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Abstract— Language and image understanding are two
major goals of artificial intelligence which can both be
conceptually formulated in terms of parsing the input
signal into a hierarchical representation. Natural language
researchers have made great progress by exploiting the
1D structure of language to design efficient polynomial-
time parsing algorithms. By contrast, the two-dimensional
nature of images makes it much harder to design efficient
image parsers and the form of the hierarchical representa-
tions is also unclear. Attempts to adapt representations and
algorithms from natural language have only been partially
successful.

In this paper, we propose a Hierarchical Image Model
(HIM) for 2D image parsing which outputs image segmen-
tation and object recognition. This HIM is represented
by recursive segmentation and recognition templates in
multiple layers and has advantages for representation,
inference, and learning. Firstly, the HIM has a coarse-
to-fine representation which is capable of capturing long-
range dependency and exploiting different levels of con-
textual information. Secondly, the structure of the HIM
allows us to design a rapid inference algorithm, based
on dynamic programming, which enables us to parse the
image rapidly in polynomial time. Thirdly, we can learn the
HIM efficiently in a discriminative manner from a labeled
dataset. We demonstrate that HIM is comparable with the
state-of-the-art methods by evaluation on the challenging
public MSRC and PASCAL image datasets. Finally, we
sketch how the HIM architecture can be extended to model
more complex image phenomena.

I. INTRODUCTION

Language and image understanding are two major
tasks in artificial intelligence. Natural language re-
searchers have formalized this task in terms of pars-
ing an input signal into a hierarchical representation.

They have made great progress in both representa-
tion and inference (i.e. parsing). Firstly, they have
developed probabilistic grammars (e.g. stochastic
context free grammar (SCFG) [1] and beyond [2])
which are capable of representing complex syntactic
and semantic language phenomena. For example,
speech contains elementary constituents, such as
nouns and verbs, that can be recursively composed
into a hierarchy of (e.g. noun phrase or verb phrase)
of increasing complexity. Secondly, they have ex-
ploited the one-dimensional structure of language to
obtain efficient polynomial-time parsing algorithms
(e.g. the inside-outside algorithm [3]).

By contrast, the nature of images makes it much
harder to design efficient image parsers which are
capable of simultaneously performing segmentation
(parsing an image into regions) and recognition
(labeling the regions). Firstly, it is unclear what
hierarchical representations should be used to model
images and there are no direct analogies to the
syntactic categories and phrase structures that oc-
cur in speech. Secondly, the inference problem
is formidable due to the well-known complexity
and ambiguity of segmentation and recognition.
Unlike most languages (Chinese is an exception),
whose constituents are well-separated words, the
boundaries between different image regions are
usually highly unclear. Exploring all the different
image partitions results in combinatorial explosions
because of the two-dimensional nature of images
(which makes it impossible to order these partitions
to enable dynamic programming). Overall it has
been hard to adapt methods from natural language
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parsing and apply them to vision despite the high-
level conceptual similarities (except for restricted
problems such as text [4]).

Attempts at image parsing must make trade-offs
between the complexity of the models and the
complexity of the computation (for inference and
learning). Broadly speaking, recent attempts can be
divided into two different styles. The first style
emphasizes the modeling problem and develops
stochastic grammars [5], [6] capable of representing
a rich class of visual relationships and conceptual
knowledge about objects, scenes, and images. Zhu
and Mumford [7] show the representation richness
of this approach and discuss the relationship be-
tween grammars for images and objects. This style
of research pays less attention to the complexity
of computation. Parsing is performed by MCMC
sampling and is only efficient provided effective
proposal probabilities can be designed [5][6]. The
second style builds on the success of conditional
random fields (CRF’s) [8] [9], [10] and emphasizes
efficient computation. This yields simpler (discrim-
inative) models which are less capable of repre-
senting complex image structures and long range
interactions. Efficient inference (e.g. belief propa-
gation and graph-cuts) and learning (e.g. AdaBoost,
MLE) are available for basic CRF’s and make these
methods attractive. But these inference algorithms
become less effective, and can fail, if we attempt
to make the CRF models more powerful. For ex-
ample, TextonBoost [10] requires the parameters of
the CRF to be tuned manually. Overall, it seems
hard to extend the CRF style methods to include
long-range relationships and contextual knowledge
without significantly altering the models and the
algorithms.

In this paper, we introduce Hierarchical Image
Models (HIM)’s for image parsing. HIM’s balance
the trade-off between model and inference complex-
ity by introducing a hierarchy of hidden states. In
particular, we introduce recursive segmentation and
recognition templates which represent complex im-
age knowledge and serve as elementary constituents
analogous to those used in speech. As in speech, we
can recursively compose these constituents at lower
levels to form more complex constituents at higher
level. Each node of the hierarchy corresponds to an
image region (whose size depends on the level in
the hierarchy). The state of each node represents
both the partitioning of the corresponding region

into segments and the labeling of these segments
(i.e. in terms of objects). Segmentations at the top
levels of the hierarchy give coarse descriptions of
the image which are refined by the segmentations
at the lower levels. Learning and inference (parsing)
are made efficient by exploiting the hierarchical
structure (and the absence of loops). In short, this
novel architecture offers two advantages: (I) Repre-
sentation – the hierarchical model using segmenta-
tion templates is able to capture long-range depen-
dency and exploiting different levels of contextual
information, (II) Computation – the hierarchical tree
structure enables rapid inference (polynomial time)
and learning by variants of dynamic programming
(with pruning) and the use of machine learning (e.g.
structured perceptrons [11]).

To illustrate the HIM we implement it for parsing
images and we evaluate it on the public MSRC
image dataset [10] and the PASCAL VOC dataset
[12]. Our results show that the HIM perform at the
state-of-the-art. We discuss ways that HIM’s can be
extended naturally to model more complex image
phenomena. A preliminary version of this work was
presented in [13].

II. BACKGROUND: IMAGE MODELS,
REPRESENTATIONS AND COMPUTATION

The importance of image representations has long
been realized and classic representations include
the primal sketch [14], the 2-1/2D sketch [14],
intrinsic images [15], and the 2.1D sketch [16].
These representations, however, often did not ad-
dress computational issues such as inference and
learning.

In this section we will concentrate on probabilis-
tic models of images which are, to some extent,
inspired by these classic representations (we will
not deal with models that depend on depth estimates
like the 2-1/2D sketch and intrinsic images). These
probability models have three major components:

(I) The representation which consist of the graph
structure, the types of random variables, and the
form of the potentials represented at the cliques of
the graph.

