ProbabillisticLocationandRouting

SeanC. RheaJohnKubiatavicz

Abstract—We proposeprobabilisticlocation to enhancethe per-
formance of existing peer-to-peerlocation mechanismsn the case
where a replicafor the queried data item existscloseto the query
source. We intr oduce the attenuatedBloom filter, a lossy dis-
trib uted index. We describehow to usethesedata structur esfor
document location and how to maintain them despite document
motion. We include a detailed performance study which indicates
that our algorithm performs asdesired, both finding closerrepli-
casand finding them faster than deterministic algorithms alone.

|. INTRODUCTION

Today’s exponentialgrowth in network bandwidthand stor
agecapacityhasinspiredawholenew classof distributed,peer
to-peerstorageinfrastructures. Systemssuch as Farsite [1],
Freenet[2], Intermemory[3], OceanStord4], CFS[5], and
PAST [6] seekto capitalizeon therapidgrowth of resourceso
provide inexpensve, highly-available storagewithout central-
izedseners. Thedesigner®f thesesystemgroposeo achieve
high availability andlong-termdurability in the faceof indi-
vidual componenfailuresthroughreplicationandcodingtech-
nigues.

Althoughwide-scaleeplicationhasthe potentialto increase
availability and durability, it introducestwo importantchal-
lengesto systemarchitects. First, if replicasmay be placed
arywherein the system,how shouldwe locate them? Sec-
ond, oncewe have locatedone or morereplicas,how should
we route queriesto them? We canformulatethe combination
of thesewo operationssasinglelocationandroutingproblem
thatefficiently routesqueriesrom a clientto the closestreplica
adheringo certainpropertiessuchasthereplicawith theshort-
estnetwork pathto theclientor thereplicaresidingontheleast
loadedsener. In mary casescombininglocationandrouting
into a single,compouncbperatioryieldsthe greatestlexibility
to route queriesquickly with minimal network overhead.The
importanceof suchlocation-independenutingtechniquess
well recognizedn the community andsereral proposalssuch
asCAN [7], Chord[8], Pastry[9], and Tapestry[10] are cur
rently understudy

Theseexisting schemessharethe characteristidhat in the
worstcase alocationandrouting operationrequiresO (log N)
sequentiahetwork messageto searcha distributed systemof
N seners. Someof thesealgorithmsuse substantiallyfewer
messagew performtheirtaskin thecommoncase.This scala-
bility is commendableandit allows for thetotal queryrouting
time to be closeto optimal whenthe replica is far from the
querysouice However, asthereplicaapproachethe location
of thequerysource the performancef the existing algorithms
quickly divergesfrom optimality. This divergenceis easyto

Appearsin INFOCOM 2002
S. RheaandJ. Kubiatavicz arewith the University of California, Berkeley.
Email: {srheakubitron} @cs.berkley.edu

understanda small amountof “mis-routing” in the local area
canleadto alargedivergencerom optimality, sincetheoptimal
pathis shortto begin with.

Currently suchsystemsnalke only meageiattemptgo place
replicasfor network locality, and the sizesof the documents
they locateareon the orderof megabytes,so this poor perfor
mancein locating nearbyreplicasdoesnot significantly affect
overall documentretrieval time. However, in the OceanStore
systen4], weintendstoredocumentsvhosesizesareassmall
asafew kilobytesandto goto greatlengthsto placethosedoc-
umentsneartheir query sources. In sucha situation, nearby
location performancecanbe a large componenbf the overall
retrieval time.

In this paperwe presenta probabilistic locationandrouting
algorithmdesignedo enhancehe performanceof existing de-
terministicwide-aredocationmechanismsA probabilistical-
gorithmis onethatmayfail to discoverareplicafor agivendoc-
umentevenwhensuchreplicasexist; for example,it mightfind
“nearby” replicaswith high probability, but fail if no replicais
nearby Assumingthatthe probabilisticalgorithmfindsreplicas
quickly whenit can andfails quickly whenit cannot we can
enhancethe performanceof the location and routing process
througha hybrid approachfirst try the probabilisticalgorithm,
thenfollow with the deterministicalgorithmif needed.

Our probabilisticlocationandrouting algorithmis basedon
attenuatedBloomfilters andhasthefollowing properties:

« It is decentalized. It requiresno centralpoint of control
andis thussuitablefor usein the peerto-peersystemdor
whichit is intended.

« It islocality aware. If a querysitelies closeto areplica
for the querieddocumentpur algorithmfindsthatreplica
with high probability

« It follows a minimal seach path With high probability,
our algorithm follows the shortestpath betweena query
siteandthereplicathatsatisfiegshe query

« It usesconstanttorage per server Theamountof storage
usedat eachsener in the systemis smallandconstanin
thenumberof documentsndexed.

This later propertyallows eachhop in the query pathto pro-
ceedwithout high-lateng disk accessedurtherenhancinghe
speeddf operation.Whenusedwith a deterministicalgorithm,
attenuatedloom filters allow usto achieve the “best of both
worlds”™: quickly finding nearbyreplicaswhenthey exist, yet
finding every documenevenwhenreplicasarescarce.

Figure 1 shows the potentialof our technique. This graph
illustratesthe stretch of two possiblealgorithms: a real deter
ministic algorithm(solid line) anda hybrid combinationof at-
tenuatedBloom filters with the samedeterministicalgorithm
(dottedline). In this contet, stretch is a measureof the over
headof location-independentuting: it is the ratio of actual
timeto routea querythroughtheinfrastructureversustheideal
network lateng (on the underlyinglP network) to the closest

Routing Stretch vs. Ideal Latency
16

Algorithm
14 Deterministic Alone i
Hybrid -
12 +
S
@ 101
]
3 8
3
¢ 61
4l
21
ol ‘ ‘ ‘ ‘ ‘
(0, 30) [30, 60) [60,90) [90,120) [120,150) [150, 180)

Document Distance from Query Source (in 30 ms buckets)

Fig.1. TheBig Picture. Stretchasafunctionof distancebetweerguerysource
andreplica. Stretch measureshe overheadof combinedrouting andlocation
relative to ideal (network) lateng—hence Jower is better At shortdistances,
therouting stretchof the deterministicalgorithm(solid line) is greatlyreduced
whencoupledwith a probabilisticalgorithm(dottedline).

replica. This graphwill befurtherdiscussedater, but the basic
messagés simple: attenuatedloom filters reducelateng for
the short-distancecase, effectively smoothingout the overall
responsdime.

This papermakesthe following contrikbutions. First, we in-
troduceattenuatedBloomfilters, datastructureghat resideat
eachnodein thesystem We presenthequeryalgorithm,which
routesqueriesfrom nodeto nodein searchof areplica,andthe
updatealgorithm,which propagteslocationinformationfrom
filter to filter. Secondwe coupleattenuatedloom filters with
two differentdeterministicwide-areaocationalgorithms. We
usea detailedperformancesimulationto explore the behaior
of thishybrid approactbothon arandom staticarrangemensf
replicasand on a dynamicallychangingallocationof replicas
modelingtraffic to Web caches.We shav both that our prob-
abilistic algorithmfinds closerreplicasandthat it finds them
fasterthan a deterministicalgorithm alone. Furthermorewe
shav thatthe additionalbandwidthrequiredby the probabilis-
tic algorithmis reasonable.

