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Abstract

This document is intended to help readers start to use our framework for formally verifying
software transactional memory algorithms using the PVS verification system. A paper describing
technical aspects of this framework, and some of the challenges encountered and lessons learned
in using the framework, was presented at CONCUR 2012. This document describes more
mundane aspects, such as how to explore the framework using PVS for readers not already
familiar with it, and provides brief descriptions of the files contained in the framework.

1 Introduction

This document briefly describes a framework for formally verifying transactional memory (TM)
algorithms that we presented at CONCUR 2012 [7], and gives some tips that we hope enables
readers to start using this framework quickly and easily. Our framework is formalized using the
PVS verification system [1, 11], and, for readers not already familiar with PVS, we describe how
to get started using it quickly, and provide pointers to where to get it. Although we do not assume
familiarity with PVS, this document is not a tutorial on PVS; such tutorials are available at the
PVS website [1, 2].

2 Overview of the framework

The framework provides three kinds of files used by PVS:

• specification files (.pvs suffix) contain definitions and lemmas provided by the framework;

• proof files (.prf suffix) contain saved proofs of lemmas; and

• the pvs-strategies files defines strategies used in the proofs.

Most users will be interested primarily in the specification files. Proof files are generated and
updated automatically by PVS, and should not be edited directly. Strategies are user-defined
routines that capture common patterns in proofs. We do not discuss strategies further in this
document; for more information, please refer to PVS documentation (e.g., [2]).

Definitions and lemmas are specified in the PVS language, which is a typed higher-order logic.
PVS generates proof obligations for every lemma, as well as for type-correctness conditions (TCCs)
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induced by certain expressions. For example, a function call induces the TCC that the function is
defined on its argument. Every lemma and TCC of our framework has been verified, and its proof
is contained in the appropriate proof file (i.e., the one with the same name as the specification file
in which the lemma appears).

Definitions and lemmas in PVS are packaged into theories, which are the basic unit of modularity
in PVS. A theory can use definitions and lemmas specified in another theory by importing that
theory. A single specification file may contain multiple theories, and the name of a theory need not
correspond to the name of the file that contains it. A theory may import any theory contained in a
specification file in the same directory (in our framework, all the files are in a single directory). In
our framework, every specification file other than FiniteSequences.pvs contains a single theory
with the same name as the file.

Our framework is based on I/O automata [9] and simulation proof techniques [10]. As discussed
in our CONCUR paper [7], we found it useful to refine standard automata theory by splitting the
definition of an automaton into a basic automaton, which specifies the “internal structure” of the
automaton, and a view, which maps actions to external events.

Upon this foundation, we define several automata that model TM specifications and algorithms.
In particular, we formalize TMS1 and TMS2 from our previous work on specifying transactional
memory [4], opacity by Guerraoui and Kapalka [5, 6] modeled as an automaton [8], and the NOrec
algorithm of Dalessandro et al. [3]. As described in our CONCUR paper, we define several equiv-
alent automata for TMS2, and also “intermediate” automata for proving that NOrec implements
TMS2. We also define several simulation relations of various kinds to prove that certain automata
implement others. We model transactional memory as acting on a single data object, and we also
formalize the sequential specification of such objects.

In addition, we provide several theories that extend the theories of finite sequences and partial
functions provided in the PVS prelude. (The PVS prelude is a collection of PVS theories shipped
with PVS whose definitions are implicitly available in any user-defined theories.) In particular, we
define several simple functions and many lemmas, especially for finite sequences, that we found
useful in our proofs. We hope that these extensions will be helpful to others, even those not
interested in verifying transactional memory.

Finally, our framework includes several “main” files, which provide starting points for verifying
the framework or parts of it, using the prove-import-chain command of PVS (see below).

2.1 The specification files

We now list the specification files included in the framework.

• Automaton Simulations SimulationComposition
View BackSimulations
AutomatonWithView HistoryMappings

These files formalize the basic automata theory used in the framework.

• SequentialSpecifications RWObject

These files define sequential semantics for data objects, and read-write memory in particular.