(II) The algorithms used for inference.
(III) The algorithms used to learn the probability

distribution.
Table (I) gives a taxonomy of the standard prob-

abilistic models for representing images based on
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these components. The representation is arguably
the most important component because it not only
determines the representational power of the model,
but also the computational complexity of the infer-
ence algorithm (by the topology of the graph). In
turn, the complexity of learning is strongly depen-
dent on the complexity of the inference algorithm,
since all learning algorithms require the ability to
do inference. Therefore, all three components are
highly related to each other and choice of represen-
tation is fundamental because it sets the stage on
which inference and learning perform.

More concretely, the probabilistic models are
defined over an image representation W and the
input image I. The image is specified by values
{Iµ : µ ∈ D} defined over the image lattice D.
The nature of the image representation W differs
greatly for different models as described in the
following subsection. For some models (e.g., MRFs
and CRFs) W is specified over a copy of the image
lattice, while for others (e.g, stochastic grammars)
it can have arbitrarily complicated, and variable,
topology. More generally, W is defined by a set
of values {Wν : ν ∈ V} where V is the graph struc-
ture of the representation (which can have variable
topology). The probability distributions relating I to
W are either generative – specified by a likelihood
function P (I|W ) and a prior P (W ) – or are discrim-
inative and specified directly by P (W |I). In either
case, the distributions are specified over the random
variables {Iµ,Wν} defined on a graph D⋃V . The
probabilities are determined by clique potentials,
where the cliques are specified by the edges E of the
graph D⋃V . The learning algorithms are required
to estimate the distributions – P (I|W ), P (W ), or
P (W |I) – from training data. Most learning algo-
rithms assume that the graph structure is known
and so only learn the distributions, while others
attempt to learn the distributions and the graph
structure. The inference algorithms have an image I
as input and attempt to estimate W by, for example,
maximizing P (W |I). The computational complexity
of inference and learning depends largely on the
graph structure although the nature of the variables
is also important.

In the last three decade, researchers in computer
vision have strived to develop rich representations
which are capable of encoding visual entities (tex-
tures, regions, boundaries, objects, scenes, etc.) and
their relations while making computation (learning

Classification of Probabilistic Models of Images
Generative vs. Discriminative

Region vs. Edges
Shallow vs. Deep

TABLE II

A ROUGH CLASSIFICATION FOR MODELS OF IMAGES. THE

MODELS CAN BE GENERATIVE – I.E. SPECIFY A DISTRIBUTION

FOR GENERATING THE IMAGE – OR DISCRIMINATIVE (THIS

DISTINCTION IS BLURRED BECAUSE, FOR EXAMPLE, SOME

DISCRIMINATIVE MODELS CAN BE CONSIDERED AS GENERATIVE

MODELS FOR IMAGE FEATURES). MODELS CAN BE

DISTINGUISHED BETWEEN WHETHER THEY TRY TO DECOMPOSE

THE IMAGE INTO DISJOINT REGIONS OR SIMPLY LABEL

INTENSITY EDGES AND OTHER SIGNIFICANT IMAGE “EVENTS”.

MODELS CAN HAVE SHALLOW TOPOLOGY (ONE OR TWO LAYERS)

OR BE DEEP AND HAVE MANY LAYERS. DEEP MODELS ARE

BETTER ABLE TO REPRESENT LONG RANGE INTERACTIONS.

and inference) tractable. Probabilistic models of
images in the literature can be classified by the
following three questions (see table II): (i) are they
generative or discriminative (or some combination)?
(ii) do they represent image regions or only edges?
and (iii) are they hierarchical (e.g., have deep topo-
logical structure) or shallow (like standard MRFs)?
This classification is only rough since, for example,
the distinction between generative and discrimina-
tive models is increasingly being blurred as more
sophisticated discriminative models are developed.
We will use this classification to review the relevant
literature to give context before we present our
approach.

A. A Taxonomy of Probabilistic Models of Images
Markov Random Field models (MRF’s) [17] are

among the earliest probabilistic models of images
(see also Blake and Zisserman [20]). They represent
the image I by a smoothed image f with horizontal
h and vertical edges v, hence we set W = (f, h, v).
f, h, v are defined on lattices Df ,Dh,Dv which
are copies of the image lattice D, so we write
f = {fµ : µ ∈ Df}, h = {hµ : µ ∈ Dh},
v = {vµ : µ ∈ Dv}, defined on a graph V =
Df

⋃Dh

⋃Dv. The generative model is of factor-
ized form P (I|W ) =

∏
i∈D P (Ii|fi) and the prior

distribution P (W ) ∝ exp
∑

c φ(fc, hc, vc) where the
φ(.) are the clique potentials defined over local
neighborhoods. As shown by Geiger and collabo-
rators [21], [22] the horizontal and vertical edges
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Models Representation Learning Computation
MRF [17] one layer; generative maximum entropy MCMC, Mean Field Theory

Conditional Random Fields [9], [10] one layer; discriminative boosting + MLE belief propagation / graph Cut
primal sketch [18] one layer; generative sparse learning greedy search

region competition [19] and image parsing [6] shallow; generative separate learning MCMC
stochastic grammar [7] deep; generative MCMC MCMC

recursive templates deep; discriminative structure-perceptron dynamic programming

TABLE I

A TAXONOMY OF PROBABILISTIC MODELS OF IMAGES

can be summed out (for certain φ(., ., .)) to yield a
model where W corresponds only to the smoothed
image f , and where the edges can be inferred
from the estimates of f . A variety of inference
algorithms have been defined for MRF models.
These include stochastic sampling and deterministic
annealing [17], mean field methods [23] (now re-
named as variational methods), EM algorithms [22],
and graduated non-convexity [20]. Attempts to learn
these models have made the fundamental assump-
tion that we can directly observe W and learn a
probability distribution over it by applying minimax
entropy theory [24], which applies the maximum
entropy principle to histograms φ(W ) of feature
statistics computed from W . The maximum entropy
principle leads to an exponential distribution of form
P (W ) = 1

Zα
exp{α · φ(W )}, where the parameters

α are chosen such that
∑

W P (W )φ(W ) = ψ, and
ψ are the observed statistics. For minimax entropy,
there is a dictionary of features and the theory
selects those which best fit the data by the maximum
likelihood criteria. If the region is sufficiently big,
then the only possible states of W with non-zero
probability are those that have the exact histogram
– i.e. φ(W ) = ψ (like the asymptotic partition
criterion from information theory [25]). In practice,
W is not directly observable so the distributions are
learnt by using images I as input. A related theory
for learning probability distributions from features
was developed at the same time by Della Pietra et al
[26] but not applied to images. See Roth and Black
[27] for more recent attempts to learn image priors
by mixtures of experts.