The remainderof this paperis as follows. Sectionll de-
scribesattenuatedloom filters in detail. Sectionlll presents
our simulationervironment,and SectionlV describeour ex-
perimentalresults. SectionVI describeselatedwork. Sec-
tion V postulatesomefuturework, andSectionVIl concludes.

Il. ALGORITHM DESCRIPTION

In this sectionwe presentour probabilistic location algo-
rithm. This algorithmworks via an overlay network between
participatingseners.Eachsenerhasasetof neighbos, chosen
from theparticipatingsenersclosesto it in network lateng. A
sener associatesvith eachneighbora probability of finding
eachdocumentin the systemthroughthat neighbor This as-
sociationis maintainedn constanspaceusinga datastructure
we call an attenuatedBloomfilter. The setof theseprobabil-
ities forms a potentialfunction over the senersin the system;
locationis a simplematterof climbing this functionto a sener
with the desireddataitem.

In the following, we briefly summarizeBloom filters. We
continueby introducing attenuatedBloom filters, describing
their usefor replicalocation, then finish with algorithmsfor
updatindfilters asreplicasmove.

hash("*Uncle John’s Band”) = {0, 3, 7}

0O 1 2 3 4 5 6 7 8
— [1]1]0]1]o]o]0][1]0] =— width (w)

hash(“Box of Rain”) = {1, 3, 8}

Fig. 2. A BloomFilter. An arrayof w bits thatsene to summarizea setof
objects.To checkanobjects nameagainsta Bloom filter summarythenameis
hashedwith » differenthashfunctions(here,n = 3) andthebitscorresponding
totheresultarechecledin thefilter. In thispicture therepresentedetprobably
containsthe name“Uncle Johns Band”, sincebits 0, 3, and 7 areall true. It
definitely doesnot contain“Box of Rain”, however, sincebit 8 is false.

A. BloomFilters

Bloom filters are an efficient, lossy way of describing
sets[11]. A Bloomfilter is a bit-vectorof lengthw with afam-
ily of independenhashfunctions, eachof which mapsfrom
elementf therepresentedetto anintegerin [0, w). To form
a representatioof a set, eachsetelementis hashedandthe
bitsin thevectorassociatedvith the hashfunctions’resultsare
set. To determinevhetherthe setrepresentedly a Bloom filter
containsa givenelementthatelementis hashedandthe corre-
spondingbits in the filter are examined. If ary of the bits are
not set, the representedetdefinitely doesnot containthe ob-
ject. If all of the bits are set, the setmay containthe object;
thereis a non-zeroprobability thatit doesnot, however. This
caseis called a false positive andthe false positive rate of a
Bloom filter is a well-defined linear function of its width, the
numberof hashfunctionsandthe cardinalityof therepresented
set.Figure2 shavs a sampleBloom(filter.

If the cardinality of the representedetis a significantfrac-
tion of thewidth w, thenthe Bloom filter become®verloaded
therateof falsepositivesincreaseso the pointthatthefilter is
essentiallyuselessSeveralstudies suchas[12], have explored
this phenomenon.In particular the point at which approxi-
mately half of the bits are setis an optimal tradeof between
filter storageand accurag; however, wider filters are always
moreaccurate.

B. AttenuatedBloomFilters

An attenuatedBloomfilter of depthd is anarrayof d nor
mal Bloom filters. As mentionedearlietr we assumehateach
nodein the systemhasa setof overlay neighborgarticipating
in the probabilisticlocation algorithm. In the context of our
algorithm,we associateeachneighborlink with an attenuated
Bloomfilter. Thefirstfilter in thearraysummarizeslocuments
availablefrom that neighbor(onehop alongthelink). Theith
Bloomfilter isthemegerof all Bloomfiltersfor all of thenodes
a distancei throughary pathstartingwith that neighborlink,
wheredistancds in termsof hopsin theoverlaynetwork®. Fig-
ure 3 shavs the attenuatedloom filter thatNode A would as-
sociatewith Node B in the given network. For example,both
“Uncle Johns Band” and“Sugar Magnolia” aretwo hopsaway
from Node A throughNode B, sothesecondevel of filter Fi4 5
containgruevaluesatall bitsin theunionof thosedocuments’
hashvalues(0, 2, 3,5, 7).

I The astutereadermight surmisethat all links endingin a particularnode

have the sameattenuatedilter associateavith them. This is true for now, but
will changewhenwe introduceselectve updatesn Sectionll-D.

3 Ripple
{1,6,8}

0 1 2
12|/0|1|0
v4|1(0|1 depth(d)
181/0|1

width (w)

Uncle
John's
Band
{0,3, 7}

Sugar
Magnolia

D 257

Fig. 3. AttenuatedloomFilters. An attenuatedloom filter is anarrayof d
Bloom filters, eachof width w. Componenfilters arelabeledwith their level
in the array (top filter is level 1). Eachoutgoinglink (say A — B) hasan
attenuatedilter associatedvith it (F'4 g). Level 1 summarizeseplicason the
neighborat the endof thelink. Level 2 summarizeseplicasthataretwo-hops
away alongthatlink, etc. We assigna potentialvalueto eachlevel (here %

i, ...). Higherlevelsarethusattenuatedvith respecto lower levels.

To mapfrom anattenuatedloom filter to a potentialvalue,
onequerieseachlevel for a documens name. The levels are
assignedgeometricallydecreasingpotential values; the value
of the potentialfunction of afilter for a given documents the
sum of all of the potential valuesfor the levels of the filter
which containthe document. For example,in F4p, the doc-
ument“Uncle Johns Band” would mapto the potentialvalue
1/4+ 1/8 = 3/8, sinceit is reachablehroughNode B in two
andthreehops. We saythat higherfilter levels are attenuated
with respecto earlierfilter levels, hencethe name“attenuated
Bloomfilter”. We referto filters with only onelevel asnonat-
tenuated

C. TheQueryAlgorithm

As mentionedabove, we associat@anattenuatedloomfilter
with eachoutgoingneighborlink. To performalocationquery
the queryingnodeexaminesthe 1stlevel of eachof its neigh-
bors’attenuatedloomfilters. If oneof thefilters matchesit is
likely thatthe desireddataitem is only onehop away, andthe
queryis forwardedto the matchingneighborclosesto the cur-
rentnodein network lateng. If no filter matchesthe querying
nodelooks for a matchin the 2ndlevel of every filter. As be-
fore,if amatchis found,thequeryis forwardedto thematching
neighborof lowestlateng. Thistime, however, it is nottheim-
mediateneighbomwhois likely to possesthedataitem, but one
of its neighbors This next neighboris determinedasbefore by
examiningthe attenuatedloom filters of the currentsener.

A filter of depthd by definitionstoresnformationonly about
seners d hopsfrom the currentsener. For this reason,if a
querywereto reacha sener d hopsfrom its sourcedueto a
false positive, thereis no incentive to forward it further In
otherwords,sincethequeryreachedheparticularsenerthatit
did througherror, ary furtherinformationaboutwhich nearby
senersmight containthe desireddataitem maylik ely beincor
rectaswell. Whensuchcircumstancesrise,thereremaintwo
possibilitiesfor finding the dataitem. The probabilisticalgo-
rithm cansimply give up andforward the requesto the deter
ministic algorithm,or thequerycanbereturnedo theprevious
senerin the querypathto be senton to the next bestneighbor
In thisway, thequeryalgorithmcomeso resemblea depth-first

searchwhichis guidedby the potentialfunctionrepresentetly
theattenuatedloom filters.

