
“Extra-Sensory Perception” for Wireless Networks

Lenin Ravindranath, Calvin Newport, Hari Balakrishnan, and Samuel Madden
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

{lenin,cnewport,hari,madden}@csail.mit.edu

ABSTRACT
Commodity smartphones and tablet devices now come
equipped with a variety of sensors, including accelerom-
eters, multiple positioning sensors, magnetic compasses,
and inertial sensors (gyros). In this paper, we posit that
these sensors can be profitably used to improve the per-
formance of wireless network protocols running on these
mobile devices, and introduce the idea of using external
sensor hints for this purpose. We focus on mobility hints,
including the device’s state of motion, speed, direction of
movement, and position. We outline how these hints can
be used to: increase throughput by adapting bit rate selec-
tion to the state of movement; reduce the bandwidth re-
quired for estimating link delivery probabilities; improve
the connectivity of routes in vehicular mesh networks us-
ing directionality hints; and enable access points to tailor
the management of clients to their mobility.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design — Wireless Communication

General Terms
Design, Experimentation, Measurement

1. INTRODUCTION
Mobility introduces difficult problems that wireless net-

work protocols must solve to achieve good performance.
When nodes move, the vagaries of wireless communication
become more pronounced: channel quality varies rapidly,
losses become bursty, and assessments of channel behavior
are quickly outdated. These effects degrade many wire-
less protocols: for example, they impair many bit rate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

adaptation schemes, expand the overhead of topology and
neighbor maintenance, and increase the amount of work
required to correctly estimate routing metrics.

To compound the problem, strategies that compensate
for the difficulties of mobility are unlikely to be optimal
for static scenarios. When nodes are static, they can aver-
age estimates of channel quality, observe their neighbors,
and compute routes over relatively long time scales (many
seconds), obtaining and updating observations from many
packets. In so doing, they can correctly avoid reacting
to the inevitable short-term variations due to small-scale
fading that even static wireless networks encounter. In
contrast, when nodes move, they should not maintain long
histories because the rapidly changing channel conditions
and network topology quickly render old information in-
valid.

With the proliferation of “truly mobile” devices such as
smartphones and light tablet computers, it is increasingly
common for protocols to encounter both static and mobile
modes in a short time period, motivating the need for
protocols that can adapt to the demands of both settings.

The problem: Protocols optimized for static scenarios
fall short when nodes are in motion, but protocols that
compensate for the complex characteristics of mobility
fall short when nodes are static (this point has been noted
in previous work, for instance on bit rate adaptation [4,
11], and we provide some further evidence in Section 2.1).
The fundamental differences between static and mobile
channels mean not only that protocols need to adapt within
each mode (static or mobile) to get good performance, but
that the adaptation will likely be quite different in each
case. Previous work on wireless protocols has generally
not differentiated between these modes.

Our approach: Our position is that adapting using
explicit knowledge of the operating mode is superior to
schemes that adapt using only packet loss, bit error, or
signal strength information obtained from network packets.
The key insight in our work is that nodes can use external
sensor hints to determine the mobility mode and adapt
accordingly. By “mobility mode,” we mean attributes
such as whether the device has started moving or is static,
its speed of motion, the heading (direction) of motion,

1



and the location of the device (indoors or outdoors)—all
factors that affect the performance of wireless network
protocols. The hints are external to the wireless network,
but the sensors required for these hints are available on
commodity mobile devices today, which come equipped
with a wide array of position sensors (GPS, WiFi, cellular
radios), accelerometers, compasses, gyros, and so on. To
our knowledge, external sensors have not been previously
used to augment network protocols.

Sensor hints may be used in different ways in different
protocols. When a node generates a hint locally or receives
a hint from a neighbor, it may adapt in response to it. The
adaptation might be continuous in nature (e.g., updating
protocol parameters) or hybrid (e.g., switching from a
static-optimized to a mobility-optimized protocol). When
hints need to be sent between nodes, they may be piggy-
backed on the headers of link-layer frames, or a separate
hints protocol may be used.

The rest of this paper highlights the benefits of using
external hints to improve wireless protocols. We show how
hints from commodity accelerometers, positioning sensors,
and compasses can be used to:

1. Increase throughput with better bit rate adaptation,
by 30% to 50% on average over frame-based and
SNR-based protocols in our experiments.

2. Reduce the bandwidth consumed by probing
protocols to accurately estimate link delivery
probabilities—by a factor of 20 in our experiments.