By contrast to generative MRF’s, discriminative
methods encode the posterior distribution P (W |I)
directly, by ignoring the generative process. Dis-
criminative models have been used for labeling
problems where W = {wµ : µ ∈ Dw} is a set of dis-
crete labels wµ defined on a copy Dw of the image
lattice D. The labels can correspond, for example,

to indicating a pixel µ ∈ D is an “edge” or “non-
edge”, or they can be used to label pixels as “sky”,
“vegetation”, “road”, and “other”. Discriminative
models attempt to model P (W |I) directly without
having explicit models for P (I|W ) and P (W ). The
simplest models of this type can be expressed as:
P ({wµ}|I) =

∏
µ∈D P (wµ|I), where the distribution

of the label of pixel µ ∈ D is conditionally indepen-
dent of the label of its neighborhood pixels. For such
models, inference and learning are easy since they
can be performed at each pixel independently [28].
But this independence assumption is very restrictive
and can be relaxed to include interactions between
the labels at different pixels. This can be done
using the technology of conditional random fields
[8] though the relaxation labeling theories of Rosen-
feld and his collaborators had similar intuitions
[29]. This leads to models of form P ({wµ}|I) =
1
Z

∏
µ∈D φ(wµ|I)

∏
(µ,ν)∈E φ(wµ, wν |I), where Z is a

normalization term. Such models have been applied
to labeling images and detecting buildings [30].
For these models inference and learning are more
difficult and, as for MRFs, a variety of techniques
have been proposed. Since the labels are discrete (by
contrast, the f in the Geman and Geman model are
continuous) discrete algorithms like max-flow and
belief propagation have been applied for inference
and maximum likelihood for learning.

The generative and discriminative MRFs dis-
cussed in the previous two paragraphs model local
image properties – i.e. image appearance of pixels
– and make local prior assumptions, such as weak
smoothness. The next two classes of model – the
primal sketch [18] and regional models [19], [5],
[6] – attempt to model richer image properties and
have longer range interactions.

The Primal Sketch model [18] was partially mo-
tivated by Marr’s primal sketch, whose goal was
to make explicit important information about image
properties including spatial organization. Its starting
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point is the sparse coding model of images proposed
by Olshausen and Field [31] which represents an
image I by a linear sum of basis functions {Bi(µ)}
plus a noise term: I(µ) =

∑N
i=1 αiBi(µ) + ε(µ),

with a “sparseness prior” put on the coefficients α
so that

∑N
i=1 |αi| is small, and the noise term ε(µ)

is assumed to be independent zero mean additive
Gaussian noise. Guo et al [18] developed this into
a model of images by putting a more sophisticated
prior on the α including interactions between the
coefficients of neighboring basis functions. The
basis functions correspond to “sketchable” parts of
the image such as edges, peaks, and valleys (which
can be identified by thresholding the α). “Non-
sketchable” regions can be represented by Julesz
ensembles [32] (i.e. histograms of image features).
Inference and learning are harder for the full primal
sketch model. Projection pursuit [33] can be used if
the interactions between the α’s can be neglected,
see [18] for details.

Regional models decompose the image domain D
into disjoint regions D =

⋃M
a=1Da, with Da

⋂Db =
∅ ∀ a 6= b and where the number of regions M is
a random variable. An early example is Mumford
and Shah [34] where the W corresponds to a
smoothed version of the image (somewhat similar
to [17]). A more general formulation ([19], [5], [6])
specifies a class of probability models P (IDa|τa, γa)
for representing the image intensity IDa within each
subregion Da, where τa labels the model type and γa

labels its parameters – e.g., τ could label the region
as ’texture’ and γ would specify the parameters
of the texture model. Hence the representation is
W = (M, {(Da, τa, γa) : a = 1, ..., M}). The
likelihood model is of form P (I|M, {Da, τa, γa}) =∏M

a=1 P (Ia|τa, γa). There is a prior probability on
W specified by P (M)P ({Da}|M)

∏
a P (τa)P (γa).

Inference is difficult for these models. For the
simpler versions [34], [19] a variety of algorithms
will work (because this model assumes that the
intensity properties within all regions only obey
smoothness). For the more complex versions [5],[6]
stochastic sampling by Data Driven Markov Chain
Monte Carlo (DDMCMC) is required. Learning the
distributions P (IDa|τa, γa) is easier once images
have been hand-labelled.

Although the regional models are able to have
some long range interactions (due to the size of
the image regions) they are of fairly simple form,
partially because of their shallow graph structure.

They cannot, for example, represent the spatial re-
lations between windows in a building. Probabilistic
Grammars [35], [7] have been proposed to model
visual entities at different levels and their short
range and long range interactions. These models
are attractive and we refer to Zhu and Mumford
[7] for details of the representations which may be
achieved by these methods. The inference relies on
stochastic sampling by Data Driven Markov Chain
Monte Carlo (DDMCMC) [5] and the learning uses
minimax entropy methods with hand-labelled data.
Several of the concepts of probabilistic grammars
can be illustrated by the stochastic context free
grammars (SCFG) used in natural language process-
ing [36]. A SCFG consists of sets of non-terminal
and terminal nodes, a set of production rules, and
a probability distribution defined over the rules.
For natural languages, the non-terminal nodes can
be S, NP, V P, AT, NNS, V BD,PP, IN, DT, NN
where S is a sentence, V P is a verb phrase, V BD
is a verb,NP is a noun phrase, NN is a noun, and
so on [36]. The terminal nodes are words from a
dictionary (e.g. “the”, “cat”, “sat”, “on”, “mat”.)
The production rules are applied to non-terminal
nodes to generate child nodes (e.g. S 7→ NP, V P
or NN 7→ “cat”) and probabilities are defined over
these rules. To generate a sentence we start from
the root node S, sample to select a production rule
and apply it to generate child nodes. We repeat this
process on the child nodes and stop when all the
nodes are terminal (i.e. all are words). To parse
an input sentence, we use dynamic programming to
compute the most probable way the sentence could
have been generated by the production rules.

Probabilistic grammars seems promising by of-
fering the rich representational power by modeling
complex knowledge in a deep structure. However,
applying probabilistic grammars to images is not
straightforward. The major challenges are : (i)
what are the corresponding syntactic categories and
phrase structures in the image domain? (ii) can
we design an efficient inference algorithm on 2D
image space to make model learning and computing
tractable? Our recursive segmentation and recogni-
tion templates are proposed to address these two
critical issues.
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Notation Meaning
I input image

W parse tree
µ, ν node index

Ch(µ) child nodes of µ
s segmentation template
c object class

ψ1(I, sµ, cµ) object class appearance potential
ψ2(I, sµ, cµ) appearance homogeneity potential

ψ3(sµ, cµ, sν , cν) layer-wise labeling consistency potential
ψ4(i, j, cµ, cν) object class co-occurrence potential

ψ5(sµ) segmentation template potential
ψ6(sµ, j) co-occurrence of segment and class potential

TABLE III

THE TERMINOLOGY USED IN THE HIM MODEL.

