
Proving Non-opacity

Mohsen Lesani and Jens Palsberg

UCLA, University of California, Los Angeles
{lesani,palsberg}@ucla.edu

Abstract. Guerraoui and Kapalka defined opacity as a safety criterion
for transactional memory algorithms in 2008. Researchers have shown
how to prove opacity, while little is known about pitfalls that can lead
to non-opacity. In this paper, we identify two problems that lead to non-
opacity, we present automatic tool support for finding such problems,
and we prove an impossibility result. We first show that the well-known
TM algorithms DSTM and McRT don’t satisfy opacity. DSTM suffers
from a write-skew anomaly, while McRT suffers from a write-exposure
anomaly. We then prove that for direct-update TM algorithms, opacity
is incompatible with a liveness criterion called local progress, even for
fault-free systems. Our result implies that if TM algorithm designers
want both opacity and local progress, they should avoid direct-update
algorithms.

1 Introduction

Transactional memory. Atomic statements can simplify concurrent program-
ming that involves shared memory. Transactional memory (TM) [24, 35] inter-
leaves the bodies of atomic statements as much as possible, while guaranteeing
noninterleaving semantics. Thus, the noninterleaving in the semantics can coexist
with a high degree of parallelism in the implementation. TM aborts an operation
that cannot complete without violating the semantics. The use of TM provides
atomicity, deadlock freedom, and composability [21], and increases programmer
productivity compared to use of locks [30,32]. Researchers have developed formal
semantics [1, 26, 29] and a wide variety of implementations of the TM interface
in both software [9, 10, 22, 23, 33] and hardware [2, 18]. IBM supports TM in its
Blue Gene/Q processor [19], and Intel supports transactional synchronization
primitives in its new processor microarchitecture Haswell [7].

Safety. A TM interface consists of the operations read, write, and commit.
The task of a TM algorithm is to implement those three operations. What is a
correct TM algorithm? The traditional safety criterion for database transactions
is strict serializability [31]. For TM algorithms, strict serializability [34] requires
that committed transactions together have an equivalent sequential execution,
that is, an execution that could also happen if the transactions execute noninter-
leaved. However, to ensure semantic correctness, active and aborted transactions
should execute correctly too. This observation has led researchers to define the
stronger safety criteria opacity [13], VWC [25], and TMS1 [11]. We will focus on

opacity, which is the strongest safety criterion and requires that all transactions
together have an equivalent sequential execution.

Verification. Researchers have shown how to verify the safety of TM algo-
rithms. In pioneering work, Tasiran [36] proved serializability for a class of TM
algorithms. Cohen et al. [5,6] were the first to use a model checker to verify strict
serializability of TM algorithms for a bounded number of threads and memory
locations. Later, Guerraoui and Kapalka [17] proved opacity of two-phase locking
with a graph-based approach that is related to an earlier approach to serializ-
ability. Guerraoui et al. [14–16] used a model checker to verify opacity of TM
algorithms that use an unbounded number of threads and memory locations.
Their approach relies on four assumptions about TM algorithms. In follow-up
work, Emmi et al. [12] used a theorem prover to generate invariants that are
sufficient to prove strict serializability. Their proofs work for TM algorithms
that use an unbounded number of threads and memory locations. Later, Lesani
et al. [27] presented a TM verification framework based on IO automata and
simulation. We identify specific pitfalls that lead to non-opacity and show how
a tool can automatically find such pitfalls.

The problem: Which pitfalls lead to non-opacity?

Our results: We identify two problems that lead to non-opacity, we present a
tool that automatically finds such problems, we find problems with DSTM and
McRT, and we prove an impossibility result.

We show that the well-known TM algorithms DSTM and McRT don’t satisfy
opacity. These results may be surprising because previous work has proved that
DSTM and McRT satisfy opacity [15, 16]. However, there is no conflict and no
mystery: the previous work focused on abstractions of DSTM and McRT, while
we work with specifications that are much closer to original formulations of
DSTM and McRT. Thus, we experience a common phenomenon: once we refine
a specification, we may lose some properties.

Let us recall common terminology. A TM algorithm is a deferred-update
algorithm if every transaction that writes a value must commit before other
transactions can read that value. All other TM algorithms are direct-update
algorithms. DSTM is a deferred-update algorithm while McRT is a direct-update
algorithm.

DSTM suffers from a write-skew anomaly, while McRT suffers from a write-
exposure anomaly. The write-skew anomaly is an incorrectness pattern that is
known in the setting of databases [3]. The write-exposure anomaly happens when
a direct-update TM algorithm exposes written values to other transactions before
the transaction commits.

We present fixes to both DSTM and McRT that we conjecture make the
fixed algorithms satisfy opacity. Interestingly, we note that writers can limit the
progress of readers in the fixed McRT algorithm. This is an instance of a general
pattern: we prove that for direct-update TM algorithms, opacity is incompatible
with a liveness criterion called local progress [4], even for fault-free systems.

