
Mobile Applications Need Targeted Micro-Updates

Alvin Cheung∗ Lenin Ravindranath∗ Eugene Wu∗

Samuel Madden Hari Balakrishnan
MIT CSAIL

1 INTRODUCTION

Smart-phone applications (“apps”) run across a wide range
of environmental conditions, locations, and hardware plat-
forms. They are often subject to an array of interactions that
are hard or impossible for developers to emulate or even an-
ticipate during testing. Once an application is released, feed-
back obtained from users and from analytics over usage and
performance data result in further modifications. Many of
these changes are relatively small, and can often be parame-
terized.

We call such post-deployment updates micro-updates.
Given the diversity of environments in the mobile ecosystem,
there is often no single optimal parameter value for all run-
ning instances of an application. Application behavior and
micro-updates need to be targeted to different sets of users.
Micro-updates can range from simple updates to static con-
figurations, program constants, and UI properties to chang-
ing the behavior of a few isolated routines. Examples include
changing a hard-coded timeout parameter to accommodate
slow network connectivity, reducing the location sampling
interval on certain devices to control battery drain, adapting
certain UI properties to accommodate new devices with dif-
ferent screen resolutions, adding a resource module to sup-
port new locales, and changing the behavior of a few routines
to avoid an app crash while running on a specific version of
the OS.

Today, targeted micro-updates can be done in two ways.
The first is to modify the app source code, rebuild it, and put
out an update in the app store. Although some app stores
such as Google Play enable automatic updates, none of the
current app stores provide a way to target updates to a par-
ticular set of users. Hence, developers need to pack every
possible program behavior into a single app that deals with
all sorts of conditions that can arise in the wild. The more
differentiated conditions and desired behavior becomes, the
more difficult it is to manage updates and application logic.
Moreover, app stores such as the iOS AppStore impose a

∗authors contributed equally

manual verification and update installation process for up-
dating the app, which can significantly delay the update to
users. And even when it is released, only a fraction of users
might actually install the update, creating significant version-
ing problems.

The second option to perform a micro-update is for the
developer to write the application so that specific parts are
periodically re-loaded from a remote server. When the app
needs to be updated, the developer modifies the application
logic on the server. Targeted updates can be provided by
monitoring and collecting appropriate data from the users
and indicating which devices should install an update in the
update itself.

Unfortunately, building and maintaining such a custom in-
frastructure for monitoring and updating is very difficult be-
cause the developer must now 1) maintain a server to host the
updates, 2) mix the update and application logic in the code
base, 3) manage performance problems that can arise when
devices contact the remote server for updates, 4) develop
mechanisms to propagate selective updates, and 5) manage
which devices should receive which updates.

In this paper, we propose Satsuma, a service infrastructure
and framework for pushing updates that significantly reduce
the barrier for developers to micro-update their application in
a faster and more targeted fashion. Using Satsuma requires
low development effort and no modification to the program
logic. Developers simply annotate parts of the application
where they anticipate updates after deployment. After de-
ployment, developers can use Satsuma to monitor and up-
date portions of the application and apply updates to targeted
sets of users. Satsuma also includes a dynamic monitoring
framework to target updates across sets of users.

Note that Satsuma does not decrease the security of mo-
bile application ecosystems. Using Satsuma to launch ma-
licious attacks, for instance by creating an alarm clock
application and subsequently releasing a malicious micro-
update, is already possible in the current ecosystem via stan-
dard app update mechanisms. Instead, Satsuma’s goal is to
make application and configuration management easier post-
deployment.

In summary, this paper makes the following contributions:

• We list a number of use cases that are enabled by pro-
viding micro-updating capability for mobile apps.

• We describe a declarative device targeting service for
developers to push micro-updates to devices after de-
ployment.

• We describe how code annotations can be delegated, so
that other parties can also push micro-updates in a lim-
ited fashion.

In the following we first describe motivating use cases for
micro-updates, followed by a description of Satsuma. We
conclude by outlining future research directions.

2 USE CASES

In this section, we describe several use cases that the Sat-
suma micro-updating framework enables.

