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Abstract—We introduce a Probabilistic Grammar-Markov Model (PGMM) which couples probabilistic context-free grammars and

Markov Random Fields. These PGMMs are generative models defined over attributed features and are used to detect and classify

objects in natural images. PGMMs are designed so that they can perform rapid inference, parameter learning, and the more difficult

task of structure induction. PGMMs can deal with unknown 2D pose (position, orientation, and scale) in both inference and learning,

different appearances, or aspects of the model. The PGMMs can be learned in an unsupervised manner, where the image can contain

one of an unknown number of objects of different categories or even be pure background. We first study the weakly supervised case,

where each image contains an example of the (single) object of interest, and then generalize to less supervised cases. The goal of this

paper is theoretical, but, to provide proof of concept, we demonstrate results from this approach on a subset of the Caltech data set

(learning on a training set and evaluating on a testing set). Our results are generally comparable with the current state of the art and our

inference is performed in less than five seconds.

Index Terms—Computer vision, structural models, grammars, Markov random fields, object recognition.

Ç

1 INTRODUCTION

REMARKABLE progress in the mathematics and computer
science of probability is leading to a revolution in the

scope of probabilistic models. There are exciting new
probability models defined on structured relational sys-
tems, such as graphs or grammars [1], [2], [3], [4], [5], [6].
Unlike more traditional models such as Markov Random
Fields (MRFs) [7] and Conditional Random Fields (CRFs)
[2], these models are not restricted to having fixed graph
structures. Their ability to deal with varying graph
structure means that they can be applied to model a large
range of complicated phenomena, as has been shown by
their applications to natural languages [8], machine learning
[6], and computer vision [9].

Our long-term goal is to provide a theoretical framework
for the unsupervised learning of probabilistic models for
generating, and interpreting, natural images [9]. This is
somewhat analogous to Klein and Manning’s work on
unsupervised learning of natural language grammars [3]. In
particular, we hope that this paper can help bridge the gap
between computer vision and related work on grammars in
machine learning [8], [1], [6]. There are, however, major
differences between vision and natural language proces-
sing. First, images are arguably far more complex than
sentences, so learning a probabilistic model to generate
natural images is too ambitious to start with. Second, even if
we restrict ourselves to the simpler task of generating an

image containing a single object, we must deal with 1) the
cluttered background (similar to learning a natural lan-
guage grammar when the input contains random symbols,
as well as words), 2) the unknown 2D pose (size, scale, and
position) of the object, and 3) different appearances, or
aspects, of the object (these aspect deal with changes due to
different 3D poses of the object, different photometric
appearance, different 2D shapes, or combinations of these
factors). Third, the input is a set of image intensities and is
considerably more complicated than the limited types of
speech tags (e.g., nouns, verbs, etc.) used as input in [3].

In this paper, we address an important subproblem. We
are given a set of images containing one of an unknown
number of objects (with variable 2D pose) of different
categories or even pure background. The object is allowed
to have several different appearances or aspects. We call
this unsupervised learning in contrast to weakly supervised
learning, where each image contains an example of a single
object (but the position and boundary of the object are
unknown). We represent these images in terms of attributed
features (AFs). The task is to learn a probabilistic model for
generating the AFs (both those of the object and the
background). We require that the probability model must
allow 1) rapid inference (i.e., interpret each image), 2) rapid
parameter learning, and 3) structure induction, where the
structure of the model is unknown and must be grown in
response to the data.

To address this subproblem, we develop a Probabilistic
Grammar Markov Model (PGMM) that is motivated by this
goal and its requirements. The PGMM combines elements
of MRFs [7] and probabilistic context-free grammars
(PCFGs) [8]. The requirement that we can deal with a
variable number of AFs (e.g., caused by different aspects of
the object) motivates the use of grammars (instead of fixed
graph models like MRFs). However, PCFGs, see Fig. 1, are
inappropriate because they make independent assumptions
on the production rules and hence must be supplemented
by MRFs to model the spatial relationships between AFs of
the object. The requirement that we deal with a 2D pose
(both for learning and inference) motivates the use of
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oriented triangles of AFs as our basic building blocks for the
probabilistic model, see Fig. 2. These oriented triangles are
represented by features such as the internal angles of the
triangle that are invariant to the 2D pose of the object in the
image. The requirement that we can perform rapid
inference on new images is achieved by combining the
triangle building blocks to enable dynamic programming
(DP). The ability to perform rapid inference ensures that
parameter estimation and structure learning is practical.

We decompose the learning task into 1) learning the
structure of the model and 2) learning the parameters of the
model. Structure learning is the more challenging task [8],
[1], [6] and we propose a structure induction (or structure
pursuit) strategy that proceeds by building an AND-OR
graph [4], [5] in an iterative way by adding more triangles
or OR nodes (for different aspects) to the model. We use
clustering techniques to make proposals for adding
triangles/OR nodes and validate or reject these proposals
by model selection. The clustering techniques relate to
Barlow’s idea of suspicious coincidences [10].

We evaluate our approach by testing it on parts of the
Caltech 4 (faces, motorbikes, airplanes, and background)
[11] and Caltech 101 database [12]. Performance on this
database has been much studied [11], [13], [14], [15], [16].
However, we stress that the goal of our paper is to develop
a novel theory and test it, rather than simply trying to get
better performance on a standard database. Nevertheless,
our experiments show three major results. First, we can

learn PGMMs for a number of different objects and obtain
performance results close to the state of the art. Moreover,
we can also obtain good localization results (which is not
always possible with other methods). The speed of
inference is under five seconds. Second, we demonstrate
our ability to do learning and inference independent of the
scale and orientation of the object (we do this by artificially
scaling and rotating images from Caltech 101 (Fig. 3),
lacking a standard database where these variations occur
naturally). Third, the approach is able to learn from noisy
data (where half of the training data is only background
images) and to deal with object classes, which we illustrate
by learning a hybrid class consisting of faces, motorbikes,
and airplane.

This paper is organized as follows: We first review the
background in Section 2. Section 3 describes the features we
use to represent the images. In Section 4, we give an overview
of PGMMs. Section 5 specifies the probability distributions
defined over the PGMM. In Section 6, we describe the
algorithms for inference, parameter learning, and structure
learning. Section 7 illustrates our approach by learning
models for 38 objects, demonstrating invariance to scale and
rotation and performing learning for object classes.

2 BACKGROUND

This section gives a brief review of the background in
machine learning and computer vision.

Structured models define a probability distribution on
structured relational systems such as graphs or grammars.
This includes many standard models of probability dis-
tributions defined on graphs—for example, graphs with
fixed structure such as MRFs [7], CRFs [2], or PCFGs [8],
where the graph structure is variable. Attempts have been
made to unify these approaches under a common formula-
tion. For example, Case-Factor Diagrams [1] have recently
been proposed as a framework which subsumes both MRFs
and PCFGs. In this paper, we will be concerned with
models that combine probabilistic grammars with MRFs.
The grammars are based on AND-OR graphs [1], [4], [5],
which relate to mixtures of trees [17]. This merging of MRFs
with probabilistic grammars results in structured models
that have the advantages of variable graph structure (e.g.,
from PCFGs) combined with the rich spatial structure from
the MRFs.