III. HIERARCHICAL IMAGE MODEL

A. The Representation
We represent an image by a hierarchical graph V

with edges E defined by parent-child relationships,
see figure (1). The hierarchy corresponds to an
image pyramid (with 5 layers in this paper) where
the top node of the hierarchy represents the whole
image. The intermediate nodes represent different
sub-regions of the image and the leaf nodes repre-
sent local image patches (27× 27 in this paper).

The notations we used to describe the model are
summarized in table III. We use µ ∈ V to index
nodes of the hierarchy. R denotes the root node,
VLEAF are the leaf nodes, V/VLEAF are all nodes
except the leaf nodes, and V/R are all nodes except
the root node. A node µ has a unique parent node
denoted by Pa(µ) and four child nodes denoted by
Ch(µ). Thus, the hierarchy is a quad tree and Ch(µ)
encodes all its vertical edges E . The image region
represented by node µ is fixed and denoted by R(µ),
while pixels within R(µ) are labeled by r. The set
of pairs of neighbor pixels in R(µ) is denoted by
E(µ).

A configuration of the hierarchy is an assign-
ment of state variables W = {wµ} to the nodes
µ ∈ V (all state variables are unobservable and
must be inferred). The state variables are of form
wµ = (sµ,~cµ), where s and ~c specify the segmen-
tation template and the object label respectively.
We call (s,~c) a Segmentation and Recognition pair,
which we abbreviate to an S-R pair. They pro-
vide a description of the image region R(µ). Each
segmentation template partitions a region into K
non-overlapping sub-regions and is selected from a
dictionary Ds, where K ≤ 3 and |Ds| = 30 in this

paper. The dictionary of segmentation templates,
see figure (1), was designed by hand to cover the
taxonomy of shape segmentations that happen in
images, such as T-junctions, Y-junctions, and so
on. We divide the segmentation templates into three
disjoint subsets S1, S2, S3, where

⋃3
K=1 SK = Ds,

so that templates in subset SK partition the image
into K subregions. The variable ~c = (c1, ..., cK),
where cK ∈ {1, ..., M}, specifies the labels of the
K subregions (i.e. labels one subregion as “horse”
another as “dog” and another as “grass”). The num-
ber M of labels is set to 21 in this paper. The label of
a pixel r in region R(µ) is denoted by or

µ ∈ {1..M}
and is computed directly from sµ,~cµ, hence any
two pixels within the same subregion must have
the same label. Observe that each image pixel will
have labels or

µ defined at all levels of the hierarchy,
which will be encouraged (probabilistically) to be
consistent.

We emphasize that these hierarchical S-R pairs
are a novel aspect of our approach. They explicitly
represent the segmentation and the labeling of the
regions, while more traditional vision approaches
[10], [9], [37] use labeling only. Intuitively, the
hierarchical S-R pairs provide a coarse-to-fine repre-
sentation which capture the “gist” (e.g., semantical
meaning) of the image regions at different levels of
resolution. One can think of the S-R pairs at the
highest level as providing an “executive summary”
of the image, while the lower S-R pairs provided
more detailed (but still summarized) descriptions
of the image subregions. This is illustrated in fig-
ure (2), where the top-level S-R pair shows that
there is a horse with grass background, mid-level S-
R pairs give a summary description of the horses leg
as a triangle, and lower-level S-R pairs give more
accurate descriptions of the leg. We will show this
approximation quality empirically in section (VI).

B. The distribution
The conditional distribution over the state vari-

ables W = {wµ : µ ∈ V} is given by:

p(W |I; α) =
1

Z(I; α)
exp{−E1(I, s, c; α1)

− E2(I, s, c; α2)− E3(s, c; α3)− E4(c; α4)

− E5(s; α5)− E6(s, c; α6)} (1)

where I is the input image, W is the parse tree, α are
the parameters to be estimated, Z(I; α) is the parti-
tion function and Ei(I,W ) are energy terms defined



7

Fig. 1. The left panel shows the structure of the Hierarchical Image Model. The grey circles are the nodes of the hierarchy. All nodes,
except the top node, have only one parent nodes. All nodes except the leafs are connected to four child nodes. The middle panel shows
a dictionary of 30 segmentation templates. The color of the sub-parts of each template indicates the object class. Different sub-parts may
share the same label. For example, three sub-parts may have only two distinct labels. The last panel shows that the ground truth pixel labels
(upper right panel) can be well approximated by composing a set of labeled segmentation templates (bottom right panel).

Fig. 2. This figure illustrates how the segmentation templates and object labels (S-R pair) represent image regions in a coarse-to-fine way.
The left figure is the input image which is followed by global, mid-level and local S-R pairs. The global S-R pair gives a coarse description
of the object identity (horse), its background (grass), and its position in the image (central). The mid-level S-R pair corresponds to the region
bounded by the black box in the input image. It represents (roughly) the shape of the horse’s leg. The four S-R pairs at the lower level
combine to represent the same leg more accurately.

below. Equivalently, the conditional distribution can
be reformulated in a log-linear form:

log p(W |I; α) = α · ψ(I,W )− log Z(I; α) (2)

Each energy term is expressed in linear form,
Ei(I,W ) = −αi ·ψi(I,W ), where the inner product
is between a parameter α (which will be learnt)
and a potential functions ψ. There are six types of
energy terms defined as follows.

The first term E1(I, s, c) is an object specific data
term which represents the image features of regions.
We set E1(I, s, c) = −∑

µ∈V α1ψ1(I, sµ,~cµ) where∑
µ∈V is the sum over all nodes at all levels of the

hierarchy, and ψ1(I, sµ,~cµ) is of form:

ψ1(I, sµ,~cµ) =
1

|R(µ)|
∑

r∈R(µ)

log p(or
µ|Ir) (3)

where Ir is a local image region centered at the
location of r, F (·, ·) is a (strong) classifier learnt

by multi-class boosting [38] and p(or
µ|Ir) is given

by:

p(or
µ|Ir) =

exp{F (Ir, or
µ)}∑

o′ exp{F (Ir, o′)} (4)

The details of image features and boosting learning
will be described in section (VI-A.2).

