
Research Statement

Lenin Ravindranath Sivalingam

The mobile app ecosystem has grown at a tremendous pace, with billions of users, millions of apps, and hundreds
of thousands of app developers. Mobile apps run across a wide range of network, hardware, location, and usage
conditions that are hard for developers to emulate or even anticipate during lab testing. Hence, app failures and
performance problems are common in the wild. Scarce resources and poor development support has made it more
difficult for app developers to overcome these problems. My research goal is to build systems that make it
radically easy for app developers to diagnose and improve their mobile apps.

To reduce user annoyance and survive the brutally competitive mobile app marketplace, developers need systems
that (i) identify potential failures and performance problems before the app is released, (ii) diagnose problems after
the app is deployed in the wild, and (iii) provide reliable app performance in the face of varying conditions in the
wild. I have built systems that satisfy these needs. VanarSena [1] makes it easy to diagnose common problems
in mobile apps before deployment, AppInsight [2] makes it easy to monitor mobile apps after deployment, and
Timecard [3] allows mobile apps to adapt to conditions in the wild and provide consistent performance. To build
these systems, I have actively combined ideas from different areas including networking, machine learning, software
engineering, and programming languages.

These systems have already been successfully deployed and tested with thousands of mobile apps. The systems
are built on top of a binary instrumentation framework that automatically rewrites app binary at bytecode level.
Hence, using them requires minimal effort on part of the app developer. The systems include novel instrumenta-
tion techniques to automatically monitor and modify the runtime behavior of the app. To cope with the scarcity of
resources, they include resource-aware mechanisms that incur negligible overhead. To make them immediately
deployable, they are designed to require no modification to the OS or runtime. I briefly describe the key insights
and challenges in each system below.

VanarSena [1] does automatic app testing by systematically emulating conditions from the wild to uncover failures
and performance problems. With VanarSena, developers can easily identify and fix problems that can potentially
occur in the wild, before the app is released. The techniques in VanarSena are driven by a study of 25 million
real-world crash reports of Windows Phone apps reported in 2012. The analysis indicates that a modest number of
root causes are responsible for many observed problems, but that they occur in a broad range of places in an app,
requiring a wide coverage of possible execution paths. VanarSena adopts a gray box testing method, instrumenting
the app binary to achieve high coverage. It uses dynamic monitoring techniques such as hit testing and transaction
tracking to significantly improve the speed of testing. It runs several app “monkeys” in parallel to emulate user,
network, and sensor data behavior, returning a detailed report of crashes and performance issues for common root
causes.

VanarSena helps to significantly reduce common crashes and performance issues but is far from a complete
solution to fix problems that occur in the wild. The mobile environment is complex and varying. To improve the
quality of apps, there is also a need for developers to continuously monitor the behavior of apps after it is deployed.
To achieve this, I built AppInsight.

AppInsight [2] does light-weight monitoring of mobile apps in the wild to pinpoint the root causes of failures
and performance problems. AppInsight automatically instruments the app to monitor performance bottlenecks
and failures in the app. Automatically monitoring the performance of mobile apps is challenging. To keep the UI
responsive, mobile apps use a highly asynchronous programming model. Identifying performance bottlenecks and
reasoning about failures in such code requires tracking causality across asynchronous boundaries. This challenging
task is made even more difficult because of scarce resources available on the device such as CPU, battery, memory
and network. In AppInsight, I developed a generic, low overhead instrumentation technique for monitoring the
execution of asynchronous programs. Using this technique, AppInsight can track user transactions and accurately
measure the user-perceived delays for interactions. AppInsight analyzes the collected data and provides detailed
feedback to the developer about bottlenecks and failures in the wild. Using AppInsight, developers can iteratively
improve the performance and reliability of their mobile apps.

AppInsight data from hundreds of apps in the wild shows that, the performance of a mobile app can be



highly variable. The variability comes from several factors such as network, GPS, hardware, etc. To improve user
experience, it is important to provide fast and consistent performance in the face of such variability. To achieve
this, I built Timecard.

Timecard [3] enables mobile apps to provide consistent performance by adapting to conditions in the wild.
Timecard is specifically built for server-based mobile applications since user interactions that involve communication
to a server have long and variable delays. To tightly control end-to-end delays in the face of variability, a transaction
needs to adapt its processing time by trading-off either the quality of result or the amount of resources consumed.
A natural place for such adaption is the server which typically does the core processing of the transaction. To
adapt its processing time to manage the end-to-end delay, the server needs to know about the external delays: (i)
the time that has elapsed since the user initiated the request in the app and (ii) the (remaining) time it will take
for the app to receive an intended response over the network and then process it. Timecard accurately estimates
and predicts these components and provides it to the server.

