
Change Is Hard: Adapting Dependency Graph Models For
Unified Diagnosis in Wired/Wireless Networks

Lenin Ravindranath†, Paramvir Bahl‡, Ranveer Chandra‡,
David A. Maltz‡, Jitendra Padhye‡, Parveen Patel‡

†MIT, ‡Microsoft Research

ABSTRACT
Organizations world-wide are adopting wireless networks at an im-
pressive rate, and a new industry has sprung up to provide tools to
manage these networks. Unfortunately, these tools do not integrate
cleanly with traditional wired network management tools, leading
to unsolved problems and frustration among the IT staff. We ex-
plore the problem of unifying wireless and wired network manage-
ment and show that simple merging of tools and strategies, and/or
their trivial extension from one domain to another does not work.
Building on previous research on network service dependency ex-
traction, fault diagnosis, and wireless network management, we
introduce MnM, an end-to-end network management system that
unifies wired and wireless network management. MnM treats the
physical location of end devices as a core component of its manage-
ment strategy. It also dynamically adapts to the frequent topology
changes brought about by end-node mobility. We have a prototype
deployment in a large organization that shows that MnM’s root-
cause analysis engine out-performs systems that do not take user
mobility into account when localizing faults or attributing blame.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]

Wireless, reliability, availability, serviceability
General Terms

Management, performance, reliability, wireless
Keywords

Wireless, corporate networks, performance

1. INTRODUCTION
Data from IT departments of large corporations and dominant PC

manufacturers show that employees prefer to use just one device
(e.g., a laptop computer) for all their computing needs [17]. Con-
sequently, many large IT departments are moving towards a future
that includes a significantly reduced role for the traditional wired
desktop computer [11]. They envision a future where enterprises
deploy wireless networks in all corporate campus buildings, and
swarms of nomadic users access corporate resources through wire-
less Access Point (APs). They expect users to frequently change

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WREN’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-443-0/09/08 ...$5.00.

their point of attachment to the corporate network. In this new
world, the corporate IT departments need tools to manage and di-
agnose both wired and wireless parts of their network.

Current enterprise network management and diagnosis systems
use separate tools to diagnose wired and wireless networks. In an
environment where a large number of users are nomadic, debug-
ging application performance problems using separate tools is both
difficult and frustrating [13].

For example, consider Figure 1 that shows the time required to
fetch a URL, measured simultaneously from a wired desktop host
and a wireless laptop as the laptop was moved between rooms ev-
ery 5 minutes. Unsurprisingly, both the wired and wireless host see
significant variation in the response time. Interestingly, however,
the variation is sometimes seen by the wireless host only, poten-
tially indicating problems in the wireless connectivity, and some-
times the variation is seen only in the wired host, potentially indi-
cating congestion in the wired network. Sometimes the variation is
seen in both, potentially indicating congestion in a server involved
in providing the requested URL.

A natural question to ask is: why not diagnose performance
problems by using the existing wireless and wired network diag-
nosis systems separately?

The answer is that a diagnosis system that looks at only the wired
network or the wireless network is likely to misinterpret some of
the spikes in the response time and blame the wrong network com-
ponent. In this paper, we show that quality of diagnosis is better
when both wired and wireless aspects of the enterprise networks
are analyzed jointly.

Three main features distinguish our approach from the recent
research on enterprise network diagnosis systems:

Changing network topology: Many recently proposed network
fault diagnosis systems such as Sherlock [4] and SMARTS [22]
implicitly assume that the fundamental structure of the network is
either static or changes slowly. This assumption allows these sys-
tems to build Inference Graphs [4] and codebooks [22] to pinpoint
the cause of performance problems seen by the users. However,
these approaches cannot be used without substantial modifications
in an environment where clients frequently change their point of
attachment to the corporate network.

Joint Consideration of Wired and Wireless Networks: To di-
agnose end-to-end performance of networked applications across
wired and wireless networks requires re-thinking some core aspects
of fault diagnosis. For example, geographic location must become
a first class object in the analysis for determining if a problem is in
the backhaul network, the wireless link, or the servers in the data
center.

Absence of Fixed Observers: Since many problems in wireless
networks are location specific, existing wireless network monitor-

Background

wireless

variability

Spikes of

variability in

server

Large wireless

varations

Large server

variations

Figure 1: Time to fetch a URL as measured simultaneously
from a wired desktop host and a wireless laptop. The laptop
was moved between rooms every 5 minutes.
ing systems rely on fixed desktops [8] or specialized monitoring
hardware [3, 10]. However, in a network consisting primarily of
nomadic users, systems like DAIR [8] are impractical, while sys-
tems like Jigsaw [10] and Wit [18] are expensive to deploy.

We have developed an end-to-end network diagnosis system, called
MnM, that successfully diagnoses performance of networked ser-
vices and applications running on nomadic hosts. MnM builds on
recent research on network service dependency extraction [4], fault
diagnosis, and wireless network monitoring. It treats the physical
location of end devices as a core component of its diagnosis strat-
egy. It also dynamically adapts to the frequent topology changes
brought about by end-node movement. Our system is implemented
entirely in user-level software, and it does not require any special-
ized monitoring hardware. We have deployed the MnM system
on a segment of our organization’s network. Over a period of
two weeks, we monitored 27 users and 10 servers. We detected
and correctly diagnosed a variety of performance issues, including
poor Wi-Fi coverage, congestion in wired networks, and misconfig-
ured DNS entries. As we shall show later in the paper, at least 140
performance problems would have been mis-diagnosed had we not
taken an integrated, holistic view of wired and wireless networks.

MnM extends the state-of-art in enterprise network management
by making two important contributions:

1. We identify issues that a enterprise network management system
must consider when the end-hosts are nomadic. We show that
recently developed systems are not able to cope with these issues.
We quantify mistaken diagnoses that occur in systems that do
not compensate for user nomadicity, and we argue that location
must be treated as a core component in future enterprise network
management systems.

2. We present an enterprise network management system that uni-
fies wired and wireless network management, and handles no-
madic users. It is easy to deploy, as it requires no special fixed
infrastructure for wireless monitoring and automatically initial-
izes its location system. We evaluate its accuracy through both
controlled experiments and a 2-week field study.