• TMEvent

This file defines the type of external events for TM automata.
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• TMS1 TMS2 NOrec
Opacity TxnOrdTMS2 NOrecAtomicCommitValidate
TMS1Action TxnOrdTMS2WithFailures NOrecDerived
StatusValue ReservationTMS2 NOrecPaperPseudocode

TxnOrdTMS2Augmented Lock

These files define basic automata, and also lemmas and invariants for these automata. (The
TMS1Action and StatusValue files define types for actions and possible values for the “status”
of a transaction for both TMS1 and Opacity. Lock defines the lock datatype used by NOrec
and NOrecDerived.)

• TMS2WithView NOrecWithView
TxnOrdTMS2WithFailuresWithView NOrecAtomicCommitValidateWithView
ReservationTMS2WithView NOrecDerivedWithView

NOrecPaperPseudocodeWithView

These files define the views for the automata above. (There are no files for TMS1 and Opacity
because their view is just the identity function. There is no file for TxnOrdTMS2 because its
view is the same as for TMS2.)

• TxnOrdTMS2ToTMS2
ReservationTMS2ToTxnOrdTMS2WithFailures
TxnOrdTMS2WithFailuresToTxnOrdTMS2
TxnOrdTMS2ToReservationTMS2
OpacityToTMS1
TxnOrdTMS2AugmentedToOpacity
TxnOrdTMS2ToTxnOrdTMS2Augmented
NOrecToTMS2
NOrecAtomicCommitValidateToTMS2
NOrecDerivedToNOrecAtomicCommitValidate
NOrecToNOrecDerived
NOrecPaperPseudocodeToNOrec
NOrecExtraProperties

These files define simulation relations between the automata above. (NOrecToTMS2 just com-
bines the results of the three subsequent files. NOrecExtraProperties derives an invariant
of NOrec from an analgous invariant of NOrecAtomicCommitValidate. See our CONCUR
paper for more details [7].)

• FiniteSequences Flatten PartialFunctions
Serializations Unfold

These files extend theories about finite sequences and partial functions from the PVS prelude.

• Main Main Preliminaries Main TMSpecs
Main Automata Main NOrec

These files serve as starting points for verifying the framework.

3 Using the framework

Using the framework requires PVS (and Emacs) to be installed. For pointers on how to acquire
and install PVS, see Appendix A.
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Start PVS in the directory containing the framework (i.e., the directory with the specification
and proof files). For example, if this directory is ~/framework, then go to ~/framework and type
pvs at the prompt:

~/framework$ pvs

This starts Emacs with PVS running (in the *pvs* buffer).
In the rest of this section, C, M, and T denote the control, meta, and tab keys respectively.

PVS can be run interactively or in batch mode.
Although we discuss aspects of PVS in this section, it is neither a tutorial nor a definitive

reference for PVS. Interested readers should consult the PVS documentation available on the PVS
website [1], which includes a tutorial [2] and a guide to the prover [12]. However, note that this
documentation is rather dated, and so is not entirely accurate for the latest version of PVS.

3.1 Running proofs

Open the file Automata.pvs, and look at lemma lengthTruncate. There is a saved proof for this
lemma. (Proofs of lemmas in Automaton.pvs are saved in Automaton.prf.) To see this proof,
place the cursor on lengthTruncate lemma and type

M–x show-proof

A buffer named Proof (henceforth, the proof buffer) is opened, displaying the saved proof. (A
proof in PVS is a script consisting of a sequence of commands to the prover.)

The PVS prover runs all proofs in the *pvs* buffer. To run the saved proof of a lemma, place
the cursor on the lemma (in the specification file) and press

C–c p

At the prompt, type yes when you are asked whether to rerun the existing proof. (Type no to
write a new proof.) This starts the proof in the *pvs* buffer. As the proof is correct, it finishes
successfully. If there were no saved proofs for the lemma, this step would be skipped and you would
be immediately prompted to prove the lemma in the *pvs* buffer.

We can also step through the proof: Go to the lemma lengthTruncate again and press

C–c C–p s

This loads the proof buffer with the saved proof, which consists of four commands. It also makes the
*pvs* buffer current, and prompts for a prover command. Above the prompt, the current sequent
is displayed. We must establish that the conjunction of formulas above the turnstile implies the
disjunction of the formulas below it.