There has been considerable interest in inference algo-
rithms for these structured models; for example, McAllester
et al. [1] describe how DP algorithms (e.g., Viterbi and inside-
outside) can be used to rapidly compute properties of interest
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Fig. 1. Probabilistic context-free grammar. The grammar applies
production rules with the probability to generate a tree structure.
Different random sampling will generate different tree structures. The
production rules are applied independently on different branches of the
tree. There are no sideways relations between nodes.

Fig. 2. This paper uses triplets of nodes as building blocks. We can grow the structure by adding new triangles. The junction tree (the far right panel)

is used to represent the combination of the triplets to allow efficient inference.



for Case-Factor diagrams. However, inference on arbitrary
models combining PCFGs and MRFs remains difficult.

The task of learning and, particularly, structure induc-
tion is considerably harder than inference. For MRF models,
the number of graph nodes is fixed and structure induction
consists of determining the connections between the nodes
and the corresponding potentials. For these graphs, an
effective strategy is feature induction [18], which is also
known as feature pursuit [19]. A similar strategy is also
used to learn CRFs [20], where the learning is fully
supervised. For Bayesian network, there is work on learning
the structure using the EM algorithm [21].

Learning the structure of grammars in an unsupervised
way is more difficult. Klein and Manning [3] have
developed the unsupervised learning of PCFGs for parsing
natural language, but, here, the structure of grammar is
specified. Zettlemoyer and Collins [6] perform similar work
based on lexical learning with lambda-calculus language.

To our knowledge, there is no unsupervised learning
algorithm for structure induction for any PGMM. However,
an extremely compressed version of part of our work
appeared in [22].

There has been a considerable amount of work on
learning MRF models for visual tasks such as object
detection. An early attempt was described in [23]. The
constellation model [11] is a nice example of a weakly
supervised algorithm that represents objects by a fully
connected (fixed) graph. Crandall et al. [14], [15] explore
different simpler MRF structures, such as k-fans models,
which enable rapid inference.

There is also a great deal of literature [11], [13], [14], [15],
[16] on computer vision models for performing object
recognition, many of which have been evaluated on the
Caltech databases [11]. Indeed, there is a whole range of
computer vision methods that have been evaluated on the
Caltech database [12]. A review of the performance and
critiques of the database is given in [24]. A major concern is
that the nature of this data set enables overgeneralization,
for example, the models can use features that occur in the
background of the image and not within the object.

3 THE IMAGE REPRESENTATION: FEATURES AND

ORIENTED TRIPLETS

In this paper, we will represent images in terms of isolated
AFs, which will be described in Section 3.1. A key

ingredient of our approach is to use conjunctions of features
and, in particular, triplets of features with associated angles
at the vertices which we call oriented triplets, see Figs. 4 and
5. The advantages of using conjunctions of basic features is
well known in natural language processing and leads to
unigram, bigram, and trigram features [8].

There are several reasons for using oriented triplets in
this paper. First, they contain geometrical properties that
are invariant to the scale and rotation of the triplet. These
properties include the angles between the vertices and the
relative angles at the vertices, see Figs. 4 and 5. These
properties can be used both for learning and inference of a
PGMM when the scale and rotation are unknown. Second,
they lead to a representation that is well suited to DP,
similar to the junction tree algorithm [25], which enables
rapid inference, see Figs. 6 and 2. Third, they are well suited
to the task of structure pursuit since we can combine two
oriented triplets by a common edge to form a more complex
model, see Figs. 2 and 6.

3.1 The Image Features

We represent an image by AFs fxi : i ¼ 1; ::; N�g, where N�

is the number of features in image I� with � 2 �, where � is
the set of images. Each feature is represented by a triple
xi ¼ ðzi; �i; AiÞ, where zi is the location of the feature in the
image, �i is the orientation of the feature, and Ai is an
appearance vector.

These features are computed as follows: We apply the
Kadir-Brady [26] operator Kb to select circular regions
fCiðI� Þ : i ¼ 1; . . . ; N�g of the input image I� such that
KbðCiðI�ÞÞ > T, 8 i, where T is a fixed threshold. We scale
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Fig. 3. Ten of the object categories from Caltech 101 that we learn in this paper.

Fig. 4. The oriented triplet is specified by the internal angles �, the

orientation of the vertices �, and the relative angles � between them.



these regions to a constant size to obtain a set of scaled
regions fĈiðI�Þ : i ¼ 1; . . . ; N�g. Then, we apply the SIFT
operator Lð:Þ [27] to obtain Lowe’s feature descriptor Li ¼
LðĈiðI�ÞÞ together with an orientation �i (also computed by
[27]) and set the feature position zi to be the center of the
window Ci. Then, we perform PCA on the appearance
attributes (using the data from all images fI� : � 2 �g) to
obtain a 15-dimensional subspace (a reduction from
128 dimensions). Projecting Li into this subspace gives us
the appearance attribute Ai.

The motivation for using these operators is given as
follows: First, the Kadir-Brady operator is an interest operator
that selects the parts of the image that contain interesting
features (e.g., edges, triple points, and textured structures).
Second, the Kadir-Brady operator adapts geometrically to
the size of the feature and, hence, is scale invariant. Third,
the SIFT operator is also (approximately) invariant to a
range of photometric and geometric transformations of the
feature. In summary, the features occur at interesting points
in the image and are robust to photometric and geometric
transformations.

3.2 The Oriented Triplets

An oriented triplet of three feature points has a geometry
specified by ðzi; �i; zj; �j; zk; �kÞ and is illustrated in Figs. 4
and 5. We construct a 15-dimensional invariant triplet vector~l
that is invariant to the scale and rotation of the oriented
triplet:

~lðzi; �i; zj; �j; zk; �kÞ ¼ ðl1=L; l2=L; l3=L;
cos�1; sin�1; cos�2; sin�2; cos�3; sin�3;

cos �1; sin�1; cos �2; sin�2; cos �3; sin�3Þ;
ð1Þ

where l1, l2, and l3 are the length of the three edges,
L ¼ l1 þ l2 þ l3, �1, �2, and �3 are the relative angles between
the orientations �i, �j, and �k and the orientations of the three
edges of the triangle, and�1,�2, and�3 are the angles between
edges of the triangle (hence, �1 þ �2 þ �3 ¼ �).

This representation is overcomplete. However, we found
empirically that it was more stable than lower dimensional
representations. If rotation and scale invariance are not
needed, then we can use alternative representations of
triplets such as ðl1; l2; l3; �1; �2; �3; �1; �2; �3Þ. Previous
authors [28], [29] have used triples of features, but, to our
knowledge, oriented triplets are novel.