2. RELATED WORK
There is a significant amount of prior work in enterprise net-

work management. However, it has either focused on managing
wired networks or wireless networks, not both simultaneously. The
closest thing to unified management tools are systems that let net-
work managers view the wired and wireless networks simultane-
ously[13].

Wireless Network Management: Adya et, al. [1] built one of
the first enterprise wireless network management systems. Their

system is similar to ours in that they focus on performance prob-
lems faced by Wi-Fi enabled mobile clients. They detect problems
by analyzing link data collected by monitoring agents residing on
clients and wireless APs. Unlike our system, their techniques miss
out on problems that a mobile client may have because of a perfor-
mance issue in the wired part of the network.

The DAIR system [8] also detects performance problems faced
by users of Wi-Fi networks. DAIR uses corporate desktop comput-
ers to monitor the airwaves and, like MnM, location-awareness is a
core component of its management strategy. Fundamentally, DAIR
relies on the existence of fixed desktop devices to monitor perfor-
mance of wireless link. In contrast, MnM assumes a world where
every client is mobile. In such an environment, monitoring must
be done by mobile clients themselves. This presents several unique
challenges, such as bootstrapping, which systems like DAIR can-
not handle. Furthermore, DAIR requires the monitoring devices
to sniff packets in promiscuous mode, which may not always be
possible on battery constrained mobile clients.

Jigsaw [10] and WIT [18] are Wi-Fi monitoring systems that
combine the data from multiple monitors to generate a comprehen-
sive view of network events. Jigsaw uses dedicated, custom-built,
multi-radio monitoring nodes and provides a detailed view of low-
level network effects such as interference. WIT is able to analyze
and detect MAC-level mis-behavior. While useful in investigating
why individual locations have poor performance, these tools are not
designed for diagnosing end-to-end networked services in a corpo-
rate environment.

Commercial systems [2, 3] are available for managing wireless
networks, but they do not detect performance issues due to prob-
lems in the wired part of the network. Furthermore, systems like
DAIR, Jigsaw, WIT, Airtight, etc. do not have visibility into application-
level performance problems, whereas, as we will show, MnM does.

Wired Network Management: The Sherlock system [4] manages
networked services in enterprise networks by extracting inference
graphs and then using these to diagnose performance problems.
Software agents running on desktop machines determine the set
of services the host depends on and a centralized inference engine
captures the dependencies between the components of the IT in-
frastructure by merging the views of each client. Sherlock then di-
agnoses faults by running an inference algorithm on the inference
graphs. Sherlock makes a fundamental assumption that dependen-
cies are static or, at most, change slowly. This is not true for ap-
plications running on devices used by nomadic users. As we show
in Section 3, systems like Sherlock perform poorly when depen-
dencies are dynamic and fast changing. Furthermore, such systems
cannot be trivially extended to handle nomadic clients.

Other network management systems like Shrink [14] and SCORE [15]
have made seminal contributions in diagnosing faults in wide-area
networks, but unfortunately, they cannot be used easily for manag-
ing nomadic users. Similarly, sophisticated commercial products
such as SMARTS [22], OpenView [19], and Tivoli [23] provide
powerful tools for managing enterprise wired networks, but fall
short when extended to manage mobile clients and Wi-Fi users.

Finally, we note that a longer version of this paper is available as
a technical report [5].

3. FORMULATING THE PROBLEM
Figure 2 illustrates an enterprise network of the future. Users

located on the corporate campus access the enterprise data cen-
ter servers via APs deployed in campus buildings, and these users
move around frequently. Some users may work remotely, and con-
nect to the corporate network via VPN. In this paper we focus pri-

Figure 2: Example of the typical enterprise network of the fu-
ture. Most users access corporate resources from laptop com-
puters connected to wireless networks or from remote locations
via VPNs over the Internet.

Figure 3: Example Inference Graph. The response time mea-
sured for fetching http://foo (dashed outline) is affected by the
root causes (shown with dotted outlines).

marily on nomadic users who change location but conduct most of
their work when stationary. Some other papers refer to these as mo-
bile users, and we use the terms interchangeably. We believe MnM
is applicable to users in constant motion, but it is out of the scope
of this paper.

3.1 Fault Diagnosis using Inference Graphs
Prior work in fields as diverse as network management [15, 4,

24] and medical diagnosis has shown the advantages of using an
Inference Graph to diagnose faults in the presence of noisy obser-
vations. However, we have found that nomadic users violate some
of the important assumptions on which these systems are based,
and, consequently, these systems perform poorly when used to di-
agnose the problems experienced by nomadic devices.

MnM attempts to leverage the expressiveness of inference graphs
while fixing the problems that prevent them from use with nomadic
systems. We begin with a brief overview of inference graphs. For
more details, see [4, 15]. Then, in Section 3.2, we describe the
problems caused by nomadic users. Section 4 describes our tech-
niques for applying Inference Graphs to nomadic hosts.

The Inference Graph:
We use the model proposed in Sherlock [4]. An Inference Graph

consists of directed edges and three types of nodes: root causes,
meta-nodes, and observations. The graph encodes how root causes,
which represent components or services that can be faulty, affect
the observation nodes, which represent aspects of the system that
can be measured. Meta-nodes are the glue that ties together the root

causes involved in particular services or network paths.
Figure 3 illustrates an example Inference Graph for a single client

C using a web server. In this figure, the response time the client C
observes when fetching a web page will be affected by the health
of the DNS service, the Kerberos service, and the web server itself,
since to successfully fetch the web page, C must first use DNS to
convert the name of the website to an IP address, then fetch cer-
tificates to access the website, and finally retrieve the content from
the website. The health of these services, in turn, is affected by the
health of the servers that implement the service and the ability of
the client C to successfully reach the servers over the network. The
health of each network path is affected by the routers on the path.

Nodes in the Inference Graph are conceptually in one of two
states: up or down. Root causes that are operating normally and
observations indicating normal performance are up. Nodes causing
or indicating poor performance are down, even if they have not
failed completely but are merely slow in returning answers.

While our example Inference Graph has only a single client and a
single observation of a single application, a system-wide Inference
Graph is built by combining the graphs for each client application
and service. These graphs share the same root cause nodes, but
have different observation and service nodes for the combination
of each client and application.

