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We present a latent hierarchical structural learning %K >< >< :)(:
method for object detection. An object is represented by — ot e e
CN O

a mixture of hierarchical tree models where the nodes rep- %
resent object parts. The nodes can move spatially to al-

low both local and global shape deformations. The models
can be trained discriminatively using latent structural\gV
learning, where the latent variables are the node positions
and the mixture component. But current learning methods
are slow, due to the large number of parameters and latent
variables, and have been restricted to hierarchies with two
layers. In this paper we describe an incremental concave-
convex procedure (iCCCP) which allows us to learn both
two and three layer models ef ciently. We show that iCCCP Figure 1. (a) A 3-layer tree model. The structure has thregera
leads to a simple training algorithm which avoids complex Wwith nodes in simple grid layouts, i.&. 1,3 3and6 6. (b)
multi-stage layer-wise training, careful part selectiamd A reference template withoqt part displacement (no deftiona
achieves good performance without requiring elaborate ini  BlUe rectangle is the bounding box of the root node. Yellowsdo
tialization. We perform object detection using our learnt indicate the center positions of 9 parts at the 2nd layer.plBur
models and obtain performance comparable with state-of- d]?ts arZ.thel centers of S?I parts .‘Zt the bottom laﬁer' @'dzl‘m
the-art methods when evaluated on challenging public PAS-0 gart :’p atc;]emder;t. Yet_ow g;'t; anS?Ctlng tPe glmf- mtt!:vh'
CAL datasets. We demonstrate the advantages of three Iayeg0 o5 SHON e Ceiimation a1 e Sle ayer L UTpIe ks i
onnect the four child nodes to their parent node at the 2yet la
hierarchies — outperforming Felzenszwalb et al's two faye snow the local deformation at the bottom layer.
models on all 20 classes.

(d)

] careful part selections and model initializations. Thidtimu
1. Introduction stage training method is effective for shallow (2 layen)istr
tures, but it seems hard to scale up to more layers without
tuning the parameters, such as the number of parts at the
deeper layers.

Object detection is an important task in computer vision
which has made great use of learnirig][ Recent progress
includes: (i) learning part-based modeis]0, 7, 15, 2], (i)

learning appearance featurés] and (iii) learning context 2. How to learn a deep structure ef ciently? A deep
[11]. Other recent representative work includs [ structure has many more features and latent variables than

with deep structure. The success of “shallow structures” Parameters which requires more training data. The train-
with two layers [L5, 7] suggests that we can make further ing time also increases due to the amount of training data
progress by extending to “deep structures” which should and the greater amount of computations required (e.g., we
give richer descriptions of shape and appearance. But thig’€€d to compute inner products for more features). There-
extension is not straightforward for the following two is- fore, Iearnlng a deep structure becomes more computation-
sues: ally challenging.

1. What are good part structures? Felzenszwalb et al. In this paper we show that simple part structures are suf-
[7] describe a layer-wise training procedure which requires cient to obtain state of the art performance. We will ar-



gue, respectfully disagreeing with][ that the choice of  criminative function of the form:

part structure does not signi cantly affect the performanc

although it may affect the convergence rate of learning. In Fw(x) = argmax[w ( x;y;h)] 1)

fact our model is a simple extension of the 2-layer model yin

used in []. In this paper, an object class consists of sev- where is a joint feature vector that describes the relation-

eral prototype templates from different viewpoints each of ship between input x and structured outgyth), with w

which is represented by a 3-layer tree-structure model. Thebeing the parameter vector. have two forms: (i) Appear-

structure of the model is shown in gure The rst layer ance features A (x;y; h) connect image featuresto ob-

has one root node which represent the entire object. Theject classey, viewpointsV and object partg. (i) Shape

root node has 9 child nodes at the second layer in a 3 byfeatures s(y;h), which are not related t&, capture the