2.1 Targeted Fine Tuning
After an application is released, developers use Satsuma to
fine-tune their application behavior based on how the appli-
cation runs in the hands of real users — this fine-tuning can
vary between users.

For example, suppose a developer of a location tracking
application is not able to determine the optimal GPS sam-
pling rate with an acceptable energy consumption across dif-
ferent devices. He uses a default value that is optimized in
the lab setting but uses Satsuma to mark the sampling rate
parameter as micro-updatable. Once the application is re-
leased, he soon learns that the battery drains unacceptably
quickly on a particular phone model, and he wants to reduce
the sampling rate to save energy without compromising the
data resolution obtained from other devices that do not have
the issue. The developer uses Satsuma to perform a targeted
micro-update to reduce the sampling rate only on the anoma-
lous devices.

In addition to updating parameters and configurations, de-
velopers can also update parts of the program logic after de-
ployment, for instance tailoring the app for users in different
geographic regions.

2.2 Experimental Testing
User experimentation, such as A/B testing, is commonly
used in web development and marketing to test variations
of the application to improve user experience and other met-
rics. For example, a developer may want to know which of
two different UIs is more effective for users. Rather than
picking one for the entire deployment, she can deploy the
application and use Satsuma to run A/B tests. For instance,
she can update 10% of the users with a new UI and gather
feedback. Based on the feedback, the developer can decide
to update more or all its users with the new UI. Similar A/B
tests can be done when choosing between performance con-
figurations, application features, interface designs, and user-
specific customizations.

2.3 Dynamic Monitoring
In addition to updating application behavior, Satsuma can be
used to passively monitor application behavior in the wild.
Today, developers are limited to analytics and performance
monitoring systems [2, 16] that statically instrument their
application for passive monitoring. Such instrumentation is
typically unmodifiable after deployment. When developers

want to collect more data, they must release a new applica-
tion binary through the app store.

Satsuma lets developers dynamically instrument the ap-
plication by simply marking a monitoring function as updat-
able, and injecting new instrumentation code to execute on
apps that are currently running on the devices.

2.4 Bug-Fixing
It is hard to anticipate where bugs will arise in code. If a
bug arises in a small part of the code, the developer must
update the entire application and hope the users will install
the update.

Alternatively, the developer can use Satsuma and mark all
major code fragments as updatable. When a bug arises, he
can remotely update and correct that portion of the app. As
we discuss in Sec. 4, as more code fragments are annotated
with Satsuma, there can be a runtime overhead. However, we
believe that there are still certain scenarios where this usage
model is beneficial. For instance, a developer marks every-
thing only during beta-testing with a small to moderate set
of users. As compared to manually updating and distributing
the application for each bug fix during beta-testing, Satsuma
can dramatically reduce the management difficulty and the
latency of the end-to-end debugging cycle.

3 DESIGN

Compiler)
Satsuma)Service)

Micro2update)Manager)

Satsuma)
Run7me)

Ini$al'Deployment' Submi2ng'Micro7Updates'

Targe7ng)Service)

Targe7ng))
Query)

Fetch))
request)

Register)
Micro2update)

Push)
no7fica7on)

Device)
Registra7on)

Source)code)

Satsuma)extension)

Figure 1: Satsuma architecture

Fig. 1 shows the Satsuma architecture and the two primary
control flows. Satsuma consists of three components: a com-
piler extension that takes in code with annotations denoting
which parts of the app can be micro-updated, a service that
manages micro-updates and executes targeted updates and
queries, and a runtime module that is linked with the appli-
cation.

The compiler initially processes the annotated source code
to link the Satsuma Runtime and adds the necessary event
handlers and instrumentation hooks. It then generates a de-
ployable binary. The developer publishes the binary to the
app store where users can download the application.

After the app is deployed, the developer changes previ-
ously annotated code fragments and re-compiles the code.
The extension then creates a new micro-update that can be
registered with the Micro-Update Manager. The Manager is
a lower-level service that pushes notifications and handles
micro-update download requests from the devices.

The Targeting Service executes high-level SQL-like
queries from developers that collect data from the devices
or push micro-updates to a targeted set of devices. Under the
covers, the service pushes the appropriate micro-updates to
devices in order to gather the queried data.