The Inference Algorithm: Given the inference graph and the state
of the observation nodes, an inference algorithm can infer which
root causes are most likely to have failed. This is especially useful
in the cases where root causes can not be directly observed [4, 15].

Many inference algorithms have been developed, but the goal
of each is the same: given a set of observations of system perfor-
mance, good and bad, determine a set of root causes whose failure
would best explain that pattern of observations. To cope with the
uncertainty in the real world, MnM uses probabilistic inference.
Specifically, every root cause has a prior probability — that is, the
fraction of time the root cause is typically down. The inference al-
gorithm takes these priors into account when computing which root
causes are most likely to be down. The algorithm used in this paper
is the same as that used by Sherlock [4].

3.2 Impact of Nomadic Users
One could ask the question, would a trivial combination of wire-

less monitoring methods [8, 10, 18] and wired monitoring meth-
ods [4] be able to diagnose the problems experience by nomadic
users? We answer this question by making the following four ob-
servations:

3.2.1 Dynamic Inference Graph
A defining characteristic of nomadic users is that they move,

changing their location and their point- and method-of-attachment
to the network up to several times during a day. As a result, Infer-
ence Graphs for nomadic users change frequently and significantly.
For example, when a nomadic user connects to the enterprise net-
work via a wireless network, the AP changes as she moves from
one location to another. Worse yet, the servers in other parts of the
Inference Graph change as well, as the DNS and Kerberos servers
that a host uses may change whenever the subnet changes and a new
IP address is issued from the DHCP server. Figure 4 illustrates how
the Inference Graph for a particular application changed compared
to the inference graph of Figure 3 as client C’s point of attachment
changed from a wired network to a wireless network at a different
location.

Such dynamism inside the network is a problem for current in-
ference systems. Prior work has proposed techniques for learning

Figure 4: Example Inference Graph when a nomadic user con-
nects to the the corporate network using a 802.11 wireless net-
work. To ease comparison with Figure 3, nodes affected by mo-
bility are shown with dark backgrounds.

the Inference Graph via monitoring the packets that hosts send and
receive [20, 4]. However, these learning algorithms assume that
the Inference Graph remains unchanged long enough to be learned.
For example, Sherlock reports that it takes several hours for the
learned Inference Graph to stabilize. Other researchers have shown
that users change location frequently [7, 16], so for most cases the
Sherlock algorithm would not be able to learn the Inference Graph
before it changed.

MnM’s approach is to separate the Inference Graph into the por-
tions which are relatively static and can be learned (e.g., depen-
dencies among servers in the wired data center) and the portions
that change frequently. We use the Domain Experts described in
Section 4.1.4 to compute these portions as needed.

3.2.2 Importance of Location
Researchers have previously shown that the physical location of

a mobile device has a direct impact on the performance of the ap-
plications it is running [8, 12]. For example, two users running the
same application, connected to the network via the same AP, may
experience different performance — one might see short response
times from a web server while the other sees long response times,
all due to variations in the RF environment around their physical
location. If location is not incorporated into the Inference Graph,
then the inference algorithm will blame the wrong root cause as it
tries to explain the performance problems seen by the host experi-
encing longer delays. Consequently, MnM treats physical location
as a core component of its end-to-end network diagnosis system.

3.2.3 Dynamics of Monitoring and its Limitations
State of the art Wi-Fi network management and diagnosis sys-

tems such as Jigsaw [10], WIT [18], and DAIR [8] rely on the
existence of fixed infrastructure, either in the form of specialized
hardware or always-available desktop computers, to monitor the
RF environment. Specialized hardware is expensive to deploy and
maintain. Furthermore, the general trend in large IT departments is
to replace desktop computers with laptops. Without the support of
‘static’ infrastructure, determining the physical location of a client
becomes difficult. Further, the laptops of ordinary users cannot be
used to take detailed measurements of their wireless environment
because that would require running their Wi-Fi interface cards in
promiscuous mode. Promiscuous mode prevents the cards from en-
tering their power save states and thus places an unacceptable strain
on the laptops’ batteries and increases the barrier to deployment.

Consequently, end-to-end network diagnosis systems must use
light-weight self-configuring location determination techniques that
do not depend on support from existing infrastructure.

3.2.4 Difficulties Identifying Root Causes
One might argue that running existing wireless and wired diag-

nostic tools separately can diagnose application-level performance
problems for nomadic users. However, low level wireless perfor-
mance metrics such as signal strength and packet loss rates have
a complex relationship to the performance of higher layers [9].
One cannot simply assign thresholds to translate link-layer mea-
surements into application-level throughputs. For example, using
the data collected from our 2-week study presented in Section 6.2,
we see that there is no significant correlation between the AP sig-
nal strength seen by a client and the end-to-end performance it
achieves. Further, there are some dependencies in the wired net-
work that are specific to wireless machines, e.g. APs, the wire-
less gateway and the wireless authentication servers. It is hard to
measure their impact on application performance without unifying
wired and wireless performance diagnosis.

4. ARCHITECTURE
A system that jointly manages wired and wireless networks needs

three unique capabilities: an ability to determine the locations of
mobile clients without relying on fixed monitoring resources, an
ability to frequently update the inference graph and an ability to de-
termine the performance of different components of the network. In
addition to end-to-end observations, MnM also measures the per-
formance of some individual network components, such as the ca-
pacity of the wireless link, and includes these into its inference al-
gorithm when diagnosing application-level performance problems.
In this section we describe the architecture of MnM and show how
these capabilities are incorporated within it.

Figure 5 illustrates MnM’s architecture. MnM consists of two
main components: the MnM Agent that runs on each mobile device
in the network, and the MnM Inference Engine that accepts data
from these agents. The Inference Engine analyzes data from agents
to determine the root cause of performance problems, and raises
alerts to the network operator. In addition, we have domain experts,
whose functionality is split between the agent and the inference
engine. The role of domain experts is to modify the inference graph
in some special cases. Below we provide more details on each of
these components.
Comment about Privacy: This paper focuses on enterprise net-
works. In such networks the IT department has the authority to
require every user to run monitoring software. Therefore, the is-
sues of user consent and privacy are out of scope.