The second term E2(I, s, c) =
−∑

µ∈V α2ψ2(I, sµ, cµ) is designed to favor
segmentation templates for which the pixels
belonging to the same partitions (i.e., having the
same labels) have similar appearance. We define:

ψ2(I, sµ,~cµ) =
1

|E(µ)|
∑

(q,r)∈E(µ)

φ(Ir, Iq|or
µ, o

q
µ)

(5)

where E(µ) are the set of edges connecting pixels
q, r in a neighborhood and φ(Ir, Iq|or

µ, o
q
µ) has the
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form of

φ(Ir, Iq|or
µ, o

q
µ) =

{
γ(r, q) if or

µ = oq
µ

0 if or
µ 6= oq

µ
(6)

where γ(r, q) = λ exp{−g2(r,q)
2γ2 } 1

dist(r,q)
, g(., .) is a

distance measure on the colors Ir, Iq and dist(r, q)
measures the spatial distance between r and q.
φ(Ir, Iq|or

µ, o
q
µ) is so called the contrast sensitive

Potts model which is widely used in graph-cut
algorithms [39] as edge potentials (only in one level)
to favors pixels with similar colour having the same
labels.

The third term, defined as:

E3(s, c) = −
∑

µ∈V/R:ν=Pa(µ)

α3ψ3(sµ,~cµ, sν , cν) (7)

(i.e. we sum over all nodes µ – except the root
node – with ν being the parent of µ) is used to
encourage consistency between the S-R pairs at
consecutive levels of the hierarchy. The potential
ψ3(sµ, cµ, sν , cν) is defined by the Hamming dis-
tance:

ψ3(sµ,~cµ, sν ,~cν) =
1

|R(µ)|
∑

r∈R(µ)

δ(or
µ, o

r
ν) (8)

where δ(or
µ, o

r
ν) is the Kronecker delta, which equals

one whenever or
µ = or

ν and zero otherwise. The ham-
ming function ensures to glue the segmentation tem-
plates (and their labels) at different levels together
in a consistent hierarchical form. This energy term
is a generalization of the interaction energy in the
Potts model. However, E3(s, c) has a hierarchical
form which allows multi-level interactions.

The fourth term E4(c) is designed to model the
co-occurrence of two object classes (e.g., a cow is
unlikely to appear next to an aeroplane):

E4(c) = −
∑
µ∈V

∑
i,j=1..M

α4(i, j)ψ4(i, j, cµ, cµ)

−
∑

µ∈V/R:ν=Pa(µ)

∑
i,j=1..M

α4(i, j)ψ4(i, j, cµ, cν) (9)

where ψ4(i, j, cµ, cν) is an indicator function which
equals one while i ≡ cµ and j ≡ cν (i ≡ cµ means i
is a component of cµ) is true and is zero otherwise.
α4 is a matrix where each entry α4(i, j) encodes
the compatibility between two classes i and j at the
same level. Similarly α4(i, j) gives the compatibility
between classes at different levels. In other words,
the first term on the right hand side encodes the

class co-occurrences within a single template while
the second term encodes the class co-occurrence
between parent and child templates. Note that class
co-occurrence is encoded at all levels to capture
both short-range and long-range interactions.

The fifth term E5(s) = −∑
µ∈V α5ψ5(sµ), where

ψ5(sµ) = log p(sµ) encode the generic prior of the
segmentation template.

Similarly the sixth term E6(s, c) =
−∑

µ∈V
∑

j≡cµ
α6ψ6(sµ, j), where ψ6(sµ, j) =

log p(sµ, j), models the co-occurrence of the
segmentation templates and the object classes.
ψ5(sµ) and ψ6(sµ, j) are directly obtained from
training data by label counting. The parameters α5

and α6 are both scalars.

C. How to classify HIMs?

We now describe how HIM fits into our classifi-
cation shown in table (II). Firstly, HIM is a discrim-
inative model because it specifies P (W |I) directly
and contains no model for generating the image.
The model contains energy terms – E3, E4, E5, E6

– which are independent of the image I and can be
loosely considered to specify a prior on the segmen-
tation templates and class labels. More specifically,
E3 encourages consistent between the templates
and labels at different levels of the hierarchy, E4

captures the statistics of the co-occurrence of labels,
E5 gives a prior for the templates, and E6 describes
the co-occurrence of the templates and the classes.
More standard models for discriminative classifi-
cation only include models for the co-occurrence
of classes, since they do not use segmentation
templates (even though some use hierarchies [9],
but use fewer than the five levels used by HIMs).
Note that in HIM spatial smoothness of object
labels is imposed by the hierarchy meaning that
neighboring nodes have similar labels because they
are encouraged to be consistent with their parents,
instead of being encouraged to directly have similar
labels to their neighbours (as in more standard
“shallow” models). The energy terms E1, E2 specify
how HIM interacts with the image. More specifi-
cally, E1 models the image labelling (using machine
learning classifiers) and E2 is like a “data dependent
prior” which encourages neighboring regions to
have similar labels unless there is a large intensity
discontinuity. HIM will be learnt by a discriminative
learning method (see section V). Secondly, HIM
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explicitly represents both regional and edge prop-
erties by the segmentation templates as shown in
figure (1). Note that some of the templates represent
triple points which are used to indicate occlusion
and foreground/background relationships, see fourth
row of the middle panel of figure (1). Thirdly, the
structure of HIM’s is deep (with five levels) so that
short, medium, and long range interactions between
the object regions of different sizes are encoded at
different levels of the hierarchy.

D. The Summarization Principle

An important aspect of our Hierarchical Image
Model (HIM), which distinguishes it from most
other models, is the summarization principle. This
design principle is important both for representation
and to make computation tractable. It is partially
based on the intuition of executive summary that
nodes at the upper levels of the hierarchy need only
provide coarse descriptions of the image because
more detailed descriptions can be obtained at lower
levels. This intuition relates to Lee and Mumford’s
[40] high resolution buffer hypothesis for the visual
cortex.

The summarization principle has four aspects.
(I) The state of wν the random variable at node

ν ∈ V/VLEAF is a summary of the state of its child
nodes µ ∈ ch(ν), and hence summarizes their states,
see figure (2).

(II) The representational complexity of a node
is the same at all levels of the tree – the random
variables are restricted to take the same number of
states.

(III) The clique potentials for a node ν ∈ V
depends on its parent nodes and it child nodes, but
not on its grandparents or grandchildren. This is a
Markov property on the hierarchy. But, as will be
described later, all nodes can receive input directly
from the input image.

(IV) The potentials defined over the cliques de-
pend only on simple statistics which also summarize
the states of the child nodes.

The executive summary intuition is enforced by
aspects (I) and (II) – the upper levels nodes can
only give coarse descriptions of the large image
regions that they represent and these descriptions are
based on the, more detailed, descriptions given by
the lower level nodes. The other two aspects – (III)
and (IV) – help reduce the number of cliques in the

graph and restrict the complexity of the potentials
defined over the cliques. Taken all together, the four
aspects make learning and inference computation-
ally practical because of (i) the small clique size, (ii)
the simplicity of the potentials, and (iii) the limited
size of the state space.