When users first run the application, the Satsuma Runtime
registers itself with the Satsuma Service. It also manages
micro-update downloads and provides convenience methods.

4 SATSUMA ANNOTATIONS

As mentioned in Sec. 3, the developer annotates her source
code during development to describe where micro-updates
can be applied. We briefly describe annotations for Java-
based applications, then illustrate how micro-updates are
pushed and executed on Android and other platforms. This
section describes the low level mechanics to support micro-
updates, and the next section describes the higher level tar-
geting framework layered on top of these mechanisms.

Although some app stores enable automatic updates, they
are not universally enabled because users must turn it on
manually. Because of that, Satsuma does not rely on users
obtaining micro-updates via such mechanism.

4.1 Using Annotations
Developers use the @allowUpdate annotation to allow a piece
of code be micro-updatable after deployment. @allowUpdate
annotations can be placed before static initialization blocks,
function definitions, and class definitions. Each annotation
indicates that the corresponding program fragments can be
updated. For example, a developer who wants to fine-tune a
samplingRate parameter and profile her activity detection al-
gorithm post-deployment annotates her program as follows:

@allowUpdate static int samplingRate = 10;

@allowUpdate void detectUserActivity_preHook () {}
@allowUpdate void detectUserActivity_postHook () {}

public void detectUserActivity () {
detectUserActivity_preHook();
...
detectUserActivity_postHook();
return; }

Given the above annotations, the developer can update the
value of samplingRate, and can insert logging statements
(e.g., for start and end times) into the intercept methods that
are called before and after detectUserActivity.

While it may seem tempting to annotate every code
block to maximize post-deployment update flexibility (for

instance, in the case of pushing bug fixes), there are perfor-
mance and manageability costs in doing so. As Sec. 4.3 il-
lustrates, each annotation incurs a runtime overhead on non-
Android platforms. In addition, while the Satsuma compiler
includes utility flags (e.g., -annotateAll) to ease some of the
developer’s management burdens, there are many interface
challenges as the code base, and the number of annotations,
grows (to be discussed in Sec. 7).

4.2 Pushing Notifications
The developer pushes a micro-update by sending the update
and a list of target device IDs to the Satsuma micro-update
manager. The service compresses the update and pushes a
notification to the listed devices. We re-use each mobile plat-
form’s push notification services, and encode the service IP
and micro-update ID in the notification’s payload.

4.3 Satsuma Mobile Runtime
The Android platform supports dynamic class reloading,
thus updates can be applied by reloading the modified
classes. Since the micro-updates are downloaded as data
files, they must be re-loaded every time the application starts,
however multiple micro-updates may be merged into a single
load operation. The disadvantage of this approach is that the
program will contain both the old and new instances of the
modified classes. One means to circumvent this is to monitor
all heap accesses, and ask the developer to provide conver-
sion functions to convert objects between the old and new
object representations [12].

Satsuma uses function stubbing on other platforms (e.g.,
iOS, Windows) that do not support class reloading. The idea
is that during initial compilation, the compiler first rewrites
all annotated methods with stubs. The stubs are implemented
as remote procedure calls (RPC) hosted on the Satsuma
server that forward the necessary state as arguments to the
RPC call each time the annotated method is invoked. Micro-
updates simply replace the implementation of the RPC on
the server. This mechanism is also applicable to modifying
definitions of literals. Unfortunately, RPCs can incur sub-
stantial overhead. Alternatively, an interpreter can be em-
bedded within the Satsuma runtime, and micro-updates are
then compiled to the interpreter’s language. Compared to
stubbing, the interpreter approach might have less overhead
than invoking RPCs, and has been deployed in iOS applica-
tions [1].

5 COLLECTING DATA FOR TARGETING

This section describes the mechanisms to declaratively col-
lect and query data gathered from the deployed applications,
and perform targeted micro-updates using the same querying
mechanisms after the updates have been submitted using the
Satsuma service.

