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Abstract

We describe a hierarchical compositional system for detecting de-
formable objects in images. Objects are represented by graphical models.
The algorithm uses a hierarchical tree where the root of the tree corre-
sponds to the full object and lower-level elements of the tree correspond
to simpler features. The algorithm proceeds by passing simple messages
up and down the tree. The method works rapidly, in under a second,
on 320 × 240 images. We demonstrate the approach on detecting cats,
horses, and hands. The method works in the presence of background
clutter and occlusions. Our approach is contrasted with more traditional
methods such as dynamic programming and belief propagation.

1 Introduction

Detecting objects rapidly in images is very important. There has recently been great
progress in detecting objects with limited appearance variability, such as faces and text
[1,2,3]. The use of the SIFT operator also enables rapid detection of rigid objects [4]. The
detection of such objects can be performed in under a second even in very large images
which makes real time applications practical, see [3].

There has been less progress for the rapid detection of deformable objects, such as hands,
horses, and cats. Such objects can be represented compactlyby graphical models, see
[5,6,7,8], but their variations in shape and appearance makes searching for them consider-
ably harder.

Recent work has included the use of dynamic programming [5,6] and belief propagation
[7,8] to perform inference on these graphical models by searching over different spatial
configurations. These algorithms are successful at detecting objects but pruning was re-
quired to obtain reasonable convergence rates [5,7,8]. Even so, algorithms can take minutes
to converge on images of size320 × 240.

In this paper, we propose an alternative methods for performing inference on graphical
models of deformable objects. Our approach is based on representing objects in a proba-
bilistic compositional hierarchical tree structure. Thisstructure enables rapid detection of
objects by passing messages up and down the tree structure. Our approach is fast with a
typical speed of 0.6 seconds on a320 × 240 image (without optimized code).



Our approach can be applied to detect any object that can be represented by a graphi-
cal model. This includes the models mentioned above [5,6,7,8], compositional models
[9], constellation models [10], models using chamfer matching [11] and models using de-
formable blur filters [12].

2 Background

Graphical models give an attractive framework for modelingobject detection problems in
computer vision. We use the models and notation described in[8].

The positions of feature points on the object are represented by{xi : i ∈ Λ}. We augment
this representation to include attributes of the points andobtain a representation{qi : i ∈
Λ}. These attributes can be used to model the appearance of the features in the image.
For example, a feature point can be associated with an oriented intensity edge andqi can
represent the orientation [8]. Alternatively, the attribute could represent the output of a
blurred edge filter [12], or the appearance properties of a constellation model part [10].

There is a prior probability distribution on the configuration of the modelP ({qi}) and a
likelihood function for generating the image dataP (D|{qi}). We use the same likelihood
model as [8]. Our priors are similar to [5,8,12], being basedon deformations away from a
prototype template.

Inference consists of maximizing the posteriorP ({qi}|D) = P (D|{qi})P ({qi})/P (D).
As described in [8], this corresponds to a maximizing a posterior of form:

P ({qi}|D) =
1

Z

∏

i

ψi(qi)
∏

i,j

ψij(qi, qj), (1)

where{ψi(qi)} and{ψij(qi, qj)} are the unary and pairwise potentials of the graph. The
unary potentials model how well the individual features match to positions in the image.
The binary potentials impose (probabilistic) constraintsabout the spatial relationships be-
tween feature points.

Algorithms such as dynamic programming [5,6] and belief propagation [7,8] have been
used to search for optima ofP ({qi}|D). But the algorithms are time consuming because
each state variableqi can take a large number of values (each feature point on the template
can, in principle, match any point in the240 × 320 image). Pruning and other ingenious
techniques are used to speed up the search [5,7,8]. But performance remains at speeds of
seconds to minutes.

3 The Hierarchical Compositional System

We define a compositional hierarchy by breaking down the representation{qi : i ∈ Λ} into
substructures which have their own probability models.

At the first level, we group elements intoK1 subsets{qi : i ∈ S1

a} where Λ =

∪K1

a=1
S1

a, S1

a ∩ S1

b = ∅, a 6= b. These subsets correspond to meaningful parts of the
object, such as ears and other features. See figure (1) for thebasic structure. Specific
examples for cats and horses will be given later.

For each of these subsets we define a generative modelPa(D|{qi : i ∈ S1

a}) and a prior
Pa({qi : i ∈ S1

a}). These generative and prior models are inherited from the full model,
see equation (1), by simply cutting the connections betweenthe subsetS1

a and theΛ/S1

a

(the remaining features on the object). Hence
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Figure 1: The Hierarchical Compositional structure. The full model contains all the nodes
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1
. This is decomposed into subsetsS2
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corresponding to sub-features. These, in

turn, can be decomposed into subsets corresponding to more elementary features.

Pa1({qi : i ∈ S1

a}) =
1

Ẑa1

∏

i,j∈S1
a

ψij(qi, qj). (2)

We repeat the same process at the second and higher levels. The subsets{S1

a : a =
1, ...,K1} are composed to form a smaller selection of subsets{S2

b : b = 1, ...,K2}, so
thatΛ = ∪K2

a=1
S2

a, S2

a ∩ S2

b = ∅, a 6= b and eachS1

a is contained entirely inside oneS2

b .
Again theS2

b are selected to correspond to meaningful parts of the object. Their generative
models and prior distributions are again obtained from the full model, see equation (1). by
cutting them off the links to the remaining nodesΛ/S2

b .