Sincethepurposeof the probabilisticalgorithmis toimprove
lateng in thecasewherenearbyreplicasexist, we view thislat-
ter solutionasoverreachingsincethetime requiredfor it in the
worst caseis possiblyslower thanthe deterministicalgorithm,
with lesscertainresults.As aresult,we donotallow backtrack-
ing, andafterd unsuccessfuhopswe immediatelydeferto the
deterministicalgorithm.

Finally, in situationswhered is large, a false positive may
causea queryto returnto a sener it hasalreadyvisited. For
this reason,eachqueryin the systemcontainsa list of all of
thesenersthatit hasvisitedsofar, andsenersnever forwarda
queryto asener it hasalreadyvisited. Sincewe do not allow
backtrackingthis list is at mostd elementdong, sothe costof
this optimizationis small.

D. TheUpdateAlgorithm

For the query algorithm to be successful,the attenuated
Bloom filters at eachnodethatdirect queriesmustbe kept up-
to-date.Every time a new dataitem is addedto a sener, there
is a possibilitythatthe Bloom filter representinghe setof data
itemsit storeswill changeaswell. If sucha changeoccurs,
neighborsof the sener will only find the new dataitem if the
changeis propa@tedto themin somemanner The way in
whichthis changes propagtedis the updatealgorithm

Thefundamentabbsenationbehindthe updatealgorithmis
that unlessthe Bloom filters are loadedto a degree suchthat
they are no longer useful for location, an updateto a single
sener in a systemwith filters of depthd should eventually
changeat leastone bit in the filters of every sener within d
hopsof the updatesite. Ideally, this propagtion is a single
wave spreadingrom the sourceof the changeoutward. More-
over, updatedueto differentdataitemsinvolve only a small
numberof commonbits. Thusthereis little benefitto com-
bining updatesgexceptto sase on the network costsassociated
with sendingmary small messageisteadof one large one.
We thereforeassumehatall updatesoccurindependentlyex-
ceptfor the possibilitythatupdatesiestinedor thesamesener
may be groupednto the samenetwork message.

An updateproceedsasfollows. Every senerin the system
storesboth an attenuatedloom filter for eachoutgoinglink
(e.g0. F4p in Figure3), anda copy of its neighbors view of the
reversedirection. Whena new documents stored,the sener
calculateghe changedits in its own filter andin eachof the
filters its neighborsmaintainof it. It thensendsthesebits out
to eachneighbor;thisis aform of diff compession Onrecev-
ing sucha messagegachneighborattenuateshe bits onelevel
and computesthe changeghey will make in eachof its own
neighborsfilters. Thesechangesarethensentoutaswell. One
canthusview anupdateasthe setof changedits propagting
outwardfrom the sourceof the change.

Oneproblemwith thisalgorithmascurrentlyspecifieds that
unlesshe overlaynetwork is atreerootedat theupdatesource,
theupdatewill be propa@gtedto somesenersmorethanonce,
wastingnetwork bandwidthandplacingredundantnformation
in thefilters of the receving node. For example,considerFig-
ure 3. If adocumentwere addedto Node D, Node A would
receve the correspondingipdatethreetimes: first from D di-
rectly, thenthroughB, andagainthroughB via C. Thisredun-
dang would placeunnecessaripadonthenetwork. Moreover,

Fig.4. TapestryRoutingMesh.Eachnodeis linkedto othernodesvia neighbor
links, shavn assolid arravs with labels.Labelsdenotewhich digit is resolhed
duringlink traversal. Here,node7224 hasanL1 link to BA72, resolvingthe
first digit, anL2 link to FA44, resolvingthe secondligit, etc.

it would needlesslplaceinformationaboutthe new document
in all threelevels of F45. The lower levels of an attenuated
Bloom filter representhe combineddocumentf mary more
nodesthanthe higherpotentialones,sothis redundang of in-
formationis quite detrimentato thefalsepositive rate.

We canthusimaginefiltering updatesto improve both the
bandwidthutilization andthe load on lower filter levels. This
filtering changesheinformationstoredin theattenuatedilters,
thusalteringthe semanticof thesefilters slightly. As we will
shav in SectionlV, however, we cancontinueto usethe query
algorithmof Sectionll-C andachieve lower updatebandwidth.

We describewo distinctupdatefiltering algorithms;we call
the naive approachalreadydescribedhe no filtering case. To
filter, we tag all updateswith anidentifier consistingof their
sourcenodeanda monotonicallyincreasingsequenceumber
We thenperformthefollowing typesof filtering:

« destinationfiltering: Destinationseners rememberthe
identifiersof every updatethey seefor a shortperiod, al-
lowing themto ignore subsequenarrivals of an update
throughdifferentpaths. This filtering preventsredundant
informationin the destinations neighboffilters.

« sourcefiltering: Onceasenerrecevesaduplicateupdate
from oneof its neighborsit sendsamessagéo thatneigh-
bor to inform it of this redundang. The neighborstops
forwardingnew updatedrom thatsamesource.

Both of thesetechniquesave network bandwidth.Thesecond,
however, is somavhat more sophisticatedsinceit performsa
form of topologydiscovery, squelchingupdatemessagebefore
they areevensent.Theadditionalinformationstoredfor source
anddestinatiorfiltering is soft stateandis periodicallyflushed
soasto adaptto changesn the overlay network.

As a final point, we note that updatefiltering introducesa
bit of subtletywith respecto replicadeletions. Whenareplica
deletioncausedits at ary level of a Bloom filter to transform
from oneto zero, we mustbe carefulto propagte this dele-
tion to all appropriatenodes.This may, in somecasesjnvolve
ignoring updatefilters that have beenprevious installed. Fig-
ure 16in the Appendixdescribeshe completealgorithm.

I11. EXPERIMENTAL SETUP

To testthe effectivenessand costof our probabilisticalgo-
rithm, we simulatedit in conjunctionwith two differentdeter
ministic algorithmsfor location-independemntouting. In this
sectionwe describethe deterministicalgorithms,thendiscuss
oursimulationenvironmentandexperiments Theresultsof our
simulationareprovidedin SectionlV.

A. DeterministicLocationand RoutingAlgorithms

We usedtwo different deterministicalgorithmsto provide
our probabilisticalgorithmwith the greatestariety of “com-
petition”. Thefirst is home-noddocation, anidealizedarchi-
tecturethat resemblesa combinationof DNS [13] and opti-
mized directory-basedcachecoherencg14]. The secondis
Tapestry[10], an actual distributed, wide-arealocation and
routinginfrastructurewith interestingocality properties.

1) Home-Nodd ocationOverviav: Our first deterministic
algorithm postulateghat every documentin the systemhasa
home-nodeserverthat keepsa setof pointersto every replica
of thedocumentTo routeaqueryto areplica,aclientsendshe
queryto its homenode ,which forwardsthe queryto thereplica
closesto theclient.

We chosethis architecturdor two reasonsFirst, it is avery
simple;aswe will seein the next section,morerealisticarchi-
tecturesare far more complicated. Second,it is an idealized
form of directoryservice(suchasDNS), but with oracle-level
knowledge of the network topology In contrastto existing,
nonidealizedprotocolswhich routeto O(log) randomlydis-
tributedlocationsin the network to reacha documentthis ide-
alizedalgorithmusesonly O(1) suchhops,andprovidesbetter
replicaplacementelative to thequerysource.