5.1 Language for Data Collection
Satsuma logically exposes the data that can be collected from
the mobile devices as tables queryable using a SQL-like lan-

guage. The tables are “backed” by micro-updates that col-
lect data in the table’s schema. For convenience, Satsuma
provides a set of pre-defined tables for device hardware, OS,
ID and location information. For example, the following de-
fines a location table of device location information using
the familiar create table SQL syntax, and backs the table
with the Loc-update micro-update:

create table location (UID deviceId,
String city, String state, Time tstamp);
back table location with Loc-update;

Loc-update is written to send location table rows back to
the server, and Satsuma ensures that the received rows have
the same schema as the target table. The developer can now
declaratively query this table. For instance, the following
query collects and stores the city and state information from
all deployed applications running on devices in California:

select city, state
from location
where state = "California"

If location is not being populated by an existing query, Sat-
suma will automatically push Loc-update to collect the data.

5.2 Language for Device Targeting
The developer expresses her request to push targeted micro-
updates using a similar language as that for data collection.
For example, the following query pushes the NorCal-update
and SoCal-update to devices in San Francisco and Los An-
geles, respectively:

push "NorCal-update" to (
select deviceId from location
where location.city = "San Francisco");

push "SoCal-update" to (
select deviceId from location
where location.city = "Los Angeles");

To execute this push query, Satsuma may need to first send
Loc-update to collect location data, then filter the collected
data so that NorCal-update and SoCal-update can be pushed
to the correct devices. Note that the developer can push to all
installed applications (e.g., in the case of bug fixes) using a
select * query on the pre-defined device ID table.

5.3 Implementation
All data collection queries are either answered using pre-
collected data, or are compiled into micro-updates that are
pushed to the devices. Both data collection and push queries
are subject to the same set of permissions that are initially
granted by the user during application installation. Thus, in
the example above, the application needs permission to read
GPS sensor readings in order to collect location data, and the
Satsuma compiler will warn the developer if that is not the
case.

6 DELEGATING MICRO-UPDATES

In a mobile ecosystem where multiple parties develop differ-
ent parts of an application, one party will want to delegate
limited micro-update privileges to others. In this section,
we present two common use cases, third-party libraries and
multi-team development, that showcase this need. We then
describe how to extend Satsuma annotations to support this
requirement.

6.1 Use Cases
Applications commonly include third-party libraries such as
advertising or utility SDKs. Consider Dave, who develops
a remote logging library and wants to optimize the trans-
mission frequency parameter to account for the device’s bat-
tery life. However, each device consumes energy at different
rates, so David adds an annotation so he can update the pa-
rameter post-deployment. Alice uses the library in her appli-
cation and is happy that David will optimize the performance
for her, but wants to ensure that David modify nothing else.

As as second example, large applications are composed of
distinct components managed and micro-updated by separate
teams. For example, one team may optimize the location es-
timation library, whereas the marketing or UX department
may update the app’s dashboard interface. It is important to
reduce the chance that a micro-update will break the appli-
cation by statically restricting the scope of possible updates.

6.2 Annotation Policies
The uses cases above suggest the need for access control and
micro-update scope policies. We support this by extending
@allowUpdate to accept a list of (user, scope) pairs that each
describe the extent that the user can modify the annotated
fragment. Only users explicitly listed can micro-update the
fragment. We propose two possible scope values in the initial
design:

• all: means that the user can perform any modification
to the target program fragment, such as calling methods,
deleting statements, or modifying class definitions.

• sandboxed: restricts the user to only be able to add
statements without side-effects (and invoke other side-
effects free methods), or that are specified in a white-list
of methods with side-effects (e.g., gathering data from
sensors).

For convenience, Satsuma provides a collection of white-
lists that contain common methods for micro-update tasks
such as sensor reading (e.g., GPS, accelerometer), logging,
and data collection. The sandbox scope is expressive enough
for the use cases above, yet effectively restricts micro-update
abilities. In contrast, all is useful during beta testing.

6.3 Implementation
During initial compilation, the Satsuma compiler records all
annotations and their corresponding program fragments. In

addition, it generates a key for each user encountered. The
key can be subsequently distributed to the users.

To make a micro-update, the user submits her modified
code and key to the compiler. If the modification passes all
annotation constraints, the compiler creates modified class
files to be submitted as micro-updates.