To execute the next command from the proof buffer, press

T 1

This executes the command following the cursor in the proof buffer, and advances the cursor in the
proof buffer to the next command. Thus, it can be used repeatedly to run consecutive commands.
To run the next k command consecutively, press

C–u k T 1

The proof buffer can be edited, and the cursor can be moved inside the proof buffer to mark a
different command as the next command.
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Note that T 1 executes whatever command follows the cursor in the proof buffer. Thus, one
can load the proof of one lemma into the proof buffer (e.g., by M–x show-proof), and then use
it to prove a different lemma, provided that the proof buffer is not overwritten (e.g., by pressing
C–c C–p s to start proving the other lemma).

To issue a command directly (rather than running one from the proof buffer), either type it at
the prompt in the *pvs* buffer or use a command shortcut. Shortcuts for some of the commands
we use most frequently are:
T a (assert) T g (ground) T p (prop) T = (decompose-equality)
T e (expand) T G (grind) T s (split) T ? (inst?)
T f (flatten) T l (lift-if) T S (skosimp)

See the PVS prover guide [12] for a description of these commands.
Some commands generate multiple proof obligations as subgoals, leading proofs to have a tree

structure. The (postpone) command (shortcut: T P) causes the prover to switch to the next
incomplete branch in the proof tree. The (undo) command (shortcut: T u) removes the last
command in the current branch of the proof tree. Note that this is not the previous command
issued if that command completed some branch of the tree. If the undone command had some
completed branches, those branches are also removed from the tree. A mistaken (undo) command
can be reversed using (undo undo), but only if this is done immediately afterwards (i.e., with no
intervening command).

PVS provides a graphic display of the proof tree. To see the current proof tree, type

M–x x-show-current-proof

This tree is updated as you issue more commands, so that it always reflects the current state of
the proof. This is helpful to see proof branches in large proofs. Clicking on the turnstiles that
appear between commands opens a window that displays the sequent at that point in the proof.
Long commands are abbreviated in the proof tree; clicking on them opens a window showing the
full command.

Certain commands, particularly (grind), may run for a long time—indeed, they may never
terminate (or at least run longer than we have been willing to wait). You can interrupt such a
command and return to the point immediately before executing it by typing

C–c C–c C–d

To quit a proof, use the (quit) command (shortcut: T q). If you have issued a sequence of
commands other than the saved proof, you are prompted whether the proof should be saved. In
this case, type no to preserve the existing proof.

A theory (and any theories it imports) must be type-checked before it can be proved. This is
done automatically when a proof in the theory is attempted, but it can also be done explicitly by
typing

M–x typecheck-prove

TCCs are automatically generated constraints (lemmas) to enforce type soundness. Some of them
are automatically discharged and some are not. To see the TCCs of this theory, type

M–x show-tccs

or
C–c C–q s
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3.2 Rerun the proofs in batch

To run all the saved proofs for a theory, place the cursor anywhere within the theory and press

C–c C–p t

After executing all the proofs, the status of all lemmas and TCCs of the theory is displayed in a
new buffer called PVS Status. The status of a lemma or TCC may be “untried”, “unfinished”,
“proved - incomplete” or “proved - complete”. A lemma is “proved - incomplete” if it was proved
but used lemmas that are not “proved - complete”. To get this status again later, type

M–x status-proof-theory

To prove all the theories that a theory directly or indirectly imports, type

C–c C–p i

which runs all the proofs and then brings a summary of the status of the theories in the import
chain. To prove all theories in the entire framework, invoke this command on the Main theory. To
see this status again later, type

M–x status-proofchain

3.3 Get information

To quickly find the definition of a function in a specification file, place the cursor on a usage of this
function and press

M–.

For example, the lengthTruncate lemma uses the truncate function. In this case, the definition
is right above the lemma but it could be far away, even in a different (imported) theory. Placing
the cursor on the call to truncate in lengthTruncate and pressing M–. opens a new buffer with
the definition of truncate. Conversely, to see where a function is used, place the cursor over the
function and press

M–;

Placing the cursor on the truncate function and pressing M–; opens a new buffer with a list of the
places where truncate is used, including the lemma lengthTruncate.