4 PROBALISTIC GRAMMAR-MARKOV MODEL

We now give an overview of the PGMM, which has
characteristics of both a probabilistic grammar, such as a
PCFG, and an MRF. The probabilistic grammar component
of the PGMM specifies different topological structures, as
illustrated in the five leftmost panels in Fig. 6, enabling the
ability to deal with variable number of AFs. The MRF
component specifies spatial relationships and is indicated
by the horizontal connections.
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Fig. 5. This figure illustrates the features and triplets without orientation (left two panels) and oriented triplets (next two panels).

Fig. 6. Graphical models. Squares, triangles, and circles indicate AND, OR, and LEAF nodes, respectively. The horizontal lines denote MRF

connections. The far right panel shows the background node generating leaf nodes. The models for O1 for panels 2, 3, and 4 correspond to the

triplets combinations in Fig. 2. See text for notation.



Formally, we represent a PGMM by a graph G ¼ ðV ;EÞ,
where V and E denote the set of vertices and edges,
respectively. The vertex set V contains three types of nodes,
“OR” nodes, “AND” nodes, and “LEAF” nodes, which are
depicted in Fig. 6 by triangles, rectangles, and circles,
respectively. The edge set E contains vertical edges defining
the topological structure and horizontal edges defining
spatial constraints (e.g., MRFs).

The leaf nodes are indexed bya and will correspond to AFs
in the image. They have attributes ðza; �a; AaÞ, where za
denotes the spatial position, �a denotes the orientation, and
Aa denotes the appearance. There is also a binary-valued
observability variable ua that indicates whether the node is
observable in the image (a node may be unobserved because it
is occluded or the feature detector has too high a threshold).
We set y to be the parse structure of the graph when the OR

nodes take specific assignments. We decompose the set of
leaves LðyÞ ¼ LBðyÞ

S
LOðyÞ, where LBðyÞ are the leaves due

to the background model, see the far right panel in Fig. 6, and
LOðyÞ are the leaves due to the object. We order the nodes in
LOðyÞ by “dropout,” so that the closer the node is to the root,
the lower its number is, see Fig. 6.

In this paper, the only OR node is the object category
node O. This corresponds to different aspects of the object.
The remaining nonterminal nodes are AND nodes. They
include a background node B, object aspect nodes Oi, and
clique nodes of the form Na;aþ1 (containing points na, naþ1).
Each aspect Oi corresponds to a set of object leaf nodes
LOðyÞ with corresponding cliques CðLOðyÞÞ. As shown in
Fig. 6, each clique node Na;aþ1 is associated with a leaf node
naþ2 to form a triplet-clique Ca fna; naþ1; naþ2g.

The directed (vertical) edges connect nodes at successive
levels of the tree. They connect

1. the root node S to the object node and the
background node,

2. the object node to aspect nodes,
3. a nonterminal node to three leaf nodes, see panel 2 in

Fig. 6, or
4. a nonterminal node to a clique node and a leaf node,

see panel 3 in Fig. 6.

In cases 3 and 4, they correspond to a triplet clique of point
features.

Fig. 6 shows examples of PGMMs. The top rectangle node
S is an AND node. The simplest case is a pure background
model, in panel 1, where S has a single child nodeB that has
an arbitrary number of leaf nodes corresponding to feature
points. In the next model, panel 2, S has two child nodes

representing the background B and the object category O.
The category node O is an OR node that is represented by a
triangle. The object category node O has a child node, O1,
which has a triplet of child nodes corresponding to point
features. The horizontal line indicates spatial relations of
this triplet. The next two models, panels 3 and 4, introduce
new feature points and new triplets. We can also introduce
a new aspect of the object O2, see panel 5, to allow for the
object having a different appearance.

5 THE DISTRIBUTION DEFINED ON THE PGMM

The structure of the PGMM is specified by Fig. 7. The
PGMM specifies the probability distribution of the AFs
observed in an image in terms of parse graph y and model
parameters �, ! for the grammar and the MRF, respectively.
The distribution involves additional hidden variables that
include the pose G and the observability variables u ¼ fuag.
We set z ¼ fzag, A ¼ fAag, and � ¼ f�ag. See Table 1 for the
notation used in the model.

We define the full distribution to be

P ðu; z;A; �; y; !;�Þ ¼ P ðAjy; !AÞP ðz; �jy; !gÞ
P ðujy; !gÞP ðyj�ÞP ð!ÞP ð�Þ:

ð2Þ

The observed AFs are those for which ua ¼ 1. Hence, the
observed image features x ¼ fðza; Aa; �aÞ : s:t: ua ¼ 1g. We
can compute the joint distribution over the observed image
features x by

P ðx; y; !;�Þ
¼

X
fðza;Aa;�aÞ: s:t:ua¼0g

P ðu; z; A; �; y; !;�Þ: ð3Þ

We now briefly explain the different terms in (2) and
refer to the following sections for details.
P ðyj�Þ is the grammatical part of the PGMM (with prior

P ð�Þ). It generates the topological structure y that specifies
which aspect modelOi is used and the number of background
nodes. The term P ðujy; !gÞ specifies the probability that the
leaf nodes are observed (background nodes are always
observed). P ðz; �j!gÞ specifies the probability of the spatial
positions and orientations of the leaf nodes. The distributions
on the object leaf nodes are specified in terms of the invariant
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Fig. 7. This figure illustrates the dependencies between the variables.
The variables � specify the probability for topological structure y. The
spatial assignments z of the leaf nodes are influenced by the topological
structure y and the MRF variables !. The probability distribution for the
image features x depends on y, !, and z.

TABLE 1
The Notations Used for the PGMM



shape vectors defined on the triplet cliques, while the
background leaf nodes are generated independently. Finally,
the distribution P ðAjy; !AÞ generates the appearances of the
AFs. P ð!g; !AÞ is the prior on !.

5.1 Generating the Leaf Nodes: P ðyj�Þ
This distribution P ðyj�Þ specifies the probability distribu-
tion of the leaf nodes. It determines how many AFs are
present in the image (except for those that are unobserved
due to occlusion or falling below threshold). The output of y
is the set of numbered leaf nodes. The numbering
determines the object nodes LOðyÞ (and the aspects of the
object) and the background nodes LBðOÞ. (The attributes of
the leaf nodes are determined in later sections.)
P ðyj�Þ is specified by a set of production rules. In

principle, these production rules can take any form, such as
those used in PCFGs [8]. Other possibilities are Dechter’s
AND-OR graphs [4], case-factor diagrams [1], composite
templates [5], and compositional structures [30]. In this paper,
however, we restrict our implementation to rules of form:

S! fB;Og with prob 1;

O! fOj : j ¼ 1; . . . ; �g with prob; �O
j ; j ¼ 1; . . . ; �

Oj ! fna;Naþ1;aþ2g with prob: 1; a ¼ �j;
Na;aþ1 ! fna;Naþ1;aþ2g with prob: 1;

�i þ 1 � a � �jþ1 � 4:

N�jþ1�3;�jþ1�2 ! fn�jþ1�2; n�jþ1�1g with prob 1;

B! fn��þ1
; . . . ; n��þ1þmg

with prob �Be�m�B ðm ¼ 0; 1; 2 . . .Þ:

ð4Þ

Here, �1 ¼ 1. The nodes �j; . . . ; �jþ1 � 1 correspond to
aspect Oj. Note that these f�jg are parameters of the
model that will be learned. � is the number of aspects
and f�O

j g and �B are parameters that specify the
distribution (all of these will be learned). We write � ¼
f�B;�O

1 ; . . . ;�O
� ; �1; . . . ; ��þ1; �g: These rules are illustrated

in Fig. 6 (note that, for the simplicity of the figure, we
represent the combination Na;aþ1 7!fna;Naþ1;aþ2g and
Naþ1;aþ2 by Na;aþ1 7!ðna; naþ1; naþ2Þ).