4.1 The MnM Agent
The MnM agent is a light-weight application that runs on users’

laptops. It includes Monitors that gather information about the sys-
tem, user activity and network connectivity. This data is processed
by Domain Experts that encapsulate the special logic required to
deal with different problem domains. The Domain Experts gen-
erate data for the inference graph and performance observations.
The agent sends all this data to the MnM Inference Engine over a
transport called the Trickle Integrator that is designed to cope with
intermittent and variable connectivity. The MnM Agent does not
require any driver modifications in the clients and hence is easy to
deploy.

4.1.1 (Agent) Controller
The Controller is the agent’s lightweight workflow engine. It

provides a publisher-subscriber service to moderate the interactions
between Monitors, Domain Experts, and the Trickle Integrator. All
messages between the components in MnM take the form of tuples:
a list of fields and their values. The experts and monitors register

Inference EngineAgent

Controller
Trickle

Integrator
Trickle

Integrator

ControllerLocation
Inference

Fault

Suspects

Local

Store

...

Monitors

System

Calendar

Network

Trace Route

Historical

Data

Domain Experts

Wifi RAS HTTP ...

Domain Experts

Wifi RAS HTTP ...

Fault
Inference

Inference

Graph
Measure-

ments

Figure 5: Architecture

triggers with the Controller. Whenever the Controller processes a
message matching a trigger, it invokes the associated callback with
the message as an argument. The Controller itself generates mes-
sages to mark important events, such as agent startup and expiration
of a periodic timer. Monitors and Domain Experts are the “plug-
gable” components. They can be developed independently of one
another — only the format of fields and values must be agreed on
to ensure proper intra-agent communication.

The agent generates a START message on startup. Then it gen-
erates a PERIODIC TIMER message every polling interval, which
triggers the monitors to generate messages encapsulating their mea-
surements. In addition to the messages generated by the agent, the
monitors also register for system-wide events such as network ad-
dress change and wireless hand-off event.

4.1.2 Trickle Integrator
We designed MnM to handle situations when mobile hosts are

unable to reach the Inference Engine. Specifically, MnM includes
a module inspired by Coda [21] for dealing with measured data
during weakly connected and disconnected operation. Every tuple
of data created by a Domain Expert or a Monitor is passed to the
Controller, and from there it is placed in a local store. Data from
the local store is then pushed to the Inference Engine whenever the
client has connectivity. The Trickle Integrator also rate-limits the
messages sent by the client to the server, and, if a backlog develops,
new messages are given priority over old ones.

4.1.3 Monitors
As mentioned in Section 4.1.1 monitors can be developed indepen-
dently and dynamically added to the MnM Agent on an as-needed
basis. In our current implementation, the MnM Agent contains four
monitors.
System Monitor: This monitor reports various system properties
from the current polling interval. It reports information such as,
whether the system’s battery is being charged and whether the sys-
tem is connected to a wired network (e.g. Ethernet). It also re-
ports whether a user is currently active on the system (the system
is considered idle if there is no user input for n minutes, where n is
currently set to 2).
Calendar Monitor: The Calendar Monitor tracks the time and
location of accepted meetings from the users enterprise calendar
(e.g., Exchange or Lotus server). This information is used to boot-
strap the location engine, as we shall describe in Section 4.2.1.
Network Monitor: The Network Monitor reports information about
network connectivity. The monitor is triggered by the network
change related events from the system, such as network address
change. It reports information about active network interfaces in-
cluding: IP and MAC addresses, gateways, DNS and default gate-

way servers, and ping times to the first hop router. If the Network
Monitor detects that the user is connected to the network via a wire-
less interface, it periodically collects additional information such as
the AP the interface is associated with, other APs it can detect and
the signal strengths of their beacons. The monitor also generates
messages that are specific to the wireless interface. For example, if
the wireless client is handed off form one AP to another, it gener-
ates a HANDOFF message.
Trace Route Monitor: This monitor uses traceroute to discover
the network path between the client and the other machines to which
it is sending packets.

The total amount of data pushed to the Inference Engine for each
observation is less than 1K bytes and hence pushing data to server
takes very negligible amount of the users network bandwidth. This
issue is examined in detail in Section 5.

4.1.4 Domain Experts
In Sherlock, the authors assume that the Inference Graph is sta-

ble, and hence it is learnable via black-box techniques. However,
mobility causes changes to the Inference Graph, and even though
the changes may be regular and sometimes predictable, they are
generally too rapid for black-box techniques to learn the graph. To
handle this, we define the concept of a Domain Expert - a module
that is responsible for making the appropriate changes to the Infer-
ence Graph when triggered by a host changing its connection point
or other dependencies.

A typical Domain Expert has code both on the host, as part of
the Agent, and on the Inference Engine. Domain Experts respond
to triggers such as change in IP address, or AP handoff event. Upon
such changes, the Domain Expert on the client notifies the Domain
Expert on the Inference Engine of the triggering event. The Domain
Expert on the Inference Engine then updates the Inference Graph
appropriately. For example, when an AP Handoff event occurs, the
WiFi Domain Expert on the agent notifies its counterpart on the
Inference Engine. The Inference Engine then updates the Inference
Graph to account for the change in topology.
WiFi Expert: The WiFi Expert is responsible for managing the
details of how wireless connectivity affects the performance of ap-
plications running on a mobile node. It does this by adding new
root cause and observation nodes to the Inference Graph in a par-
ticular pattern, which we call a graph gadget. Based on reports
from the monitors on the client, the expert fills in the correct AP
and location information. Figure 6 illustrates the new Inference
Graph generated with the help of a WiFi Expert.

