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Abstract—We describe the design, implementation, and eval-
uation of Molé, a mobile organic localization engine. Unlike
previous work on crowd-sourced WiFi positioning, Molé uses
a hierarchical name space. By not relying on a map and by
being more strict than uninterpreted names for places, Molé
aims for a more flexible and scalable point in the design space
of localization systems. Molé employs several new techniques,
including a new statistical positioning algorithm to differentiate
between neighboring places, a motion detector to reduce update
lag, and a scalable “cloud”-based fingerprint distribution system.
Molé’s localization algorithm, called Maximum Overlap (MAO),
accounts for temporal variations in a place’s fingerprint in a
principled manner. It also allows for aggregation of fingerprints
from many users and is compact enough for on-device storage.
We show through end-to-end experiments in two deployments
that MAO is significantly more accurate than state-of-the-art
Bayesian-based localizers. We also show that non-experts can
use Molé to quickly survey a building, enabling room-grained
location-based services for themselves and others.

I. INTRODUCTION

The ability for a mobile device to perceive a user’s location
has many applications, from social networking “check-ins” to
location-appropriate content, such as automatically presenting
people with a relevant train schedule.

While the global positioning system (GPS) enables devices
to sense their location in most outdoor environments, bad
weather and “urban canyons” can restrict its operation. In
addition, there are many indoor positioning applications where
GPS can provide only limited assistance, as it typically pro-
vides a position fix only near windows and doors.

To enable room-grain indoor and outdoor positioning in
GPS-less environments, researchers have used physically-fixed
wireless beacons to associate a unique “fingerprint” with each
place or grid point [1]–[4]. While the types of wireless beacons
have varied over time, most techniques now use 802.11 WiFi
beacons because of their near ubiquity, particularly in urban
and suburban environments. Because of the difficulty in trans-
lating between distance and received signal strength [5], more
compact alternatives to fingerprinting – e.g., triangulating
among the beacons – are generally eschewed.

One of the key problems with fingerprinting, however, is
learning the fingerprint for each place – however “places” are
designated. We call the process where a person links a finger-
print to a place “binding.” Several commercial vendors offer

positioning services, which include a fingerprint-generation
survey [6]. However, these come at a steep price: a large office
building can cost $10,000 USD with no maintenance included.
Because this is prohibitively expensive for many applications
– such as contextualizing a device’s behavior based on which
room of a house it is in – several research groups have begun
to crowd-source fingerprints from end-users [7]–[10]. In the
model for these Wikipedia-style approaches, a single locally-
knowledgeable user performs the bind for a place and many
visitors can then rely on the database of fingerprints.

Molé focuses on a new point in the design space in crowd-
sourced, or “organic,” positioning systems. Some systems,
such as OIL [8], present a map to the user: users bind places
by clicking on the map. Others, like Redpin [7], allow the
association of any text string with a place’s fingerprint. In
contrast, Molé arranges the world hierarchically; this imposes
a clean, intuitive namespace (country, region, . . .), and allows
for data prefetching at a building scale if not larger. It also
isolates problems in the fingerprint database to small portions
of the tree. Molé relies on compact data structures that allow
many fingerprints to be stored on the user’s device. In turn,
this allows the user’s device – not a server – to differentiate
among potential places with similar fingerprints, improving
privacy.

Here we describe how Molé’s hierarchical namespace leads
to a scalable design, where its servers can be easily replicated
in the “cloud.” We show how its new statistical positioning
algorithm uses response rate as additional fingerprint infor-
mation. In our experiments, this leads to an improvement in
accuracy of 10% over the current state-of-the-art. We also
show how Molé uses accelerometer-based motion detection
both to reduce the latency in showing the correct place after
a user has moved and to collect clean fingerprints from end-
users. Through a crowd-sourcing experiment, we show that a
multi-story building can be quickly and accurately covered by
non-experts: in one hour, four people completely surveyed a
mid-sized research lab. After this surveying period, which can
be concurrent with use, any person visiting the lab can ben-
efit from room-customized behavior, including location-aware
assistance, scheduling, notifications, and device behavior.

This paper’s contributions are:
• A new organic positioning system, called Molé, that
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• A new positioning algorithm that explicitly accounts for
temporal variations in the signal space.

• A simulation and experimental analysis of Molé, includ-
ing crowd-sourcing a multi-floor building with untrained
users.

• An open source implementation of Molé.
The paper proceeds as follows. We describe and show the

user interface for the place hierarchy in Section II. We outline
our positioning algorithm in Section III. In Section IV, we
show how Molé is implemented in the “cloud,” allowing
for fingerprints to be combined efficiently and for clients to
receive the contributions of others quickly. In Section V, we
describe our evaluation of Molé, examining its positioning al-
gorithm versus the current state-of-the-art, its use of movement
detection, and how end-users can use it to build up a working
deployment in a multi-story building. We describe related work
in Section VI and conclude in Section VII.

II. MODEL OF PLACES

Molé arranges the discrete, human-designated places of the
world in a hierarchy. While the hierarchy could be of variable
depth, our current implementation contains five levels, as the
estimate in Figure 1 illustrates. From coarse to fine, the levels
typically refer to country, region, city, area, and unique place
(e.g. room). Areas are the unit of fingerprint aggregation,
transfer, and, therefore, privacy; the server knows at most what
areas you visit. Areas typically refer to street addresses (e.g.,
“4 Cambridge Center” in Figure 1), although they could refer
to larger outdoor areas such as parks. The design also allows
aggregation at higher levels.