E. Comparisons with other work

The HIM has several partial similarities with
other work. HIM is a coarse-to-fine representation
which captures the “gist” of image regions by using
the S-R pairs at multiple levels. But the traditional
concept of “gist” [41] relies only on image features
and does not include segmentation templates. Levin
and Weiss [42] use a segmentation mask which
is more object-specific than our segmentation tem-
plates (and they do not have a hierarchy). It is worth
nothing that, in contrast to TextonBoost [10], we
do not use “location features” in order to avoid the
dangers of overfitting to a restricted set of scene
layouts. Our approach has some similarities to some
hierarchical models (which have two-layers only)
[9],[37] – but these models also lack segmentation
templates. The hierarchial model proposed by [43]
is an interesting alternative but which does not
perform explicit segmentation.

IV. INFERENCE: PARSING BY DYNAMIC
PROGRAMMING

Parsing an image is performed as inference of the
HIM. We parse the image by inferring the maximum
a posterior (MAP) estimator of the HIM:

W ∗ = arg max
W

p(W |I; α) = arg max
W

α · ψ(I,W )

(10)

This will output state variables {w∗
µ = (s∗µ,~c

∗
µ) :

µ ∈ V} at all levels of the hierarchy. But we only
use the state variables at the lowest level of the
graph when we evaluate the HIM for labeling.

The graph of the HIM has no closed loops so Dy-
namic Programming (DP) can be applied to calcu-
late the best parse tree W ∗ from equation (10). But
the computational complexity is high because of the
large size of the state space. To see this, observe that
the number of states at each node is O(MK |Ds|)
(where K = 3,M = 21, |Ds| = 30) and so
the computational complexity is O(M2K |Ds|2H)
where H is the number of edges in the hierarchy.
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Note that the choice of our representation, in par-
ticular the segmentation-recognition template, has
restricted the size of the state space by requiring that
node µ can only assign labels or

µ consistent with the
state wµ = (sµ,~cµ). Nevertheless, the computational
complexity means that DP is still impractical on
standard PCs. We hence use a pruned version of
DP which will describe below.

A. Recursive Energy Formulation
The hierarchical form of the HIM (without closed

loops) means that the energy terms can be computed
recursively which will enable Dynamic Program-
ming and motivate pruning.

More formally, an HIM is defined over a hierar-
chical graph V with edges E specified by the parent-
child relations. The graph has no closed loops since
each child is constrained to have a single parent. The
state variables are wµ = (sµ,~cµ) for node µ ∈ V .
The distribution is of Gibbs form with an energy
function that can be expressed as:

E(w|I) =
∑
µ∈V

αµ · ψµ(I, wµ)

+
∑

µ∈V/VLEAF

αint
µ · ψint

µ (wµ, wch(µ)), (11)

where: (I) the first term depends only on the states
of the nodes at each level and on the input image I,
which includes the data terms E1, E2 and two of the
prior terms E5, E6. and (II) the second term E3, E4

depends on the states of nodes and their children,
and the superscript int stands for “inter-layer”.

We express this energy function recursively, ex-
ploiting the tree structure, by defining an energy
function Eν(wdes(ν)|I) over the subtree with root
node ν in terms of the state variables wdes(ν) of
the subtree, where des(ν) stands for the set of
descendent nodes of ν – i.e. wdes(ν) = {wµ : µ ∈
Vν}, where Vν is the subtree with root node ν. We
define Eν(wdes(ν)|I) by:

Eν(wdes(ν))|I) =
∑
µ∈Vν

αint
µ · ψint

µ (wµ, wch(ν))

+
∑
µ∈Vν

αµ · ψµ(I, wµ) (12)

which can be computed recursively by:

Eν(wdes(ν)|I) =
∑

ρ∈ch(ν)

Eρ(wdes(ρ)|I)

+αint
ν · ψint

ν (wν , wch(ν)) + αν · ψν(I, wν). (13)

Observe that the full energy E(W |I) is obtained
by evaluating Eν(.) at the root node R.

B. Dynamic Programming with Pruning

We can use the recursive formulation of the
energy, see equation (13), to perform Dynamic
Programming. But to ensure rapid inference we will
need to perform pruning by not exploring partial
state configurations which seem unpromising. We
first describe DP and then give our pruning strat-
egy. The pseudocode for the algorithm is given in
figure (3).

DP proceeds by evaluating possible states wν for
nodes ν of the graph. We will refer to these possible
states as proposals and denote them by {pν,b}, where
b indexes the proposal. These proposals, and their
energies Eν(pν,b|I), are computed recursively as
follows.

Recursion for parent nodes: to obtain the pro-
posals for a parent node µ at a higher level of
the graph µ ∈ V/VLEAF we first access the
proposals for all its child nodes {pµi,bi

} where
{µi : i = 1, ..., |ch(µ)|} denotes the set of child
nodes of µ and their energies {Eµi

(pµi,bi
|I) : i =

1, ..., |ch(µ)|}. Then we compute the states {pµ,b}
such that Eµ(pµ,b|I) ≤ Eµ(wµ|I) where:

Eµ(pµ,b|I) = min{bi}{
|ch(µ)|∑

i=1

{Eµi
(wdes(µi,bi)|I)

+αint
µ · ψint

µ (pµ,b, {pµi,bi
})}+ αµ · ψµ(I, pµ,b)}

(14)

The initialization is performed at the leaf nodes
using the data terms only (E1 and E2).

The pruning strategy if to reject proposals whose
energies are too high and which hence are unlikely
to lead to the optimal solution. To understand our
pruning strategy, recall that the set of of region par-
titions is divided in three subsets S1, S2, S3, where
Si contains i regions. There are |C|i possible labels
c for each region partition which gives a very large
state space (since |C| = 30). Our pruning strategy
is to restrict the set of labels ~c allowed for each
of these subsets. For subset S1, there is only one
region so we allow all possible labels for it c1 ∈ C
and perform no pruning. For subset S2, there are
two subregions and we keep only the best 10 labels
for each subregion (i.e. a total of 10 × 10 = 100
labels). For subset S3, we keep only the best 5 labels
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Input: {p1
ν1}. Output:{pL

νL}
• Bottom-Up(p1)

Loop : l = 1 to L, for each node ν at level l

1) Composition: {pl
ν,b} = ⊕ρ∈ch(ν)p

l−1
ρ,a

2) Pruning: divide the proposals {pl
ν,b} into three sets based on the partition

variable sµ ∈ Si (i = 1, 2, 3). Rank all these proposals by energy. Keep the
lowest ki proposals for each set (k1 = 30, k2 = 100, k3 = 125).