Our result implies that if TM algorithm designers want both opacity and local
progress, they should avoid direct-update algorithms.

We hope that our observations and tool can help TM algorithm designers to
avoid the write-skew and write-exposure pitfalls, and to be aware that if local
progress is a goal, then deferred-update algorithms may be the only option.

The rest of the paper. In Section 2 we recall the definition of transac-
tion histories, and in Section 3 we introduce bug patterns that violate opacity.
In Section 4, we introduce our tool and in Section 5, we show how our tool
automatically finds that DSTM and McRT don’t satisfy opacity. In Section 6,
we prove that for direct-update TM algorithms, opacity and local progress are
incompatible. The full version of the paper has appendices in which we give
a formal definition of opacity, prove our theorems, and give details of DSTM,
McRT, base objects, and our tool.

2 Histories

Guerraoui and Kapalka [13] defined opacity in terms of transaction histories. A
transaction history is a record of what happened at the interface of a TM. For
example, HWS , HWE , HWE2, H1, H2 are all transaction histories:

HWS = Init · readT1
(1):v0 · readT2

(1):v0 · readT1
(2):v0 · readT2

(2):v0 ·
writeT1

(1,−v0) · writeT2
(2,−v0) ·

invT1
(commitT1

) · invT2
(commitT2

) · retT1
(C) · retT2

(C)

HWE = Init · invT1
(readT1

(2)) · writeT2
(2, v1) · retT1

(v1) ·
invT2

(readT2
(1)) · writeT1

(1, v1) · retT2
(v1) ·

invT1
(commitT1

) · invT2
(commitT2

) · retT1
(A) · retT2

(A)

HWE2 = Init · invT1
((writeT1

(1, v1)) · readT2
(1):v1 · retT1

(ok) ·
writeT1

(1, v2) · commitT1
():C · commitT2

():A
H1 = Init · H0 · writeT2

(2, j) · readT1
(2):j · writeT1

(1, j) · readT2
(1):A

H2 = Init · H0 · writeT2
(2, j) · readT1

(2):j · writeT1
(1, j) · readT2

(1):j

where Init is described below and H0 is a transaction history that does not
contain a write operation that writes value j.

The invocation event invT (o.nT (v)) denotes the invocation of method n on
object o in thread T with the argument v. The response event retT (v) denotes
a response that returns v in the thread T . We will use the term completed
method call to denote a sequence of an invocation event followed by the matching
response event (with the same thread identifier). We use o.nT (v):v′ to denote
the completed method call invT (o.nT (v)) · retT (v′). We use o.writeT (i, v) as an
abbreviation for o.writeT (i, v):ok. Let i range over the set of memory locations, v
range over the set of values, and t range over the set of transactions. The interface
of a transactional memory object has three methods readt(i), writet(i, v) and
committ and we write calls to those methods without a receiver object. The

current object this is the implicit receiver of these calls and thus they are called
this method calls. The method call readt(i) returns the value of location i or
A (if the transaction is aborted). The method writet(i, v) writes v to location i
and returns ok or returns A. The method committ tries to commit transaction t
and returns C (if the transaction is successfully committed) or returns A (if it is
aborted). In general, a transaction history H is of the form Init ·H ′, where Init
is the transaction writeT0

(1, v0), . . . , writeT0
(m, v0), commitT0

:C that initializes
every location to v0, and for all T ∈ H ′ : H ′|T is a prefix of O.F where O is a
sequence of reads readT (i):v and writes writeT (i, v) (for some T , i, and v) and
F is one of the following sequences: (1) invT (readT (i)), retT (A) (for some T and
i), (2) invT (writeT (i, v)), retT (A) (for some T i, and v), (3) invT (commitT),
retT (C), or (4) invT (commitT), retT (A) (for some T). For a history H, we use
H|T to denote the subsequence of all events of T in H. Note that H ′ is an
interleaving of the invocation and response events of different transactions.

3 Opacity and Bug Patterns

Guerraoui and Kapalka [17] defined final-state opaque transaction histories. In
their earlier, seminal paper on opacity [13], they used the shorter term opaque
for such histories; we will use opaque and final-state opaque interchangeably. In
Appendix A, we formalize opacity as a set of histories called F inalStateOpaque
and we prove that none of the transaction histories HWS , HWE , HWE2, H1, H2

are opaque.

Theorem 1. {HWS , HWE , HWE2, H1, H2} ∩ F inalStateOpaque = ∅.

We say that HWS , HWE , H1, H2 are bug patterns, because if a TM can produce
any of them, then the TM violates opacity. Let us now focus on HWS , HWE and
later turn to HWE2, H1, H2.