3. Select well-connected paths in vehicular mesh net-
works, increasing route stability by a factor of 4 to 5
compared to a hint-free approach in our simulations.

4. Improve how access points manage association,
scheduling, and pruning of clients.

2. HINT-AWARE PROTOCOLS
The ideas described in this paper use hints for movement,

speed, position, and heading. Movement is a boolean hint
that is true if, and only if, a device is moving. Specifically,
it is true if either the device’s acceleration or its speed is
non-zero. On a commodity device, we obtain this infor-
mation from the acceleration sensor indoors, and from the
combination of GPS and the acceleration sensor outdoors.
Note that it is important to capture the situation when a
device has just started moving from being at rest, and vice
versa, so measuring the acceleration is important. By look-
ing for spikes in the magnitude of the 3-axis accelerometer
signal over a recent window of samples, we have found
that we can reliably detect movement within 100 ms on
off-the-shelf smartphones.

To determine the speed and position outdoors, we use
GPS. Indoors, we approximate the speed by integrating the
time-series of values reported by the accelerometer (the re-
sults are more approximate than outdoors, but the range of
speeds is a lot smaller). We can use a WiFi localization for
indoor positioning if required. Heading can be determined

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

Conditional Loss Prob - Static
Conditional Loss Prob - Mobile

Unconditional Loss Prob - Static
Unconditional Loss Prob - Mobile

Figure 1: Given a packet lost (at 54 Mbps), this graph
shows the conditional probability of losing a subse-
quent packet after the lag k specified by the x-axis
value. Results are shown for both the stationary and
mobile case. The unconditional packet loss probabili-
ties in both cases are also shown.

directly from digital compasses (magnetometers) that are
available on several devices.

2.1 Bit Rate Adaptation
Node mobility affects the performance of bit rate adapta-

tion protocols significantly by destabilizing wireless chan-
nel conditions and causing large and bursty changes over
short intervals of time. When a node moves, bit errors and
packet losses exhibit a higher degree of statistical correla-
tion with past behavior compared to the static case.

We demonstrate this effect in Figure 1, which plots the
conditional probability of losing packet number i + k at
a given bit rate, given that packet number i was lost, for
different values of k (the “lag”). In this indoor experiment,
we sent back-to-back 1000-byte packets at 54 Mbps from
a stationary laptop to another stationary laptop in the static
case, and to a laptop carried by a human walking in the
mobile case. Small values of k show a significantly higher
conditional loss probability in the mobile case, demonstrat-
ing a larger degree of short-range dependence compared
to the static case. In this scenario, for the mobile case, the
10 packets following a lost packet are significantly more
likely to be lost than in the static case, and also compared
to larger values of k. The probability does not return to
the base-line loss rate until approximately k = 50 packets.
Given that we send about 5000 back-to-back packets every
second at 54 Mbps, the data suggests a channel coherence
time of roughly 8 to 10 ms. These observations indicate
that when a node is mobile (human walking), the channel
changes approximately every 10 ms. These results also
suggest that the optimal strategy for bit rate adaptation is
likely to be different when nodes move than when they are
static.

In the static case, where the channel remains relatively
stable, it makes sense to maintain a longer history of per-
formance at different bit rates to smooth over periods of
short-term fading or contention. Such a long-history ap-
proach falters when the device is mobile. In the mobile
case, it makes more sense to keep only a short history,

2



react quickly to losses, and perhaps sample other rates
with an equal aggressiveness to track the faster changes
typical of a mobile channel. This observation motivates
a hint-aware bit rate adaptation scheme: a strategy that
changes adaptation protocols depending on whether or not
the nodes are moving.

Although many bit rate adaptation protocols have been
developed, we find that none of them work well when
nodes exhibit a combination of mobile and static modes.
By using external sensor hints rather than making deci-
sions solely based on network information (the fate of
packets and bits, and SNR), our approach is able to com-
bine schemes tuned separately for the static and mobile
cases. It requires no training to achieve good performance.

With these remarks in mind, we introduce RapidSample,
a new frame-based rate adaptation protocol designed for a
channel undergoing rapid changes due to movement. In the
static case, we use SampleRate [3], relying on movement
hints to switch between the two.

The RapidSample Protocol. RapidSample is a simple
protocol that starts with the fastest bit rate. If a packet
fails to get a link layer ACK, the protocol reduces to the
next lowest rate and records the time of the failure. After
success at a particular bit rate for more than δsuccess mil-
liseconds (5 in our experiments), the sender attempts to
sample a higher bit rate. Specifically, it chooses the fastest
bit rate such that: a) the rate has not failed in the last δ f ail
milliseconds (10 in our experiments) and b) there are no
slower bit rate that has failed within this interval. If the
faster rate fails, it returns to the original rate from before
the sample. If it succeeds, the protocol adopts this new
faster rate.