Of course several aspectof this architectureareidealized.
We do notaddresghe type of infrastructurethata clientwould
utilize for finding the home-nodesener; we assumehatsome
form of document-to-home-nodeaappingserviceis available.
Further sincethis is a “best-caserchitecture” we do not ad-
dresshow thedirectorysenerkeepsdts informationaboutrepli-
cascurrent,or how it is ableto selectthe replicaclosestto the
querysource. The next sectiondetailsa distributed directory
techniquehatdoesnotrequiretheseidealizations.

2) TapestryOverviev: The wide-arealocation and rout-
ing infrastructureof OceanStorés Tapestry[10], an IP over
lay network with a distributed,fault-tolerantarchitecture With
Tapestrya queryis routedfrom nodeto nodeuntil thelocation
of areplicais discorered, at which point the query proceeds
to thatreplica. Tapestrydiffers from the home-nodearchitec-
turein two distinctways: (1) Tapestrydistributesthe directory
lookup processn a document-specifigvay. This removesthe
needfor aseparatelocument-to-home-nodeapping.(2) Once
Tapestryhasdiscoveredthe location of a replica, it forwards
the queryto thereplicaclosesto the point of discovery, rather
thanto the replicaclosestto the original query source. This
optimizesone-vay lateng from the queryto the replica, but
may not optimizesubsequertraffic from replicabackto query
source.

Tapestrybegins with the assumptiorthat every sener and
documenin the systemcanbe namedwith a unique,location-
independentdentifier, representeés a sequencef hexideci-
mal digits. We will referto node-IDsfor the nodenamesand
globally uniqueidentifiers (GUIDs) for thedocumentsAmong
otherthings, this meansthat every query hasa unique desti-
nation GUID. Tapestryhastwo major components:a routing
meshanda distributeddirectoryservice

The Tapestryrouting meshis an overlay network between
participatingnodes. Figure 4 shavs a portion of this mesh.
Every Tapestrynodeis connectedo other Tapestrynodesvia
neighborlinks of variouslevels. Level-1 edgesfrom a given
nodeconnecto the 15 nodesclosest(in network lateng) with

L Uncle
John's
Band
(8734)

Fig. 5. Publicationin Tapestry To publishdocument8734, sener 39AA
sendspublicationrequesttowardsthe root, leaving a pointerto itself at each
hop. Sener8224 publishests replicasimilarly.

differentvaluesin the lowestdigit of their addressesLevel-2
edgesconnectto the 15 closestnodesthat matchin the lowest
digit andhave differentsecondligits, etc.

Tapestryneighborlinks provide a route from every nodeto
every othernodein the system:simply resolhe the destination
nodeaddresonedigit at a time, usinga level-1 edgefor the
first digit, a level-2 edgefor the second,and so forth. This
routing schemeis basedon the hashed-stifx routing struc-
ture presentedy Plaxton,RajaramanandRicha[15]. While
the Tapestnyinfrastructurencludesalgorithmsfor building this
neighborgraphdynamically we assumen this work that the
graphis built at the beginning of our simulationand doesnot
change.

To performlocation-independembuting, Tapestrydetermin-
istically mapseachdocumentGUID to a setof uniqueroot
node$. In this paperwe assumea single root nodefor each
GUID. Thusevery uniguedocumentand queryfor thatdocu-
mentis associatedvith a singleroot node-ID.We usetherout-
ing meshdescribedibove to reachtherootfrom ary othernode
in thesystemthisroutingprocesslefinesauniquelocationtree
for every choiceof root node.

Storagesenerspublishthefactthatthey arestoringareplica
by routing a messageoward the root node, depositingloca-
tion pointers to the objectat eachhop. Figure5 illustratestwo
replicaswith thesameGUID (8734) exportedby senernodes
8224 and39AA. Locationpointersareshovn asdottedarrons
backto seners. Note thatboththeroot note(7734) andnode
A734 have knowledgeof bothreplicas.

As shawvn in Figure6, queriesroutetowardtherootnodeun-
til they encountera location pointer thenrouteto the located
replica. If multiple pointersare encounteredthe query pro-
ceedsto the closestreplica. The figure shavs threedifferent
locationpaths.In the worstcase a locationoperationinvolves
routingall thewayto theroot. However, if the desiredobjectis
closeto theclient,thenthequerypathwill intersecthepublish-
ing pathbeforereachingtheroot with high probability. In fact,
it is showvn in [15] thatthe averagedistanceraveledin locating

2Sincethe node-ID spaceis sparse this cannotbe a one-to-onemapping.
Sufiice it to saythatthereis a way to mapGUIDs to root node-1Ds,evenwith
dynamicinsertionandremoval; see[10].

Uncle

John's
Band

(8734)

Fig. 6. Locationin Tapestry: ThreedifferentlocationrequestsFor instance,
tolocateGUID 8734, querysourcel 97E routestowardstheroot, checkingfor
apointerateachstep.At nodel634, it encounters pointerto sener1634.

anobjectis proportionalto the distancefrom thatobject.

B. SimulationEnvironment

Our simulatormodelsthe physical network asa graph,each
edgeof which hastwo valuesassociateavith it, anet andgnet.
To senda message@longan edgetakes anet + sfnet Seconds,
wheres is the sizeof the messagén bytes.To senda message
alonga pathof morethanonehoptakesapet + s5het S€CONS,
whereay, et is the sumof the anet valuesfor every edgealong
thepath,andfy,etis thelargestdnet valueof ary edgealongthe
path. We do not measurequeuingeffectsor computatiorntime
atseners.

Using this simulator we constructeda physical network
topology using the transit-stubmodel of GT-ITM [16]. This
topology mimics the structureof large networks obsenred in
natureby dividing the graphinto two classeof nodes,called
transitnodesandstubnodes.An exampletransit-stubgraphis
shavn in Figure7. Transitnodesaregroupedinto highly con-
nectedtransitdomains,and off eachtransitnodeseveral stub
domainsareconnected.Thesestubdomainsare collectionsof
stubnodeswhich aregenerallymorelightly connectedhanthe
nodesin thetransitdomains.In additionto this generalayout,
thereare several inter-stub domainedgesin eachgraph. We
augmentthe GT-ITM modelwith bandwidthnumbersas fol-
lows. All stubto stubedgesare 100 Mb/s, all stubto transit
edgesarel.5Mb/s, andall transitto transitedgesare45 Mb/s.
Thesevalueswerechosento modelFastEthernet,T1, and T3
connectionstespectiely. In our experimentsye focuson stub
to transitdomainbandwidthconsumptionsincetheseinterdo-
main edgesare the mostbandwidthconstrainedn the system
(andin mostrealsystemsaswell).

Our simulationsusetransit-stubgraphswith six transitdo-
mainsof ten nodeseach.Eachtransitnodehassesen stubdo-
mainsof an averageof twelve nodeseach,yielding a total of
5,100nodespergraph.Thetransitdomainsarefully connected
to eachother andeachpair of nodesinternalto a domainare
connectedvith probability 0.6. Eachpair of stubnodeswithin

3Experimentshav a small constanbf proportionality;See[10].

-
-
— = -

Transit

Stub
bS Domains

—— Physical Links - = = Overlay Edges

Fig. 7. ATransit-StubGraph. Thistopologymimicsthestructureof largenet-
works obsenedin nature.Shown alsois anoverlay network which minimizes
the numberof interdomainedgecrossings.Suchoverlaysallow the topology
discovery propertiesof the sourcefiltering algorithmto minimize interdomain
bandwidthconsumptionSeeSectionlV for details.