3 grid layout. Each node at the second layer has 4 childshape deformation of object parts. The optimization prob-

nodes at the third layer which contains 36 nodes in a 6 by 6lem of computing this argmax is typically referred to as the

grid layout. The numbers of layers and nodes are the sameinference” problem.

for different object classes and views. We will show that  The standard structural SVM problem assumes that the

this simple structure leads to a meaningful model with good structure oh is given and xed, i.e. the number of parts are

performance. known. To train structural SVMs we solve the following
We can train deep structure models ef ciently by mod- convex optimization problemip]:

ifying a recent approach to latent structural SVM learning

[1€]. This requires minimizing an objective function which I

is non-convex, but which can be expressed as the differ- min 2”W” *C _ n);;ﬁx[w v + Liyn Wy,

ence of two convex functions. Yu and Joachims apply the )

the concave-convex procedure (CCCP)][to this objec-

tive function to derive an algorithm that is guaranteed to whereC is a xed penalty parameter,iyn = ( Xi;y;h)

converge to a local minima. The algorithm proceeds in two andL;y, = L(yi;y;h) is the loss function. For object

alternating steps, analogous to the EM algorithm: (1) esti- detection problemi,(y;;y;h) = 1 if y; = y, 0ify; 6 y.

mate the latent variables using the current estimates of theThis optimization problem can be solved ef ciently using

model parameters. (2) estimate the model parameters usingutting-plane methodi}]. A recent successful application

standard structural SVM learning (treating the estimaged |  to computer vision is human body parsing].

tent variables as groundtruth). But this method is not ef - If his not labeled in the training set, then we need to

cient enough for deep structures because of the large numsolve a latent structural SVM problem:

ber of parameters and training data. Hence we developed an

incremental concave-convex procedure (iCCCP) which se-mpin = ”W”

guentially adds training data at each iteration. This dyeat W

reduces the training cost and enables us to learn deep struc- X

tures ef ciently. Overall, ICCCP is a simple training algo- +Cc r?%\x[w iyh + Liyn ] maxiw iy n]
rithm which learns multi-layer parameters simultaneously =1 3
avoiding complicated multi-stage layer-wise traininggdan (3)
does not require elaborate initialization. This optimization problem is non-convex. Yu and

In summary, this paper draws three conclusions: (1) Joachims ]6] offered a general solution to nding a lo-
Deep structures are better than shallow structures (3daye cal optimum using the CCCP concave-convex Procedure
outperform 2-layers on all 20 object classes), (2) Simple hi [17]. We note that J] explored an alternative approach to
erarchical structure are able to achieve good performancethis problem by transforming the structural learning prob-
(3) ICCCP learning is simple and ef cient and enables us to |em into a standard binary SVM learning problem. In our
learn multi-layer parameters simultaneously. implementation, we follow Yu and Joachims's strategy but

modify CCCP to iCCCP.

2. Background: Structural SVM and Latent , ) )
Variables 3. Latent Hierarchical Structural Learning

3.1. Hierarchical Structure, Latent Variables and

SUppOSE we are given a set of training samples Eeatures

(X1;y1: 1), . (XnsYNshy) 2 X Y H wherex is an

image patchy is a label of object clash = (V; P where An object class consists of two prototype templates from
V is a label of viewpoint, ang is the position of object  two different views each of which is represented by a 3-
parts. The task of structural SVM learning is to learn a dis- layer tree-structure model. The structure of the model is



Figure 2. Some models (appearance only) learnt from the PASXD07 dataset. The rst 2 rows are the car models from twovgi@and
the last row is a horse model. Three columns show the weighgach orientation of the HOG cells at the 16t (1 grid), 2nd @ 3
grid) and 3rd 6 6 grid) layers, respectively. Each cell consist8of 8 pixels. The models look semantically meaningful. The weigh
along the object boundary are high. The features at difféagers capture object appearance in a coarse-to- ne wag.fdatures at lower
levels capture more detailed appearance (e.g. the horsati¢ige 3rd layer look brighter.)