We believe that arranging places in a hierarchy is useful
in many organic positioning settings. Earlier approaches have
used visual maps [8], [9] or uninterpreted strings [7] to identify
individual places. Visual maps require that a fairly accurate
map of the area – typically a building – exists. While well-
managed places, such as universities and airports, may be able
to generate maps, this approach may not scale to individual
homes or businesses, where people may not have the time,
knowledge, or interest to create a map of their sets of places.
In addition, many users find it non-trivial to locate themselves
on indoor maps, particularly in complex buildings. Assigning
uninterpreted strings to places during a bind has its own
challenges: for example, the namespace may rapidly become
crowded with similar names. While Barry et al. do allow for
spaces within buildings [10], their hierarchy is not intended to
cover the world.

Figure 1 shows the current estimate of a device’s position
within this hierarchy. Users click on the “Incorrect Estimate?”
button to edit the current estimate and make a new bind,
improving future estimates for themselves and other users. The
statistics are explained in Section IV.

III. ALGORITHM

In this section, we describe our new, statistical localization
algorithm (§ III-A), briefly review naı̈ve Bayesian localization

Fig. 1. Molé’s User Interface. It shows the country, region, city, area,
room hierarchy in street address format. The statistics shown are described in
Section IV-A.

(§ III-B), and describe a kernelized RSSI histogram variation
that can be applied to both localizers (§ III-C).

A. Maximum Overlap Localization

Maximum Overlap, or MAO, selects its estimated place as the
one whose fingerprint is most similar to the user’s fingerprint,
using a similarity function we describe below. The two key
advantages to MAO are (1) that it is efficient to compute and
(2) that it provides a general scan distance function, which can
be used to estimate physical distances between sets of finger-
printed objects. Because we anticipate localization algorithms
running continuously in the background on mobile devices,
this simple computation should translate into longer battery
life. Scan distance functions are also useful for clustering
scans, outlier detection, and cleaning scan databases [8]. By
themselves, distance functions are also useful for estimating
the physical distance between the positions where the scans
were made, which we show in Section V-D.

To create a MAO fingerprint, we begin with a standard set of
place-to-APs histograms containing raw RSSI readings [3]. As
in Haeberlen et al. [3], we summarize each per-place per-AP
histogram with a single Gaussian with mean µ and standard
deviation σ (we describe a kernelized histogram variant in
§ III-C).

Every place is assigned a fingerprint, which is a set of
mappings from access points to data triples:

APi ⇒ 〈wi, µi, σi〉 (1)

where wi is the weight of APi, the number of observable APs
is τ , and the total weight for each fingerprint

∑τ
i=1 wi is 1.

Note that the most recent k scans of the user also form a
fingerprint using the same method.

Determining the weight w to apply to each visible AP
is an important component of our algorithm. A straw man
method would be to simply weigh each visible AP equally:
1/τ . Instead, we base the weight on the probability that the
given AP will actually be observed in the place. Specifically,
we set the probability to the response rate, the fraction of a
fingerprint’s scans in which a given AP was observed. When a
place is scanned many times, some APs will be seen in every
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Fig. 2. Example of MAO: place1 (top) ∪ place2 (middle) = Overlap
(bottom). The 20 scans in place1 have observed three different access points:
AP1, AP2, AP3. The 25 scans in place2 have only observed two access
points, both of which are the same as those seen in place1: AP1, AP2.
AP3 was not observed in place2. To compute the weights for place1, we
divide the observations for each AP by the total number of observations:
20 + 15 + 5 = 40. The same procedure is done for place2. This completes
the creation of fingerprints for these two places. The bottom row shows how
the similarity between the two fingerprints for places 1 and 2 is computed:
s = 0.75× 20/40+25/45

2
+ 0.30× 15/40+20/45

2
− 5/40

(where p = 1). “Place2” could equivalently be a set of scans as seen by a
user’s device: the algorithm to compute their similarity would be the same.

scan, and some seen only rarely. This captures the intuition
that a user’s device will see the same APs with the same signal
strength distribution and the same observation frequency when
it is in the same place (these two quantities are only weakly
correlated as we show in Section V-A). If the user’s fingerprint
does not contain an AP that is almost always observed when
in a particular place, it is highly unlikely that the user is in
this place. Weighting according to response rate reflects this
intuition. Specifically, the weight for APi is:

wi = ri/

τ∑
j=1

rj (2)

where rk is the number of readings of APk.
To find the similarity between two fingerprints, we deter-

mine the similarity in signal strengths of APs that exist in
both fingerprints, and penalize for missing APs, weighting
both quantities by the response rate. The comparison of
any two fingerprints returns a similarity −2 ≤ S ≤ 1,
where a comparison of identical fingerprints returns 1 and of
disjoint fingerprints returns -2 (Disjoint fingerprints are those
that share no access points). For fingerprints A and B, let

S(A,B) =
∑
i∈A∪B δi, where the effect each APi is:

δi =


ωa+ωb

2 ×O (µa, σa, µb, σb) if i ∈ A, i ∈ B,
−ωa × p if i ∈ A, i /∈ B,
−ωb × p if i /∈ A, i ∈ B,

(3)

where O(·) is the overlap coefficient between the two Gaussian
distributions [11] and 0 ≤ p ≤ 1 is the penalty to apply
for missing APs. Figure 2 provides an example of computing
the distance between a pair of fingerprints. Because the same
comparison applies whether place B is a user’s fingerprint or
any collection of scans – such as a location tag – it can be
used to estimate a physical distance between two real or virtual
objects (e.g. virtual graffiti).