There are several challenges in automatically estimating the elapsed time and remaining time. Tracking elapsed
time requires accurate and lightweight accounting across multiple, overlapping asynchronous threads that constitute
the processing of a request on both the mobile app and the server. When the request reaches the server, the system
must account for the clock difference between the client and the server. Predicting remaining time is difficult
because it depends on many factors such as device type, network provider, response size, and TCP parameters.
Timecard includes novel mechanisms to overcome these challenges. It consists of an automatic transaction tracking
technique, a network-aware time synchronization mechanism, and data-driven prediction models. Using Timecard,
servers can adapt their processing to provide consistent performance to mobile apps.

Impact: AppInsight has had wide impact. It has been successfully deployed at Microsoft and has helped many
developers improve their Windows Phone apps. The instrumentation and tracing framework in AppInsight is being
used by at least a dozen projects inside Microsoft. For instance, the AppCompat team in the Windows Phone group
uses a version of AppInsight on thousands of apps on a daily basis. Also, there have been efforts in academia and
industry to port AppInsight to other platforms. VanarSena is being run as an experimental service and has been
used to test thousands of existing apps in the app store. It uncovered problems with many apps including those
that were not previously reported. VanarSena has generated significant interest inside Microsoft to test Windows
Phone apps and is currently being transferred to product groups. Timecard and its components are being used by
multiple research projects to enable servers to accurately measure and predict external delays.

Other Mobile Systems

My interest in building systems to improve performance extends beyond applications. The uncontrolled mobile
environment not only affects application performance, but also affects the performance of network protocols. To
improve network performance, I built a context-aware network architecture [4, 14] that integrates information
from external sensors into the networking stack thereby enabling protocols to adapt to the context of the device.

Also, my interest in building systems to improve applications extends beyond performance and reliability. I have
designed and built systems that have addressed many other challenges app developers face today. Procrastina-
tor [5, 13] enables mobile apps to trade-off between performance and network cost. Code In The Air [7, 15, 16]
provides a programming framework to easily build distributed sensing applications. SmartAds [6] brings contex-
tual ads to mobile apps, increasing the relevancy of ads. Social+ [11] provides an in-app socialization platform
to increase the engagement of users inside a mobile app. VTrack [8] and CTrack [9] improves the accuracy and
energy efficiency of continuously location tracking.

Research Directions

For the legion of amateur app developers with fewer resources at hand, I want to continue building systems
that significantly reduces the barrier for creating good mobile applications. These systems include (i) server
infrastructure support for developers to easily build and maintain cloud-based apps, (ii) a framework for in-the-
wild A/B testing that enables developers to optimize their app after it is deployed, (iii) a system that enables
developers to do targeted updates to apps [12], and (iv) better programming abstractions and tools that allows
developers to not only reason about performance but also reason about other optimization goals such as reducing
energy consumption and reducing network cost. There are several research challenges in building these systems
and I am excited about solving them.

Wearables: The next big wave of consumer mobile devices will be wearables such as glasses, watches and clip-
ons. These devices bring exciting new possibilities as well as new challenges for app developers. As wearables



gain popularity, we are also going see the arrival of continuous monitoring high datarate applications. Examples
include augmented reality applications that can overlay information about the objects in the view of the glass and
Siri-like mobile assistants that can continuously interact with users. To enable these real-time applications, large
amount of sensor data needs to be continuously shipped to the cloud where it needs to be processed within few
hundred milliseconds. With resource-constrained wearables, we are in fact going have a three-tier model where the
wearable communicates to the smartphone which in turn communicates to the cloud. With varying environment
and network conditions, building the processing pipeline for such high responsive apps across the tiers is going
to be a challenging task. I want to build programming and infrastructure support to enable such applications to
continuously adapt the processing pipeline and explore the inherent trade-offs between responsiveness, accuracy
and resources consumed.