Most importantly, for every client whose location can be deter-
mined, the WiFi Expert adds a new root cause node that represents
the location. There is one location root cause node for each loca-
tion known to MnM — all the clients predicted to be in that location

Figure 6: “Gadget” added to the Inference Graph of mobile
hosts by the WiFi Expert. New elements shown in grey or with
darker lines.

share that node. Associated with location is the a priori probability
that the location causes performance problems. MnM determines
locations and computes priors as described in the subsections that
follow. The expert connects the location root cause to an observa-
tion node whose value is tied to measurements of the RTT of pings
between the client and the current AP. The RTT provides a degree
of direct estimation of current wireless channel quality, while loca-
tion priors provide historical information about the wireless chan-
nel quality at this location.
HTTP Expert: The HTTP Expert monitors the response time of
web servers when URLs are fetched, and reports these to the In-
ference Engine. The Inference Graph uses these as observations
about the application’s health. For testing purposes, our HTTP Ex-
pert also includes a URL polling robot that can be ordered to fetch
particular URLs during experiments.
Network Expert: The Network Expert computes the network topology-
related dynamic part of the inference graph whenever a network
change event occurs on the client. It is responsible for filling in two
types of information. First, it computes network path to network
services by using topology discovery techniques, such as tracer-
oute. Second, it detects changes in location-dependent network ser-
vices, such as the DNS and Kerberos servers. The Network Expert
counterpart on the Inference Engine updates this information in the
inference graph.
Service Expert: The Service Expert is a special expert that runs
only on the Inference Engine, and has no client counterpart. The
Service Expert is responsible for building a static, service-level de-
pendency graph for all networked applications. A service is iden-
tified by the service name and the server that is providing that ser-
vice. For example, a website is identified by its URL and the web
server hosting it. The Service Expert gets the data needed to con-
struct the dependency graph from a variety of sources. For exam-
ple, systems like [10, 4] use temporal correlation in packet traces
to infer dependencies. Some information, such as topology of the
data center, can be extracted from network configuration files. The
static dependency graph is combined with dynamic information
from other domain experts, such as the Network Expert and the
WiFi Expert, to build an inference graph.
Comment: We note that the Domain Expert architecture is a general
technique that will be useful for handling other types of domains
where the Inference Graph changes faster than it can be learned.
An example of this is peer-to-peer systems where the servers being
invoked change depending on the query being made.

4.2 The MnM Inference Engine
The MnM Inference Engine is responsible for monitoring the

health of the mobile device and the applications running on it. The
engine stores and analyzes the data sent to it from each of the MnM
Agents. Using this information and the service-level dependency

graph, it generates and updates an Inference Graph that reflects
where the mobile clients are located and how they are connected
to the network. It uses the Inference Graph to generate a list of
probable causes whenever it identifies performance problems, and
subsequently raises alerts.

4.2.1 Location Inference
The physical location of a wireless client may have a strong im-

pact on its network performance [8]. Thus, management tools de-
signed for wireless networks must include an integrated location
estimation system.

A number of techniques [6, 8, 25] have been proposed for es-
timating the location of clients in a Wi-Fi network. These tech-
niques offer a wide range of tradeoff between accuracy, measure-
ment overhead, required infrastructure support and the need for de-
tailed profiling of the physical environment. For the purpose of
network management, it is generally sufficient to determine the
client location at the granularity of one office. However, unlike
the scenario described previously [8], we can not rely the presence
of densely deployed, fixed desktop to serve as monitors. Hence, we
have built a location system using the technique described in [25].
Location Profiles: Our system stores a profile for each location
of interest. To allow for easy interpretation, we define location in
terms of office numbers, rather than (x,y,z) coordinates. The profile
for each office consists of a list of APs (i.e. their BSSIDs) that are
visible from that location along with the distribution of observed
signal strength of each AP. We assume a Gaussian distribution and
characterize it with its mean and variance. These profiles are gen-
erated automatically, as we will explain later in this section.
Determining Client Location: As part of its observations (e.g.,
measuring URL response times), the Wi-Fi Monitor running on
each client sends the inference engine the list of APs seen by the
client, along with their signal strengths. Using the stored profiles,
and the Bayesian inference technique described in [25], the location
inference module determines the most likely location of the client.
and persists it with the observation data in a history database. The
median error for computed location is about 5 meters (one or two
offices). We will present a detailed evaluation of the accuracy of
our location system in Section 6.1.
Automatic Generation of Profiles: To reduce the effort required
to roll out MnM, we automatically generate location profiles by
using the information provided by the Calender Monitor running
on each client.

Most corporate environments provide a calendar service that em-
ployees use to schedule meetings with each other. For each meet-
ing, the calendar records the identities of invited attendees and the
location of the meeting (e.g., a conference room or another em-
ployee’s office). MnM generates profiles for rooms that appear as
meeting locations using the Wi-Fi observations reported by the em-
ployees’ laptops during the meeting time. To reduce the amount of
erroneous information included in the location profile, MnM veri-
fies both that there is activity on the user’s laptop during the meet-
ing (i.e., the user has the laptop with them at the meeting) and that
Wi-Fi observations are roughly consistent with those of other at-
tendees (i.e., the user has actually gone to the meeting, rather than
remaining in their office).

To generate a profile for a user’s office, MnM looks for Wi-Fi ob-
servations made during times when the user has no meeting sched-
uled. Many people plug their laptops into wired Ethernet and/or
wall power when they are in their offices, and MnM looks for these
clues when selecting observations to use in constructing the office
profile.

We also note that in an environment where APs are deployed

densely, it may be sufficient to characterize the location of the client
simply by the AP that the client is associated with. This method
requires no profiling, but is subject to inaccuracies, since clients
sometimes associate with APs that are far away. We evaluate the
usage of APs as a stand-in for location in Section 6.2.

4.2.2 Fault Inference
The fault inference module of MnM is responsible for taking the

data produced by the agents in the system and determining which
root causes are responsible for any problems. The resulting list of
fault suspects is given to the network managers for reporting and
resolution.

The module consists of two components: the computation of lo-
cation priors, which is invoked once a day, and the inference mod-
ule, which is invoked every 3 minutes or whenever there is a sig-
nificant change in the observations being reported by clients.

Once invoked, the inference module updates the Inference Graph,
computes the state of the observation nodes, and then runs the in-
ference algorithm to determine a list of fault suspects.
Computing Priors for Locations: Instead of detailed current mea-
surements, MnM relies on analysis of past experience to compute a
prior probability of failure for each location known to the system.
These priors are then used by the inference algorithm when deter-
mining the root causes responsible for bad observations. Priors can
be cheaply computed from information already available in the his-
torical database present on the Inference Engine, and, as shown in
our evaluation, they largely eliminate the need for detailed current
measurements when diagnosing faults.