Write-skew anomaly. The transaction history HWS is evidence of the
write-skew anomaly. Let us illustrate the write-skew anomaly with the following
narrative.

Assume that a person has two bank accounts that are stored at locations
i1 and i2 and that have the initial balances v0 and v0, where v0 > 0. Assume
also that the regulations of the bank require the sum of a person’s accounts to
be positive or zero. Thus, the bank will authorize a transaction that updates
the value of one of the accounts with the previous value of the account minus
the sum of the two accounts because the transaction makes the sum of the two
accounts zero.

Now we interpret the narrative in the context of HWS , which is a record of
the execution of two “bank-authorized” transactions. In HWS the transaction
T1 reads the values of both accounts and updates i1 with v0 − (v0 + v0) = −v0.
Similarly, the transaction T2 reads the values of both accounts and updates i2
with −v0. But in HWS both transactions commit, which results in a state that
violates the regulations of the bank: −v0 is the balance of both accounts.

The problem with HWS stems from that the TM that produced HWS doesn’t
guarantee noninterleaving semantics of the transactions. In a noninterleaving
semantics, either T1 executes before T2, or T2 executes before T1. However, if
we order T1 before T2, then the values read by T2 violate correctness; and if we
order T2 before T1, then the values read by T1 violate correctness.

Experts may notice that since HWS is not opaque and all the transactions in
HWS are committed, HWS is not even serializable. However, HWS does satisfy
snapshot isolation, which is a necessary, though not a sufficient, condition for se-
rializability. A history satisfies snapshot isolation if its reads observe a consistent
snapshot. Snapshot isolation prevents observing some of the updates of a com-
mitting transaction before the commit and some of the rest of the updates after
the commit. Algorithms that support only snapshot isolation but not serializ-
ability are known to be prone to the write-skew anomaly, as shown by Berenson
et al. [3]. Note that HWS satisfies snapshot isolation but suffers from the write-
skew anomaly. A TM algorithm that satisfies serializability (and opacity) must
both provide snapshot isolation and prevent the write-skew anomaly.

Write-exposure anomaly. The transaction history HWE is evidence of the
write-exposure anomaly. The two locations i1 and i2 each has initial value v0 and
no committed transaction writes a different value to them, and yet the two read
operations return the value v1. Write-exposure happens when a transaction that
eventually fails to commit writes to a location i and exposes the written value
to other transactions that read from i. Thus, active or aborting transactions
can read inconsistent values. This violates opacity even if these transactions are
eventually prevented from committing.

4 Automatic Bug Finding

We present a language called Samand in which a program consists of a TM algo-
rithm, a user program, and an assertion. A Samand program is correct if every
execution of the user program satisfies the assertion. Our tool solves constraints
to decide whether a Samand program is correct. Our approach is reminiscent
of bounded model checking: we use concurrency constraints instead of Boolean
constraints, and we use an SMT solver instead of a SAT solver.

Our language. We present Samand via two examples. We will use a sugared
notation, for simplicity, while in an appendix of the full paper, we list the actual
Samand code for both examples. The first example is

(Core DSTM, PWS ,¬WS)

where Core DSTM (see Figure 1) is a core version of the TM algorithm DSTM,
and the user program and assertion are:

PWS = {readT1(1):r11 readT1(2):r12 writeT1(0, v1) commitT1():c1} ||
{readT2(1):r21 readT2(2):r22 writeT2(1, v1) commitT2():c2}

WS = (r11 = v0 ∧ r12 = v0 ∧ r21 = v0 ∧ r22 = v0 ∧ c1 = C ∧ c2 = C)

Note that the assertion WS specifies a set of buggy histories of the user program;
the history HWS is a member of that set. The second example is

(Core McRT, PWE ,¬WE)

where Core McRT (see Figure 2) is a core version of the TM algorithm McRT,
and the user program and assertion are:

PWE = {readT1
(2):r1 writeT1

(1, v1) commitT1
():c1} ||

{writeT2
(2, v1) readT2

(1):r2 commitT2
():c2}

WE = (r1 = v1 ∧ r2 = v1 ∧ c1 = A ∧ c2 = A)

Like above, the assertion WE specifies a set of buggy histories of the user pro-
gram; the history HWE is a member of that set.

Samand enables specification of loop-free user programs. Every user program
has a finite number of possible executions and those executions all terminate.

Each of Core DSTM and Core McRT has three parts: declarations, method
definitions, and a program order. Let us take a closer look at these algorithms.

Core DSTM has two shared objects state and start, and one thread-local
object rset. Samand supports five types of objects namely AtomicRegister,
AtomicCASRegister, Lock, TryLock, and BasicRegister, as well as arrays and
records of such objects. Atomic registers, atomic compare-and-swap (cas) reg-
isters, locks, and try-locks are linearizable objects, while basic registers behave
as registers only if they are not accessed concurrently. Core DSTM declares one
record type Loc that has three fields.