5.2 Generating the Observable Leaf Nodes:
P ðujy; !gÞ

The distribution P ðujy; !gÞ specifies whether objects leafs
are observable in the image (all background nodes are
assumed to be observed). The observation variable u allows
for the possibility that an object leaf node a is unobserved
due to occlusion or because the feature detector response
falls below threshold. Formally, ua ¼ 1 if the object leaf
node a is observed and ua ¼ 0 otherwise. We assume that
the observability of nodes are independent:

P ðujy; !gÞ ¼
Y

a2LOðyÞ
�ua! ð1� �!Þ

ð1�uaÞ

¼ exp
X

a2LOðyÞ
f	ua;1 log�! þ 	ua;0 logð1� �!Þg

8<
:

9=
;;
ð5Þ

where �! is the parameter of the Bernoulli distribution, and
	ua;1 are the Kronecker delta function (i.e., 	ua;1 ¼ 0 unless
ua ¼ 1).

5.3 Generating the Positions and Orientation of the
Leaf Nodes: P ðz; �jy; !gÞ

P ðz; �jy; !gÞ is the distribution of the spatial positions z and
orientations � of the leaf nodes. We assume that the spatial
positions and orientations of the background leaf nodes are
independently generated from a uniform probability
distribution.

The distribution on the position and orientations of the
object leaf nodes is required to satisfy two properties: 1) It is
invariant to the 2D pose (position, orientation, and scale)
and 2) it is easily computable. In order to satisfy both of
these properties, we make an approximation. We first
present the distribution that we use and then explain its
derivation and the approximation involved.

The distribution is given by

P ðz; �jy; !gÞ ¼ K � P ðlðz; �Þjy; !gÞ; ð6Þ

where P ðlðz; �Þjy; !gÞ (see (7)) is a distribution over the
invariant shape vectors l computed from the spatial
positions z and orientations �. We assume that K is a
constant. This is an approximation because the full
derivation, see below, has Kðz; �Þ.

We define the distribution P ðz; �jy; !gÞ over l to be a
Gaussian distribution defined on the cliques:

P ðljy; !gÞ ¼ 1

Z
exp

X
a2CliquesðyÞ

 að~la; !gaÞ

8<
:

9=
;; ð7Þ

where ~la ¼~lðza; �a; zaþ1; �aþ1; zaþ2; �aþ2Þ, the triplet cliques
are C1; . . . ; C��2, where Ca ¼ ðna; naþ1; naþ2Þ. The invariant
triplet vector ~la is given by (1).

The potential  að~la; !gaÞ specifies geometric regularities of
clique Ca that are invariant to the scale and rotation. They
are of the form

 að~la; !gaÞ ¼ �ð1=2Þð~la � ~
zaÞ
T ð�z

aÞ
�1ð~la � ~
zaÞ; ð8Þ

where !ga ¼ ð
za;�z
aÞ and !g ¼ f!gag.

Now, we derive (6) for P ðz; �jy; !gÞ and explain the
nature of the approximation. First, we introduce a pose
variable G, which specifies the position, orientation, and
scale of the object. We set

P ðz; �;~l; Gjy; !gÞ ¼ P ðz; �jl; GÞP ðljy; !gÞP ðGÞ; ð9Þ

where the distribution P ðz; �jl; GÞ is of the form

P ðz; �jl; GÞ ¼ 	z;zðG;lÞ	�;�ðG;lÞ; ð10Þ

where 	a;b denotes the function 	ða� bÞ. P ðz; �jl; GÞ specifies
the positions and orientations z; � by deterministic functions
zðl; GÞ, �ðl; GÞ of the pose G and shape invariant vectors l.
We can invert this function to compute lðz; �Þ and Gðz; �Þ
(i.e., to compute the invariant feature vectors and the pose
from the spatial positions and orientations z; �).

We obtain P ðz; �jy; !gÞ by integrating out l; G:

P ðz; �jy; !gÞ ¼
Z
dG

Z
dlP ðz; �; l; Gjy; !gÞ: ð11Þ
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Substituting (10) and (9) into (11) yields

P ðz; �jy; !zÞ

¼
Z
dG

Z
dl	z;zðl;GÞ	�;�ðl;GÞP ðljy; !gÞP ðGÞ

¼
Z Z

d�d�
@ðl; GÞ
@ð�; �Þ 	z;�	�;�P ðlz;�jy; !

gÞP ðGz;�Þ

¼ @ðl; GÞ
@ð�; �Þ ðz; �ÞP ðlz;�jy; !

gÞP ðGz;�Þ;

ð12Þ

where lz;� ¼ lðz; �Þ, Gz;� ¼ Gðz; �Þ, and we performed a

change of integration from variables ðl; GÞ to new variables

ð�; �Þ with � ¼ zðl; GÞ, � ¼ �ðl; GÞ, and where @ðl;GÞ
@ð�;�Þ ðz; �Þ is

the Jacobian of this transformation (evaluated at ðz; �Þ).
To obtain the form in (6), we simplify (12) by assuming

that P ðGÞ is the uniform distribution and by making the
approximation that the Jacobian factor is independent of
ðz; �Þ (this approximation will be valid provided the size
and shapes of the triplets do not vary too much).

5.4 The Appearance Distribution P ðAjy; !AÞ
We now specify the distribution of the appearances
P ðAjy; !AÞ. The appearances of the background nodes are
generated from a uniform distribution. For the object nodes,
the appearance Aa is generated by a Gaussian distribution
specified by !Aa ¼ ð
Aa ;�A

a Þ:

P ðAaj!Aa Þ ¼
1ffiffiffiffiffiffi

2�
p
j�A

a
j
exp�a; ð13Þ

where �a ¼ �ð1=2ÞðAa � 
Aa Þ
T ð�A

a Þ
�1ðAa � 
Aa Þ.

5.5 The Priors: P ð�Þ; P ð!AÞ; P ð!gÞ
The prior probabilities are set to be uniform distributions,
except for the priors on the appearance covariances �A

a that
are set to zero mean Gaussians with fixed variance.