Large-scale analytics: Large-scale analytics data collected from thousands of apps and the wide range of sensors
will be the key for developers to optimize and personalize mobile user experiences. Given the scarce resources
on mobile devices, data needs to be efficiently collected across all users and the collection pipeline needs to be
continuously adapted based on the resources available. Borrowing ideas from compressive sensing, I want to build
a generic data collection framework that can be used to collect the optimal amount of data across users. Further,
I want to build systems to efficiently process this data and infer metrics that enables developers to improve and
personalize the user experiences in a fine-grained and context-aware manner. I am also interested in the problem
of big-data visualization where the goal is to efficiently present such large-scale data to developers in a way that
they can quickly derive value out of it.

App-aware systems: While it is important for mobile applications to be context aware, I also believe that, it
is important for mobile systems to be application aware. Mobile apps differ widely in their runtime behavior and
system components need to adapt to application behavior to perform efficiently. For instance, our recent analysis
on thousands of mobile apps shows that mobile apps have very different network access characteristics. And there
is no single network protocol setting that can perform well for all apps. There is need for protocols to adapt based
on the behavior of the application to maximize performance. I believe that, it applies to other system components
such as caching, garbage collection, radio wakeup etc. To this end, I want to explore the idea of app-aware systems
that can automatically analyze the runtime behavior of an app and adapt the system parameters based application
behavior. I want to build a framework (similar to the VanarSena) that can dynamically analyze the behavior of
the app based on conditions in the wild and find the optimal system settings for the app.

Health-aware systems: I am also excited to build systems at the intersection of mobile computing and other
fields. I believe that mobile devices such as wearables, being in constant physical touch with the user, have the
ability to pave way for new health care applications by integrating health sensors such as heart rate, blood pressure
and skin conductivity monitors. I am particularly interested in tapping these sensors to build health-aware systems
where the mobile system adapts to the current physiological state of the user. I want to enable scenarios that
include adapting the UI state based on user fatigue, adapting the speed of a game based on the users heart rate,
and fingerprinting changes in physiological indices to predict and prefetch application state. I want to pursue ideas
from different fields such as psychology and HCI to build such innovative mobile systems.

References
[1] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic and Scalable Fault Detection for Mobile Applications,”

in MobiSys, 2014.

[2] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayandeh, “AppInsight: Mobile App Performance
Monitoring in the Wild,” in OSDI, 2012.

[3] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan, “Timecard: Controlling User-Perceived Delays in Server-Based
Mobile Applications,” in SOSP, 2013.

[4] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Madden, “Improving Wireless Network Performance Using Sensor Hints,”
in NSDI, 2011.

[5] L. Ravindranath, S. Agarwal, J. Padhye, and C. Reiderer, “Procrastinator: pacing mobile apps usage of the network,” in MobiSys,
2014.

[6] S. Nath, F. Lin, L. Ravindranath, and J. Padhye, “SmartAds: Bringing Contextual Ads to Mobile Apps,” in MobiSys, 2013.

[7] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden, “Code In The Air: Simplifying Sensing and Coordination
Tasks on Smartphones,” in HotMobile, 2012.

[8] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Toledo, J. Eriksson, S. Madden, and H. Balakrishnan, “VTrack: Accurate,
Energy-Aware Traffic Delay Estimation Using Mobile Phones,” in SenSys, 2009.

[9] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and L. Girod, “Accurate, Low-Energy Trajectory Mapping For
Mobile Devices,” in NSDI, 2011.



[10] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, “Nectar: Automatic Management of Data and Computation
in Data Centers,” in OSDI, 2010.

[11] L. Ravindranath and P. Bahl, “A Platform for In-App Socialization.”

[12] A. Cheung, L. Ravindranath, E. Wu, S. Madden, and H. Balakrishnan, “Mobile Applications Need Targeted Micro-Updates,” in
APSys, 2013.

[13] L. Ravindranath, S. Agarwal, J. Padhye, and C. Reiderer, “Give in to procrastination and stop prefetching,” in HotNets, 2013.

[14] L. Ravindranath, C. Newport, H. Balakrishnan, and S. Madden, ““Extra-Sensory Perception” for Wireless Networks,” in HotNets,
2010.

[15] L. Ravindranath, T. Chen, A. Sivaraman, H. Balakrishnan, and S. Madden, “Code in the Air: Simplifying Tasking on Smart-
phones,” in MobiSys (demo), 2012.

[16] T. Kaler, J. P. Lynch, T. Peng, L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden, “Code in the Air: Simplifying
Sensing on Smartphones,” in SenSys (demo), 2010.