Core DSTM has five methods read, write, commit, stableV alue, and validate.
Among those, a user program can call the first three, while the read method calls
the last two, and the commit method calls validate. Each method is a list of
labeled statements that can be method calls on objects, simple arithmetic state-
ments, dynamic memory allocation statements, and if and return statements.
The new operator dynamically allocates an instance of a record type and returns
a reference to it.

Core McRT has three shared objects, two thread-local objects, four methods,
and a specification of the program order.

Core McRT specifies the program order R03 ≺p R04, C03 ≺p C04. The
idea is to enable out-of-order execution yet maintain fine-grained control of the
execution. The execution of the algorithm in a Samand program can be any out-
of-order execution that respects the following: the program control dependencies,
data dependencies, lock happens-before orders, the declared program orders, that
each linearizable object satisfies the linearizability conditions, and that each
basic register behaves as a register if it is not accessed concurrently. A method
call m1 is data-dependent on a method call m2 if an argument of m1 is the
return variable of m2. If a method call m2 is data-dependent on a method call
m1 then m1 must precede m2 in any execution. For example, in Core McRT,
the statement R03 must precede R04 in any execution. Each statement of the
if and else blocks of an if statement is control-dependent on the if statement.

Intuitively, a program execution must respect both the wishes of the programmer
and the guarantees of the objects. We can use fences to implement the declared
orders.

Constraints. Our tool uses the following notion of constraints to decide
whether a Samand program is correct. Let l, x, v range over finite sets of labels,
variables, and values, respectively. Let the execution condition of a statement be
the conjunction of all enclosing if (or else) conditions. A constraint is an assertion
about transaction histories and is generated by the following grammar:

a ::= obj(l) = o | name(l) = n | thread(l) = T | Assertion
arg1(l) = u | arg2(l) = u | retv(l) = x |
cond(l) = c | exec(l) | l ≺ l | ¬a | a ∧ a

u := v | x Variable or Value
c := u = u | u < u | ¬c | c ∧ c Condition

The assertions obj(l) = o, name(l) = n, thread(l) = T , arg1(l) = u, arg2(l) = u,
retv(l) = x and cond(l) = c respectively assert that the receiver object of l is o,
the method name of l is n, the calling thread of l is T , the first argument of l
is u, the second argument of l is u, the return value of l is x, and the execution
condition of l is c. The assertion exec(l) asserts that l is executed. The assertion
l ≺ l′ asserts that l is executed before l′.

The satisfiability problem is to decide, for a given constraint, whether there
exists a transaction history that satisfies the constraint. One can show easily
that the satisfiability problem is NP-complete.

From programs to constraints. We map a Samand program to a set of
constraints such that the Samand program is correct if and only if the constraints
are unsatisfiable.

Let us first define the run-time labels for a program. A run-time label denotes
a run-time program point and is either a program label (if the program point is
at the top level) or a concatenation of two program labels (if the program point
is in a procedure). In the latter case, the additional label is the program label
of the caller.

Let us now define the labels and variables that we use in the constraints for
a Samand program. For each call we define two labels: the run-time label of
the call concatenated with Inv and with Ret, respectively. For other statements
we have a single label, namely the run-time label. For each local variable, we
define a family of constraint variables, namely one for each caller: each constraint
variable is the concatenation of the program label of the caller and the name of
the local variable.

Next, we define two auxiliary concepts that are helpful during constraint
generation. The program order is a total order on program labels. We define the
program order to be the transitive closure of the following orders: the control
and data dependencies, the declared program order, the orders imposed by locks,
that each invocation event is before its matching response event and that each
method call inside a this method call is before the invocation and after the
response event of the this method call. The execution order is the ordering of
labels in a particular history.

We have five sources of constraints: the method calls, the execution condi-
tions, the program order, the base objects, and the assertion.

First, for each run-time label of a method call, we generate constraints that
assert the receiver object, the method name, the calling thread, the arguments,
the return variable, and the execution condition. For each this method call,
we generate constraints that assert that the actual parameters and the formal
parameters are equal, that the response event of the this method call is executed
if and only if one (and only one) of its return statements are executed, and that
if a return statement is executed, the argument of the return statement is equal
to the returned variable of the this method call.

Second, we generate constraints that assert that a statement is executed if
and only if its execution condition is valid and no prior return statement is
executed.

Third, we generate constraints that assert that if l1 is before l2 in the program
order and the statements with labels l1, l2 are both executed, then l1 is before
l2 in the execution order.