5.6 The Correspondence Problem

Our formulation of the probability distributions has
assumed an ordered list of nodes indexed by a. However,
these indices are specified by the model and cannot be
observed from the image. Indeed, performing inference
requires us to solve a correspondence problem between the
AFs in the image and those in the model. This correspon-
dence problem is complicated because we do not know the
aspect of the object and some of the AFs of the model may
be unobservable.

We formulate the correspondence problem by defining a
new variable V ¼ fiðaÞg. For each a 2 LOðyÞ, the variable
iðaÞ 2 f0; 1; . . . ; N�g, where iðaÞ ¼ 0 indicates that a is
unobservable (i.e., ua ¼ 0). For background leaf nodes,
iðaÞ 2 f1; . . . ; N�g. We constrain all image nodes to be
matched so that 8j 2 f1; . . . ; N�g there exists a unique b 2
LðyÞ such that iðbÞ ¼ j (we create as many background
nodes as is necessary to ensure this). To ensure uniqueness,
we require that the object triplet nodes all have unique
matches in the image (or are unmatched) and that back-
ground nodes can only match AFs that are not matched to
object nodes or to other background nodes. (It is theoreti-
cally possible that object nodes from different triplets might
match the same image AF. However, this is extremely
unlikely due to the distribution on the object model and we
have never observed it.)

Using this new notation, we can drop the u variable in (5)

and replace it by V with prior

P ðV jy; !gÞ ¼ 1

Ẑ

Y
a

expf� logf�!=ð1� �!Þg	iðaÞ;0g: ð14Þ

This gives the full distribution (see (2), which is defined

over u variable):

P ðfzi; Ai; �igjV ; y; !g; !A;�ÞP ðV jy; !gÞ
P ðyj�ÞP ð!ÞP ð�Þ;

ð15Þ

with

P ðfzi; Ai; �igjV ; y; !g; !A;�Þ

¼ 1

Z

Y
a2LOðyÞ:iðaÞ6¼0

P ðAiðaÞjy; !A; V Þ

Y
c2CðLOðyÞÞ

P ð~lcðfziðaÞ; �iðaÞgÞjy; !g; V Þ:

ð16Þ

We have the constraint that jLBðyÞj þ
P

a2LOðyÞð1�
	iðaÞ;0Þ ¼ N�: Hence, P ðyj�Þ reduces to two components:

1) the probability of the aspect P ðLOðyÞj�Þ and 2) the

probability �Be��BjLBðyÞj of having jLBðyÞj background

nodes.
There is one problem with the formulation of (16). There

are variables on the right-hand side of the equation that are

not observed—i.e., za; �a such that iðaÞ ¼ 0. In principle,

these variables should be removed from the equation by

integrating them out. In practice, we replace their values by

their best estimates from P ð~lcðfziðaÞ; �iðaÞgÞjy; !gÞ using our

current assignments of the other variables. For example,

suppose we have assigned two vertices of a triplet to two

image AFs and decide to assign the third vertex to be

unobserved. Then, we estimate the position and orientation

of the third vertex by the most probable value given the

position and orientation assignments of the first two

vertices and relevant clique potential. This is suboptimal,

but intuitive and efficient. (It does require that we have at

least two vertices assigned in each triplet.)

6 LEARNING AND INFERENCE OF THE MODEL

In order to learn the models, we face three tasks: 1) structure

learning, 2) parameter learning to estimate ð�; !Þ, and

3) inference to estimate ðy; V Þ (from a single image).
Inference requires estimating the parse tree y and the

correspondences V ¼ fiðaÞg from input x. The model

parameters ð�; !Þ are fixed. This requires solving

ðy�; V �Þ ¼ arg max
y;V

P ðy; V jx; !;�Þ

¼ arg max
y;V

P ðx; !;�; y; V Þ:
ð17Þ

As described in Section 6.1, we use DP to estimate y�; V �

efficiently.
Parameter learning occurs when the structure of the

model is known, but we have to estimate the parameters of

the model. Formally, we specify a set W of parameters

ð!;�Þ, which we estimate by MAP. Hence, we estimate
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ð!�;��Þ ¼ arg max
!;�2W

P ð!;�jxÞ / P ðxj!;�ÞP ð!;�Þ

¼ arg max
!;�2W

P ð!;�Þ
Y
�2�

X
y� ;V�

P ðx� ; y� ; V� j!;�Þ:
ð18Þ

This is performed by an EM algorithm, see Section 6.2,
where the summation over the fV�g is performed by DP (the
summation over the ys corresponds to summing over the
different aspects of the object). The !;� are calculated using
sufficient statistics.

Structure Learning involves learning the model struc-
ture. Our strategy is to grow the structure of the PGMM by
adding new aspect nodes or by adding new cliques to
existing aspect nodes. We use clustering techniques to
propose ways to grow the structure, see Section 6.3. For
each proposed structure, we have a set of parameters W
that extends the set of parameters of the previous structure.
For each new structure, we evaluate the fit to the data by
computing the score:

score ¼ max
!;�

P ð!;�Þ
Y
�2�

X
y�

X
V�

P ðx� ; y� ; V� j!;�Þ: ð19Þ

We then apply standard model selection by using the score
to determine if we should accept the proposed structure or
not. Evaluating the score requires summing over the different
aspects and correspondence fV�g for all of the images. This is
performed by using dynamic programming.

6.1 Dynamic Programming for the Max and Sum

Dynamic programming plays a core role for PGMMs. All
three tasks—inference, parameter learning, and structure
learning—require dynamic programming. First, inference
uses dynamic programming via the max rule to calculate the
most probable parse tree y�; V � for input x. Second, in
parameter learning, the E step of the EM algorithm relies on
dynamic programming to compute the sufficient statistics by
the sum rule and take the expectations with respect to fy�g,
fV�g. Third, structure learning summing over all configura-
tions fy�g, fV�g uses dynamic programming as well.

The structure of a PGMM is designed to ensure that
dynamic programming is practical. Dynamic programming
was first used to detect objects in images by Coughlan et al.
[31]. In this paper, we use the ordered clique representation
to use the configurations of triangles as the basic variables
for dynamic programming similar to the junction tree
algorithm [25].

We first describe the use of dynamic programming using
the max rule for inference (i.e., determining the aspect and
correspondence for a single image). Then, we will describe
the modification to the sum rule used for parameter
learning and structure pursuit.

To perform inference, we need to estimate the best aspect
(object model) LOðyÞ and the best assignment V . We loop
over all possible aspects and, for each aspect, we select the
best assignment by dynamic programming (DP). For DP,
we keep a table of the possible assignments, including the
unobservable assignment. As mentioned above, we perform
the suboptimal method of replacing missing values za; �a
such that iðaÞ ¼ 0 by their most probable estimates.