One particularly nice aspect of this overlap computation is
that it exists as a closed-form function when Gaussians are
used to represent the RSSI readings [11]. Alternatively, the
results from the function can be stored in a look-up table [12];
we found a table with only hundreds of values gave almost
the same results as a function. This simple computation is in
contrast to graphical models [13], which can require thousands
of iterations to converge.

A special case exists where we have only a few RSSI
measurements for an AP. In particular, the sample variance,
which is a second-order statistical property, is not well-defined
with only one sample. Because this situation typically exists
for rarely observed APs, taking more scans is not advisable as
we may need to take many more in order to obtain a stable
estimate for σ. To estimate σ for these APs, we use a weighted
average of this AP’s sample standard deviation σs (if it exists)
together with a common prior σc:

σi =
(ri − 1)σs + σc

ri
(4)

With this, the overlap coefficient can be computed even with
very few RSSI values, or even a single value, from a given
AP. We found σc = 1 worked well in our experiments.

B. Naı̈ve Bayes Localization

We compare MAO to state-of-the-art naı̈ve Bayes localization
in Section V-B. For completeness, we briefly review Bayes
localization here (for more detail, see Haeberlen et al. [3] and
Madigan et al. [13]). Bayesian localization estimates the most
likely location using Bayes’ rule. Naı̈ve Bayes localization
further assumes that the signal strengths from different access
points are independent from each other given a location.
Therefore, given a signal strength vector s = [s1, s2, ..., sk]
from k access points, the posterior probability of being in
location l is given by

P (l|s) =
∏k
i P (si|l) P (l)

P (s)
. (5)

With a uniform prior assumption on p(l), the final location
estimate l̂ is given as follows:

l̂ = argmax
l

[
k∏
i

P (si|l)

]
. (6)



C. Kernelizing RSSI Histograms

A final algorithmic technique that we have tested in Molé
is kernelizing RSSI values – essentially spreading a given
reading over adjacent bins – a technique Park et al. used for
sharing fingerprints across heterogenous devices [14]. While
we showed MAO using a single Gaussian, MAO and Bayesian
localizers can use this technique instead: it is independent of
the localizer itself. The key observation is that summarizing a
set of RSSI values with a Gaussian can often lead to Gaussians
that are similar across nearby rooms. The alternative to a
Gaussian summarization has typically been to simply leave the
RSSI values in raw histogram form. For example, a fingerprint
based on histograms might include five −78 dBm readings,
three −80 dBm, and one −83 dBm reading from a particular
access point. By leaving these values in raw form, a reading of
e.g. −79 dBm will be discounted, instead of contributing to a
match as it should. A Gaussian summarization, however, will
also not yield an accurate picture for the distribution’s shape:
it is skewed toward −78. Instead, we can apply a kernel to
each RSSI value, effectively spreading it out into adjacent bins
without affecting the overall shape. This shape can capture
differences between neighboring spaces that would be blurred
by a Gaussian summary.

One complaint with using histograms as compared to Gaus-
sians is the requirement that – in theory – they consume
an order-of-magnitude more space. This increase in space
consumption is due to the range of RSSI values (typically
−30 to −100 dBm) versus a simple mean and standard
deviation. Multiplied by many places and many access points,
this space consumption arguably could be significant for on-
device positioning. In practice, however, because so few bins
of the histogram are used – even when kernelizing – that the
actual space consumption is only a few floating point numbers
more per access point in our experience.

IV. IMPLEMENTATION

Molé’s implementation is divided into client and server
components. The client portion periodically scans WiFi signals
and makes an estimate of the current place available to
other applications on the same mobile device. Because all
position estimates are calculated on the client using a cache of
fingerprints, the client’s exact position remains private and new
estimates can be made in the absence of network connectivity.

A. Client Components

The client itself consists of two parts: a daemon, which runs
continuously in the background, and a user interface, which
is displayed when the user wants to make a bind, modify
the daemon’s behavior, or view statistics. Figure 1 shows the
user interface. Its statistics include: the number of scans being
used to form the estimate; the count of distinct APs that were
observed within these scans; the current time between scans
(i.e. scan period); the number of areas and individual places
within those areas under MAO consideration; whether the user
is deemed to be moving; the score of the current estimate
(“overlap max”); and churn, the time since the estimate was
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Fig. 3. Interaction between Molé’s client and server components. Two paths
are shown: (a) a bind coming from a surveyor (client A), being added to
the bind database, and being processed into an area’s fingerprint file (e.g.
Keilalahdentie 2.sig) and (b) a user’s device (client B) updating its local cache
of fingerprints for the areas that it is potentially in. First it queries to see
which areas match a random “loud” MAC with getArea(), then it fetches
the fingerprint files for those areas. After its cache is up-to-date, it can form
a position estimate locally.