shown in gurel. The rst layer has one root node which tion. The length of A (X; pa) for each node at this layer is
represent the entire object. The root node has 9 child node%W %H 31. The bottom layer has the same resolution
at the second layer in a 3 by 3 grid layout each of which asthe 2nd layer. Thea (X; pa) for the 3rd layer is of length
represents one ninth of an object. Each node at the secont%W %H 31l Therear® W H 3lfeatures forall
layer has 4 child nodes at the third layer which contains 36 46 nodes. For a typical size withh = 10;H =5 (see row
nodesin a 6 by 6 grid layout. There are@68-3 3+6 6) 2 in gure 2), our 3-layer model has 13,950 HOG features
nodes in total. The numbers of layers and nodes are thein total.

same for different object classes and views. But theirdspec  The s(h) are shape featuress(ps;f);8a;b 2
ratios may be different. Each tree model is associated withCh(a), which encode the parent-child pairwise spacial
latent variable® = (V; p. V is the index of viewpointand  relationship. More precisely, the shape features for a
P=((ug;va); (uz;v2); it (Uge; Vas)) encode the positions  parent-child pair(a;b) are dened as s(p.;fp) =

of all nodes. For an object class, {et +1 denote object  ( u; v; u?; v?) where( u; V) is the displacement
andy = 1denote non-object. Let = 1::46be the index  of nodeb relative to its reference position which is deter-
of nodesb 2 Ch(a) indexes the child nodes of nodeThe mined by the position of the parent node Our 3-layer

feature vector is de ned as follows: model has 1804 9+4 36) shape features in total.
h)- h iy =41 Obviously, our 3-layer structure is deeper than the shal-
( x;y;h) = E) A0ch); s(h) Iif g B 1 4 low structure used in/ while the HOG and shape features

are the same as]. Unlike [7], the topology (part organiza-
tion) of our model is prede ned by hand to be identical for
all object classes and views. We will show that this arbytrar
(trivial) design does not affect the performance of the mod-

The a(x;h) are the appearance features which contain
HOG [5] descriptors a (X; a) for all nodes. We followed
the implementations of/] to calculate HOG descriptors. ) UESIgTHVES ! s
Figure2 shows the weights of HOG descriptors at different els while its simplicity avoids the need to carefully inliza
layers. The image patch corresponding to the entire objecttn® model structures.

isrepresented by H cells each of which ar@ 8 pixels. — . .

The HOG features for each cell represent the local gradient3'2' Detection: Dynamic Programming
information which consists of 31 features including 9 con-  Suppose the parametews are given. Given an im-
trast sensitive features, 18 insensitive features and 4 sumage patch (subwindow), the detection task is to nd a
over the 9 contrast insensitive orientations. The length of class label and part locatioifg ; h ) with the best score:
the features a(Xx; p1) for the root node isV =~ H 31 (y ;h ) =argmax,.,[w ( x;y;h)]. The models for two
The 2nd layer hagW  2H cells with two times resolu-  viewsV = 1;2 are independently evaluated. To nd a best



£ the positionp; = (u1;vy) of the root is rstlocated by  terms in equation?) enables us to rewrite this as:
scanning all subwindows at different scales of the image

pyramid. Given a locatiorfu;vi) of the root node, the min 1. .5 +rC max| o+ Ly | o
best con gurationp of the remaining 45 parts is obtained w2 , y;hXW tyih iy bWy n,
by dynamic programming which is a recursive procedure: h 9)
F(X; Ba) = X maxtF (X Po) + W s(fa; )9 '!'his is a standard_ structur_al svm p_robl_em without latent
b2ch(a) ™ variables. The solution to this minimization can be found
by differentiation and expressed in form:
+W A (X Pa) (5) X
w =C izy;h i;y;h (10)
whereF (x; pa) is the max score of a subtree with node iyih
a being the root. The boundary conditionFYx; pa) = .
(X a) if ais a leaf node. This recursive form is equiv- WNere iyin = iy, iyn andthe are obtained
alent to the discriminative function in equatiani.e. given ~ PY Maximizing the corresponding dual function:
aviewV andy = +1, the score of the rodt (x;p1) = X
maxew (X §). max_ iy:h Liy:h
The bounding box determined at positian ; v;) of the I'y'hl X X
root node and the corresponding level of the image pyramid -C iyih iy QhO  iyh jiy aho
is output as an object detection if the scéréx; p1) > 0 ij y;hy Qho
(noteF(x;y)=0ify= 1). (12)