Fig. 3. The inference algorithm. ⊕ denotes the operation of combining proposals from the child nodes to make proposals for parent nodes.
See text for more details about the pruning.

of each subregion (hence a total of 53 = 125 labels).
In summary, when computing the proposals for node
µ, we group the proposals into three sets depending
on the partition label sµ of the proposal. If sµ ∈ S1,
then the proposal is kept. If sµ ∈ S2 or sµ ∈ S3,
we keep the top 100 and 125 proposals respectively.
(We experimented with changing these numbers –
100 and 125 – but noticed no significant difference
in performance for small changes).

V. LEARNING THE MODEL

Since HIM is a conditional model, in principle,
estimation of its parameters can be achieved by any
discriminative learning approach, such as maximum
likelihood learning as used in Conditional Random
Field (CRF) [8], max-margin learning [44], and
structure-perceptron learning [11]. In this paper, we
adopt the structure-perceptron learning which has
been applied for learning the recursive deformable
template (see paper [45]). Note that structure-
perceptron learning is simple to implement and only
needs to calculate the most probable configurations
(parses) of the model. By contrast, maximum like-
lihood learning requires calculating the expectation
of features which is difficult due to the large states
of HIM. Therefore, structure-perceptron learning is
more flexible and computationally simpler. More-
over, Collins [11] proved theoretical results for
convergence properties, for both separable and non-
separable cases, and for generalization.

The structure-perceptron learning will not com-
pute the partition function Z(I; α). Therefore we do
not have a formal probabilistic interpretation. The
goal of structure-perceptron learning is to learn a
mapping from inputs to output structures. In our
case, the inputs {Ii} are a set of images, and the
outputs {W i} are a set of parse trees which specify
the labels of image regions in a hierarchical form.
We use a set of training examples {(Ii,W i) : i =

1...n} and a set of functions ψ which map each
(I,W )) to a feature vector ψ(I,W ) ∈ Rd (in
practice, the training set only contains the labels
of the pixels and we perform an approximation to
estimate the full parse W i for the training set –
see 1) Implementation details in the Experimental
Results section). The learning task is to estimate
a parameter vector α ∈ Rd for the weights of the
features. The feature vectors ψ(I,W ) can include
arbitrary features of parse trees, as we discussed in
section (III-A). The loss function used in structure-
perceptron learning is usually of form:

Loss(α) = α · ψ(I,W )−max
W

α · ψ(I, W ), (15)

where W is the correct structure for input I, and W
is a dummy variable.

The basic structure-perceptron algorithm is de-
signed to minimize the loss function. We adapt “the
averaged parameters” version whose pseudo-code
is given in figure (4). The algorithm proceeds in
a simple way (similar to the perceptron algorithm
for classification). The parameters are initialized
to zero and the algorithm loops over the training
examples. If the highest scoring parse tree for input
I is not correct, then the parameters α are updated
by an additive term. The most difficult step of the
method is finding W ∗ = arg maxW α · ψ(Ii,W ).
This is precisely the parsing (inference) problem.
Hence the practicality of structure-perceptron learn-
ing, and its computational efficiency, depends on
the inference algorithm. As discussed earlier, see
section (IV), the inference algorithm has polyno-
mial computational complexity for an HIM which
makes structure-perceptron learning practical for
HIM. The averaged parameters are defined to be
γ =

∑T
t=1

∑N
i=1 αt,i/NT , where T is the number

of epochs, NT is the total number of iterations. It
is straightforward to store these averaged parameters
and output them as the final estimates.
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Input: A set of training images with ground truth (Ii,W i) for i = 1..N . Initialize parameter
vector α = 0.
For t = 1..T, i = 1..N

• find the best state of the model on the i’th training image with current parameter setting,
i.e., W ∗ = arg maxW α · ψ(Ii,W )

• Update the parameters: α = α + ψ(Ii,W i)− ψ(Ii,W ∗)
• Store: αt,i = α

Output: Parameters γ =
∑

t,i α
t,i/NT

Fig. 4. The structure-perceptron learning algorithm.

VI. EXPERIMENTAL RESULTS

We evaluate the segmentation performance of the
HIM on two public datasets, i.e. the MSRC 21-class
image datset [10] and the PASCAL VOC 2007
[12].

A. Experiment I: MSRC

1) Implementation details: We use a standard
public dataset, the MSRC 21-class Image Dataset
[10], to perform experimental evaluations for the
HIM. This dataset is designed to evaluate scene
labeling including both image segmentation and
multi-class object recognition. The ground truth
only gives the labeling of the image pixels. To
supplement this ground truth (to enable learning),
we estimate the true labels (states of the S-R pair
) of the nodes in the five-layer hierarchy of HIM
by selecting the S-R pairs which have maximum
overlap with the labels of the image pixels. This
approximation only results in 2% error in labeling
image pixels. There are a total of 591 images. We
use the identical splitting as [10], i.e., 45% for
training, 10% for validation, and 45% for testing.
The parameters learnt from the training set, with
the best performance on validation set, are selected.

For a given image I, the parsing result is obtained
by estimating the best configuration W ∗ of the HIM.
To evaluate the performance of parsing we use the
global accuracy measured in terms of all pixels
and the average accuracy over the 21 object classes
(global accuracy pays most attention to frequently
occurring objects and penalizes infrequent objects).
A computer with 8 GB memory and 2.4 GHz CPU
was used for training and testing.

2) Image features and potential learning: The
image features used by the classifier (47 in total) are
the greyscale intensity, the color (R,G, B channels),

the intensity gradient, the Canny edge, the response
of DOG (difference of Gaussians) and DOOG (Dif-
ference of Offset Gaussian) filters at different scales
(13*13 and 22*22) and orientations (0,30,60,...),
and so on. We use 55 types of shape (spatial) filters
(similar to [10]) to calculate the responses of 47
image features. There are 2585 = 47 ∗ 55 features
in total. For each class, there are around 4, 500
weak classifiers selected by multi-class boosting.
The boosting learning takes about 35 hours of which
27 hours are spent on I/O processing and 8 hours
on computing.

3) Parsing results: The segmentation perfor-
mance of the HIM on the MSRC dataset is shown
in table (IV). The confusion matrix of 21 object
classes is shown in table (5) where the diagonal
is the classification accuracy of individual classes.
Figure (6) (best viewed in color) shows several
parsing results obtained by the HIM and by the
classifier by itself (i.e. p(or

µ|I) learnt by boosting).
The colors used in the segmentation correspond
to the 21 object classes encoded in the confusion
matrix shown in table (5). One can see that the
HIM is able to roughly capture different shaped
segmentation boundaries (see the legs of the cow
and sheep in rows 1 and 3, and the boundary curve
between sky and building in row 4). Table (IV)
shows that HIM improves the results obtained by
the classifier by 6.9% for average accuracy and 5.3%
for global accuracy. In particular, in rows 6 and 7
in figure (6), one can observe that boosting gives
many incorrect labels. It is impossible to correct
such large mislabeled regions without the long-
range interactions in the HIM, which improves the
results by 20% and 32%. Figure 7 shows more
segmentation results from different scenes.

