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Trace Distribution Semantics: Recent Developments

From the last talk:

semantic compositionality fails in Segala’s Simple Probabilistic
Automata Framework;

distributed scheduling saves the day: Switched PIOA.

This talk: Symbolic PA, a new system type designed to weaken the
adversary model of Segala’s Simple PA.

Disclaimer: This is ongoing work.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

Adversary Model
Randomized Scheduling

Trace Distribution Semantics: Recent Developments

From the last talk:

semantic compositionality fails in Segala’s Simple Probabilistic
Automata Framework;

distributed scheduling saves the day: Switched PIOA.

This talk: Symbolic PA, a new system type designed to weaken the
adversary model of Segala’s Simple PA.

Disclaimer: This is ongoing work.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

Adversary Model
Randomized Scheduling

Trace Distribution Semantics: Recent Developments

From the last talk:

semantic compositionality fails in Segala’s Simple Probabilistic
Automata Framework;

distributed scheduling saves the day: Switched PIOA.

This talk: Symbolic PA, a new system type designed to weaken the
adversary model of Segala’s Simple PA.

Disclaimer: This is ongoing work.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

Adversary Model
Randomized Scheduling

Trace Distribution Semantics: Recent Developments

From the last talk:

semantic compositionality fails in Segala’s Simple Probabilistic
Automata Framework;

distributed scheduling saves the day: Switched PIOA.

This talk: Symbolic PA, a new system type designed to weaken the
adversary model of Segala’s Simple PA.

Disclaimer: This is ongoing work.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

Adversary Model
Randomized Scheduling

The Role of An Adversary

In a probabilistic setting, we wish to talk about probability
measures over the collection of all system executions.

For this to make sense, all non-deterministic choices in the system
must be resolved.

Typically, we do so by specifying an adversary: a function from
finite histories to available next transitions.
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A Few Remarks

The notion of adversaries is purely conceptual.

Not all adversaries are created equal: one may vary the
power/knowledge of an adversary to obtain different adversary
models.

Example: Segala’s Simple PA has a strong adversary model, in
that the adversaries have complete knowledge over execution
history of all components, including their internal states.

Different adversary models give rise to different notions of
probabilistic executions.
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Silly Example I

·P
a

��·

GF ED
@A BC

·Q

b
��·

GF ED
@A BC

·Coin ��1
2

����
��
�

11
1
2

��1
11

11

· ·
τ

GF ED
@A BC

In Simple PA, the following is a “legal” probabilistic execution.

· a //· b //·
pp

1
2
77ppppp

NN

1
2
''NN

NNN
·

b
//·

a
//·

τ

In other words, a hidden random choice in Coin can affect which of
P and Q wins the race.
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Silly Example II

Suppose Coin announces the outcome of its random choice.

·P
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��·

GF ED
@A BC

·Q

b
��·

GF ED
@A BC

·Coin ��1
2

����
��

55 1
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��5
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·
send(0)

��

·
send(1)
��· ·

τ

GF ED

@A BC
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Silly Example II

Suppose Coin announces the outcome of its random choice.

·P
a

��·

GF ED
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��5
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GF ED
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b
//·

a
//·

τ

A bit more plausible now?
Perhaps the message from Coin somehow changed the world?
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Silly Example II

Suppose Coin announces the outcome of its random choice.
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a
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What about this execution?
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Our Goal

Claim: Lots of silly things can happen under a strong adversary.

Our goal: to weaken the adversary model so that the resulting
notion of probabilistic execution is a bit more reasonable.

In particular, the adversary’s knowledge can increase dynamically,
as more and more information becomes public.
E.g., the adversary should be able to use the random choice of
Coin, but only after the send(−) transition.
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Examples of Adversary models

In increasing order of strength.

Oblivious adversaries: only component names.

Content-oblivious adversaries: ignore parameter values (e.g.
cannot distinguish send(0) from send(1)).

Probabilistic polynomial time (PPT) adversaries: cannot
perform expensive computation on parameter values (e.g.
cannot compute x from f (x) if f is one-way).

Symbolic PA: unbounded computational capabilities, but
limited knowledge of outcomes of coin tosses (i.e., only those
that are announced via visible actions).

Segala’s Simple PA: everything.

Cheung A Symbolic Treatment of Randomization
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Randomized Scheduling

All of our adversaries are deterministic. I.e., given any finite
execution, the adversary chooses

either to halt the execution,
or to extend the execution with one transition,

Why?

Three main reasons to stay away from randomized scheduling.