o This is a standard structural SVM dual problem. We use
3.3. Optimization: standard CCCP the cutting plane method [ 17] to optimize the objective
function in equation11). The method creates a working
set sequentially and then estimate the parameten the
working set. More precisely, it seeks to create a work-
ing set for the rst round training. We check all train-
) # ing examples(x;;yi;hi). Ifw iy . + Liy s
maxyono[W  iyono + Liyyono] >  where(y ;h) =
argmax,, W iy + Liyn 1, (i;y% h9) are examples al-
" N # ready in the working set, andis a tolerance parameter, the
c max(w iy ] @) working set is constructed by adding exampbesy ;h ).
iyish . R
iy h The working set procedure is similar to the hard examples
o data mining used in7]. It is easy to scan all positive train-
- m ffw)  gwg (8) ing examples with bounding box groundtruth which limits
the search space gfin dynamic programming. But scan-
wheref (w) are the rsttwo terms) andg(w) is minusthe  ning all subwindows in a large set of negative training im-
lastterm (). Notef andg are both convex, bdt(w) g(w) ages is very expensive. In the next subsection, we will in-
is not. The Concave-Convex Procedure (CCCP) gives antroduce a new algorithm to make large-scale training more
algorithm which alternates the following two steps (see the ef cient.

Learning the latent hierarchical model can be formulated
as a learning problem de ned in equatid@).(This learning
problem can be written equivalently a<:

R
min Zjjwjj® + C maxfw  iyn + Liyn]  (6)
w2 - y;h

pseudo code in guré): When the working set has enough training samples
Step (1): nd hyperplaneg such that g(w) (when we reach a a xed memory limit), we estimate the
gwy)+(w  w) ;8w parameters on the working set. The optimization over the
Step (2): Solvew,; = argmin , [f (W) + w g] working set is performed by Sequential Minimal Optimiza-

. . tion [9]. Then the algorithm proceeds to the next round, ex-
The CCCP algorithm is guaranteed to converge to a local ) o
- ands the working set and performs optimization over the
minimum. Step 1 constructs a hyperplane that upper bound

o - new working set. The optimal solution of; at iterationt
the concave part of the objectiveg, so that the optimiza- . . ) .
. . is obtained after several rounds of working set constractio
tion problem solved at step 2 is convex.

) ) and training.
Step (1) is performed by nding the best: h; =

. The solutionw; is used as a starting point in a new
argmax, WtN iy.:n- Then the hyperplane constructed is cccp iteration, without having to reconstruct all the work-

a5 C 21 iy.h, - Step(2)is to solveniny[f (w) ing set from scratch. After the CCCP algorithm converges
C iNzl W iy,:h, |- Substitutingf (w) with the rst two ie. [f(w) ow)] [fwe 1) g(w 1)] < where



Instantiate = 0. minutes, ICCCP reduces the cost by a factor of 66584 =
Repeat = t +1; 21:8 30=100,21:8=1+1:15+1:15%+ :: +1:15%). We
1. Fillin latent variables: will empirically compare the performance of iCCCP with
h, =argmax, W iy, standard CCCP in sectigh4.
2. Solve the structural SVM problem (giv,gfn es- Note that for a 3-layer model, learning parameters
timate w): wiz1 = argmin, f(w) C ,w with a length of 14,130 (13950+180) takes around two
iy ish; times greater cost than learning a 2-layer model to calcu-
Until [f (W) gw)]  [Fwe 1) gwe 1)] < . late the inner product. More parameters need more training
Figure 3. Standard CCCP algorithm. data (and time) to converge. The advantage of iCCCP over

standard CCCP appears to be more critical while learning
. o deep structures.
is a threshold set by hand, we get the local minimunv at

given in equatioriO. 3.5. Implementation Details

3.4. Incremental CCCP for Large Scale Training The training-irrelevant implementations are identical to
[7]. The HOG features and shape features are the same. All

object classes are represented by two prede ned templates.