Cumulative Interdomain Bandwidth vs. Filtering Scheme

Nonattenuated———
90 i Filter depth = 2-—--——- i
. Filter depth = 3~

b . -

75

60 -

45 |

30} Tt

15

Cumulative Kilobytes per Document Added

. . .
No Filtering Destination Filtering Source Filtering

Fig. 8. UpdateBandwidthvs. UpdateAlgorithm. Updatebandwidthincludes
Tapestrymessagesnd Bloom filter updates. The sourcefiltering algorithm
generallyusessignificantlylessbandwidththanno filtering or destinatiorfil-
tering. Neitherfiltering algorithmeffectsfilters of depthone,sincealoop must
exist for the algorithmsto filter anything. Likewise, destinatiorfiltering only
helpsonloopsof threeor larger, soit hasno effect of filters of depthtwo.

astubdomainareconnectedvith probability0.3. We usedGT-
ITM to generateseven graphsgiventheseparameterso insure
thatour resultswerenot dependentn the particularitiesof any
onegraph.

Ontop of this physicalnetwork, we built Tapestryandprob-
abilistic locationoverlay networks asfollows. We chosel,000
of thetotal nodesin the graphuniformly at randomwithoutre-
placementndmadethem Tapestryseners. We thenassigned
node-IDsto theseseners at random, and built the neighbor
graphasdescribedn Sectionlll-A. In someexperimentswe
alsoattachedrobabilisticlocationsenersto thesesamenodes,
using the constructionalgorithm describedn Sectionll. Fi-
nally, in someexperimentswe further restrict the Bloom fil-
ter overlay network to have a minimal numberof interdomain
edgeswhile maintainingits averageconnectvity. The effects
of thisrestrictionaredescribedn SectionlV.

C. ExperimenDescriptions

In this work we documentwo groupsof experimentscalled
the static andthe dynamicexperiments basedon whetherthe
setof replicasin the systemchangesluringthetest.

In the staticexperimentswe randomlyplace70 uniquefiles
on eachof the nodesin the systemwhich are participatingin
the location protocols. We chosethis small numberfor sim-
ulation simplicity; sincethe optimal size of the Bloom filters

scaledinearly with the numberof documentsndexed, our re-
sultsgeneralizein a straightforvard manner We allow for all
of the locationdirectoriesto be updatedthenarrangefor each
participatingnodeto requesta differentsetof 12 documents,
randomlychoserfrom the full set. We obsene the averagelo-
cationlateny versusthe minimum possiblelateny given the
constraintsof the network. After all of the locationrequests
are complete,we add one new dataobjectto eachparticipat-
ing nodeandobsene the network bandwidthusedin updating
all of the Bloom filters in the system. Eachof theseexperi-
mentsis repeatedising Bloom filters of several differentsizes
anddepthsusingeachof thetwo deterministicalgorithms,and
usingdifferenttransit-stubgraphs.

To explore the advantagesof attenuationwe fix the aver
agenumberof nodesreachabléhroughthe overlay (we present
resultsfor 20 reachablenodes)while varying the depthof the
filters. Consequentlyhigherlevelsof attenuationmply alower
averageout-dagreein the overlay network (i.e. eachnodehas
fewer immediateneighbors). Moreover, in mary our experi-
ments,we fix the total amountof local storageusedby thein-
dex; this quantityis the productof the filter width, depth,and
numberof immediateneighborgpernode.

For the dynamicexperimentsywe usedthe SURGEwebtraf-
fic generatof17] to chooseour file sizesandreferencestream.
This generatoproduceseadrequestsith characteristicsim-
ilar to obsered patternsof web traffic acrossmultiple clients.
We usedit to producea traceagainst50,000uniquefiles, with
sizesrangingfrom 75 bytesto 8.69MB, distributedaccording
to a hybrid of lognormaland paretodistributions (see[17] for
moredetails). The averagefile sizeis around21 kB.

Eachnodemaintainsanin-memorycacheof the dataitems
it reads,managedn simple least-recently-use@_RU) order
Eachcacheis 420 kB in size,allowing an averageof 20 files
to be cachedat onetime. Additionally, eachfile in thetraceis
keptpermanentlynasimulatecharddrive of exactly onenode,
resultingin eachnodestoring 50 files on its drive, for a total
of 70 files betweenrthe cacheandthe disk, to matchthe static
experiments.Datanot found in cacheis loadedoff this drive,
whichis modeledasadelayof agisk+ sfgisk Secondswheres
is thesizeof thefile, agisk = 10 millisecondsandGyisk = 100
nanosecondper byte. Theseparametersare similar to those
obsenedon moderndrives.

As with the staticexperimentsthe dynamicexperimentsare
performedover arangeof Bloomfilter sizesanddepthsandus-
ing variousdifferenttransit-stubgraphsandsener placements.
Duringthesetests we obsere theaveragetimeto find areplica
andthe distanceto thatreplicaversusthe network distanceto
theclosestreplica. We alsoobsere thetotal interdomainband-
width consumed.

IV. RESULTS

In this section,we utilize the resultsof our experimentsto
justify the claimsmadein theintroduction:thatthe probabilis-
tic algorithmfinds replicasquickly whenthey are nearby that
it fails quickly if they arenot, andthatthis combinationleads
to a netperformancémprovement. We first justify our choice
of updatealgorithm.

A. TheProbabilisticUpdateAlgorithm

Figure 8 shawvs the bandwidthusedby eachof the threeup-
datealgorithmsdescribedn Sectionll-D. Thebandwidthnum-

Bloom Query Failures vs. Index Size
16000

T T T
Nonattenuated——
Filter depth = 2------- 1
Filter depth = 3=+

Filter depth = 2, restricted overlay

Filter depth = 3, restricted overlay----- -

14000 -

12000 -

10000 -

8000 -

6000 -

4000 |

2000 -

Total Number of kailed Bloom Queries

0 0.5 1 15 2 25 3 35
Total Index Size At Each Node (kilobytes)

Fig.9. BloomQueryFailuresvs. Index Size As thewidth of the bloomfilters
increasesthefalsepositive ratedropsquickly. Restrictingthe overlay network
to minimize the numberof physical interdomainedgecrossingscausesnore
falsepositives,but yieldsbandwidthadwantagegseeFigure12). Therestricted
overlayhasno effect on the falsepositivesof nonattenuatefilters.

Routing Stretch vs. Ideal Latency (Home Node)
90 [~

"Home Node Alone—— '

80 1 Nonattenuated------- |
| Filter depth = 2+
70 H Filter depth = 3

60
50 4
40

Routing Stretch

30
20}

10

0
(0, 30)

. . .
[90,120) [120, 150) [150, 180)
Document Distance from Query Source (in 30 ms buckets)

(@)

Bloom Failure Overhead (CDF), Total Index Size = 1.83 kb

0.75

05

Cumulative Fraction

025

Nonattenuated——
Filter depth = 2, restricted overlay-—---
Filter depth = 3, restricted overlay-—

0.25 0.5 0.75 1
Fraction Increase in Query Time

o Mkt

Fig. 10. Additional CostDue to Failed BloomQueries. Even whena prob-
abilistic queryfails, the total locationtime is not muchmorethanif the query
werehandledby the deterministicalgorithmalone. Herewe seethatfor filters
of depth3, 86 percenbf failed Bloom queriestake only 20 percentongerthan
if they hadbeenhandledby thedeterministicalgorithmalone.