Once a day, the Inference Engine computes priors for each lo-
cation l by retrieving from its history database all response time
observations from locations within 6.7 meters of l — 6.7 meters
is the median error of our location inference system, so observa-
tions labeled as being from those locations could have come from
l. MnM then computes the fraction of those response times that are
down and uses this fraction as the prior probability that l is faulty.

This simplistic approach implicitly assumes that all down obser-
vations are due solely to the location alone — discounting the effect
of the servers and other components that might affect the obser-
vations. However, since our approach averages over the response
times of many servers contacted from location l over long periods
of time, any systematic bias is most likely due to the location. More
complicated Bayesian estimation techniques could be used, but our
evaluation shows they are unnecessary in our environment.
Computing the Inference Graph: The Inference Engine controller
orchestrates the construction of the Inference Graph by the various
Domain Experts through a publish-subscribe system. The basic in-
ference graph is generated by the service expert. Each Domain Ex-
pert subscribes to be notified whenever nodes or edges with speci-
fied properties are added or deleted from the graph. Upon receiving
such notification, the Domain Expert makes its own alterations to
graph. This process repeats until no further changes are made to
the graph, at which point the graph is ready to use for inference.

The process of altering the Inference Graph is triggered when-
ever a monitor or expert on a client detects a change. For example,
when the HTTP Expert on client C observes the client accessing
a web page http://foo.com with response time rt, the HTTP Ex-
pert on the Inference Engine will create a new observation node for
C accessing foo.com if it does not already exist in the Inference
Graph. The addition of this observation node causes the Service
Dependency Expert to add nodes and edges reflecting the servers
involved in accessing foo.com (e.g., DNS, Kerberos, and foo.com
itself). The addition of these nodes causes the Network Expert to
fill in additional root causes and edges for the network paths from

C to those servers, the DNS servers currently being used by C, etc.
Computing Observations: Before invoking the inference algo-
rithm, the inference module scans all observation nodes in the In-
ference Graph and invokes the Domain Expert that created the node.
The Domain Expert is expected to determine whether the observa-
tion node is up or down, and typically does so by retrieving recent
measurements for that node and determining if they are normal or
abnormal. For example, the observation node for a HTTP response
time returns down if the response time is greater than a threshold
based on the normal distribution of response times for that web-
server, and up otherwise.
Diagnosing Faults: Given an Inference Graph, prior probabilities
for locations, and the up and down status of the observations, MnM
uses the Ferret inference algorithm described in [4] to compute the
root causes that are most likely responsible for the down observa-
tions. These root causes are returned as the fault suspect list.

5. IMPLEMENTATION
We have implemented the MnM system shown in Figure 5. The

Agent Controller is implemented as a daemon (service) process.
The Domain Experts and Monitors are implemented as loadable
modules that are loaded and invoked by the Controller. The Infer-
ence Engine is implemented as a centralized service. The Inference
Engine uses a database to store historical data but keeps the Infer-
ence Graph and the current observations in memory for fast access.
The Inference Engine can run inferences on live incoming data or
on the historical data. Our Inference Engine integrates with the en-
terprise network management system deployed in our organization
and generates alerts through its console whenever it diagnoses a
performance problem.

Scalability is a frequent concern with centralized systems. We
evaluated two aspects of scalability of our design – the CPU and
network overhead on the client machines and the performance of
the Inference Engine as the number of nodes increases.

The CPU overhead of running the MnM agent on client machines
is negligible. Each client machine, on average, generates less than
1000 bytes per minute (0.13 Kbps), which is also negligible.

The traffic from all clients aggregates at the central Inference
Engine. Even with 10,000 active clients, the Inference Engine re-
ceives less than 1.5 Mbps of traffic. The CPU overhead of our In-
ference Engine is also small. The authors of Sherlock [4] show that
the overhead of inference scales linearly as the number of nodes
increases. We observed similar behavior with our system. On a
machine with 3GB of RAM and four 3.2 GHz CPUs, our infer-
ence algorithm processes an Inference Graph containing more than
100,000 nodes in less than 5 seconds.

6. EVALUATION
We evaluated MnM in a large enterprise network, performing

two types of experiments. We first conducted controlled experi-
ments with intentionally injected faults to evaluate the accuracy of
our system when diagnosing the faults that might occur in an en-
terprise network with all nomadic users. Once we had confidence
the system was performing correctly, we then ran the system for
two weeks on the machines of 27 volunteers, creating a dataset that
we use to analyze the sensitivity of the system and the types of
problems found in the network. All the experiments presented in
this section were conducted on a live production enterprise network
with thousands of computers, so the background traffic is entirely
realistic.

We installed MnM on 42 computers: 27 user laptops, 5 test lap-
tops, and 10 servers. These computers were used normally by their

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance error (m)

C
D

F

Calendar−based profile
Survey−based profile

Figure 7: CDF of error in predicted location, measured in me-
ters, over 22,000 observations among 96 locations over a period
of two weeks.

owners in their daily activities. The users represent a variety of
corporate users, including programmers, managers and researchers.
Because we are not part of the corporate IT department and had to
recruit volunteers, we did not monitor the actual web sites that users
visited out of privacy concerns. Instead, we added an agent to their
machines that fetched content from a set of five internal production
web sites every three minutes.

6.1 Location Inference Evaluation
As described in Section 4.2.1, the location estimation module

infers a location for every record submitted to the Inference En-
gine, as long as the submitted record contains a wireless fingerprint.
Most offices on our floor are approximately 9 square meters (3x3)
in size. The conference rooms are much larger. The size of the floor
is 101 meters by 86 meters and it has approximately 200 offices.

During the two week study, the location estimation module in-
ferred locations for over 77,000 records. Of these 77,000 records,
22,000 were manually labeled by the volunteers with their true lo-
cation (i.e. the office or the conference room the machine was ac-
tually in at that time).

Figure 7 shows the CDF of the distance error between the ge-
ometric center of each record’s true location and its inferred lo-
cation, using two different sets of profiles. When using profiles
generated automatically by our calendar heuristics, as described in
Section 4.2.1, the inferred location matches the true location ex-
actly 37% of the time. The median difference is 6.7 meters, which
translates to an error of about two offices. We believe that this ac-
curacy is sufficient for our purposes.