H . —_ . —_ . + . ey -
Ilr?.s’:IaJrn.tl_at_e.lt"— 0:S = txivigh [T x5y10 51 = The aspect ratios of the two templates are determined by se-
S - -n lecting two representative aspect ratios and sizes by eount
Repeat = t+1 . P . :
- ) ing their histograms in the groundtruth. The weightare
1. Fillin latent variablegx;;yi) 2 S: ensured to be symmetry. Since we focus on the comparisons
h; =argmax, Wi iy of models with different part structures, we do not use any
2. Solve the structural SVM problem ov@r(givenh, post-processing, such as bounding box prediction, rescor-
estimatew): p ing the classi ers using contextual information, etc. Our
Wi =argming f(w) C yw gy, framework differs from [] in the learning algorithm:
3.S=S[fx:y0;] = nKt 1 +1:nkt 1+ Simple Initialization and Simultaneous Multi-Layer
2:nnKt Learning: [7] has a very complicated 3-stage layer-wise
Until [f (W) gwe)] [F(We 1) gwe 1)] < . training procedure which initializes appearance weights i

Figure 4. Incremental CCCP (iCCCP) algorithri; ;yig® and a coarse-to- ne way. They implemented a gradient decent
fx;;y;g refer to the positive and negative training sets, respec- algorithm to learn the weighte, which requires careful
tively. N* is the size of the positive set. initialization. Instead, in this paper, learning a hietasc
cal model is performed by the iCCCP algorithm which does
In standard CCCP for latent structural SVM, a lot of not need a multi-stage training procedure and does not re-
computation cost is spent at step 2 essentially nding hard quire weights initializations. iCCCP initializes the ptisns
training examples by scanning all subwindows from a large p of all nodes at three layers by setting them in a regular
set of negative training images (e.g., 100 images which takegrid layout without displacementsu = 0; v = 0, and
14 minutes to scan all subwindows in one round at 8 sec-then learn the weights of all nodes at different layers si-
onds per image). We propose an incremental CCCP (iC-multaneously. This simple design does not require careful
CCP) algorithm to handle this issue. See the pseudo codenitializations and pre-training of structures. In sentib4,
in gure 4. It is motivated by realizing that it is not nec- we will empirically show that the part structures and the ini
essary to get optimal solutions at the early stage of CCCPtiations do not prevent iCCCP from learning a good model.
learning. ICCCP starts from a small numbrer= 30 (set Bias Terms in Structural Learning: The discrimina-
by hand) of negative images, leanvgyiven the hard nega-  tive functionF, (x) = argmax,., [w ( x;y;h)] does not
tive examples selected froB0images and proceeds to up- include the bias terms which appear in binary svm learning.
datew by incrementally adding more negative images into We introduce bias termts., to obtainw ( x;y;h)+ by
the training set. The scaling factir of new negative im- by attaching extra constant terms(y;v) = 10 for all
ages isl:15. iCCCP examines 30 negative images at the possible labels ofy; V), following [4]. The correspond-
st iteration,30 1:15at the 2nd iteration, ..., and so on, ing weightswy are thenb,., =10. These adjustments help
until it converges. The negative examples are scanned byimprove the performance. For more details, sée [[7]
iCCCP simply in the order of image IDs labeled in the train- avoids this issue by transforming the structural learning
ing dataset. iCCCP is able to achieve similar accuracy with problem into a binary svm learning problem.)
greatly reduced computational cost. For example, assum- Cutting Plane Method: We use the cutting plane
ing that standard CCCP needs 10 iterations in which CCCPmethod to learrw. At each round, this method proceeds
scans 100 negative images 10 times using 210 ( 27) by sequentially adding positive training examples togethe