Fourth, we generate constraints that assert the safety properties of the base
objects. For each linearizable object, there should be a linearization order of the
executed method calls on the object. For example, consider an atomic register.
The write method call that is linearized last in the set of write method calls that
are linearized before a read method call R is called the writer method call for R.
The return value of each read method call is equal to the argument of its writer
method call. For a second example, consider an atomic cas register. A successful
write is either a write method call or a successful cas method call. The written
value of a successful write is its first argument, if it is a write method call or is its
second argument, if it is a cas method call. For a method call m, the successful
write method call that is linearized last in the set of successful write method calls
that are linearized before m is called the writer method call for m. The return
value of each read method call is equal to the written value of its writer method
call. A cas method succeeds if and only if its first argument is equal to the written
value of its writer method call. For a third example, consider a lock object. The
last method call linearized before a lock method call is an unlock method call.
Similarly, the last method call linearized before an unlock method call is a lock
method call. For a fourth example, consider a try-lock object. We call a lock
method call or successful tryLock method call, a successful lock method call.
We call a lock method call, successful tryLock method call or unlock method
call, a mutating method call. The last mutating method call linearized before a
successful lock method call is an unlock method call. Similarly, the last mutating
method call linearized before an unlock method call is a successful lock method
all. A tryLock succeeds if the last mutating method before it in the linearization
order is an unlock. It fails otherwise (if the last mutating method before it in the
linearization order is a successful lock). The rules for the return value of read
method calls are similar to the rule for tryLock method calls.

Fifth, we map the assertion in the Samand program to the negation of that
assertion. As a result, we can use a constraint solver to search for a transaction
history that violates the assertion in the Samand program.

Our tool. Our tool maps a Samand program to constraints in SMT2 format
and then uses the Z3 SMT solver [8] to solve the constraints. If the constraints
are unsatisfiable, then the Samand program is correct. If the constraints are
satisfiable, then the Samand program is incorrect and the constraint solver will
find a transaction history that violates the assertion in the Samand program.
Our tool proceeds to display that transaction history as a program trace in a
graphical user interface. Our tool and some examples are available at [28].

5 Experiments

We will now report on running our tool on the two example Samand programs.
Our first example concerns Core DSTM.

The context. We believe that Core DSTM matches the paper on DSTM [23].
While we prove that Core DSTM doesn’t satisfy opacity, we have learned from
personal communication with Victor Luchangco, one of the DSTM authors, that
the implementation of DSTM implements more than what was said in the paper
and most likely satisfies opacity.

The bug. DSTM provides snapshot isolation by validating the read set (at
R10) before the read method returns but fails to prevent write skew anomaly.
When we run our tool on (CoreDSTM,PWS ,¬WS), we get an execution trace
that matches HWS . Figure 3(a) presents an illustration of the set of DSTM exe-
cutions that exhibit the bug. Note that this set is a subset of the set of executions
that the bug pattern describes. In Figure 3(a), each transaction executes from
top to bottom and the horizontal lines denote “barriers”, that is, the operations
above the line are finished before the operations below the line are started and
otherwise the operations may arbitrarily interleave. For example, readT1

(2):v0
should finish execution before writeT2(2,−v0) but readT1(1):v0 and readT2(1):v0
can arbitrarily interleave. In Figure 3(a), T1 writes to location 1 after T2 reads
from it so T2 does not abort T1. T1 invokes commit and finishes the validation
phase (C01− C04) before T2 effectively commits (executes the cas method call
at C05). The situation is symmetric for transaction T2. During the validation,
the two transactions still see v0 as the stable value of the two locations; thus,
both of them can pass the validation phase. Finally, both of them succeed at
cas. Note that the counterexample happens when the two commit method calls
interleave between C04 and C05.

The fix. We learned from Victor Luchangco that the implementation of
DSTM aborts the writer transactions of the locations in the read set rsetT
during validation of the commit method call. We model this fix by adding the
following lines between C01 and C02 in Core DSTM:

foreach (i ∈ dom(rsett)) {
st := start[i].read(); t′ := st.writer.read(); if (t 6= t′) state[t′].cas(R,A) }