There are four ideas motivating RapidSample. First, we
observed in several experiments, when a packet fails, the
probability the next few packets at this bit rate will fail is
high (see Figure 1). Therefore, the protocol immediately
reduces the bit rate to prevent oversampling the same bit
rate and losing packets. Second, as we showed in our
discussion of Figure 1, the coherence time of the channel
during movement was small (around 8 to 10 ms). We use
this value for δ f ail as the minimum time to wait before
sampling a previously failed rate, and any rate higher than
the failed rate. Sampling faster would have a high proba-
bility of failing. Third, we attempt to sample higher rates
after only a small number of successes at the current rate.
We set δsuccess to be less than δ f ail . It is difficult to tell if
the channel conditions are improving or degrading. With
RapidSample, however, we expect that if the conditions
are degrading, we would be decreasing our rate. A small
number of successes at the current rate provide enough
confidence to begin sampling the higher rates that have not
recently failed. Fourth, if we are wrong about the channel
improving, and a sample of a higher rate fails, we revert
to the original rate from before the sample. This approach

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

OutdoorHallwayOffice

M
ea

n 
F

ra
ct

io
n 

of
 

H
in

t-
A

w
ar

e 
P

ro
to

co
l T

hr
ou

gh
pu

t

Hint-Aware
RapidSample
SampleRate

RRAA
RBAR

Figure 2: The hint-aware protocol that switches be-
tween RapidSample and SampleRate based on move-
ment hint performs significantly better than other
schemes in every environment.

allows for opportunistic jumps (as opposed to the common
strategy of stepping by one rate).

Preliminary Experiments. Because it is difficult to
replicate mobility between different experiments, we used
trace-driven simulation—feeding real-world experimental
data to a wireless simulator, allowing for both reproducibil-
ity and realism. We used the same experimental architec-
ture as [11], which modified the ns-3 network simulator
(v3.2) to read in experimental traces describing, for each
5 ms timeslot, the fate of each packet sent at each bit rate
during that time slot. This setup bypasses the physical
layer’s propagation model, instead referencing the trace
file to determine if a packet should be received success-
fully. To collect the traces we configured a laptop (using
the Click Router, MadWifi driver, and an Atheros 802.11
chipset) to send a constant stream of 1000 byte packets, cy-
cling through the 802.11a OFDM bit rates (6 to 54 Mbps).
Each cycle through the 8 bit rates took approximately 5
ms. A second laptop logged every received packet. This
laptop was equipped with an accelerometer that provides
movement hints.

We collected several traces from three different envi-
ronments for static and mobile scenarios, including: 1) an
office setting with no line-of-sight between the sender and
receiver, 2) a long hallway with line-of-sight between the
nodes, and 3) an outdoor setting with a lightly crowded
outdoor pavement area.

We evaluated the following frame-based bit rate adapta-
tion protocols: RapidSample, SampleRate [3], RRAA [12],
and our hint-aware method that switches between Rapid-
Sample and SampleRate, depending on the sensor hint. We
also evaluated two SNR-based rate adaptation protocols:
RBAR [5] and CHARM [6]. For both these schemes, we
trained the protocol for the operating environment. We also
assumed that the sender has up-to-date knowledge about
the receiver SNR. We report only the results for RBAR,
as both schemes performed almost identically. Our fo-
cus here is on frame-based and SNR-based rate adaptation
schemes that can be implemented today without modifying
current physical layers, so we don’t consider schemes such
as SoftRate [11] and AccuRate [8].

3



Results. Figure 2 shows the results for the three en-
vironments. For each environment, we collected 10-20
traces. Each trace is 20 second long with 50% static and
mobile time. The traffic workload was TCP. The graph
shows the average throughput of all the schemes as a frac-
tion of hint-aware protocol throughput. The error bars
show the 95% confidence interval. In every environment,
the hint-aware protocol obtained significant performance
gains. It improved over SampleRate by up to 50% and over
the other schemes by up to 30% in throughput on average.

Also RapidSample performs best in the mobile case,
and it performs worst in the static case (we do not show
the separate results here due to lack of space). In most
environments RapidSample performs up to 70% better
than SampleRate in the mobile case and up to 30% better
than other protocols. At the same time, its performance
is nearly 30% worse than all other protocols when the
nodes are stationary. The poor performance is because
RapidSample aggressively reduces the rate even with a
single loss and frequently tries to sample higher rates even
when the channel conditions are almost stable. These
results confirm our intuition that the optimal strategy for
static and mobile modes differ, and shows the potential of
our hint-aware strategy.