The conditional distribution is obtained from (4), (7),
(13), and (14):

P ðy; V ; xj!;�Þ ¼ 1

Z
exp

( X
a2CðLOðyÞÞ

 að~liðaÞ; !gaÞ

þ
X

a2LOðyÞ
f1� 	iðaÞ;0g�iðaÞ

�
X

a2LOðyÞ
logf�!=ð1� �!Þg	iðaÞ;0

� �BðN� � jLOðyÞjÞ þ
X
j2½1;��

Ið�j; LOðyÞÞ log �O
j

)
;

ð20Þ

where �iðaÞ ¼ �ð1=2ÞðAiðaÞ � 
Aa Þ
T ð�A

a Þ
�1ðAiðaÞ � 
Aa Þ, ~liðaÞ ¼

~lðziðaÞ; �iðaÞ; ziðaþ1Þ; �iðaþ1Þ; ziðaþ2Þ; �iðaþ2ÞÞ and Ið�j; LOðyÞÞ is an
indicator that indicates whether the aspect j is active or not.
Ið�j; LOðyÞÞ is equal to one if �j 2 LOðyÞ, otherwise zero.

We can reexpress this as

P ðy; V ; xj!;�Þ ¼
YjLOj�2

a¼1

�̂a½ðziðaÞ; AiðaÞ; �iðaÞÞ;

ðziðaþ1Þ; Aiðaþ1Þ; �iðaþ1ÞÞ; ðziðaþ2Þ; Aiðaþ2Þ; �iðaþ2ÞÞ�;
ð21Þ

where the �̂a½:� is determined by (20).
We maximize (20) with respect to y andV . The choice of y is

the choice of aspect (because the background nodes are
determined by the constraint that all AFs in the image are
matched). For each aspect, we use DP to maximize over V .
This can be done recursively by defining a function ha ¼
ha½ðziðaÞ; AiðaÞ; �iðaÞÞ; ðziðaþ1Þ; Aiðaþ1Þ; �iðaþ1ÞÞ�by a forward pass:

haþ1 ¼ max
iðaÞ

�̂aha: ð22Þ

The forward pass computes the maximum value of
P ðy; V ; xj!;�Þ. The backward pass of dynamic program-
ming computes the most probable value V �. The forward
and backward passes are computed for all possible aspects
of the model. As stated earlier in Section 5.6, we make an
approximation by replacing the values ziðaÞ; �iðaÞ of un-
observed object leaf nodes (i.e., iðaÞ ¼ 0) by their most
probable values.

We perform the max rule, (22), for each possible
topological structure y. In this paper, the number of
topological structures is very small (i.e., less than 20) for
each object category and, so, it is possible to enumerate
them all. The computational complexity of the dynamic
programming algorithm is OðMNKÞ, where M is the
number of cliques in the aspect model for the object, K ¼
3 is the size of the maximum clique, and N is the number of
image features.

We will also use the dynamic programming algorithm
(using the sum rule) to help perform parameter learning
and structure learning. For parameter learning, we use the
EM algorithm, see Section 6.2, which requires calculating
sums over different correspondences and aspects. For
structure learning, we need to calculate the score, see (19),
which also requires summing over different correspon-
dences and aspects. This requires replacing the max in (22)
by
P

. If points are unobserved, then we restrict the sum
over their positions for computational reasons (summing
over the positions close to their most likely positions).

6.2 EM Algorithm for Parameter Learning

We perform EM to estimate the parameters !;� from the set
of images fx� : � 2 �g. The criterion is to find the !;�
which maximize
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P ð!;�jfx�gÞ ¼
X

fy�g;fV�g
P ð!;�; fy�g; fV�gjfx�gÞ; ð23Þ

where

P ð!;�; fy�g; fV�gjfx�gÞ

¼ 1

Z
P ð!;�Þ

Y
�2�

P ðy� ; V� jx� ; !;�Þ:
ð24Þ

This requires us to treat fy�g; fV�g as missing variables

that must be summed out during the EM algorithm. To do

this, we use the EM algorithm using the formulation

described in [32]. This involves defining a free energy

F ½q; !;�� by

F ½qð:; :Þ; !;��
¼

X
fy�g;fV�g

qy� ;V� log qy� ;V� �
X

fy�g;fV�g
qy� ;V� log ~P ; ð25Þ

where qy� ;V� ¼ qðfy�g; fV�gÞ is a normalized probability

distribution and ~P ¼ P ð!;�; fy�g; fV�gjfx�gÞ. It can be

shown [32] that minimizing F ½qð:; :Þ; !;�� with respect to

qð:; :Þ and ð!;�Þ in alternation is equivalent to the standard

EM algorithm. This gives the E step and the M step:
E step:

qty� ;V� ¼ P fy�g; fV�gjfx�g; !
t;�t

� �
: ð26Þ

M step:

ð!tþ1;�tþ1Þ ¼ arg min
!;�
�

X
fy�g;fV�g

qty� ;V� log ~P
n o

: ð27Þ

The distribution qðfy�g; fV�gÞ ¼
Q

�2� q� ðfy�g; fV�gÞ be-

cause there is no dependence between the images. Hence,

the E step reduces to

qt�ðfy�g; fV�gÞ ¼ P fy�g; fV�gjfx�g; !t;�t
� �

; ð28Þ

which is the distribution of the aspects and the correspon-
dences using the current estimates of the parameters !t;�t.

The M step requires maximizing with respect to the
parameters !;� after summing over all possible configura-
tions (aspects and correspondences). The summation can be
performed using the sum version of dynamic program-
ming, see (22). The maximization over parameters is
straightforward because they are the coefficients of Gaus-
sian distributions (mean and covariances) or exponential
distributions. Hence, the maximization can be done
analytically.

For example, consider a simple exponential distribution

P ðhj�Þ ¼ 1
Zð�Þ exp fð�Þ�ðhÞf g, where h is the observable, � is

for the parameters, fð:Þ and �ð:Þ are arbitrary functions, and

Zð�Þ is the normalization term. Then,
P

h qðhÞ logP ðhj�Þ ¼
fð�Þ

P
h qðhÞ�ðhÞ � logZð�Þ: Hence, we have

@
P

h qðhÞ logP ðhj�Þ
@�

¼ @fð�Þ
@�

X
h

qðhÞ�ðhÞ � @ logZð�Þ
@�

:
ð29Þ

If the distributions are of simple forms, like the Gaussians
used in our models, then the derivatives of fð�Þ and

logZð�Þ are straightforward to compute and the equation
can be solved analytically. The solution is of the form


ðtÞ ¼
X
h

qtðhÞh; 2ðtÞ ¼
X
h

qtðhÞ h� 
ðtÞf g2: ð30Þ

Finally, the EM algorithm is only guaranteed to converge
to a local maxima of P ð!;�jfx�gÞ and, so, a good choice of
initial conditions is critical. The triplet vocabularies,
described in Section 6.3.1, give a good initialization (so we
do not need to use standard methods such as multiple
initial starting points).