Routing Stretch vs. Ideal Latency (Tapestry)

25 =

Tapestry Alone

Nonattenuated--------
: Filter depth = 2+

20 1! Filter depth = 3

Routing Stretch

. . . .
[30, 60) [60,90) [90,120) [120,150) [150, 180)
Document Distance from Query Source (in 30 ms buckets)

(b)

ol
(0, 30)

Fig. 11. RoutingStretch vs. Ideal Latency Althoughtherearefew documentsloseto their querysourcesn the staticexperimentsthe hybrid algorithmstill
manageso find themsuficiently quickly thatit achiezesa far lower routing stretchthanthe deterministicalgorithmsalone. The HomeNodealgorithmis shavn
in (a),andTapestryis shavn in (b). Theerrorbarsin this graphrepresenthe Oth and99thpercentiles.

bersshowvn arefor total numberof bytessentacrossary physi-

cal interdomainlink in the systemasthe resultof addingone
documentto a single sener’s cache! As describedin Sec-
tion 1ll, we measuredhesenumbersat the end of eachstatic
test, dividing by the total numberof documentsaaddedto pro-
ducean averagecostper document. The graphclearly shavs
significantbandwidthreductionsfor the more advancedalgo-
rithms, so long asthe attenuatedloom filters beingusedare
deepenoughto take advantageof them. Destinationfiltering

hasno effect unlessthereareloopsof lengththreeor morein

the updatepropagtion graph,sono changeis seenfor depths
oneor two. Likewise,sourcefiltering hasno effectunlessthere
areloopsof lengthtwo or more,sono changds seerfor depth
one. Theremainderof our experimentsonly usesourcefilter-

ing, sinceit either matchesor outperformsthe lessadvanced
algorithmsin every case.

B. StaticExperiments

Our goalwith the staticexperimentss to shaw first thatthe
hybrid algorithmdoesnot adwerselyaffect the locationof dis-
tantreplicasandsecondhatit outperformseitherdeterministic
algorithmalonein locatingnearbyones.

4All errorbarsin our graphsrepresenthe stability of the valuesshavn with
respecto changesn theunderlyingphysicalandoverlay networks,andunless
otherwisenotedmark 95 percentconfidencentervals.

To determinewhetherthe hybrid algorithmwould adwersely
affect queriesfor distantreplicas,we graphedthe numberof
hybrid querieswhich hadto fall backonthe deterministicalgo-
rithm. Theresultis shavn in Figure9. Fromthis graph,we see
thata total index size of around1.83kilobytesis suficient to
limit the numberof suchfailing queries.Takingthe numberof
documentgernodetimesthe averagefile sizeof the SURGE
traces,we seethatthis index sizeis only 0.136percentof the
sizeof thedata.

To further qualify the impact of failed Bloom queries,we
showv the cumulative distribution function of how muchlonger
a failed Bloom querytakesthanonewhich hadusedTapestry
from the beginningin Figure 10. This graphshaows thateven
whena probabilisticquery fails, the total locationtime is not
muchmorethanif the querywerehandledby the deterministic
algorithmalone.For example with filters of depth3, 86 percent
of failedBloom queriegake only 20 percenfongerthanif they
had beenhandledby the deterministicalgorithmalone. Thus
by using Bloom filters of a reasonablesize, we incureonly a
limited numberof failed queries andthe failuresthatdo occur
only minimally affectthetotal routingtime.

Figure11 shavs the averagerouting stretchof the hybrid al-
gorithm asa function of the query sources distancefrom the
querieddocumentln Figurell (a), thedeterministicalgorithm
usedis homenoderouting, asdescribedn Sectionlll-A.1; in
Figure11 (b), Tapestryis used.In both casesthetotal size of

Cumulative Interdomain Bandwidth vs. Filter Depth Cumulative Interdomain Bandwidth vs. Filter Depth (Restricted Overlay)

50

50

Index size = 1.10 kb——
Index size = 1.83 kb------
Index size = 3.30 kb

Index size = 1.10 kb——
Index size = 1.83 kb------
Index size = 3.30 kb

40+ 40+

30 30

20 - 20 -

wrooe— 10

Cumulative Kilobytes per Document Added
Cumulative Kilobytes per Document Added

. . . .
Depth =2 Depth =3 Nonattenuated Depth=2

(a) (b)
Fig. 12. InterdomainBandwidthvs. Filter DepthThesetwo graphsshav the amountof interdomainbandwidthconsumedy the updatealgorithmasa function

of filter depthandoverlaytopology In Figure(a), the overlay graphis constructedyreedily andall depthsuseroughlythe sameamountof bandwidth.In Figure
(b), the numberof overlay edgescrossinga physicalinterdomainedgehasbeenlimited asmuchaspossiblewhile maintainingthe averageneighborreachability

.
Nonattenuated Depth =3

pernode.In this casethetopologydiscovery propertiesof the attenuatedloomfilters greatlyreduceupdatebandwidth.

Dynamic Routing Stretch vs. Algorithm

5
451
4l
351
3l
25+
2l

Routing Stretch

15+
1t
05}

0
Tapestry Alone Nonattenuated Depth =2 Depth =3

Fig.13. DynamicRoutingStretch vs. Algorithm. Thisgraphshavstheaverage
routing stretchasa function of routingalgorithmfor the dynamicsimulations.
The hybrid algorithmfar outperformsTapestryalonefor all filter depths.See
thetext for furtherdiscussion.

the Bloom filter index at eachnodeis fixed at 0.136 percent
of the datasize,assuggestedby the previous results. Onein-
terestingaspecof thesegraphsis thatthe attenuatedilters are
providing comparableadwantageto the nonattenuatednesus-
ing fewerimmediateneighbors.

As describedn theintroduction,the closerthe querysource
liesto thequerieddocumentthelessoptimally the determinis-
tic algorithmsperform. The hybrid algorithmachieresa lower
averagestretchthaneitherof thedeterministicalgorithmsalone
andreduceghe varianceof the stretchaswell. Anotherinter-
estingfeatureof Figurel1is that Tapestryachievesafar lower
routing stretchthanhomenodelocation, especiallyfor nearby
replicas.This effectis producedoy thelocality inherentin the
Tapestryroutingmesh.

A final datumfrom the static experimentsis shown in Fig-
ure 12, which graphsupdatebandwidthas a function of filter

Dynamic Distance Stretch vs. Algorithm
25

15r

Distanee Stretch

05

0
Tapestry Alone Nonattenuated Depth =2 Depth =3

Fig. 14. DynamicDistanceStretch vs. Algorithm. This graphshavs theratio
of the distancebetweenthe query sourceand the replicawhich was actually
locatedto the distancebetweerthe querysourceandclosestreplicaavailable.
The hybrid algorithm finds replicaswhich are closerto the query sourceon
averagethanTapestryalone.

C. DynamicExperiments

In contrastto the static experiments,the dynamiconesal-
low for the existenceof multiple replicasof every document,
subjectto the constraintsof the cachingschemedescribedn
Sectionlll. Furthermorethe useof the SURGEtraffic genera-
tor providesfor substantialocality in thereferencestream.As
aresultof thesetwo factors,it is oftenthe casein theseexper
imentsthat several replicasexist nearary given querysource,
sothehybrid algorithmhasafar greatemopportunityto improve
performancehanin the staticexperiments whereeachdocu-
mentexistedonly ononenode.