2.2 Probing Protocols
Many wireless network protocols maintain per-neighbor

information, which the nodes obtain by periodically send-
ing and processing probe packets (usually broadcast, and
often at multiple bit rates). For example, mesh routing
protocols maintain routing metrics for each link in the
topology and distribute information about paths. A key
parameter in such probing protocols is the probing rate.

In determining the frequency of these probes, two oppos-
ing considerations must be reconciled. On the one hand,
sending frequent probes allows the nodes to maintain an
accurate estimate of link qualities and identify topological
changes. Maintaining accurate estimates avoids packet
losses and enables the best bit rate to be used. On the other
hand, frequent probe packets use large amounts of the
bandwidth and increase network contention. This trade-off
becomes even more acute in mobile settings, where link
quality changes rapidly.

Hints from acceleration sensors can improve the perfor-
mance of probing protocols. The idea is simple: because
channel conditions vary much more in the presence of
movement, probe more frequently when a node receives
movement hints from its neighbor or itself, and probe less
often when the nodes are static.

To evaluate the potential gains of this approach, we
gathered data from various movement scenarios. Our ex-
perimental setup has the sender sending a probe at a high
rate of 200 probes per second. We calculate the actual
delivery probability over a sliding window of 10 packets,
sub-sampling the outcome of these probes to determine the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10

A
ve

ra
ge

 E
rr

or
 In

 D
el

iv
er

y 
P

ro
ba

bi
lit

y

Number of probes/s

Static
Mobile

Figure 3: Average error in delivery probability by
probing rate for static case and mobile case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

D
el

iv
er

y 
P

ro
ba

bi
lit

y

H
in

t

Time

Actual
Adaptive

1 Probe/s
Hint

Figure 4: Delivery probability over time by probing
strategy for static and mobile combined trace. A
raised value of the movement hint indicates the re-
ceiver is moving.

delivery probability at different probing rates. Each such
aggregation produces one delivery probability sample.

We collected two different sets of data: the first consist-
ing of 20 different static traces and the second consisting
of 20 different pedestrian mobile traces. Each trace was
180 seconds long. For each data set, we calculate the error
in the delivery probability estimate as a function of the
probing rate, where the error is measured as the magnitude
of the difference in the estimated and actual delivery rates.
Figure 3 shows the average error in delivery probability
calculated from all the error samples for the static and
mobile data sets as a function of the probing rate, with
the error bars showing the standard deviations. When the
node is static, even low probe rates result in small error
rates, whereas in the mobile case, a 20× higher probe rate
is required to achieve the same error rates. For example,
to achieve < 5% error rate requires .5 probes/sec for the
static case and 10 probes/sec for the mobile case.

We implemented a simple hint-driven topology mainte-
nance protocol using rates of 1 and 10 probes per second
for the static and mobile cases, respectively. Figure 4
shows a representative 25-second trace that compares the
performance of our protocol to the standard 1 probe per
second protocol. We also plot the movement hint, with a
raised value indicating movement. Notice that our adaptive
protocol maintains an accurate assessment of the actual
delivery probability throughout the experiment, while the
non-adaptive strategy lags by multiple seconds.

4



2.3 Vehicular Network Route Selection
Vehicular mesh networks can be used to augment cellu-

lar WAN connections with routes to roadside infrastructure
(e.g., 802.11 access points), when available. Such a system
can increase throughput and reduce the load on the more
expensive cellular links. Vehicular mesh networking strate-
gies are complicated by dynamic neighbor tables. When
a route breaks due to node movement, packets are lost in
the buffers of the intermediate nodes on the route, and will
have to be retried after discovering a new route, increasing
overhead and latency. We hypothesize that selecting routes
with longest expected connection time is a good idea in
these highly dynamic networks. In this section we propose
a hint-based metric to aid these decisions, and perform a
preliminary simulation-driven analysis to support its effec-
tiveness. We do not exhaustively compare against other
possible routing metrics here.