6.3 Structure Pursuit

Structure pursuit proceeds by adding a new triplet clique to
the PGMM. This is done either by adding a new aspect node
Oj and/or by adding a new clique node Na;aþ1. This is
illustrated in Fig. 6, where we grow the PGMM from panel 1
to panel 5 in a series of steps. For example, the steps from
(1) to (2) and from (4) to (5) correspond to adding a new
aspect node. The steps from (2) to (3) and from (3) to (4)
correspond to adding new clique nodes. Adding new nodes
requires adding new parameters to the model. Hence, it
corresponds to expanding the set W of nonzero parameters.

Our strategy for structure pursuit is given as follows
(see Figs. 8 and 9): We first use clustering algorithms to
determine a triplet vocabulary. This triplet vocabulary is
used to propose ways to grow the PGMM, which are
evaluated by how well the modified PGMM fits the data.
We select the PGMM with the best score, see (19). The use
of these triplet vocabularies reduces the, potentially
enormous, number of ways to expand the PGMM down
to a practical number. We emphasize that the triplet
vocabulary is only used to assist the structure learning,
and it does not appear in the final PGMM.

6.3.1 The Appearance and Triplet Vocabularies

We construct appearance and triplet vocabularies using the
features fx�i g extracted from the image data set, as
described in Section 3.1.

To get the appearance vocabulary V ocA, we perform
k-means clustering on the appearances fA�

i g (ignoring the
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Fig. 8. This figure illustrates structure pursuit. (a) Image with triplets.
(b) One triplet induced. (c) Two triplets induced. (d) Three triplets
induced. Yellow triplets: all triplets from triplet vocabulary. Blue triplets:
structure induced. Green triplets: possible extensions for next induction.
Circles with radius: image features with different sizes.



spatial positions and orientations fðz�i ; ��i Þg). The means,

A;a, and covariances, �A;a, of the clusters define the
appearance vocabulary:

V ocA ¼ ð
A;a;�A;aÞ : a 2 �A

� �
; ð31Þ

where �A is a set of indexes for the appearance (j�Aj is
given by the number of means).

To get the triplet vocabulary, we first quantize the

appearance data fA�
i g to the means 
A;a of the appearance

vocabulary using the nearest neighbor (with euclidean

distance). This gives a set of modified data features

fðz�i ; ��i ; 
A;aði;�Þg, where aði; �Þ ¼ arg mina2�A
jA�

i � 
A;aj.
For each appearance triplet ð
A;a; 
A;b; 
A;cÞ, we obtain

the set of positions and orientations of the corresponding
triplets of the modified data features:�

z�i ; �
�
i

� �
; z�j ; �

�
j

� 	
; z�k; �

�
k

� �
:

s:t: 
A;aði;�Þ; 
A;aðj;�Þ; 
A;aðk;�Þ
� 	

¼ ð
A;a; 
A;b; 
A;cÞ


:

ð32Þ

We compute the ITV ~l of each triplet and perform k-means

clustering to obtain a set of means 
g;sabc and covariances �g;s
abc

for s 2 dabc, where jdabcj denotes the number of clusters. This

gives the triplet vocabulary:

D ¼
�

g;sabc;�

g;s
abc; ð
A;a; 
A;b; 
A;cÞ; ð�A;a;�A;b;�A;cÞ :

s 2 dabc; a � b � c a; b; c 2 �A

�
:

ð33Þ

The triplet vocabulary contains geometric and appear-
ance information (both mean and covariance) about the
triplets that commonly occur in the images. This triplet
vocabulary will be used to make proposals to grow the

structure of the model (including giving initial conditions
for learning the model parameters by the EM algorithm).

6.3.2 Structure Induction Algorithm

We now have the necessary background to describe our
structure induction algorithm. The full procedure is
described in the pseudocode in Fig. 9. Fig. 6 shows an
example of the structure being induced sequentially.

Initially, we assume that all of the data is generated by
the background model. In the terminology of Section 6, this
is equivalent to setting all of the model parameters � to be
zero (except those for the background model). We can
estimate the parameters of this model and score the model,
as described in Section 6.

Next, we seek to expand the structure of this model. To
do this, we use the triplet vocabularies to make proposals.
Since the current model is the background model, the only
structure change allowed is to add a triplet model as one
child of the category node O (i.e., to create the background
plus triple model described in the previous section, see
Fig. 6). We consider all members of the triplet vocabulary as
candidates, using their cluster means and covariances as
initial setting on their geometry and appearance properties
in the EM algorithm, as described in Section 6.2. Then, for
all of these triples, we construct the background plus triplet
model, estimate their parameters, and score them. We
accept the one with the highest score as the new structure.

As the graph structure grows, we now have more ways
to expand the graph. We can add a new triplet as a child of
the category node. This proceeds as in the previous
paragraph or we can take two members of an existing
triplet and use them to construct a new triplet. In this case,
we first parse the data using the current model. Then, we
use the triplet vocabulary to propose possible triplets,
which partially overlap with the current model (and give
them initial settings on their parameters as before), see
Fig. 8. Then, for all possible extensions, we use the methods
in Section 6 to score the models. We select the one with the
highest score as the new graph model. If the score increase
is not sufficient, we cease building the graph model. See the
structured models in Fig. 11.

7 EXPERIMENTAL RESULTS

Our experiments were designed to give proof of concept
for the PGMM. First, we show that our approach gives
comparable results to other approaches for classification
(testing between images containing the object versus
purely background images) when tested on the Caltech 4
(faces, motorbikes, airplanes, and background) [11] and
Caltech 101 images [12] (note that most of these approaches
are weakly supervised and so are given more information
than our unsupervised method). Moreover, our approach
can perform additional tasks such as localization (which are
impossible for some methods like bag of key points [16]).
Our inference algorithm is fast and takes under five seconds
(the CPU is an AMD Opteron processor 880, 2.4 GHz).
Second, we illustrate a key advantage of our method, that it
can both learn and perform inference when the 2D pose
(position, orientation, and scale) of the object varies. We
check this by creating a new data set by varying the pose of
objects in Caltech 101. Third, we illustrate the advantages of
having a variable graph structure (i.e., OR nodes) in several
ways. We first quantify how the performance of the model
improves as we allow the number of OR nodes to increase.
Next, we show that learning is possible even when the
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training data set consists of a random mixture of images
containing the objects and images that do not (and, hence,
are pure background). Finally, we learn a hybrid model,
where we are given training examples that contain one of
several different types of object and learn a model that has
different OR nodes for different objects.

7.1 Learning Individual Objects Models

In this section, we demonstrate the performance of our
models for objects chosen from the Caltech data sets. We
first choose a set of 13 object categories (as reported in [22]).
Three classes of faces, motorbikes, and airplanes come from
that in [11]. We use the identical splitting for training and
testing as used in [11]. The remaining categories are selected
from the Caltech 101 data set [12]. To avoid concerns about
selection bias and to extend the number of object categories,
we perform additional experiments on all object categories
from that in [12] for which there are at least 80 images (80 is
a cutoff factor chosen to ensure that there is a sufficient
amount of data for training and testing). This gives an
additional set of 26 categories (the same parameter settings

were used on both sets). Each data set was randomly split
into two sets with equal size (one for training and the other
for testing). Note that, in the Caltech data sets, the objects
typically appear in standardized orientations. Hence,
rotation invariance is not necessary. To check this, we also
implemented a simpler version of our model that was not
rotation invariant by modifying the~l vector, as described in
Section 3.2. The results of this simplified model were
practically identical to the results of the full model, which
we now present.