To see the theories in the PVS prelude, type

M–x view-prelude-file

To get the list of all PVS prover commands, type

M–x help-pvs-prover

In PVS, definitions can be overloaded ; that is, there can be many definitions for the same
name. PVS resolves overloading by context, and causes type-checking to fail if it cannot do so.
When displaying sequents, however, it typically just shows the plain overloaded names without
the context. Thus, two expressions that appear to be identical might differ because an overloaded
name might be resolved differently. To see how user-defined overloading is resolved, type

M–x show-expanded-sequent

This does not show the resolution of names overloaded in the prelude. To see these, press

C–u M–x show-expanded-sequent

(Note that infix operators are expanded into binary functions, so that an expanded sequent might
look quite different from the unexpanded sequent.)
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3.4 Issues with PVS

We encountered some difficulties in using PVS, many of which were resolved with help from Sam
Owre. For some others, we developed workarounds, which we discuss here.

First, sometimes PVS generates extra TCCs (for which it cannot, of course, find any proofs)
or complains about names already being defined. We believe that this has to do with how PVS
stores intermediate computations, both internally and in .bin files. When this happens, we find it
easiest to “reboot” PVS as follows: Kill the *pvs* buffer by typing

C–x k *pvs*

(Emacs will ask whether you are sure you want to kill the PCS process.) Then delete any .bin
files in the directory. Then restart PVS by typing

M–x pvs

We notice that PVS typically gets confused about names in theories that use theory aliases, and
intend to excise such use from our files. However, our current version of the framework still has
many such uses.

Second, we discovered a case in which PVS failed to generate certain TCCs, allowing unsound
proofs. Fortunately, Sam Owre fixed this problem and provided us a patch (see Appendix A.1),
which should be included in the next release of PVS.

Third, PVS allows theories to be organized into “libraries” (i.e., directories), to provide an extra
level of modularity. We would like to exploit this functionality by having separate libraries for the
basic automata theory, the TM specifications, and the automata related to NOrec, and theories
that extend the PVS prelude theories of finite sequences and partial functions. (This classification
is embodied in the different “main” files we provide.) However, we have not been able to get PVS to
consistently confirm that all proofs are complete when they depend on lemmas defined in theories
imported from other libraries. Thus, for now, we keep all the files in a single library.

A Installing PVS

PVS is developed and maintained by SRI International. It can be downloaded from their website
[1], along with instructions on how to install it. Our framework was (and is being) developed using
PVS 5.0 running on Linux on a 32-bit Intel machine. For licensing reasons, we use the SBCL
version. To install this version, download pvs-5.0-ix86-Linux-sbclisp from the PVS website,
and unzip and untar it in the directory in which you want to install PVS. Let’s say that directory
is ~/PVS:

~/PVS$ tar -zxvf pvs-5.0-ix86-Linux-sbclisp.tgz

Now, run the relocation script
./~/PVS/bin/relocate

and add the PVS folder to your path

~/$ export PATH=$PATH:~/PVS

You should now be able to run pvs
~/$ pvs
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A.1 PVS patch

As mentioned above, there is a bug in PVS that caused it to fail to generate certain type-correctness
conditions. Sam Owre provided the following patch, which should be added to the .emacs file.

(in-package :pvs)

(defmethod make-implicit-conversion ((conv expr) ctype ex)
(let ((nexpr (copy-untyped ex)))

(change-class ex ’implicit-conversion)
(setf (argument ex) nexpr)
(setf (types nexpr) nil)
(setf (operator ex)

(raise-actuals (copy (expr (from-conversion ctype))) 1))
(typecheck* ex nil nil nil)))

A.2 Shortcuts

Some users, especially those not familiar with Emacs, may find the Emacs commands confusing.
Such users may find it useful to remap many common commands of Emacs and PVS to more
familiar keys. Such a remapping is done by the .emacs file that can be retrieved from

http://cs.ucla.edu/~lesani/downloads/.emacs

Follow the simple instructions in the .emacs file to install it. The shortcut keys it provides are
listed at the beginning of the file..emacs file.
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