Connection Time Estimate Metric. We would like
each node to prefer neighbors who it is likely to remain
connected to for longer periods of time, whenever possible.
To do that, each node appends a heading hint to its neigh-
bor probes. A pair of neighboring nodes can estimate their
connection time using the difference in degrees between
their headings. Given an underlying mobility model that
assumes movement is constrained onto a common set of
one-dimensional segments—as is the case for roads—it
follows that smaller differences in headings should predict
a longer duration as neighbors. Hence, we propose a met-
ric called the connection time estimate (CTE), which is
the inverse of the difference in heading between the two
nodes sharing a link, where difference in heading is a value
between 0 and 180 degrees. The CTE value for a multi-hop
route may be estimated as the minimum CTE value over all
hops. Though more complex estimates are possible—for
example, combining position, direction, and speed with
detailed road geometry—the heading-based approach is
simple.

Results. To evaluate CTE, we used a collection of vehic-
ular mobility traces generated from raw position samples
gathered from taxis in an urban setting, map-matched to
an underlying road network. We combine a collection of
traces into a network, and then simulate, for each second,
the position of every vehicle in the network. We consider
two vehicles to have a link at a given time if and only if
they are within 100 meters at that time in their traces.1

We measured the relationship between heading differ-
ence and link duration. Specifically, we studied 15 net-
works consisting of 100 vehicles each, representing a vari-
ety of day-time traffic conditions. For each of the 16,523
links observed in these simulations, we calculated the dif-
ference in headings between the two vehicles when the
link begins (in degrees), and the total duration of the link

1For simplicity, we use geographic proximity as a crude surrogate
for a connection.

[0,9) [10,19) [20,29) [30,180] All Links
66 32 15 9 16

Table 1: The median link duration in seconds for dif-
ferent intervals of heading differences in degrees (180o

indicates nodes headed in opposite directions). Links
with similar headings have a median duration 4 to 5
times longer than the median duration over all links.

(in seconds). We divided the links into four buckets based
on the difference in initial headings. Table 1 reports the
median link duration in seconds for each of these heading
difference buckets. We find that the difference in heading
is a strong predictor of link duration. For vehicles with
headings within 10 degrees, the median link duration is 66
seconds. This value roughly halves with each successive
increase of 10 degrees, falling to a median of 9 seconds by
the time the headings are 30 degrees apart.

2.4 Access Point Policies
In this section we introduce potential improvements to

three basic WiFi access point (AP) functions using hints:
association, packet scheduling, and disassociation. We
have not implemented or evaluated these ideas.

Adaptive association. Most clients today associate
with the AP that has the strongest signal. When a client
node is moving, however, other factors such as the node’s
heading might provide an important clue about the best
AP to associate with. For example, if a node is moving
towards an AP, then it is likely to remain associated longer
than if it is moving away. We suggest that clients include
mobility hints—whether they are moving, their position,
and their heading—in their probe requests. APs that re-
ceive the request can respond with a score indicating the
predicted association lifetime, taking these hints as well
as signal strength information into account. Alternatively,
clients can query a local or network database to determine
the score, allowing the APs to remain unmodified. Clients
select the AP with the highest score.

Adaptive packet scheduling. The standard approach
to AP packet scheduling is to divide transmissions evenly
among the clients with pending packets. When mobility
is introduced, however, this approach may not optimize
throughput. Consider a static client, S, associated with
an access point A, and a mobile client, M, that associates
with A for a brief period before disassociating. Suppose
A dedicates more time to M than S during the interval
when M is associated: although this approach temporarily
increases the latency for S, it does not decrease its overall
throughput, assuming that the batch of packets to be sent
to S is finite. This strategy, however, does increase the total
number of packets received by M, assuming that there are
sufficient packets for M in A’s queue. Thus, aggregate
throughput will increase.

Adaptive disassociation. Another mobility-induced is-

5



sue in infrastructure networks is pruning AP state when a
client moves out of range. We performed an experiment
with a commercial AP and two associated client nodes—
one static and one that begins static and then moves out
of range. We calculated the received TCP throughput at
each client. Initially, both clients roughly share the avail-
able bandwidth. Once the mobile client moves out of
range, however, the throughput to the remaining client
drops significantly and remains low for about 10 seconds,
before recovering to use the entire available bandwidth.
The throughput drops because the AP is unaware of the
movement of the first client, and continues to send it pack-
ets. None of these frames generates a link-layer ACK, so
the AP retries each at the slowest bit rate. Meanwhile, the
bit rate to the second client remains high, but because the
AP implements frame-level fairness—attempting to send
roughly an equal number of packets to each client—the
result is a drop in throughput at the second client.