with 500 negative examples, which violate the KKT con- | Datasets| UoCTTI | L=2,Parts=9| L=2, Parts=36| L=3
ditions, into a working set. The tolerance parameter is | Car 464 501 491 513
=10 S. After several rounds, the number of hard nega- | _Horse | .436 443 443 504

tive examples decreases exponentially. Table 2. Comparisons of models with 2-layer and 3-layercstru

. UPda“”g Latent Variables: At §tep (1)_0f the 'CCC,F? tures on the cat and horse datasets. “UoCTTI” reports thdtses
iterations, the states of latent variables (i.e. the pwssti  fom 7], “L=2,L=3" are our models with top 2 layers (9 parts
of all nOdeS) are restricted to ensure that the box of the rootand 36 parts at the second layer) and complete 3 layers which a
overlaps with the groundtruth bounding box by at least 70%. trained by iCCCP algorithm.

The positions of the child nodes are restricted to ensure the

child node overlaps with the corresponding reference box. ©Object classes. In order to study how much gain is ob-
tained by deep structures, besides the 3-layer model (L=3)

introduced before, we also implemented three other 2-layer
models: our model with 9 part8 ( 3) and 36 partsg 6) at

The PASCAL VOC 2007 datasei][was used for evalu- the second layer, respectively, and the other 2-layer model
ations. Itis the latest version that test annotations aaé-av (JOCTTI) with 6 selected parts/]. The comparisons of
able. There are 20 object classes which consist of 100001€S€ four models with different layers and parts are per-
images for training and testing. We follow the experimental formed on two object classes, cars and horses. Table
protocols and evaluation criteria used in the PASCAL Vi- shows the average precisions of these four models. On the
sual Object Category detection contest 2007. A detection®@' (.Jlataset, our 2-layer models (L=2) outperforms UOE:TT'
is considered correct if the intersection of its bounding bo PY 0:037and0:027, respectively. The 3-layer model (L=3)
with the groundtruth bounding box is greater than 50% of further improves the performance slightly 612 On the
their union. We compute Precision-Recall (PR) curves and 10rse dataset, the 3-layer model easily outperforms other
score the average precision (AP) across a test set. All experthré€ 2-layer models which perform similarly to each other.
iments are performed on a standard computer with a 3Ghz3Y comparing the two models with 9 parts and 36 parts, it
CPU.C is setto 0.005 for all classes. The detection time per IS cléar that simply adding more parameters/parts gives lit
image is 8 seconds. The starting number of negative image§|e improvement in performance. But better performance is
used in the iCCCP training is = 30. The increasing rate obtained by adding the third level to the hierarchy. In con-
K is 1:15. It takes 25 hours (about 25 iCCCP iterations) to clusion, deep structures are better than shallow strugture

train an object class with two mixture templates.

4. Experimental Evaluations

4 3. Part structures and Initializations

4.1. The detection results on the PASCAL dataset We also investigated the effect of different part struc-
) ] ) tures and initializations. Three models are compared: 1)
_ Some detection results with a bounding box and the po-,e oCTTI model (M=UoCTTI) using their initializations
sitions of 45 nodes are shown in gufe The models learnt (=UoCTTI): 2) the UoCTTI model using our trivial ini-
on the car and horse datasets are shown in gurelVe  igjizations =0 means the displacements of all nodes are
compare(_j our approach with other rgpresentatlve methOdieros); 3) our 2-layer model (9 parts, M=0) with trivial ini-
reported in the PASCAL VOC detection contest 206 [ jajizations (=0). Two datasets (car and horse) are evalu-
The comparisons in tableshow that our 3-layer model out- 4164 All models are learnt by the iCCCP algorithm. The
performs other methods in 13 categories anidoh all 20 apg 4t different iterations of iCCCP are plotted in gue

classes. The average APs per category are 0.296(us), 0.268},o model (M=UoCTTIg=UoCTTI) achieve better perfor-
(UoCTTI[7]), 0.271 (UCI[]), 0.275([L(]) and 0.321 L4]. mance than the other two models in the early iterations, but