The algorithm is run using two thresholdsT1, T2. For each subset, sayS1

a, we define the
evidence to bePa1(D|{zµ

i : i ∈ S1

a})Pa1({zµ
i : i ∈ S1

a}). We determine all possible
configurations{zµ

i : i ∈ S1

a} such that evidence of each configuration is aboveT1. This
gives a (possibly large) set of positions for the{qi : i ∈ S1

a}. We apply non-maximum
suppression to reduce many similar configurations in same local area to the one with max-
imum evidence (measured locally). We observe that a little displacement of position does
not change optimality much for upper level matching. Typically, non-maximum suppres-
sion keeps around30 ∼ 500 candidate configurations for each node. These remaining
configurations can be considered asproposals [13] and are passed up the tree to the sub-
setS2

b which containsS1

a. NodeS2

b evaluates the proposals to determine which ones are
consistent, thus detecting composites of the subfeatures.

There is also top-down message passing which occurs when onepart of a nodeS2

b contains
high evidence – e.g.Pa1(D|{zµ

i : i ∈ S1

a})Pa1({zµ
i : i ∈ S1

a}) > T2 – but the other
child nodes have no consistent values. In this case, we allowthe matching to proceed if the
combined matching strength is above thresholdT1. This mechanism enables the high-level
models and, in particular, the priors for the relative positions of the sub-nodes to overcome
weak local evidence. This performs a similar function to Coughlan and Shen’s dynamic
quantization scheme [8].

More sophisticated versions of this approach can be considered. For example, we could use
the proposals to activate a data driven Monte Carlo Markov Chain (DDMCMC) algorithm
[13]. To our knowledge, the use of hierarchical proposals ofthis type is unknown in the
Monte Carlo sampling literature.



4 Experimental Results

We illustrate our hierarchical compositional system on examples of cats, horses, and hands.
The images include background clutter and the objects can bepartially occluded.

Figure 2: The prototype cat (top left panel), edges after grouping (top right panel), proto-
type template for ears and top of head (bottom left panel), and prototype for ears and eyes
(bottom right panel). 15 points are used for the ears and 24 for the head.

First we preprocess the image using a Canny edge detector followed by simple edge group-
ing which eliminates isolated edges. Edge detection and edge grouping is illustrated in the
top panels of figure (2). This figure is used to construct a prototype template for the ears,
eyes, and head – see bottom panels of figure (2).

We construct a graphical model for the cat as described in section (2). Then we define a
hierarchical structure, see figure (3).

Figure 3: Hierarchy Structure for Cat Template.

Next we illustrate the results on several cat images, see figure (4). Several of these images
were used in [8] and we thank Coughlan and Shen for supplying them. In all examples, our



algorithm detects the cat correctly despite the deformations of the cat from the prototype,
see figure (2). The detection was performed in less than 0.6 seconds (with unoptimized
code). The images are320 × 240 and the preprocessing time is included.

The algorithm is efficient since the subfeatures give bottom-up proposals which constraint
the positions of the full model. For example, figure (5) showsthe proposals for ears for the
cluttered cat image (center panel of figure (4).

Figure 4: Cat with Occlusion (top panels). Cat with clutter (centre panel). Cat with eyes
(bottom panel).

We next illustrate our approach on the tasks of detecting horses. This requires a more
complicated hierarchy, see figure (6).

The algorithm succeeds in detecting the horse, see right panels of figure (7), using the
prototype template shown in the left panel of figure (7).

Finally, we illustrate this approach for the much studied task of detecting hands, see [5,11].
Our approach detects hand from the Cambridge dataset in under a second, see figure (8).
(We are grateful to Thayananthan, Stenger, Torr, and Cipolla for supplying these images).



Figure 5: Cat Proposals: Left ears (left three panels). Right ears (right three panels).

Figure 6: Horse Hierarchy. This is more complicated than thecat.

Figure 7: The left panels show the prototype horse (top left panel) and its feature points
(bottom left panel). The right panel shows the input image (top right panel) and the position
of the horse as detected by the algorithm (bottom right panel).



Figure 8: Prototype hand (top left panel), edge map of prototype hand (bottom left panel),
Test hand (top right panel), Test hand edges (bottom right panel). 40 points are used.

5 Comparison with alternative methods

We ran the algorithm on image of typical size320×240. There were usually4000 segments
after edge grouping. The templates had between 15 and 24 points. The average speed was
0.6 seconds on a laptop with 1.6 G Intel Pentium CPU (including all processing: edge
detector, edge grouping, and object detection.

Other papers report times of seconds to minutes for detecting deformable objects from
similar images [5,6,7,8]. So our approach is up to 100 times faster.

The Soft-Assign method in [15] has the ability to deal with objects with around 200 key
points, but requires the initialization of the template to be close to the target object. This
requirement is not practical in many applications. In our proposed method, there is no need
to initialize the template near to the target.

Our hierarchical compositional tree structure is similar to the standard divide and conquer
strategy used in some computer science algorithms. This mayroughly be expected to
scale aslogN whereN is the number of points on the deformable template. But precise
complexity convergence results are difficult to obtain because they depend on the topology
of the template, the amount of clutter in the background, andother factors.

This approach can be applied to any graphical model such as [10,12]. It is straightforward
to design hierarchial compositional structures for objects based on their natural decompo-
sitions into parts.

There are alternative, and more sophisticated ways, to perform inference on graphical mod-
els by decomposing them into sub-graphs, see for example [14]. But these are typically far
more computationally demanding.

6 Conclusion

We have presented a hierarchical compositional system for rapidly detecting deformable
objects in images by performing inference on graphical models. Computation is performed



by passing messages up and down the tree. The systems detectsobjects in under a second
on images of size320×240. This makes the approach practical for real world applications.

Our approach is similar in spirit to DDMCMC [13] in that we useproposals to guide
the search for objects. In this paper, the proposals are based on a hierarchy of features
which enables efficient computation. The low-level features propose more complex fea-
tures which are validated by the probability models of the complex features. We have not
found it necessary to perform stochastic sampling, though it is straightforward to do so in
this framework.
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