It lacks intuitive justification.
“Randomized scheduling allows for very simple algorithms;
unfortunately, it depends on assumptions about the behavior
of the world that may not be justified in practice.”

— James Aspnes, “Randomized Protocols for Asynchronous
Consensus”
It introduces “noise”, i.e., probabilities that are not in the
problem statement.
It is technically more complicated: e.g. extra proof obligation
for convex combinations of deterministic schedules.

Expressivity: what have we lost?

Cheung A Symbolic Treatment of Randomization
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I/O and Composition

Basic Ingredients

We have X , a set of symbolic states, together with a transition
function

∆ : X −→ P(Act → ([0, 1]× X )).

µ

a1

p1

��
�

����
��
��
��
�
a2

p2 ��

an

pn

77
7

��7
77

77
77

77
7

. . . . . .

ν1 ν2 νn

Act = {ai | i ∈ N}
f (ai ) = 〈pi , νi 〉
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Why Is It Symbolic?

Think of a symbolic state µ ∈ X as a discrete distribution on
concrete states.

Notice, the adversary learns the value of bit only after observing a
send(−) action.
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Example: the automaton Coin.
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Notice, the adversary learns the value of bit only after observing a
send(−) action.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

System Type
Simulation
Weak Case
I/O and Composition

Why Is It Symbolic?

Example: the automaton Coin.
Before (Simple PA):

bit = ⊥
��

�
1
2

����
��

��
��

<<
<

1
2

��<
<<

<<
<<

<

bit = 0

send(0)

��

bit = 1

send(1)

��
bit = 0 bit = 1

toss

GF ED

@A BC

After (Symbolic PA):

dirac(⊥)

toss

��
Unif({0, 1})

||
|

1
2

send(0)

~~||
||

||
||

|
BB

B

1
2

send(1)

  B
BB

BB
BB

BB

dirac(0) dirac(1)

GF ED

@A BC

Notice, the adversary learns the value of bit only after observing a
send(−) action.

Cheung A Symbolic Treatment of Randomization



Introduction
Technical Development

Conclusions
Future Work

System Type
Simulation
Weak Case
I/O and Composition

Why Is It Symbolic?

Example: the automaton Coin.
Before (Simple PA):

bit = ⊥
��

�
1
2

����
��

��
��

<<
<

1
2

��<
<<

<<
<<

<

bit = 0

send(0)

��

bit = 1

send(1)

��
bit = 0 bit = 1

toss

GF ED

@A BC

After (Symbolic PA):

dirac(⊥)

toss

��
Unif({0, 1})

||
|

1
2

send(0)

~~||
||

||
||

|
BB

B

1
2

send(1)

  B
BB

BB
BB

BB

dirac(0) dirac(1)

GF ED

@A BC

Notice, the adversary learns the value of bit only after observing a
send(−) action.
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Transition Structure

Symbolic PA:

∆ : X −→ P(Act → ([0, 1]× X )).

Segala’s General PA:

∆ : X −→ P(Disc(Act ×X )).

What’s the difference?

We do not allow bundles of this form.
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From the Coin example: this restriction is precisely what we need
to weaken the adversary model.
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A relation R ⊆ X × X ′ is called a simulation just in case,
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there exists a transition bundle g from η such that: for all i ,

pi = qi and 〈νi , γi 〉 ∈ R.
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Soundness

Theorem: For all symbolic PAs P and Q, P ≤sim Q implies
P ≤td Q.

Proof: Induction on depth of probabilistic executions.
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Weak Transition Bundles

Add a special symbol τ to the alphabet Act.

A hidden transition bundle is a
transition bundle f satisfying
Supp(π1(f )) = {τ}.
A visible transition bundle is a
transition bundle f satisfying
Supp(π1(f )) ⊆ Act \{τ}.
A weak transition bundle is a
(possibly empty) sequence of
hidden bundles followed by a
visible bundle.

Why not partially hidden
bundles? See appendix . . .
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Soundness of Weak Simulation

Theorem: For all symbolic PAs P and Q, P ≤wsim Q implies
P ≤td Q.

Proof Outline:

given P, define P based on weak bundles;

show that td(P) = td(P);

show that P ≤wsim Q implies P ≤sim Q;

apply soundness of strong simulation.
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I/O Distinction

We have three categories of transition bundles.

Input: Supp(π1(f )) = {a} for some a ∈ I .

Output: Supp(π1(f )) ⊆ O.

Hidden: Supp(π1(f )) = {a} for some a ∈ H.