last changed. The Molé daemon exports the current location
estimate to all applications on the device, assuming that the
user has set “sharing” to be on.
Using Motion Detection As Haeberlen et al. showed [3],
comparing more user scans against each fingerprint improves
spot-on accuracy, with diminishing returns after about eight
scans with their data. But frequent scanning reduces battery
life, and having a fixed, large number of user scans introduces
a lag when the user is moving between places. If a device
has an accelerometer, Molé uses it to find a happy medium
between battery consumption and update lag. If the device is
estimated to be stationary, it slows down the scan rate and
other functions. When walking is detected, the current set of
user scans is discarded and the scan rate is increased (up to
once per 10s in our current implementation). By truncating
the user scans (11 in Figure 1), Molé returns a less accurate,
but more timely estimate. When the user stops moving, the
user scans accumulate and the estimate improves. Because we
simply truncate the positioning and bind queues in response
to movement, our method is independent of the choice of
the particular motion detection algorithm; we use Shafer and
Chang’s detector [15]. An alternative method would treat the
detector as less of a black box and could dynamically adjust
the length of the queues based on the magnitude or confidence
with which movement was detected. To further reduce battery
usage, we run the motion detector every 10 seconds with a
duty cycle of 5%; at this rate motion detection has little effect
on the overall battery consumption of a typical smartphone.
We evaluate the effect of using motion detection on update
delay and fingerprint creation in Section V-C.
Client-side Filtering and Positioning Client localization
involves fetching the correct area’s fingerprint file (if it is
not cached on-device), filtering down to a few fingerprints to
be tested more precisely, and producing a top estimate with
MAO. As shown in Figure 3, the client periodically asks the
server for the list of areas associated with one of its visible
MACs (step 1), and receives the fully-qualified (hierarchical)



area name in response (step 2). It then requests the area’s
fingerprint file (step 3) and localizes using the current user
scans (step 4). To reduce the number of fingerprints that MAO

must compare, we apply Charrow’s fingerprint filtering to our
local cache to identify a set of “nearby” locations [16]; in
Figure 1, ten places have passed this filter. We use the filter
twice: first on the cached areas, then on the cached places
within the unfiltered areas. Because areas can contain many
places, this greatly reduces the number of places that must
be compared when many areas are cached on the device. In
addition, because the filter uses only MAC presence/absence,
it is far less CPU intensive than a room-level localizer. The
more CPU intensive MAO then runs on the smaller subset of
places that have successfully passed the area and place filtering
steps. Like other room-level localizers, MAO’s CPU usage is
linear in the number of potential places under consideration,
so reducing the set under its consideration can reduce battery
consumption considerably when many places are cached.

B. Server Components

Figure 3 shows Molé’s four main server components and the
key methods clients use to make binds and access fingerprints.
Molé’s server side is designed to run elastically “in the cloud:”
its client-facing components, the Map Server and Fingerprint
Server are easy to replicate. The figure shows the two paths
of client actions: (a) binding and (b) localizing. A client bind
is sent to the Map Server, which acts as a write-back cache.
The Fingerprint Builder periodically monitors the database for
places with new binds (or entirely new places). For each of
these places, it aggregates all recent binds and determines
a new fingerprint. Fingerprints for other places in the same
area are cached in the database. The builder then writes out
each changed area’s collection of fingerprints in a single area
fingerprint file. Because these files change infrequently and are
named by the fully-qualified area, they can be trivially cached,
versioned, and diffed.

Molé’s server components are currently hosted on Amazon
Web Services. While we show only one server instance in
the figure, it is fairly trivial to replicate and scale the server
components because they can be divided geographically; that
is, the bind database, in particular, can be partitioned down
to the level of individual areas if need be. Because area
fingerprint files change slowly over time after their initial
creation period, we serve these files with an efficient static web
server. Replicas could be further pushed toward the client with
a content delivery network. To receive fingerprints created by
other nearby users, clients poll for changes in their current
area’s fingerprint at one minute intervals.

The source code for Molé has been released under an
open source license and we invite contributions. The client
components are ≈ 7k lines of Qt/C++; the server is written in
Java and Perl and relies on several open source libraries.

V. EVALUATION

We have successfully tested Molé in preliminary trials at
several labs, using Nokia N900 tablets. Here, we examine

Molé in detail, both at the algorithmic and end-user level:
• We find that MAO’s weight (based on response rate)

and RSSI readings contribute independently to uniquely
identifying a place (§ V-A).

• Through a set of controlled experiments, we find that MAO

has favorable accuracy results as compared to a state-
of-the-art Bayes localizer, achieving better performance
when places are physically adjacent (§ V-B).

• We show that use of a motion detector can result in a
dramatic improvement in update delay and in unpolluted
fingerprint creation in organic settings (§ V-C).

• We show how MAO can be used to estimate the physical
distance between two objects (§ V-D).

• Using the results from a deployment in a two story
building, we show that Molé can rapidly crowd-source
an accurate location system (§ V-E).