To circumvent this problem we suggest a better disas-
sociation protocol. When a client detects movement, it
informs the AP. The AP handles failed ACKs from a mo-
bile client more conservatively—only occasionally prob-
ing to determine the nodes presence and not retransmitting
unacknowledged packets. Once the AP receives a packet
from the mobile client again, it can return to its default
aggressive transmission behavior. If the AP fails to hear
after a sufficient period, it prunes the association. This
scheme avoids the significant degradation observed in our
experiment, and incurs only a small overhead.

3. DISCUSSION
Related work. We believe that this paper is the first

to advocate the use of sensor hints to improve wireless
network protocols. There has been some work that has
looked at the use of additional sensors (e.g., low-power
radios) as a hint for when a device should power on [10,
1, 2]. BlueFi [2] uses GSM towers and nearby Bluetooth
devices to predict if WiFi connectivity is available. In the
context of vehicular networking, there has been some work
on using GPS position to choose which AP to associate
with [7]. CARS [9] is an inter-vehicle bit rate adaptation
protocol that uses knowledge of the speed and distance
between communicating cars to pick a bit rate. Their
method is to collect a large amount of training data for an
environment to determine the best bit rate to use at different
speeds and distances; in contrast our hint-aware bit rate
adaptation method does not require any such training.

We conclude by outlining some additional promising
uses of sensor hints in wireless networks.

Changing physical layer parameters. If we are able
to modify the physical layer, then changing OFDM param-
eters based on whether or not the device is outdoors may
be beneficial. 802.11a/g is known to work poorly in out-
door environments because of the longer and more varied
multipath effects outdoors, which induce a longer delay

spread and increase inter-symbol interference. A node that
knows it is outdoors can adjust the length of the cyclic pre-
fix parameter to adjust the delay spread to be more tolerant
to longer delays.2 A simple way to determine if a node is
outdoors is to see if it acquired a GPS lock.

The coherence time of a channel depends on the node’s
speed. At vehicular speeds, the coherence time can drop
to less than the duration of a single packet [4, 11]. Hence,
the channel estimation from the packet preamble might
not hold for all symbols in the packet. Using a speed hint
from the GPS, the sender can perform channel estimation
mid-packet, or reduce the maximum frame size it sends.

In conclusion, we think the use of external sensor hints
has the potential to substantially alter how wireless net-
works operate.

4. ACKNOWLEDGMENTS
This work was supported by NSF grants 0931550 and

0721702, and in part by Ford Motor Company.

5. REFERENCES
[1] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and

R. Gupta. Wireless wakeups revisited: energy management
for voip over wi-fi smartphones. In MobiSys, 2007.

[2] G. Ananthanarayanan and I. Stoica. Blue-Fi: Enhancing
Wi-Fi performance using Bluetooth signals. In MobiSys,
2009.

[3] J. Bicket. Bit-rate Selection in Wireless Networks. Master’s
thesis, MIT, February 2005.

[4] J. Camp and E. Knightly. Modulation Rate Adaptation in
Urban and Vehicular Environments: Cross-layer
Implementation and Experimental Evaluation. In
MOBICOM, 2008.

[5] G. Holland, N. Vaidya, and P. Bahl. A Rate-adaptive MAC
Protocol for Multi-Hop Wireless Networks. In MOBICOM,
2001.

[6] G. Judd, X. Wang, and P. Steenkiste. Efficient
Channel-aware Rate Adaptation in Dynamic Environments.
In MobiSys, 2008.

[7] V. Navda, A. Subramanian, K. Dhanasekaran,
A. Timm-Giel, and S. Das. MobiSteer: Using directional
antenna beam steering to improve performance of
vehicular Internet access. MobiSys, 2007.

[8] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi.
AccuRate: Constellation Based Rate Estimation in
Wireless Networks. In NSDI, 2010.

[9] P. Shankar, T. Nadeem, J. Rosca, and L. Iftode. CARS:
Context aware rate selection for vehicular networks. In
ICNP, 2008.

[10] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless: An
event driven energy saving strategy for battery operated
devices. In MOBICOM, 2002.

[11] M. Vutukuru, H. Balakrishnan, and K. Jamieson.
Cross-layer wireless bit rate adaptation. In SIGCOMM,
2009.

[12] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate
Adaptation for 802.11 Wireless Networks. In MOBICOM,
2006.

2One might imagine simply searching for a good cyclic prefix,
but our point is that the hint can make such a search efficient.

6


	Introduction
	Hint-Aware Protocols
	Bit Rate Adaptation
	Probing Protocols
	Vehicular Network Route Selection
	Access Point Policies

	Discussion
	Acknowledgments
	References