Remarks:

Each input bundle consists of a unique fiber. Idea: to avoid
deadlock, inputs must be received with probability 1.

Same for hidden bundles. Otherwise the adversary can learn
private information.

(Alternative: special system type for
hidden actions.)
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Parallel Composition

Definition by example . . .
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What Have We Achieved?

A system type for which adversaries:

can observe visible actions and symbolic states;
cannot observe internal actions and random choices . . .

until the outcomes are publicized via visible actions.

Strong simulation and soundness w.r.t. trace distribution
inclusion.

Weak transition structure.

Weak simulation and soundness w.r.t. trace distribution
inclusion (proof sketch).
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What To Do Next?

Obviously, compositionality theorems.

Do we really have a good model?

Are there interesting examples that cannot be expressed in
Symbolic PA?

Is it difficult to write down system definitions?
Case study: randomized consensus.

Is it difficult to carry out proofs?

The end . . .
Questions? Or move on to Oblivious Transfer?
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Partially Hidden Bundles

Problem Statement
Basic Crypto
UC Security in PIOA

Oblivious Transfer: The Problem Statement

There are two protocol participants:

the Transmitter has as its input two bits x0 and x1;

the Receiver has as its input a selector bit i .

The goal: by the end of the protocol,

“transfer”: the Receiver learns xi ;

“oblivious”:

the Transmitter does not learn the selector bit i ;
the Receiver does not learn the unselected bit x1−i ; and
nobody else learns anything.
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Trapdoor Permutations

A one-way permutation is a length-preserving function f on the set
of finite bit strings satisfying:

“easy to compute”: there is a poly-time Turing machine that
returns f (x) on any input x .

“hard to invert”: the success probability of any PPT
algorithm attempting to invert f is at most 1

2 plus some
negligible amount.
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“hard to invert”: the success probability of any PPT
algorithm attempting to invert f is at most 1

2 plus some
negligible amount.

A trapdoor permutation is a one-way permutation f together with
a trapdoor tk , for each key length k, such that:

on inputs of length k, f is easy to invert given tk .
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The hardcore predicate of f is a predicate B such that the bit
B(f -1(x)) is indistinguishable from a random bit, provided:

x is chosen randomly, and

the observer is PPT and does not know f -1.
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Encryption and Decryption

Example: private key encryption.

The string x is the plain text.

The string f (x) is the cipher text.

The permutation f is the public key (for encryption).

The trapdoor information tk is the private key (for
decryption).
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A Computationally Secure Implementation of OT

Let D be the domain of trapdoor permutations.

On inputs 〈x0, x1〉 for Transmitter T and i for Receiver R.

T selects a random trapdoor permutation f .
T → R: f

R selects two random elements y0, y1 ∈ D and sets
〈z0, z1〉 := 〈f 1−i (y0), f i (y1)〉.
R → T : 〈z0, z1〉

For each j ∈ {0, 1}, T sets bj := B(f −1(zj))⊕ xj , where B is
a hardcore predicate for f .
T → R: 〈b0, b1〉

R outputs B(yi )⊕ bi .
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Universally Composable Security

Modeling framework due to Ran Canetti:

Components are modeled as probabilistic polynomial time
ITMs (Interactive Turing Machines).

Ideal functionality for each protocol/task (e.g. trusted
third-party or trusted channel).

Real system: protocol parties and adversary.

Ideal system: ideal functionality and simulator.

Security is defined to be indistinguishability between the real
system and the ideal system.

Idea: Ideal system is “obviously” secure.
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Computational Security in PIOA

We model everything in PIOA, including: real system, ideal system
and the environment/distinguisher.

Conjecture: given any probabilistic execution in real system, there
exists a computationally indistinguishable execution in the ideal
system.

Where we are stuck: adversarial scheduling.

Easy solution: content-oblivious scheduling.

Hard solution: PPT scheduling.

The end . . . really.
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Partially Hidden Bundles

Question: Should we allow partially hidden bundles?
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Answer: Not unless we have to.

Pro: More expressive.

Con: No straightforward definition of weak simulation.
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Doing Without Partially Hidden Bundles

Claim: Partially hidden bundles are not necessary under a certain
finiteness assumption.
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Doing Without Partially Hidden Bundles

Example 1:
Before (Simple PA):
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Doing Without Partially Hidden Bundles

This method works as long as the number of τ -steps before a
visible action is bounded.
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This method works as long as the number of τ -steps before a
visible action is bounded.
E.g., the following does not occur.
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Notice, this restriction applies only to probabilistic branching, and
not to non-deterministic branching.
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