7 RESEARCH OPPORTUNITIES

Beyond the descriptions above, we outline a number of fu-
ture research directions.

Data collection privacy. Users of applications that allow
micro-updates might be concerned about the type of data
that can be collected. For instance, while the user might
feel comfortable with a mapping application reading the GPS
sensor to provide navigation directions, she might be con-
cerned about sending all GPS readings to the developer, or
the data collection code draining up her battery. One re-
search direction would be to allow users specify privacy poli-
cies for data collection, and enforce them in the runtime.

Device targeting optimization and scalability. Having a
declarative interface for device targeting raises interesting
optimization opportunities. For instance, for the location
data collection example discussed in Sec. 5.1, the runtime
can collect the requested data by reading the GPS sensor on
the device, or use other sensors to approximate location. The
runtime can also vary the sensor sampling frequency based
on the user’s location. In addition, the runtime can combine
micro-update and data collection requests. For instance, the
data filtering that is part of the push query in Sec. 5.1 can
be pushed into Loc-update, which effectively combines two
micro-updates into one. It will be an interesting problem to
build an optimizer for instrumentation instructions. Another
potential research problem is to build a scalable storage sys-
tem for the collection location data, as that would affect the
the amount of time needed to push updates to all the intended
devices.

Managing micro-update histories. Once developers tar-
get micro-updates at different subsets of the installation base,
managing the different, possibly overlapping, versions of the
code base quickly becomes overwhelming. In the case of
using Satsuma for A/B testing, the developer may want to
pick and combine the optimal results from multiple tests in
the next major update of the application. However, if the tar-
geted populations overlapped, then how can the collection of
micro-updates be merged into a single coherent source tree
for the next major release?

One model is to view this as a version control problem,
where every micro-update is a new commit, and concurrent
updates (to different target devices) are separate branches.
The system can provide means for developers to merge and
reconcile different updates into a new release, along with
tracking the updates that have been received by each device.
Developing a user interface that can easily facilitate such
merges and device tracking would be interesting research.

Managing Annotations. Sec. 4 introduced a mechanism
for developers to limit who and how micro-updates can be
made. As the code base and number of third-party libraries
used increases, however, it will be difficult for developers to
manage the granted permissions. A research direction would
be to build a management tool for visualizing and annotating
source code repositories, and provide static guarantees about
behavior of micro-updates.

Cross-platform micro-updates. In the modern mobile ap-
plication ecosystem, the same application is typically de-
ployed on multiple mobile platforms, with different code
bases for each platform despite they all implement similar
functionality. While there are programming systems that try
to implement “write-once, deploy everywhere” for mobile
platforms [6, 5], it will be interesting to investigate similar
issues for applying micro-updates. Challenges include han-
dling differences among platforms, and building an interface
for developers to provide correspondences among the differ-
ent application code bases.

8 RELATED WORK

To our knowledge, Satsuma is the first proposal to build a
system that pushes application updates onto deployed mobile
applications, and lets developers control the users that can
submit updates along with the expressiveness of the updates.

Dynamic code injection and instrumentation have been
used to let developers detect events on mobile devices [17,
3], detect bugs [14], and declaratively profile non-mobile
applications [9]. Satsuma proposes to leverage similar tech-
niques to optimize instrumentation requests for mobile ap-
plications.

Satsuma’s stubbing techniques are similar to code parti-
tioning between mobile devices and cloud services [13, 10,
11] for the purposes of reducing resource or battery con-
sumption. Our micro-update framework can be used to im-
plement code offloading as well.

Annotations have been used to provide security in web
applications [4]. Satsuma uses the same mechanism to limit
the scope of and users that can micro-update an annotated
declaration.

Finally, both commercial [8] and academia [15, 7, 12] are
actively investigating techniques to dynamically update soft-
ware on non-mobile platforms. The mobile platform, how-
ever, poses new challenges as compared to providing updates
to desktop applications. For instance, mobile devices come
in a much larger variety of hardware and software specifi-
cations than desktop machines. Because of that, the micro-
update system will need to ensure the compatibility of any
micro-updates that are pushed to the device, and warn the
developer if it detects incompatibility on devices that have
the application installed. In addition, as outlined by our
use cases, developers will likely want to target devices to
be updated based on device-specific attributes such as geo-
graphic location in addition to hardware profiles. Tracking
locations for mobile devices is a challenging problem [18],

and such scenarios do not usually arise in desktop applica-
tion updates.