A. Using Response Rate

Before we examine Molé’s performance, it is reasonable
to ask whether it is valid to use response rate as the basis
for MAO’s weighting factor at all. That is, is the response
rate supplying distinct and consistent information as compared
with RSSI values, or could one be substituted for the other?
Specifically, we ask: (a) Are they redundant quantities? (b) Is
response rate consistent over visits to the same space? (c) Do
they increase differentiability between different spaces? and
(d) Does the weight improve end-to-end accuracy? We also
examine the effect of weight experimentally in Section V-B.

First, using bind data from different alpha users of Molé, we
find that they are not redundant quantities. Using data from 81
binds from different indoor environments (e.g. labs, houses),
we compared the average RSSI value versus the response
rate for the same MAC. In this data set, the two are only
moderately correlated (ρ2 = 0.62), suggesting that response
rate, and therefore Molé’s normalized weighting measure,
provide additional information beyond received signal strength
(Scatterplots elided due to space constraints).

Second, to examine consistency over time, we compared an
older set of binds to a newer one for eight places in one of
our labs. The older set were all generated at least six months
earlier than the newer set. Fingerprints in each place contained
31 distinct MAC addresses on average. We found a strong
correlation for both response rate (ρ2 = 0.73) and RSSI (ρ2 =
0.87), suggesting that these mainly independent values stay
consistent over time, and, therefore, can separately assist in
identifying individual places.

Third, we examine whether MAO’s weight is correlated
with RSSI overlap; that is, when comparing across places,
is it providing additional, differentiable information. Using
a professionally-collected scan data set from a nine-story
building which contains more than 1,400 distinct places, we
compared the weight ωa+ωb

2 and the overlap O(·) for all
MACs in common across places (≈ 150 million entries). When
overlap is computed with Gaussians, we find a correlation
of ρ2 = 0.11 and, when it is computed using kernelized
histograms, that of ρ2 = 0.08. We also divided the rooms that
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are counted equally, we found greatly reduced accuracy. For example, only
9% of places had an error rate of less than 20% using the weighting function,
but 34% had this same level of accuracy without it.

were close to each other and far away (less than the median
distance of 12m or greater than that, respectively), and found
the correlation essentially unchanged. Collectively, this set of
results suggests that not only are response rate and weight
consistent over time, but also that they provide independent
information for comparison among places.

Lastly, we examined the effect of eliminating the weighting
factor on positioning accuracy. In simulation, we prepared a
scan data set from the same nine-story building as above. We
first excluded places with fewer than three visible APs or fewer
than ten scans, removing 6% of places. Next we assigned a
fingerprint to each place, assuming knowledge of all scans
of the place. For each place, we took eight scan samples to
build a “user” fingerprint, and then observed which place had
the maximum matching fingerprint. If the place the localizer
estimated was the same as the user’s, this was deemed a spot-
on estimate. We repeated this test 1000 times for each place:
for example, an accuracy of 80% means that we correctly
localized 800

1000 times. Using the scan trace, Figure 5 shows the
effect of weighting according to response rate as compared to
weighting each AP equally, i.e. setting w = 1

τ . While it is
possible other refinements exist, such as weighting according
to the maximum RSSI value seen for the given AP, it is
clear that a reasonable weighting is more accurate than simply
valuing all APs equally. In addition to comparing MAO to a
Bayesian localizer, we confirm the positive effect of basing

a weight on response rate experimentally in the following
section.

B. Positioning Algorithms

To examine Molé’s positioning performance in a controlled
setting, we conducted three experiments in two different labs,
shown in Figure 4. The goal of these experiments is to compare
MAO with a state-of-the-art naı̈ve Bayes algorithm, using both
Gaussian summaries and kernelized histograms.

In Lab A, we conducted two end-to-end comparisons:
a “nearby” experiment and a “distant” experiment. In the
“nearby” experiment, the target rooms were adjacent to each
other, separated by less than three meters, and had glass walls
on one side. In the “distant” experiment, the targets are spread
uniformly over the floor. In both experiments, we placed a
stationary spot-check device in each target room. The spot-
check devices did not move throughout the experiment; they
polled the server for new fingerprints at one minute intervals,
performed scans at ten second intervals, and computed four
estimates – one for each algorithm – using the same set
of scans and fingerprints at the same time. Another device
acted as the roving, crowd-sourcing surveyor. With it in hand,
a member of our team walked to 6-8 rooms on the floor,
including those being tested, and bound each room with 2-
3 minutes worth of scans. The bind data was sent to the
server, processed into a fingerprint, and made available for
download by the spot-check tablets. The bind database was
cleared before each experiment.