Figure 13 shows the averagerouting stretchin the dynamic
experimentsasa function of routingalgorithm. In generalthe
hybrid algorithm far outperformsTapestryalone,by as much
asafactorof 2.1. FurthermoreFigure 14 shawvs the ratio of

depth.FromFigure12 (a) we seethatin agreedily-constructed the distancebetweenthe query sourceand the replica which

overlay network, in which all nodesare connectedto some
numberof their closestneighbors,attenuationdoesnot pro-
vide ary bandwidthadvantagesHowever, Figure12 (b) shavs
thatif the numberof overlay edgeswhich traverseeachphys-
ical interdomainedgeis limited, the topology discovery fea-
turesof sourcefiltering greatlyreducethebandwidthconsumed
on thosephysical edges.Sincetheseedgescaneasilybecome
bottleneckdn real networks, we view this topology discovery
propertyasarealbenefitof the attenuatedilters.

wasactuallylocatedto the distancebetweenthe querysource
andclosestreplicaavailable. Onceagain, the hybrid algorithm
outperformsTapestryalone, again by as much as a factor of
1.94. Not only doesthe hybrid algorithmfind replicasin less
time thanTapestryit alsofindscloserreplicas.
Ourlastgraph,Figure15, shavs thetotal interdomairband-
width consumediuringthe entiredynamictestcase measured
asthetotal numberof bytesthat traverseall physical interdo-
mainedgesn the network. As mentionedaborve, the hybrid al-

Cumulative Interdomain Bandwidth vs. Algorithm

w
@

w
o

N
a

2 I
o a

Cumulative Bandwidth Consumed (gigabytes)
v 8

0
Tapestry Alone Nonattenuated Depth =2 Depth =3

Fig.15. DynamicBandwidthConsumeds. Algorithm. Thetotal interdomain
bandwidthusedby the hybrid algorithmis comparabléo thatusedby Tapestry
alone;the bandwidthreductionresultingfrom the closerreplicasfound by the
hybrid algorithmoffsetstheincreasedbandwidthusageof theupdatealgorithm.
Furthermorethe bandwidthreductiongainedby the topologydiscovery prop-
ertiesof the attenuatedlgorithmcanbeclearlyseen.

gorithmfindsreplicascloserto the querysourcethan Tapestry
alone.As shown in Figure 15, theresultingreductionin band-
width from this higherlocationquality is sufiicientto maskthe
additionalbandwidthbeing usedby the hybrid algorithmdur

ing filter updatesThustheimprovedperformancef thehybrid

algorithmdoesnotimply afurthercostin bandwidth.

V. FUTURE WORK

Thereareat leasttwo waysin which this work could beim-
proved. First, in our simulationswe constructthe Bloom filter
overlay graphsusing global knowledge. It seemsreasonable
to believe that simple overlay graphscould be constructedn
a self-omanizingmanner;for instance the Tapestryoverlay is
soconstructed However, asshavn in SectionlV-B, the band-
width consumptiorof the attenuatedloom filters canbe dra-
maticallyreducedy placingrestrictionson the structureof the
overlay with respecto the underlyingphysical network. The
designof algorithmsto adhereto suchrestrictionswhile pro-
ducingan overlay network in a self-oiganizingmanneris thus
animportantcomponenbf our futurework.

Secondsincethe cachesn our systemaremanagedn LRU
order every readcausesat leastone new dataitem to be pub-
lishedin the deterministicalgorithmand propagtedasa filter
updatein the probabilisticscheme.This cachingpolicy obvi-
ously generatesnore updatetraffic thana more adwancedone
suchasLRU-k [18] or n-chanceforwarding[19] might. Since
an updateto a cachecausesTapestryto sendonly O(log N)
messagesyhereaghe probabilisticalgorithmmustsendsome
amountof informationto every sener in its filters’ range,us-
ing thesemore advancedalgorithmsshouldonly improve the
bandwidthconsumptiorof the probabilisticalgorithmrelative
to Tapestry Our currentresultsarethussomevhat pessimistic
with respecto the bandwidthusageof our algorithm.

VI. RELATED WORK

Bloom filters [11] have long beenusedasa lossy summary
technique.To our knowledge however, we arethefirst to com-
binetheminto acompoundtopology-avaredatastructure.

In [20], Bloom filters wereusedto improve the efficiency of
distributed join operationsby filtering elementswithout con-
sumingnetwork bandwidth.In [21], Aoki usedBloomfiltersto
guidesearcheshroughgeneralizedearchtrees.

Both the SummaryCache[12] and CacheDigests[22] use
Bloom filters to to summarizethe contentsof a setof cooper
atingweb cachesBoth techniquesresimilar to our nonatten-
uatedschemeput useHTTP astheir deterministicalgorithm.
In contrastto both schemeswe assumedocumentsare highly
mobile, requiring frequentupdatepropagtion; this frequeng
motivatesour concernfor updateefficiency. In contrasto both
SummaryCacheandour work, the CacheDigestschemepolls
for updateeriodicallyratherthanpushingthemto neighbors
aschange®ccur

The SecureDiscovery Service(SDS)[23] usesBloomfilters
to routequeriedo appropriateservicessuchasprintersor scan-
ners;in thatwork, serviceattributesarearrangedn atreewith
theBloomfilters ateachnodesummarizingheattributesof the
nodes children.Consequentijthe accurag of informationde-
creasessa searchclimbs toward the root of the servicetree,
leadingto wastedsearchtraffic throughtheroot node. In con-
trast,we useattenuatedloom filters only for local-arearout-
ing, falling backon a bandwidth-eficient protocolin the wide
area.

Ourhomenodelocationprotocolshareslementawith exist-
ing directoryservicessuchasthe InternetDomainNameSer
vice (DNS) [13] and Globe[24]. Like our algorithms,DNS
includes provisions for the caching of location information
throughoutthe network, but doesso usinga weakconsisteng
modelthat would not be desirablewith objectsmoving at the
frequentlyaswe assumen this paper The Globe systempro-
videsa hierarchicabrganizationfor replicasthatmight provide
fasterupdateof locationinformationthanDNS. Thethree-hop
locationandroutingprotocolof thehomenodesolutionalsore-
semblesoptimizationsusedin cache-coheremnultiprocessors
suchasDASH [14].

The problemof constructinga practical location indepen-
dentroutinginfrastructurehasbeentackledin severaldifferent
projects. Although we choseTapestry[10] in SectionllI-A,
several competingarchitecturesnclude CAN [7], Chord [8],
Pastry[9]. All of thesearchitectureprovide guaranteedjeter
ministic routing from a clientto a closereplica. The exactde-
tails of the proposalsarenot particularlyrelevantto this paper
otherthanthatthey cansene asrealisticfall-backalgorithms
for our probabilisticlocationtechniques.

VIlI. CONCLUSION

In this paperwe have presenteda new, probabilisticrout-
ing algorithm designedo improve the location latengy of ex-
isting deterministicapproaches.The algorithmis basedon a
new datastructurewe call an attenuatedBloom filter. Our al-
gorithm finds nearbyreplicasquickly, andif no suchreplicas
exist, it fails quickly aswell. Furthermorewe have shavn
thatour algorithmmay be combinedwith a deterministicalgo-
rithm to improve averageroutingstretchfor nearbydocuments,
whereit mattersthe most. Finally, we have demonstratedhat
when replicasare allowed to move in responseto a request
streammodeledafter real-world accesgatternsthis combina-
tion improved averageperformanceby asmuchasa factor of
2.1. We aresatisfiedenoughwith our resultsthatwe areusing
this probabilisticalgorithmaspart of the routing subsystenof
OceanStore.