state : AtomicCASRegister[LocCount] init R
start : AtomicCASRegister[TransCount] init new Loc(T0, 0, 0)
rset : ThreadLocal Set init ∅
Loc {writer, oldV al, newV al : BasicRegister}
R01 : def readt(i) W01 : def writeT (i, v)
R02 : s := state[t].read() W02 : s := state[t].read()
R03 : if (s = A) W03 : if (s = A)
R04 : return A W04 : return A
R05 : st := start[i].read() W05 : st := start[i].read()
R06 : v := stableValuet(st) W06 : wr := st.writer.read()
R07 : wr := st.writer.read() W07 : if (wr = t)
R08 : if (wr 6= t) W08 : st.newVal.write(v)
R09 : rsett.add((i, v)) W09 : return ok
R10 : valid := validatet() W10 : v′ := stableValuet(st)
R11 : if (¬valid) W12 : st′ := new Loc(T, v′, v)
R12 : return A W13 : b := start[i].cas(st, st′)
R13 : return v W14 : if (b)
C01 : def committ W15 : return ok
C02 : valid := validatet() W16 : else
C03 : if (¬valid) W17 : return A
C04 : return A V 01 : def validatet()
C05 : b := statet.cas(R,C) V 02 : foreach ((i, v) ∈ rsett)
C06 : if (b) V 03 : st := start[i].read()
C07 : return C V 04 : t′ := st.writer.read()
C08 : else V 05 : s′ := state[t′].read()
C09 : return A V 06 : if (s′ = C)
CV 01 : def stableValuet(st) V 07 : v′ := loc.newVal.read()
CV 02 : t′ := st.writer.read() V 08 : else
CV 03 : s′ := state[t′].read() V 09 : v′ := loc.oldVal.read()
CV 04 : if (t′ 6= t ∧ s′ = R) V 10 : if (v 6= v′)
CV 05 : state[t′].cas(R,A) V 11 : return false
CV 06 : s′′ := state[t′].read() V 12 : s := state[t].read()
CV 07 : if (s′′ = A) V 13 : return (s = R)
CV 08 : v := loc.oldVal.read()
CV 09 : else
CV 10 : v := loc.newVal.read()
CV 11 : return v

R05 ≺p R10, C02 ≺p C05

Fig. 1. Core DSTM

Those lines prevent HWS because each transaction will abort the other transac-
tion and thus both of them abort.

Our second example concerns Core McRT.
The context. McRT [33] predates the definition of opacity [13] and wasn’t

intended to satisfy such a property, as far as we know. Rather, McRT is serial-
izable by design. Still, we prove that Core McRT doesn’t satisfy opacity.

The bug. When we run our tool on (CoreMcRT, PWE ,¬WE), we get an
execution trace that matches HWE in about 20 minutes. Figure 3(b) presents an

r : BasicRegister[LocCount]
ver : AtomicRegister[LocCount] init 0
l : TryLock[LocCount] init R
rset : ThreadLocal Map init ∅
uset : ThreadLocal Map init ∅
R01 : def readt(i) C01 : def committ()
R02 : if (i 6∈ dom(usett)) C02 : foreach ((i 7→ rver) ∈ rsett)
R03 : rver := ver[i].read() C03 : locked := l[i].read()
R04 : locked := l[i].read() C04 : cver := ver[i].read()
R05 : if (locked) C05 : if (locked ∨ rver 6= cver)
R06 : return abortt() C06 : return abortt()
R07 : if (i 6∈ dom(rsett)) C07 : foreach (i ∈ dom(usett))
R08 : rsett.put(i, rver) C08 : cver := ver[i].read()
R09 : v := r[i].read() C09 : ver[i].write(cver + 1)
R10 : return v C10 : l[i].unlock()
W01 : def writet(i, v) C11 : return C
W02 : if (i 6∈ dom(usett)) A01 : def abortt()
W03 : locked := l[i].tryLock() A02 : foreach ((i 7→ v) ∈ usett)
W04 : if (¬locked) A03 : r[i].write(v)
W05 : return abortt() A04 : l[i].unlock()
W06 : v′ := r[i].read() A05 : return A
W07 : usett.put(i, v

′)
W08 : r[i].write(v)
W09 : return ok

R03 ≺p R04, C03 ≺p C04

Fig. 2. Core McRT

illustration of the set of executions that exhibit the bug. Like above, this set is a
subset of the set of executions that the bug pattern describes. Figure 3(b) uses
the same conventions as Figure 3(a). The execution interleaves writeT2

(2, v1)
between statements readT1(2).R01 − R04 and readT1(2).R05 − R10 such that
the old value of l[2] (unlocked) and the new value of r[2] (the value v1) are read.
Also, commitT2

.C01−C04 are executed before commitT1
.C05−C06 such that

T2 finds l[1] locked and aborts. The situation is symmetric for transaction T1.

The fix. The validation in the commit method ensures that only transactions
that have read consistent values can commit; this is the key to why Core McRT
is serializable. Our fix to Core McRT is to let the read method do validation,
that is, to insert a copy of lines C03 − C06 between line R09 and line R10 in
Core McRT.

Let us use Fixed Core MrRT to denote Core McRT with the above fix.
When we run our tool on (FixedCoreMcRT, PWE ,¬WE), our tool determines
that the algorithm satisfies the assertion, that is, Fixed Core McRT doesn’t have
the write-exposure anomaly. The run takes about 10 minutes.

Note though that in the fixed algorithm, a sequence of writer transactions can
make a reader transaction abort an arbitrary number of times. This observation
motivated the next section’s study of progress for direct-update TM algorithms
such as McRT.

