{k}^{1} \| \mathsf{Env}, \rho_{2})| \\ &+ |\mathbf{P}_{\mathsf{acc}}(H_{k}^{1} \| \mathsf{Env}, \rho_{2}) - \mathbf{P}_{\mathsf{acc}}(H_{k}^{2} \| \mathsf{Env}, \rho_{3})| \\ &+ \ldots + |\mathbf{P}_{\mathsf{acc}}(H^{b(k)-1} \| \mathsf{Env}, \rho_{b(k)}) - \mathbf{P}_{\mathsf{acc}}(H^{b(k)} \| \mathsf{Env}, \rho_{b(k)+1})| \\ &< b(k) \cdot \epsilon(k) \end{aligned}$$

Compositional Security

"securely emulates"

 $\phi \leq_{\mathsf{E}} \psi \iff \forall \mathsf{Adv} \exists \mathsf{Sim} \mathsf{Adv} \| \phi \leq_{\mathsf{neg,pt}}^{\mathsf{strong}} \mathsf{Sim} \| \psi$

<ロ> (四) (四) (三) (三)

Compositional Security

"securely emulates"

$$\phi \leq_{\mathsf{E}} \psi \iff \forall \mathsf{Adv} \exists \mathsf{Sim} \mathsf{Adv} \| \phi \leq_{\mathsf{neg,pt}}^{\mathsf{strong}} \mathsf{Sim} \| \psi$$

Remark: " $\forall Env$ " is encapsulated in $\leq_{neg,pt}^{strong}$.

<ロ> (日) (日) (日) (日) (日)

Compositional Security

"securely emulates"

$$\phi \leq_{\mathsf{E}} \psi \iff \forall \mathsf{Adv} \ \exists \mathsf{Sim} \ \mathsf{Adv} \| \phi \leq_{\mathsf{neg,pt}}^{\mathsf{strong}} \mathsf{Sim} \| \psi$$

Remark: " $\forall Env$ " is encapsulated in $\leq_{neg,pt}^{strong}$.

Theorem. If $\phi_i \leq_E \psi_i$ uniformly for every *i*, then $\hat{\phi} \leq_{\text{neg,pt}}^{\text{strong}} \hat{\psi}$ *Proof.* Dummy adversaries and composition theorem for $\leq_{\text{neg,pt}}^{\text{strong}}$.

Dummy Adversaries

Dummy adversary: forwarder between protocol and environment.

(日) (四) (注) (注)

Dummy Adversaries

Dummy adversary: forwarder between protocol and environment.

Formal property: $f(\phi) \leq_{\text{neg,pt}}^{\text{strong}} \phi ||Adv_{\text{dummy}}|$, where f is a renaming function.

$$f(\phi) \xleftarrow{f(AAct_{\phi})} Env$$

<ロ> (四) (四) (注) (注) (三) (三)

$$\phi \underbrace{\longleftarrow}_{AAct_{\phi}} Adv_{dummy} \underbrace{\longleftarrow}_{f(AAct_{\phi})} Env$$

Proof of Secure Composition

Step 1. Get "big" Adv for $\hat{\phi}$. Try to construct Sim for $\hat{\psi}$.

(日) (日) (日) (日) (日)

Proof of Secure Composition

Step 1. Get "big" Adv for $\hat{\phi}$. Try to construct Sim for $\hat{\psi}$. Step 2. Get Simⁱ for each Advⁱ_{dummy}.

イロト イポト イヨト イヨト

Proof of Secure Composition

Step 1. Get "big" Adv for $\hat{\phi}$. Try to construct Sim for $\hat{\psi}$. Step 2. Get Simⁱ for each Adv^{i}_{dummy} .

Step 3. Sim := $(||_i Sim^i) || f(Adv)$.

・ロト ・ 日 ・ ・ 目 ・ ・

Conclusions and Future Work

• Unbounded forwarder.

イロト イヨト イヨト イヨト

Conclusions and Future Work

- Unbounded forwarder.
- Dynamic process creation.

イロト イヨト イヨト イヨト

Conclusions and Future Work

- Unbounded forwarder.
- Dynamic process creation.
- Timed computational analysis: Haber's protocol.

< 🗇 🕨

Conclusions and Future Work

- Unbounded forwarder.
- Dynamic process creation.
- Timed computational analysis: Haber's protocol.
- More case studies: statistical ZK, ABE, etc.

< 17 ▶