[10]and [19] are not listed in tablé because both methods v, 4| converge eventually to similar performance. The
rely on training multiple models. Our method is better than o models (M=UoCTTI and M=0) with same trivial ini-
[10] which seeks to rescore the detection hypotheses outputig|izations g=0) start from same position. This shows that
by [7]. They make use of more features and more COMPpleX ittarent structures do not affect the performance when iC-
training algonthm_s. 19 is the only one that outperforms  ~cp has converged, but they may have different perfor-
our method by using more feature kernels. HOwevei] [ ance if icCCP has not performed enough iterations. The
runs much slower (it takes 67 seconds to calculate complex.qqits also suggest that the convergence of the iCCCP al-
image feature kernels). gorithm is not very sensitive to the initialization.

4.2. Deep is better than shallow 4.4. Standard CCCP vs. iCCCP

In table 1, we have shown that our 3-layer structure is Figure7 compares the behaviors of standard CCCP and
better than the 2-layer model (UoCTTI) used if} ¢n all iICCCP. Standard CCCP uses= 100 negative images at



class | aero | bike | bird boat | bottle [bus [car |cat chair [cow | table |[dog | horse | mbike | person | plant | sheep| sofa | train |tv
us 294 | 558 | .094 | .143 | .286 [440 [513 [.213 | .200 [193 | .252 [125 | .504 .384 .366 151 197 | .251 | .368 [393
UoCTT| .290 | .546 | .006 | .134 | .262 [394 [464 |.161 | .163 |[165 | .245 [050 | .436 .378 .350 .088 173 | .216 | .340 [390
UCI | .288 | 562 | .032 | .142 | .294 |387 [487 |.124 | .160 [177 | .240 [117 | .450 .394 .355 152 161 | .201 | .342 [354
VO7 | 262 | .409 | .098 | .094 | .214 [393 [432 [.240 | .128 [140 | .098 [162 | .335 .375 221 .120 175 | 147 | .334 [289

Table 1. Performance Comparisons on the 20 PASCAL VOC 20@llectye categoriess]. (us) refers to our 3-layer model. (UoCTTI)
reports the results fronv] without special post-processing. (UCH][is a method using multi-object relationship. (VO07) is tresbresult
for each category among all methods submitted to the VOC 28@llenge. Our method outperforms the other methods in te®jcees.

Our 3-layer model is better than UoCTTI's 2-layer model ir2él categories. The average APs per category are 0.296(@68 (UoCTTI)
and 0.271 (UCI).

Figure 5. Some detection results from the PASCAL 2007 datdsach row contains several results of one class. Big rgttarare the
bounding boxes of the root nodes. Blue and green indicataliffierent views. Nine yellow dots are the centers of nodabh@®nd layer.
Purple lines connect the parent-child pairs of nodes attidead 3rd layers. The yellow grids and purple lines show #&ferdhations.




(a) car (b) horse

=——6— M=UoCTTI p=UoCTTI =——6— M=UoCTTI p=UoCTTI

<= %= M=UoCTTI p=0
0.55 9 M=0 p=0

<= %= M=UoCTTI p=0
9 M=0 p=0

0.5

0.45

Average Precision

0.4

0.35

0.3

0 5 10 15 20 25 ~o 5 10 15 20 25
Iteration Iteration

Figure 6. Comparisons of different part structures andaitira-
tions. “M=UoCTTI" refers to [[]. “M=0" is our model with top
two layers. “p=UoCTTI"is using the initializations prowd by
the pre-trained one-layer model if]] “p=0" means that the dis-
placements of all nodes are zeros. All models are learnt BCIE
algorithms.
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