T1 T2

readT1(1):v0 readT2(1):v0
readT1(2):v0 readT2(2):v0
writeT1(1,−v0) writeT2(2,−v0)
commitT1 .C01–C04 commitT2 .C01–C04

commitT1 .C05–C09 commitT2 .C05–C09

(a) DSTM counterexamples

T1 T2

readT1(2).R01–R04

writeT2(2, v1)

readT1(2).R05–R10
readT2(1).R01–R04

writeT1(1, v1)

readT2(1).R05–R10

commitT1 .C01–C04 commitT2 .C01–C04

commitT1 .C05–C06 commitT2 .C05–C06

(b) McRT counterexamples

Fig. 3. Counterexamples

6 Local Progress and Opacity

We will prove that for direct-update TM algorithms, opacity and local progress
are incompatible, even for fault-free systems.

Local progress. We first recall the notion of local progress [4]. Intuitively,
a TM algorithm ensures local progress if every transaction that repeatedly tries
to commit eventually commits successfully. A process is a sequential thread that
executes transactions with the same identifier. A process T is crashing in an
infinite history H if H|T is a finite sequence of operations (not ending in an abort
retT (A) or commit retT (C) response event). A crashing process may acquire a
resource and never relinquish it. A process T is pending in infinite history H if
H has only a finite number of commit response retT (C) events. A process makes
progress in an infinite history, if it is not pending in it. A process T is parasitic
in the infinite history H if H|T is infinite and in history H|T , there are only a
finite number of commit invocation invT (commitT ()) or abort response retT (A)
events. In other words, a parasitic process is a process that from some point in
time keeps executing operations without being aborted and without attempting
to commit. A process is correct in an infinite history if it is not parasitic and not
crashing in the history. A process that is not correct is faulty. An infinite history
satisfies local progress, if every infinite correct process in it makes progress. A
TM algorithm ensures local progress, if every infinite history of it satisfies local
progress and every finite history of it can be extended to an infinite history of it
that satisfies local progress. A system is fault-prone if at least one process can
be crashing or parasitic.

The seminal result. Theorem 2 is the seminal result on the incompatibility
of opacity and local progress.

Theorem 2. (Bushkov, Guerraoui, and Kapalka [4]) For a fault-prone
system, no TM algorithm ensures both opacity and local progress.

Considering a fault-prone system, the proof uses strategies that result in
either a crashing or parasitic process.

Fault-prone versus fault-free. The large class of fault-prone systems presents
a formidable challenge for designers of TM algorithms who want some form of
progress. A crashing or parasitic process may never relinquish the ownership of a
resource that another process must acquire before it can make progress. Bushkov,
Guerraoui, and Kapalka [4] consider a liveness property called solo progress that
guarantees that a process that eventually runs alone will make progress. They
conjecture that obstruction-free TM algorithms (as defined in [23]) ensure solo
progress in parasitic-free systems, and that lock-based TM algorithms ensure
solo progress in systems that are both parasitic-free and crash-free. Those con-
jectures embody the following idea and practical advice.

Bushkov, Guerraoui, and Kapalka’s advice [4, paraphrased]:
If designers of TM algorithms want opacity and progress, they must
consider either weaker progress properties or fault-free systems.

TM algorithms for fault-free systems can rely on that no processes are crashing
or parasitic.

Local progress for fault-free systems. Following the advice embodied
in the paper by Bushkov, Guerraoui, and Kapalka [4], we study liveness in the
setting of fault-free systems. Our main result is that an entire class of TM algo-
rithms cannot ensure both opacity and local progress for fault-free systems.

We need two definitions before we can state our result formally. A TM al-
gorithm is a deferred-update algorithm if every transaction that writes a value
must commit before other transactions can read that value. All other TM algo-
rithms are direct-update algorithms. For example, DSTM is a deferred-update
algorithm while McRT is a direct-update algorithm.

Our main result is Theorem 3 which says that direct-update TM algorithms
cannot ensure both opacity and local progress for fault-free systems.

Theorem 3. For a fault-free system, no direct-update TM algorithm ensures
both opacity and local progress.

The proof of Theorem 3 is different from the proof of Theorem 2 because
the proof of Theorem 3 cannot use crashing or parasitic processes. The proof
of Theorem 3 considers a arbitrary direct-update TM algorithm for a fault-free
system and exhibits a particular program that uses the TM. The program leads
to transaction histories that are either H1, H2, or easily seen to violate local
progress. In Theorem 1 we showed that H1 and H2 violate opacity.

We can now refine Bushkov, Guerraoui, and Kapalka’s advice.

Our advice: If designers of TM algorithms want opacity and local
progress, they might have success with deferred-update TM algorithms
that work for fault-free systems.