The calendar-based profiles will contain some errors as machines
are not always located where the calendar heuristics guess they will
be. To estimate the loss in accuracy caused by these mistakes, we
conducted a survey of our building by manually placing a laptop in
roughly every other office for a fixed period of time and gathering
the signal strengths of beacons broadcast by the various APs. We
computed profiles from these observations, and then computed the
distance error of the records when locations were inferred using
these survey-based profiles.

The error is less when using survey-based profiles as all obser-
vations used to generate the profile are labeled with the correct lo-
cation. The difference between the two curves measures the loss
of accuracy due to mistakes made guessing the machine’s loca-
tion from the users’ calendar. Interestingly, the median error with
our automatically generated calendar-based profiles is roughly the
same as the median error with survey-based profiles. This suggests
that calendar-based profiling works well for a large number of lo-

Key
= 0.1
= 0.2
= 0.3

= 0.7
= 0.5

Figure 8: Location priors in our building.

cations and records, although more observations labeled with cal-
endar data would be needed to match the accuracy of survey-based
profiles across all locations.

6.2 Field Study
In this section we describe the results of our 2-week study of real

users using MnM.
Location Priors: Figure 8 shows the prior probability that fetch-
ing a URL will take unacceptably long from an office, where the
darker the circle the greater the probability of that location being
a problem. There is clear variation in the priors over the building,
indicating that location does have a strong effect on the ability of
nomadic users to access the company’s servers. The middle-left of
the building is particularly bad, the middle-top offices are slightly
better, and the conference rooms in the middle and the offices to
the right are, for the most part, the best. Priors vary from 0.01 in
the best areas to almost 0.7 in the worst.
Fault Diagnosis: The Inference Engine was run every 10 minutes
during the 2-week study: a total of 1530 times. It diagnosed a fault
during 434 of these runs. Unsurprisingly, most faults were concen-
trated during the working hours when more laptops are present and
network and server usage is highest. We have confidence in the
accuracy of the faults diagnosed by the system based on its perfor-
mance in the controlled experiments.

Figure 9 shows the number of faults of each type that were diag-
nosed during the study. The bar for “With location priors” repre-
sents the results of MnM as we intend it to be used, with location
priors taken into account by the inference algorithm. As there can
be more than one fault diagnosed during a single run of the infer-
ence algorithm, the number of faults discovered totals to more than
434. The most common source of problems was the laptops them-
selves (“machines”), followed by a server in the data center. Of
the 310 faults attributed to a server in the data center, 114 were to
a server well-known to have problems with intermittent overloads.
MnM also correctly identified DNS misconfiguration on one of the
servers. The server’s primary DNS was configured to 127.0.0.1
while it was not running a DNS server. This was causing delay in
DNS lookup, which ultimately impacted total URL fetch times.
Importance of location: Location was to blame for 144 problems
– 10% of the total – indicating that it is a significant source of er-
rors. During 31 10-minute intervals, all problems seen by users

0 50 100 150 200 250 300 350 400 450

Server

Machine

WirelessAccessPoint

Location

AccessPointHandOff

NetworkPath

InternetPath

NetworkElement

of occurrences

With location priors
Location = AP
No location priors

Figure 9: Number of faults diagnosed during 2-week study,
broken out by type of fault and location information used.

were due solely to the users’ location. Based on this data, we ex-
pect that MnM would be at least 10% more accurate in its fault
diagnoses than a system that does not consider location.

To predict the performance of a system that does not include lo-
cation but does model wireless components like access points, we
configured MnM to use the AP with which each laptop was asso-
ciated as the “location” of that laptop. As expected, the number of
problems attributed to the access points increases. Interestingly, the
number of problems attributed to the servers goes down — without
the ability to blame specific locations, the system blames too many
problems on wireless issues.
Importance of location priors: To evaluate the effect of location
priors on fault diagnosis we ran MnM with locations, but assign-
ing all locations the same prior (labeled “no location priors” in the
figure). The system correctly diagnoses location faults as often as
MnM does when using accurate priors, but it also blames the ma-
chines and servers more than it should. Many locations have only
a single machine reporting observations, as they are private offices,
and without the historical perspective provided by the prior the sys-
tem does not have enough independent observations to confidently
distinguish between a problem with the location, the user’s laptop,
or the remote server.

6.3 Controlled Experiments
To evaluate the accuracy of our system in diagnosing problems

that arise in client mobility scenarios, we conducted controlled ex-
periments where we deliberately impaired parts of the network to
create faults. These experiments were conducted on our production
corporate network, so there was normal corporate background traf-
fic and some naturally occurring failures during the experiments.
However, the results here give a lower bound on the accuracy of
MnM.
Methodology: For the following experiments, all 42 machines
polled four enterprise websites once every 60 seconds. The MnM
Agents ran the application experts and monitors described in Sec-
tion 4.1.4.

Each experiment ran for at least 60 minutes, with the specified
fault injected at the beginning of the experiment. The Inference
Engine ran once every minute, producing at least 60 set of fault
suspects for each experiment. For these experiments, we required
that the Inference Engine return the root cause representing the in-
jected fault with rank one or two before counting it as a successful

diagnosis. This is because network managers are unwilling to look
beyond the top few root causes. Table 1 presents a summary of the
results.
Problems Due to Bad Location: To measure the accuracy of
our Inference Engine in identifying bad locations, we created the
following experimental setup. We place two laptops in a location
with poor performance characteristics due to its long distance from
an AP, and force the laptops to associate with that AP. Three other
laptops, placed closer to the AP, were also associated with the AP.
The experiment tests whether MnM can correctly determine that
multiple performance faults observed for clients associated with the
same AP do not necessarily imply that the AP is at fault. Instead,
MnM must determine the impact of a client’s location on its perfor-
mance. The first row of Table 1 presents a summary of the results.
We made two observations during this experiment:

First, when the location module accurately infers the locations
of the two laptops seeing poor performance, the Inference Engine
correctly identified the location as the highest ranked root cause.