Results from the “distant” experiment showed that all of the
algorithms were able to perfectly distinguish rooms when the
rooms under test were tens of meters apart. Here, the target
rooms were R1, R4, and R10, as highlighted in Figure 4a.
The mean distance between each of these target rooms and
all of the other rooms where binds were performed (R2, R3,
R5, R11, R13) was 21.59m, 15.90m and 22.59m, respectively.
Data from the spot-check tablet in Room R4 in shown in
Figure 6. Initially, all devices select Room R1 because that was
the only entry in the database. The roving survey tablet binds
Room R4 at minute 10. After the spot-check tablet fetches
the area’s new fingerprint, which now includes R10, all of the
algorithms change their prediction to R10. Even with binds
in three rooms that are less than 14m away, the algorithms
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Fig. 7. The time series from the “nearby” experiment illustrates how both
MAO and Bayes can exhibit instability.

continue to estimate the correct room.
In contrast to the “distant” experiment, the “nearby” one

exemplifies the challenges in fine-grain WiFi localization. The
three rooms (R7, R8, R9) are small meeting rooms, each
5.8m2. They lie in a line with the two end rooms 2.7m from
the center one, R8. The entry walls and doors are glass, and
join a common hallway. We examined the average spot-on hit
rate for each room’s stationary tablet, in addition to the mean
error and its deviation. The results show that, while Bayes
with Gaussians had the lowest mean error for the two end
rooms, MAO with kernelized histograms had the best overall
performance: its average hit rate was 90.7% while Bayes with
Gaussians, the next best, was 68.4%. Two interesting behav-
iors, in particular, are apparent from examining time-series
plots for the stationary tablets. First, MAO is more willing to
shift between rooms – sometimes to its advantage, sometimes
to its detriment. It does this because it has no hysteresis, or
prior, like naı̈ve Bayes does. MAO with Gaussians was particu-
larly unstable in this experiment (see, for example, minutes 22-
25 in Figure 7). Second, MAO with kernelized histograms was
the only algorithm able to consistently differentiate between
the two immediately adjacent spaces; this is what leads it to
having the highest average hit rate. From this we conclude
that any of the algorithms are acceptable in medium to coarse
grained scenarios, as in the “distant” experiment, but that MAO

with kernelized histograms may supply the best average-case
performance if room-grain accuracy is required.

TABLE I
ALGORITHM COMPARISON (LAB B) - SPOT-ON HIT RATE

MAO/ MAO/ MAO/ MAO/ Bayes/ Bayes/
Room Gauss Hist./ Hist./ Hist./ Gauss Hist

No Wt. No Pen. Penalty

302 92.87 100.00 100.00 100.00 100.00 100.00
303 90.59 100.00 100.00 100.00 74.64 88.52
304 92.09 98.73 100.00 100.00 91.46 79.75
308 99.84 99.84 100.00 100.00 90.49 100.00
309 32.86 42.70 59.37 58.89 31.75 43.33
310 1.59 10.95 41.75 81.59 24.76 11.43
311 90.59 41.15 87.08 94.90 87.56 95.37
312 42.88 93.67 90.03 70.89 70.09 72.47
313 100.00 100.00 100.00 100.00 99.16 100.00
316 100.00 100.00 100.00 100.00 98.73 100.00
319 99.84 100.00 100.00 100.00 98.57 97.14
320 100.00 98.74 100.00 100.00 99.37 100.00
321 99.22 100.00 100.00 100.00 100.00 100.00
322 88.38 100.00 100.00 99.53 92.15 97.33

All 80.46 84.49 91.17 93.16 82.52 84.43

In Lab B, we had more spot-check tablets available and
conducted a larger-scale, longer duration experiment. We first
instrumented the tablets to run six localizers in parallel, each
producing an estimate using the same set of scans at the
same time. In particular, we wanted to see the effect of
different parameters for MAO with kernelized histograms in
a live setting. Referring to Equation 3, we ran MAO: (a) with
no weight, treating all APs equally (as in Figure 5) and with
no penalty for missing APs, (b) with weight but no penalty,
weighting APs by response rate, but still without the −ωa×p
and −ωb×p factors, and (c) with weight and a penalty, where
p = 1

4 . We placed fourteen spot-check devices in different
rooms in the lab, including three in public spaces without
doors between them (320, 321, and 322 in Figure 4). Using
two roving devices, we bound the spaces starting in room 312
and moving clockwise around the lab; each bind contributed
approximately five minutes worth of scans (about 30 scans).
All data collection was done during an active workday with
people moving around the lab during the experiment.

We examined the spot-on accuracy of the stationary tablets
during two periods: immediately after all of the rooms had
been bound and 24 hours later. We report on the later data
although the results were similar. We highlight three aspects
of the results, shown in Table I. First, in contrast to previous
simulation results which found that Bayes with Gaussians
exhibits accuracies above 95% [3], it had a hit rate of 82.5% in
this more challenging live setting. Second, as in the “nearby”
experiment above, no algorithm was able to consistently dif-
ferentiate between small, adjacent offices that had doors open
to a common hallway (309, 310, 311, 312); the centroids of the
rooms are about 2.5m apart. MAO with kernelized histograms
and with a weak penalty for missing APs performed best, on
average, but even it was not consistent. Second, overall this
same algorithm and parameter choice performed best overall.
In particular, it was significantly more stable throughout the
lab and was 10% more accurate than Bayes with kernelized
histograms, the current state-of-the-art.



 0
 4
 8

 12
 16
 20

 0  1  2  3  4  5  6

A
c
c
e
l.
 M

a
g
.