4) Performance comparisons: In table (IV), we
compare the performance of our approach with other
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Fig. 5. Confusion Matrix for different object classes evaluated on the MSRC dataset [10].

successful methods [10], [46], [47]. Our approach
outperforms those alternatives by 6% in average
accuracy and 4% in global accuracy. Our boosting
results are better than Textonboost [10] because of
image features. Would we get better results if we use
a flat CRF with our boosting instead of a hierarchy?
We argue that we would not because the CRF only
improves TextonBoost’s performance by 3 percent
[10], while we gain 5 percent by using the hierarchy
(and we start with a higher baseline). Some other
methods [48], [37], [9], which are worse than [46],
[47] and evaluated on simpler datasets [9], [37] (less
than 10 classes), are not listed here due to lack of
space. We also report recent progress ([49], [50])
on this dataset. Ladicky et al. [50] achieves better
performance, but they use better classifiers (more
powerful unary potentials, see table IV) .

5) Empirical convergence analysis of perceptron
learning.: The structure-perceptron learning takes
about 20 hours to converge in 5520(T = 20, N =
276) iterations. In the testing stage, it takes 30
seconds to parse an image with size of 320 × 200
(6s for extracting image features, 9s for computing
the strong classifier of boosting and 15s for parsing
the HIM). Figure 8 plots the convergence curves
evaluated by average accuracy and global accuracy
on the test set. It shows that the structure-perceptron
learning converges in T=20 epochs.

6) Diagnosis on the function of S-R pair.: Fig-
ure (9) shows how the S-R pairs (including the
segmentation templates) can be used to (partially)
parse an object into its constituent parts, by the
correspondence between S-R pairs and specific parts
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Fig. 8. Empirical Convergence Analysis on the MSRC dataset.
The curves plot the average and global accuracy as a function of
the number of iterations (of parameter estimation). The accuracy is
evaluated on the test dataset

of objects. We plot the states of a subset of S-
R pairs for some images. For example, the S-R
pair consisting of two horizontal bars labeled “cow”
and “grass” respectively indicates the cow’s stomach
consistently across different images. Similarly, the
cow’s tail can be located according to the con-
figuration of another S-R pair with vertical bars.
In principle, the whole object can be parsed into
its constituent parts which are aligned consistently.
Developing this idea further is an exciting aspect of
our current research.

B. Experiment II: PASCAL VOC 2007
The PASCAL VOC 2007 dataset [12] was used

for the PASCAL Visual Object Category segmen-
tation contest 2007. It contains 209 training, 213
validation and 210 segmented test images of 20
foreground (object) and 1 background classes. It
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Fig. 6. This figure is best viewed in color. The colors indicate the labels of 21 object classes as in the MSRC dataset [10]. The columns
(except the fourth “accuracy” column) show the input images, ground truth, the labels obtained by HIM and the boosting classifier respectively.
The “accuracy” column shows the global accuracy obtained by HIM (left) and the boosting classifier (right). In these 7 examples, HIM
improves boosting by 1%, -1% (an outlier!), 1%, 10%, 18%, 20% and 32% in terms of global accuracy.

Textonboost[10] PLSA-MRF [46] Auto-context [47] Region Ancestry[49] HCRF[50] Classifier only HIM
Average 57.7 64.0 68 67 75 (72) 67.2 74.1
Global 72.2 73.5 77.7 – 86 (81) 75.9 81.2

TABLE IV

PERFORMANCE COMPARISONS FOR AVERAGE ACCURACY AND GLOBAL ACCURACY ON THE MSRC DATASET. “CLASSIFIER ONLY” ARE

THE RESULTS WHERE THE PIXEL LABELS ARE PREDICTED BY THE CLASSIFIER OBTAINED BY BOOSTING ONLY. THE NUMBERS IN THE

BRACKETS ARE THE RESULTS OBTAINED BY THE CLASSIFIER (UNARY POTENTIAL) USED IN HCRF [50].
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Fig. 7. More parse results on the MSRC dataset. The correspondence between the color and the object class is defined in figure 5.

is more challenging than the MSRC-21 dataset due
to more significant background clutter, illumination
effects and occlusions. We trained the HIM using
the same parameter settings and features as in the
experiment on the MSRC-21 dataset. The parse
results are shown in figure 10. The segmented
results look visually worse than those on the MSRC
dataset because in the PASCAL dataset, a single
“background” class covers several object classes,
such as sky, grass, etc. while more accurate labeling
is imposed in the MSRC dataset. We compared our

approach with other representative methods reported
in the PASCAL VOC segmentation contest 2007
[12]. The comparisons in table V show that the HIM
outperforms most methods and is comparable with
TKK.

VII. CONCLUSION

This paper describes a novel hierarchical image
model (HIM) for 2D image parsing. The hierarchi-
cal nature of the model, and the use of recursive
segmentation and recognition templates, enables the
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Fig. 9. The S-R pairs can be used to parse the object into parts. The colors indicate the identities of objects. The shapes (spacial layout) of
the segmentation templates distinguish the constituent parts of the object. Observe that the same S-R pairs (e.g. stomach above grass, and
tail to the left of grass) correspond to the same object part in different images.

Fig. 10. Parse results on the PASCAL VOC 2007 dataset [12]. The first three columns show the input images, the groundtruth and the
parse results of HIM, respectively. The next three columns show the other four examples.

Brookes TKK UoCTTI HIM
Average 8.5 30.4 21.2 26.5
Global 58.4 24.4 – 67.2

TABLE V

PERFORMANCE COMPARISONS ON THE PASCAL VOC 2007

DATASET. THREE METHODS REPORTED IN THE VOC

SEGMENTATION CONTEST 2007 [12] ARE COMPARED.

HIM to represent complex image structures in a
coarse-to-fine manner. We can perform inference
(parsing) rapidly in polynomial time by exploit-
ing the hierarchical structure. Moreover, we can
learn the HIM probability distribution from labeled

training data by adapting the structure-perceptron
algorithm. We demonstrated the effectiveness of
HIM’s by applying them to the challenging task of
segmentation and labeling of the public MSRC and
PASCAL VOC 2007 image databases. Our results
show that we perform competitively with state-of-
the-art approaches.

The design of the HIM was motivated by drawing
parallels between language and vision processing.
We have attempted to capture the underlying spirit
of the successful language processing approaches
– the hierarchical representations based on the re-
cursive composition of constituents and efficient
inference and learning algorithms. Our current work
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attempts to extend the HIM’s to improve their repre-
sentational power while maintaining computational
efficiency.
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