K-means clustering was used to learn the appearance
and triplet vocabularies, where, typically, K is set to 150
and 1,000, respectively. Each row in Fig. 5 corresponds to
some triplets in the same group.

We illustrate the results of the PGMMs in Table 2 and
Fig. 10. A score of 90 percent means that we get a true
positive rate of 90 percent and a false positive rate of
10 percent. This is for classifying between images contain-
ing the object and purely background images [11]. For
comparison, we show the performance of the Constellation
Model [11]. These results are slightly inferior to the bag of
keypoint methods [16] (which requires weak supervision).
We also evaluate the ability of the PGMMs to localize the
object. To do this, we compute the proportion of the AFs of
the model that lie within the ground-truth bounding box.
Our localization results are shown in Table 3. Note that
some alternative methods, such as the bag of keypoints, are
unable to perform localization.

The models for individual objects classes, learned from
the proposed algorithm, are illustrated in Fig. 11. Observe
that the generative models have different tree-width and
depth. Each subtree of the object node defines an MRF to
describe one aspect of the object. The computational cost of
the inference using DP is proportional to the height of the
subtree and exponential to the maximum width (only three
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TABLE 2
We Have Learned Probability Grammars for 13 Objects

in the Caltech Database, Obtaining Scores
over 90 percent for Most Objects

A score of 90 percent, means that we have a classification rate of
90 percent and a false positive rate of 10 percent ð10% ¼ ð100� 90Þ%Þ.
We compare our results with the constellation model.

Fig. 10. We report the classification performance for 26 classes that have at least 80 images. The average classification rate is 87.6 percent.

TABLE 3
Localization Rate Is Used to Measure the Proportion of the AFs

of the Model that Lie within the Ground-Truth Bounding Box



in our case). The detection time is less than five seconds
(including the processing of features and inference) for the
image with the size of 320 � 240. The training time is around

two hours for 250 training images. The parsed results are

illustrated in Fig. 12.
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Fig. 11. Individual models learned for faces, motorbikes, airplanes, grand piano, and rooster. The circles represent the AFs. The numbers inside the

circles give the a index of the nodes, see Table 1. The Markov Random Fields of one aspect each of faces, roosters, and grand pianos are shown on

the right.



7.2 Invariance to Rotation and Scale

This section shows that the learning and inference of a
PGMM is independent of the pose (position, orientation,
and scale) of the object in the image. This is a key advantage
of our approach and is due to the triplet representation.

To evaluate PGMMs for this task, we modify the
Caltech 101 data set by varying either the orientation or
the combination of orientation and scale. We performed
learning and inference using images with 360-degree in-
plane rotation and another data set with rotation and scaling
together (where the scaling range is from 60 percent of the
original size to 150 percent, i.e., 180 � 120� 450 � 300).

The PGMM showed only slight degradation due to these
pose variations. Table 4 shows the comparison results. The
parsing results (rotation þ scale) are illustrated in Fig. 13.

7.3 The Advantages of Variable Graph Structure

Our basic results for classification and localization, see
Section 7.1, showed that our PGMMs did learn variable
graph structure (i.e., OR nodes). We now explore the
benefits of this ability.

First, we can quantify the use of the OR nodes for the
basic tasks of classification. We measure how performance
degrades as we restrict the number of OR nodes, see Fig. 14.
This shows that performance increases as the number of OR
nodes gets bigger, but this increase is jagged and soon
reaches an asymptote.

Second, we show that we can learn a PGMM even when
the training data set consists of a random mixture of images
containing the object and images that do not. Table 5 shows
the results. The PGMM can learn in these conditions
because it uses some OR nodes to learn the object (i.e.,

account for the images that contain the object) and other OR
nodes to deal with the remaining images. The overall
performance of this PGMM is only slightly worse that the
PGMM trained on standard images (see Section 7.1).

Third, we show that we can learn a model for an object
class. We use a hybrid class that consists of faces, airplanes,
and motorbikes. In other words, we know that one object is
present in each image, but we do not know which. In the
training stage, we randomly select images from the data
sets of faces, airplanes, and motorbikes. Similarly, we test
the hybrid model on examples selected randomly from
these three data sets.

The learned hybrid model is illustrated in Fig. 15. It
breaks down nicely into the ORs of the models for each
object. Table 6 shows the performance for the hybrid model.
This demonstrates that the proposed method can learn a
model for the class with extremely large variation.

8 DISCUSSION

This paper introduced PGMMs and showed that they can
be learned in an unsupervised manner and perform tasks
such as the classification and localization of objects in
unknown backgrounds. We also showed that PGMMs were
invariant to 2D pose (position, scale, and rotation) for both
learning and inference. PGMMs could also deal with
different appearances or aspects of the object and also learn
hybrid models that include several different types of object.

More technically, PGMMs combine elements of prob-
abilistic grammars and MRFs. The grammar component
enables them to adapt to different aspects, while the MRF
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Fig. 12. Parsed results for faces, motorbikes, and airplanes. The circles represent the AFs. The numbers inside the circles give the a index of the

nodes, see Table 1.

TABLE 4
Invariant to Rotation and Scale

Fig. 13. Parsed results: invariant to rotation and scale.



enables them to model spatial relations. The nature of
PGMMs enables rapid inference and parameter learning by
exploiting the topological structure of the PGMM, which
enables the use of DP. The nature of PGMMs also enables us
to perform structure induction to learn the structure of the
model, in this case, by using oriented triplets as elementary

building blocks that can be composed to form bigger

structures.
Our experiments demonstrated proof of concept of our

approach. We showed that 1) we can learn probabilistic

models for a variety of different objects and perform rapid

inference (less than five seconds), 2) our learning and

inference is invariant to scale and rotation, and 3) we can

learn models in noisy data for hybrid classes and the use of

different aspects improves performance.
PGMMs are the first step in our program for unsuper-

vised learning of object models. Our next steps will be to
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Fig. 14. Analysis of the effects of adding OR nodes. Observe that
performance rapidly improves compared to the single MRF model with
only one aspect as we add extra aspects. However, this improvement
reaches an asymptote fairly quickly. (This type of result is obviously data
set dependent.)

Fig. 15. Hybrid model learned for faces, motorbikes and airplanes.

TABLE 5
The PGMM Are Learned on Different Training Data Sets which Consist of a Random Mixture of Images

Containing the Object and Images which Do Not

TABLE 6
The PGMM Can Learn a Hybrid Class

which Consists of Faces, Airplanes, and Motorbikes



extend this approach by allowing a more sophisticated
representation and using a richer set of image features.
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