Time (minutes)

Room A Room B Room C

Walking Walking

(a) Accelerometer Magnitude (at 10ms intervals)

 0
 3
 6
 9

 12

 0  1  2  3  4  5  6

S
c
a
n
s
 U

s
e
d

Time (minutes)

Room A Rm. B Room C
Incorrect
Estimate

Incorrect
Estimate

(b) Place estimates without motion detector

 0
 3
 6
 9

 12

 0  1  2  3  4  5  6

S
c
a
n
s
 U

s
e
d

Time (minutes)

Room A
Rm. B Rm. C

Incorrect
Estimates

(c) Place estimates with motion detector

Fig. 8. Using a motion detector to vary the number of scans used by the
localizer significantly reduces update lag, presenting more up-to-date results to
the user. Each + shows when the localizer received a new scan and produced
a new estimate. The dashed line shows when the periodic motion detector
determined that the user was walking.

C. Motion Detection

We wanted to examine the effect of using a motion detector
to improve update lag and fingerprint clarity. Update lag occurs
when a person moves from one room to another but the
localizer does not reflect the new room immediately. This lag
occurs because the localizer uses stale data: scans collected
in a previous room or while walking are still being used to
form the estimate of the current location. We performed an
experiment where we examined the use of a simple motion
detector to expire old scans; the user’s fingerprint repopulated
with scans when the user stopped moving. Intuitively we
would like to use as many scans as possible, but only if those
scans come from the location the user is actually in.

Figure 8 illustrates how using a walk detector can signif-
icantly improve the user experience. In this experiment, we
walked from room A to room B to room C, staying in room
B for about two minutes. We logged the raw accelerometer
readings at 10ms intervals (Figure 8a) and ran two instances
of Molé, both running MAO with Gaussians. One instance did
not use the motion detector and the other used the periodic
motion detector described in Section IV-A, sampling for 0.5
seconds every 10 seconds. All fingerprints were cached and
did not change during the experiment.

When Molé did not use a motion detector (Figure 8b), the
estimate lagged behind the ground truth for one to two minutes
because it used stale scans. When the instance running the
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Fig. 9. In a crowd-sourced positioning system without motion detection,
fingerprints can easily become polluted with scans from old rooms. The data
show that the two fingerprints of Rooms R7 and R14 erroneously acquired
scans collected in Room R9, causing the estimate for R9 to vacillate with
both positioning algorithms.

motion detector detects motion (the dashed lines in Figure 8c),
the localizer’s scan queue is immediately truncated and there
is far less delay before the correct space is chosen.

A second significant benefit to using a motion detector in
a crowd-sourced positioning system is improved fingerprint
clarity. In a crowd-sourced environment, a user can walk into a
room, notice the estimate is incorrect, and immediately send a
correcting bind. Unfortunately, this can lead to scans collected
prior to the user entering the room becoming part of the
fingerprint: a polluted fingerprint. To mitigate this problem,
we truncate the on-device “bind” queue whenever walking is
detected. This queue constitutes the scans that will be bound
to the place if the user makes a correction.

To illustrate fingerprint pollution, we conducted the same
“nearby” experiment as described in Section V-B only with the
motion detector switched off. Figure 9 illustrates two instances
where the fingerprint for Room R9, where the spot-check
tablet is located, is polluted by binds in other rooms. When
the roving tablet binds Room R7 for the second time at minute
20, we observe a shift in the estimates from R9 to R7. This
occurred because many of the scans that were collected in
Room R9 were not dropped when the user walked into Room
R7, causing R7’s fingerprint to become similar to R9’s. The
second instance is when Room R14 is bound at minute 39,
soon after the user leaves the target room, R9. Again, this
causes R14 and R9 to erroneously have similar fingerprints,
resulting in the localizers vacillating between several locations.
As Figure 7 shows, with the motion detector switched on,
fingerprints do not become polluted when new binds occur.

D. Using Fingerprint Similarity

One potential advantage of MAO is that it provides an ab-
stract similarity function between any two fingerprints, either
by using Equation 3 directly or by replacing O(·) with the
overlap of the two histograms. Inferring physical distance
from fingerprint distance has many uses, from the canonical
“finding the nearest printer” to proximity-based notifications
and device-pairing.

By processing the scans from the 1,400 room building
discussed above, we found that a discernible and useful cor-
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relation existed between the physical distance and fingerprint
similarity across pairs of rooms. Using MAO with Gaussians,
we show the correlation for this data set in Figure 10. Given
objects or spaces tagged with fingerprints, this suggests that
MAO can be used to estimate physical distances between them
at a finer grain than simply observing that they can see the
same MAC, for example. In this data set, spaces which had
a fingerprint similarity > 0.5 were always less than 100 feet
apart. Because the fingerprint similarity computation is fairly
trivial, it would also be possible to see if any k devices were
likely to be within some physical distance of one another.

A second use for fingerprint similarity is that, even when the
correct place is not the most similar to the user’s fingerprint,
it is almost always one of of the most similar. Because MAO

returns a similarity score for each potential place, it is possible
to look down the list of returned places beyond the top ranked
place. Figure 11 shows that the correct place is almost always
in the top four ranked places. In a visual map application, all
of the highly ranked places could be highlighted if one did
not stand out, assisting the user in making a correction.