9 CONCLUSION

In this paper, we introduced Satsuma, a system for pushing
targeted micro-updates for mobile apps. We described sev-
eral use cases that are unaddressed in the current mobile app
development ecosystem, outlined the design of Satsuma and
its declarative interface for targeting devices, and proposed
a number of future research directions. We believe the abil-
ity to selectively push micro-updates to different subsets of
devices has the potential to dramatically simplify mobile ap-
plication development by enabling a variety of tasks, such as
A/B testing, fine-grained device reconfiguration on targeted
phone models or users, and rapid deployment of bug fixes.

10 ACKNOWLEDGEMENTS

The authors are grateful for the constructive feedback from
the reviewers. This research is supported by Intel Corpora-
tion.

REFERENCES

[1] Codea. http://twolivesleft.com/Codea.
[2] flurry. http://www.flurry.com.
[3] Microsoft on{x}. http://www.onx.ms.
[4] Oracle Java EE 5 Tutorial. http://docs.oracle.
com/javaee/5/tutorial/doc/bnbyl.html.

[5] Phonegap. http://www.phonegap.com.
[6] TouchDevelop. http://www.touchdevelop.com.
[7] S. Ajmani, B. Liskov, and L. Shrira. Modular software

upgrades for distributed systems. In Proc. ECOOP,
pages 452–476, 2006.

[8] J. Arnold and M. F. Kaashoek. Ksplice: automatic re-
bootless kernel updates. In Proc. EuroSys, pages 187–
198, 2009.

[9] A. Cheung and S. Madden. Performance profiling
with EndoScope, an acquisitional software monitoring
framework. PVLDB, 1(1):42–53, 2008.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wol-
man, S. Saroiu, R. Chandra, and P. Bahl. Maui: mak-
ing smartphones last longer with code offload. In Proc.
MobiSys, pages 49–62, New York, NY, USA, 2010.

[11] J. Flinn and M. Satyanarayanan. Managing battery life-
time with energy-aware adaptation. ACM Trans. Com-
put. Syst., 22(2):137–179, May 2004.

[12] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Safe
and automatic live update for operating systems. In
Proc. ASPLOS, pages 279–292, 2013.

[13] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,
and X. Chen. Comet: code offload by migrating ex-
ecution transparently. In Proc. OSDI, pages 93–106,
2012.

[14] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. SIGPLAN Not.,
38(5):141–154, 2003.

[15] I. Neamtiu and M. Hicks. Safe and timely dynamic
updates for multi-threaded programs. In Proc. PLDI,
pages 13–24, 2009.

[16] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,
I. Obermiller, and S. Shayandeh. AppInsight: mo-
bile app performance monitoring in the wild. In Proc.
OSDI, pages 107–120, 2012.

[17] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and
S. Madden. Code in the air: simplifying sensing and
coordination tasks on smartphones. In Proc. HotMo-
bile, 2012.

[18] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Mad-
den, H. Balakrishnan, S. Toledo, and J. Eriksson.
Vtrack: accurate, energy-aware road traffic delay es-
timation using mobile phones. In Proc. SenSys, pages
85–98, 2009.

http://twolivesleft.com/Codea
http://www.flurry.com
http://www.onx.ms
http://docs.oracle.com/javaee/5/tutorial/doc/bnbyl.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnbyl.html
http://www.phonegap.com
http://www.touchdevelop.com

	Introduction
	Use Cases
	Targeted Fine Tuning
	Experimental Testing
	Dynamic Monitoring
	Bug-Fixing

	Design
	Satsuma Annotations
	Using Annotations
	Pushing Notifications
	Satsuma Mobile Runtime

	Collecting Data for Targeting
	Language for Data Collection
	Language for Device Targeting
	Implementation

	Delegating Micro-updates
	Use Cases
	Annotation Policies
	Implementation

	Research Opportunities
	Related Work
	Conclusion
	Acknowledgements