PROCESSUPDATE (n, U, s)
1 F « NEIGHBORFILTER (n)
2 foreach (r,c,v) € U do Fy. < v endfor

3 foreachn’ € N\ n do

4 L «— LASTUPDATEFILTER (n')

5 U —0

6 foreach (r,c,v) € U do

7 r—r+1

8 if v=0AL,.,=1 then

9 ~y « true

10 foreachn” € N\ n’ do

11 F’ «— NEIGHBORFILTER (n/’)
12 if Fr’,c =1 then~y < falseendif
13 endfor

14 if v then

15 Lyso — 0

16 U —U U{(r,c0)}

17 endif

18 elsif v =1A L., = 0 then

19 if — IGNORINGSOURCE (n/, s) then
20 Ly.—1

21 U —U U{(,c1)}

22 endif

23 endif

24 endfor

25 if U’ +# (0 then SENDUPDATE (n/,U’, s) endif
30 endfor

Fig. 16. Pseudo-codéor PROCESSUPDATE. Seetext for description.

APPENDIX

This sectionpresentshe pseudo-codéor thesourcefiltering
updatealgorithm. Its agumentsarea neighbomumber(n), an
update(U), andthe sourceof thatupdate(s), whereanupdate
is asetof triples, (r, ¢, v), representinghe intentionto change
thevaluein the neighbors Bloom filter atrow » andcolumnc
to valuew. Lines 1-2of the procedurdook up thefilter for the
neighborwho sentthe update(F') andapplythe givenchanges.
Then,for eachotherneighbor(n’), we look up ourimageof the
lastrecordthey have of our documentglines 3—4). Thisis an
attenuatedilter, L, identicalin contentsto the F' they would
look up for usif we senttheman update.For every clearedbit
in theupdatewe checkto seeif thisneighborsfilter holdsaset
bit. If so,we canonly clearit if nootherneighborhasthegiven
bit set(lines10-13).If we make a changewe includeit in the
outgoingupdatglines14-17).Next, if theincomingupdatehas
a bit setwhich is not setin thefilter for n’, andthat neighbor
is not ignoringthis source we changéits filter andappendhe
changeo theoutgoingupdatglines18-23).Finally, if we have
changedarnythingfor this neighborwe sendit theupdatewve’ve
constructed.

10

(1

[2]

(3]

(4]
(5]

(6]
(71

(8]

[9]

(20]

(11]

(12]

[13]

(14]

(18]

[16]

(17]

(18]

[19]

[20]

(21]
(22]

(23]

[24]

REFERENCES

W. Bolosky, J.Douceur D. Ely, andM. Theimer “Feasibility of asener
lessdistributedfile systemdeployed on an existing setof desktopPCs;,
in Proc. of SigmetricsJune2000.

1. Clark, O. Sandbeg, B. Wiley, andT. Hong, “Freenet: A distributed
anorymousinformation storageand retrieval systend, in Proc. of the
Workshopon Designissuesn Anonymityand Unobservability Berkeley,
CA, July 2000,pp. 311-320.

Y. Chen,J. Edler, A. Goldbeg, A. Gottlieb, S. Sobti, andP. Yianilos,
“Prototypeimplementatiorof archial intermemory in Proc. of IEEE
ICDE, Feh 1996,pp. 485-495.

J. Kubiatawicz et al., “Oceanstore An architecturefor global-scaleper
sistentstoragé€, in Proc. of ASPLOSACM, Nov. 2000.

FrankDabek,M. FransKaashoekPavid Karger, RobertMorris, andlon
Stoica, “Wide-areacooperatre storagewith CFS; in Proc. of ACM
SOSROctober2001.

PeterDruscheland Antony Rowstron, “PAST: A large-scalepersistent
peerto-peerstorageutility,” in Proc. of HOTOSConf, 2001.

Sylvia RatnasamyPaul Francis,Mark Handley, RichardKarp, andScott
Schenler, “A scalablecontent-addressabfeetwork,” in Proceedingf
SIGCOMM ACM, August2001.

lon Stoica,RobertMorris, David Karger, M. FransKaashoekand Hari
Balakrishnan;Chord: A scalablepeerto-peerlookupservicefor internet
applications, in Proceeding®f SIGCOMM ACM, August2001.
PeterDruschelandAntony Rowstron,“Storagemanagemerdandcaching
in PAST, alarge-scalepersistenpeerto-peerstorageutility,” in Proc. of
ACM SOSR2001.

B. Zhao,A. JosephandJ. Kubiatavicz, “Tapestry:An infrastructurefor
fault-tolerantwide-arealocation and routing; Tech.Rep.UCB//CSD-
01-1141 University of California, Berkeley ComputerScienceDivision,
April 2001.

B. Bloom, “Space/timerade-ofs in hashcodingwith allowableerrors.,
in Communicationsfthe ACM, July 1970,vol. 13(7),pp.422-426.

L. Fan,P. Cao,J. Aimeida,andA. Broder “Summarycache:A scalable
wide-areaWeb cachesharingprotocol; in Proc. of ACM SIGCOMM
Conf, Sept.1998,pp. 254-265.

P.V. MockaptrisandK. Dunlap, “Developmentof the domainnamesys-
tem; in Proc.of ACM SIGCOMMConf, August1988.

Daniel Lenoski, JamesLaudon, Truman Joe, David Nakahira, Luis
Stevens,Anoop Gupta,andJohnHennessy“The dashprototype:Logic
overheadand performancé, |EEE Transactionson Parallel and Dis-
tributedSystemsvol. 4, no. 1, pp.41-61,Januaryl993.

C. Plaxton,R. RajaramanandA. Richa, “Accessingnearbycopiesof
replicatedobjectsin a distributedervironment; in Proc. of ACM SRAA,
Junel997.

E. Zegura,K. Calvert,andS. Bhattacharjee;How to modelaninternet-
work,” in Proc.of INFOCOMM, 1996.

Paul BarfordandMark Crovella, “Generatingrepresentatie web work-
loadsfor network andsener performancevaluation’ in Proc.of Sigmet-
rics, 1988.

E. O'Neil, P. O'Neil, andG. Weikum, “The Iru-k pagereplacemenalgo-
rithm for databaselisk buffering;’ in Proc.of ACM SIGMODConft, May
1993.

M. Dahlin, T. Anderson,D. Patterson,and R. Wang, “Cooperatve
caching: Using remote client memoryto improve file systemperfor
mance?, in Proc. of USENIXSympon OSDI|, Nov. 1994.

Lothar F. Mackert and Guy M. Lohman, “R* optimizervalidationand
performancevaluationfor distributedqueries), in Proc. of Intl. Conf on
VLDB, August1986.

Paul M. Aoki, “Generalizing“search”in generalizedsearchtrees, in
Proc. 14thInt’l Conf on Data Engineering February1998.

Alex Rousskv andDuaneWessels,'Cachedigests, in Proc of 3rd Int'l
World Wide Web Caching Workshop 1998.

StevenE. Czerwinski,BenY. Zhao,Todd D. Hodes Anthory D. Joseph,
andRandyH. Katz, “An architectureor a secureservicediscovery ser
vice; in Proc. of ACM/IEEEMobiComCont, 1999.

M. van Steen,F.J. Hauck, G. Ballintijn, and A.S. Tanenbaum, “Algo-
rithmic designof the globewide-areaocationservice, The Computer
Journal, vol. 41,n0.5,1998.