E. Crowd-sourcing Behavior

For our last experiment, we wanted to understand whether
Molé could be used by untrained participants. We first mod-
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Fig. 12. Four untrained volunteers were able to quickly survey a two story
lab, with resulting accuracies above 85%. No floor errors were encountered.

ified the user interface to include a positive feedback button
(“Estimate OK”), signifying that the displayed estimate was,
in fact, correct. We recruited four volunteers from Lab A;
they had seen us testing Molé previously, but were otherwise
untrained. Before giving the tablets to the volunteers, we
performed one bind in Room R1 on an empty database. In
effect, this initialized the hierarchy shown on all of the tablets
so the volunteers would only need to edit the room label.
They were given instructions to walk from room to room,
fixing the estimate when it was wrong and clicking “Estimate
OK” when it was correct. They were allowed to wait up to
30 seconds (three scans) for the estimate to become correct
before marking “OK” and up to 60 seconds (six scans) before
binding a correction.

In the middle of the workday, the volunteers then surveyed
two floors for seventy minutes, splitting their time about 75/25
across the third and second floors, respectively (see Figure 4).
Two of the meeting rooms, R14 and R17, were occupied
during the experiment, and so were left unbound. Figure 12
shows how coverage and spot-on hit rate changed during the
experiment. We calculated hit rate as a ten minute moving
average of spot-on accuracy (i.e. when the volunteer clicked
“Estimate OK”); this included the first bind for each room
which is, by definition, an incorrect estimate. Once the rooms
were surveyed after minute 50, the hit rate remained above
85% as it had done in our controlled experiments. No incorrect
floor estimates were encountered.

The volunteers provided us with feedback on Molé’s us-
ability and utility. They found the motion detector was oc-
casionally not sensitive enough and that the device needed
to be artificially shaken when it did not detect their walking
(we had instructed them to do this). Because binds are sent
to the server and not immediately applied to the binding
client’s area fingerprint cache (see Figure 3), there can be
up to a twenty second delay in reflecting binds back to the
user; several volunteers found this confusing. We plan on
fixing this and the motion detector in upcoming versions. In
general, the volunteers found Molé highly accurate, although
they noticed the estimates were most often wrong in the same
small, adjacent rooms we used for the “nearby” case (§ V-B).
They enthusiastically described several potential use cases
such as navigating shopping malls, airports, and museums,



finding promotions when shopping, and locating friends.

VI. RELATED WORK

While there is much previous research on indoor positioning
in general [1]–[4], [7]–[10], [17]–[20], here we focus on work
similar to MAO and prior uses of motion detection to augment
WiFi-based localization algorithms.

We use the overlap of pairs of Gaussian summaries,
weighted by response rate, as one of MAO’s localizers (we
found that using the overlap of kernelized histograms provided
superior accuracy, however). Lemelson et al. use unweighted
Gaussian overlap – not to localize – but to anticipate the likely
estimate localization error for a given point [21]. They show
that points with very similar fingerprints (as determined by
the overlap function) tend to have poor localization accuracy,
because they are often confused with adjacent points. Our
results show that Gaussian overlap with weighting is clearly
superior to a weighting based on response rate, which performs
the worst of the algorithms under test in Table I.

We showed how Molé varies the length of the localizer’s
scan queue to use many recent scans, but only if those scans
are likely to be from the current place. Truncating the scan
queue on movement detection also prevented bind pollution
(§ V-C). Several pieces of prior work have used accelerometer-
based motion detection in location systems in different ways.
Kim et al. [20] use motion detection to save energy: after
a user has arrived at a place and enough scans have been
collected, and the variance in the motion detected is low
enough, the WiFi radios are turned off. Once the motion
variance exceeds its threshold, WiFi scanning is resumed.
Shafer and Chang [15] detect movement and, if walking is
detected, perform what they refer to as a “full localization,”
which presumably entails taking many scans over a short
period after truncating the scan queue. If a user’s walk is
longer than the movement detection period, this can result
in significantly more battery drain than our method because
long series of scans will be repeatedly discarded. They also
propose using low variance to detect idleness, choosing to
scan slowly rather than switch off WiFi entirely. Bolliger et
al. [22] describe asynchronous interval labeling which allows
sets of scans collected during the same stationary period to
be retroactively bound at a more convenient time. In the
future, we plan to combine slow background scans, an idleness
detector, and a distinguishing MAO score to generate automatic
binds that maintain an area’s fingerprints as access points
change over time due to maintenance events.

VII. CONCLUSION

This paper presented Molé, a mobile organic localization
engine, specifically designed for large-scale positioning. We
focused on three key components of Molé: its hierarchical
arrangement of places – which allows for unambiguous inter-
pretation of users’ location input – its efficient and accurate
localization algorithm, and its “cloud”-based server design.
Together, these components contribute to a positioning system
that can run compactly on a broad range of mobile devices and

scale worldwide. In particular, through controlled experiments
and simulations, we showed that our localization algorithm
was 10% more accurate than the current state-of-the-art. This
boost in accuracy occurred because we used discriminating in-
formation – response rate – that prior work had discarded. We
also showed how the use of a motion detector can significantly
reduce user-perceived estimation latency and eliminate bind
pollution, where scans collected outside of a room spuriously
become part of that room’s fingerprint. Finally, we gave Molé
to untrained users and found that they could quickly survey
a medium-sized building, resulting in an accurate, shared
location database that could be used for many applications.
We plan on extending the hierarchical and scalable structure of
Molé to a visual map-based UI and on constructing a browser
plug-in version of Molé.
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