7 Conclusion

We have identified two problems that lead to non-opacity and we have proved an
impossibility result. Our proofs of non-opacity for Core DSTM and Core McRT
show that even if an algorithm satisfies opacity at a high level of abstraction,
it may fail to satisfy opacity at a lower level of abstraction. Our impossibility
result implies that if local progress is a goal, then deferred-update algorithms
may be the only option.

Our tool is flexible and can accommodate a variety bug patterns such as
HWE2 that was suggested by a DISC reviewer (thank you!). Our tool outputs
an execution trace of Core McRT that matches HWE2 in about 7 minutes. Our
tool handles small bug patterns efficiently; scalability is left for future work.

We hope that our observations and tool can help TM algorithm designers to
avoid the write-skew, write-exposure, and other pitfalls. We envision a method-
ology in which TM algorithm designers first use our tool to avoid pitfalls and
then use a proof framework such as the one by Lesani et al. [27] to prove cor-
rectness. Our tool can be used also during maintenance of TM algorithms. For
example, a set of bug patterns can serve as a regression test suite. Additionally,
our tool can be used to avoid pitfalls in other synchronization algorithms.

References

1. M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory
and automatic mutual exclusion. In POPL, pages 63–74, 2008.

2. C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,
and Sean Lie. Unbounded transactional memory. In HPCA, 2005.

3. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10, 1995.

4. Victor Bushkov, Rachid Guerraoui, and Michal Kapalka. On the liveness of trans-
actional memory. In PODC, pages 9–18, 2012.

5. Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck.
Verifying correctness of transactional memories. In FMCAD, 2007.

6. Ariel Cohen, Amir Pnueli, and Lenore D. Zuck. Mechanical verification of trans-
actional memories with non-transactional memory accesses. In CAV, 2008.

7. Intel Corporation. Intel architecture instruction set extensions programming ref-
erence. 319433-012, 2012.

8. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In TACAS,
pages 337–340, 2008.

9. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, (LNCS
4167), 2006.

10. Dave Dice and Nir Shavit. TLRW: Return of the read-write lock. In SPAA, 2010.
11. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying

and verifying transactional memory. Formal Aspects of Computing, 2012.
12. Michael Emmi, Rupak Majumdar, and Roman Manevich. Parameterized verifica-

tion of transactional memories. In PLDI, pages 134–145, 2010.
13. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In

PPOPP, pages 175–184, 2008.

14. Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh.
Model checking transactional memories. In PLDI, pages 372–382, 2008.

15. Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transactional
memory on relaxed memory models. In CAV, pages 321–336, 2009.

16. Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Model checking trans-
actional memories. Distributed Computing, 2010.

17. Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory. Mor-
gan and Claypool Publishers, 2010.

18. L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In ISCA, 2004.

19. R. Haring, M. Ohnmacht, T. Fox, M. Gschwind, D. Sattereld, K. Sugavanam,
P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu,
P. Boyle, N. Chist, and C. Kim. The IBM Blue Gene/Q compute chip, 2012.

20. Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan and
Claypool Publishers, second edition, 2010.

21. Tim Harris, Simon Marlow, Simon Peyton, and Jones Maurice Herlihy. Composable
memory transactions. In PPOPP, pages 48–60. ACM Press, 2005.

22. M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing
software transactional memory. In OOPSLA, pages 253–262, 2006.

23. M. Herlihy, V. Luchangco, M. Moir, and III W. N. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC, 2003.

24. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In ISCA, pages 289–300, 1993.

25. Damien Imbs, José Ramon de Mendivil, and Michel Raynal. Brief announcement:
virtual world consistency: a new condition for STM systems. In PODC, pages
280–281, 2009.

26. E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. In POPL,
pages 19–30, 2010.

27. Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally
verifying software transactional memory algorithms. In CONCUR, 2012.

28. Mohsen Lesani and Jens Palsberg. Proving non-opacity. http://www.cs.ucla.

edu/~lesani/companion/disc13.
29. K. F. Moore and D. Grossman. High-level small-step operational semantics for

transactions. In POPL, pages 51–62, 2008.
30. V. Pankratius, A.-R. Adl-Tabatabai, and F. Otto. Does transactional memory keep

its promises? results from an empirical study. Technical Report 2009–12, Institute
for Program Structures and Data Organization (IPD), University of Karlsruhe,
September 2009.

31. Christos H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, 1979.

32. Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional
programming actually easier? SIGPLAN Notices, 45(5), January 2010.

33. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Ben-
jamin Hertzberg. McRT-STM: a high performance software transactional memory
system for a multi-core runtime. In PPoPP, 2006.

34. M. L. Scott. Sequential specification of transactional memory semantics. In
TRANSACT, 2006.

35. Nir Shavit and Dan Touitou. Software transactional memory. In PODC, 1995.
36. S. Tasiran. A compositional method for verifying software transactional memory

implementations. Technical Report MSR-TR-2008-56, Microsoft Research, 2008.