Second, when the location module does not report the two poorly-
performing laptops being at the same location, the Inference Engine
reports the location as the second-highest ranked root cause. The
wireless access point was reported as the highest ranked root cause,
as it was a shared dependency between the two laptops in the Infer-
ence Graph, whereas each laptop was (incorrectly) connected to a
different location root cause.
Problems Due To Bad Access Point: To determine the accuracy
of MnM in identifying a poorly performing AP (e.g. one suffering
from interference near it), we created the following experimental
setup. We connect four laptops from different locations to a specific
AP. We reduced the capacity of the AP by introducing a 500 ms
delay on all packets traversing through it. The experiment tests
whether MnM can correctly determine that multiple performance
faults observed for clients associated with the same AP do, in some
cases, imply that the AP is at fault. As shown in the second row of
Table 1, MnM correctly identified the AP as the root cause for all
of our observations.
Problems Due to Handoff: Wireless laptops sometimes experi-
ence bad performance because their device driver is too aggressive
at changing APs in an attempt to achieve better performance.

We setup the following experiment to evaluate MnM’s ability
to correctly detect problems due to AP handoffs. We forced one
laptop to switch between two APs every 30 seconds, causing the
performance of the client to suffer. Other clients associated with
the two APs from different locations, and they continued to perform
normally. As shown in the third row of Table 1, MnM identified the
handoff as the correct root cause for 86% of the observations.

For the remaining 14% of the observations, the AP was identified
as the topmost root cause and the handoff was ranked second. This
is actually the correct result, as further investigation showed one
of the two APs began experiencing outside interference during the
experiment, and hence all clients associated with that AP saw poor
performance. This experiment highlights how the Inference Engine
is able to quickly identify the right root cause even under rapidly
changing conditions.
Simultaneous Diagnosis: To measure how well MnM deals with
multiple simultaneous failures, we performed two experiments where
we injected multiple faults at the same time.

For the first experiment, we deliberately delayed the packets en-
tering and leaving the server by 500 ms, and we simultaneously
placed two clients at a location with known poor performance. The
expected outcome for this experiment is for the server to be the
highest-ranked root cause and the location to be the second high-
est. MnM correctly ranked these two root causes for all the obser-

Target Root % the target Root Cause Other Root Causes Reasons for other
Cause is first in top two root causes

Location 55 Machine, Server, AP Location error
Real congestion at the server

AP 100 First-hop router Few positive observations
through the first-hop router

AP Handoff 86 Location, Machine, AP Location error, AP failures
Server 100 Last-hop router Few positive observations

for the last-hop router
Simultaneous 100 AP Few positive observations

Faults First-hop router for the first-hop router

Table 1: Root cause analysis

vations.
In the second experiment, we placed two clients in a bad loca-

tion, and we again delayed packets traversing the AP so that perfor-
mance of all clients associated with it suffered (not just the two at
the bad location). The inference algorithm performed as expected
and correctly ranked the AP as the highest-ranked root cause and
the bad location as the second-highest-ranked root cause for all ob-
servations.

7. CONCLUSION
This paper highlights the issues that an enterprise network man-

agement and diagnosis system must handle when all its users are
nomadic. These issues include rapidly changing dependencies, root
cause analysis in unified wired and wireless networks and the im-
pact of physical location on application performance. We present
MnM, an end-host based, integrated network monitoring and fault
diagnosis system, and we show that taking an integrated approach
to wired and wireless monitoring improves the accuracy of fault
diagnosis.

8. REFERENCES

[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and
Techniques for Diagnosing Faults in IEEE 802.11
Infrastructure Networks. In MOBICOM, 2004.

[2] AirDefense: Wireless LAN Security. http://airdefense.net.
[3] AirTight Netwoks. http://airtightnetworks.net.
[4] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,

and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In
SIGCOMM, 2007.

[5] P. Bahl, R. Chandra, D. maltz, P. Patel, J. Padhye, and
L. Ravindranath. Towards Unified management of
Networked Services in Wired and Wireless Enterprise
Networks. Technical report, 2008. MSR-TR-2008-18.

[6] P. Bahl and V. N. Padmanabhan. RADAR: An in-building
rf-based user location and tracking system. In INFOCOM,
2000.

[7] M. Balazinska and P. Castro. Characterizing mobility and
network usage in a corporate wireless local-area network. In
MOBISYS, 2003.

[8] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A
Location-based Management System for Enterprise Wireless
LANs. In NSDI, 2007.

[9] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang,
A. Snoeren, G. Voelker, and S. Savage. Automated
cross-layer diagnosis of enterprise wireless networks. In
SIGCOMM, 2007.

[10] Y.-C. Cheng, J. Bellardo, P. Benko, A. Snoeren, G. Voelker,
and S. Savage. Jigsaw: Solving the puzzle of enterprise
802.11 analysis. In SIGCOMM, 2006.

[11] Private conversation with Dell lab members.
[12] F. Giroire1, J. Chandrashekar, G. Iannaccone,

K. Papagiannaki, E. M. Schooler, , and N. Taft. The cubicle
vs. the coffee shop: Behavioral modes in enterprise
end-users. In Proc. of PAM, 2008.

[13] S. Gittlen. ”want to manage your wired/wireless lans
together? too bad”. Computer World, March 2007.

[14] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool for
Failure Diagnosis in IP Networks. In Proc. MineNet
Workshop at SIGCOMM, 2005.

[15] R. R. Kompella, J. Yates, A. Greenberg, and A. Snoeren. IP
Fault Localization Via Risk Modeling. In Proc. of NSDI,
May 2005.

[16] D. Kotz and K. Essien. Analysis of a campus-wide wireless
network. In MOBICOM, 2002.

[17] M. Lopez. Forrester Research: The State of North American
Enterprise Mobility in 2006. December 2006.

[18] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing MAC-level behavior of wireless networks in the
wild. In SIGCOMM, 2006.

[19] HP Openview. http://www.openview.hp.com/.
[20] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and

A. Vahdat. WAP5: Black-box Performance Debugging for
Wide-area Systems. In WWW, May 2006.

[21] M. Satyanarayanan. Mobile information access. IEEE
Personal Communications, Feb. 1996.

[22] EMC Smarts Family.
http://www.emc.com/products/software/smarts/smarts family/.

[23] IBM Tivoli. http://www.ibm.com/software/tivoli/.
[24] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.

High Speed and Robust Event Correlation. In IEEE
Communications Magazine, 1996.

[25] M. A. Youssef, A. Agrawala, and A. U. Shankar. WLAN
location determination via clustering and probability
distributions. In IEEE Percom, 2003.

