
A A Formal Definition of Opacity

This section formalizes the notion of opacity [13] and proves Theorem 1. For
completeness, we repeat the definitions in the main body of the paper (about
transaction histories).

A.1 Execution Histories

In this section, we define execution histories.
Method calls and events. Let O denote the set of objects, N denote the

set method names, Thread denote the set of threads and V denote the set of
values. The set of invocation events is Inv = {invT (o.nT (v)) | o ∈ O,n ∈
N,T ∈ Thread, v ∈ V }. The set of response events is Res = {retT (v) | T ∈
Thread, v ∈ V }. The set of events is Ev = Inv ∪ Res. We will use the term
completed method call to denote a sequence of an invocation event followed by
the matching response event (with the same label). We use o.nT (v):v′ to denote
the completed method call invT (o.nT (v)) · retT (v′).

Operations on event sequences. Let E and E′ be event sequences. We use
E ·E′ to denote the concatenation of E and E′. For a thread T , we use E1 b T2

to denote that E1 is a subsequence of E2, we use E|T to denote the subsequence
of all events of T in E. For an object o, we use E|o to denote the subsequence
of all events of o in E. Sequential is the set of sequences of completed method
calls possibly followed by an invocation event.

Execution history. An execution history X is a sequence of events where
every thread T is sequential (i.e. X|T ∈ Sequential). We assume that each
method call in the history has a unique label. The label can be the position of
the invocation event of the method call in the history. Let H istory denote the
set of execution histories. Let Labels(X) denote the set of labels in X. As the
labels are unique in a history, the following functions on Labels(X) are defined.
The functions objX , nameX , threadX , arg1X , arg2X , retvX map labels to the
receiving object, the method name, the thread identifier, the first and the second
argument, and the return value associated with the labels. Similary, iEv and rEv
functions on Labels(X) map labels to the invocation and the response events
associated with the labels. A history X is equivalent to a history X ′, X ≡ X ′,
if one is a permutation of the other one, that is, only the events are reordered
but the components of the events (including the argument and return values)
are preserved. An invocation event e issued by a transaction T is pending in
an execution history X iff X|T contains no response event that matches and
follows e. For an execution history X, we let Extension(X) denote the set of
execution histories constructed from X by appending responses for some pending
invocations in X. We let Complete(X) denote the subsequence of X that consists
of all completed method calls in X.

Real-time relations. Let s be an isogram (i.e. contains no repeating occur-
rence of the alphabet.) For any s1, s2 ∈ s, we write s1 �s s2 iff the last element
of s1 occurs before the first element of s2 in s. For example ab �abcde de. For
an execution history X, we define the real-time relations ≺X , �X , ∼X , -X

on Labels(X) as follows: First, l1 ≺X l2 iff rEv(l1) �X iEv(l2). l1 �X l2 iff
l1 ≺X l2 ∨ l1 = l2. Second, l1 ∼X l2 iff l1 ⊀X l2 ∧ l2 ⊀X l1. Third, l1 -X l2 iff
l1 ≺X l2 ∨ l1 ∼X l2. For an execution history X, we define the thread real-time
relations ≺≺X and ��X as follows. First, T ≺≺X T ′ iff X|T �X X|T ′. Second,
T ��X T ′ iff T ≺≺X T ′ ∨ T = T ′.

Objects. For an object o, let H(o) denote the set of all execution histories
that can result from method calls on o. The sequential specification of an object
o, denoted by SeqSpec(o), is a set of prefix-closed, sequential histories of o that
declares the set of correct sequential histories of o. An object o is basic iff in
every sequential execution, it produces a history in its sequential specification
i.e.H(o)∩Sequential ⊆ SeqSpec(o). In a non-sequential execution history, it may
produce an arbitrary history. This is based on the fact that basic objects comply
to their sequential specification only if they are accessed sequentially. An object
o is linearizable iff every history in H(o) is linearizable. An execution history
X is linearizable for an object o iff there exits histories X ′ and L such that
X ′ ∈ Extension(X|o), L ∈ Sequential L ≡ Complete(X ′), L ∈ SeqSpec(o),
and ≺X|o ⊆ ≺L. We say that such an L is a linearization and ≺L is a linearization
order of X|o. In an appendix to the full version of the paper, we specify the classes
of objects such as Basic Register, Atomic Register, Atomic CAS Register Strong
Counter, Lock and Try-lock.

Shared Memory. The shared memory is a singleton object mem that en-
capsulates the set of locations Loc where each location loci, i ∈ I, I = {1, . . . ,m}
stores a value v ∈ V . The object mem has three methods readt(i), writet(i, v)
and committ. The method call readt(i) returns the value of loci or A (if the
transaction is aborted). The method writet(i, v) writes v to loci and returns ok
or returns A. The method committ tries to commit transaction T and returns
C (if the transaction is successfully committed) or returns A (if it is aborted).
The object mem is implicit in method calls on mem that is, readt(i) abbreviates
mem.readt(i).

Transaction History. A transaction history H is Init · H ′, where Init is
the transaction writeT0(1, v0), . . . , writeT0(m, v0), commitT0 :C that initializes
every location to v0, and for all T ∈ H ′ : H ′|T is a prefix of O.F where O is
a sequence of reads readT (i):v and writes writeT (i, v) (for some T ∈ Thread,
i ∈ I, and v ∈ V) and F is one of the following sequences: (1) invT (readT (i)),
retT (A) (for some T ∈ Thread and i ∈ I), (2) invT (writeT (i, v)), retT (A) (for
some T ∈ Thread, i ∈ I, and v ∈ V), (3) invT (commitT), retT (C), or (4)
invT (commitT), retT (A) (for some T ∈ Thread). Let THistory denote the
set of transaction histories. The projection of H on i, written H|i, denotes the
subsequence of history H that contains exactly the events on location i.

A.2 Opacity

A TM algorithm is defined to be opaque if every transaction history of every
source program running on top of that TM algorithm is opaque. A history is
defined to be opaque if every prefix of it is final-state-opaque. Next, we present
the definition of final-state-opacity.

F inalStateOpaque is defined in Figure 4. We use T prefix before some of
the terms to avoid confusion with the terms that we defined above for execu-
tion histories of objects. We say that a transaction history is sequential if it is a
sequence of transactions. A transaction T is committed or aborted in a transac-
tion history H if there is respectively a commit or abort response event for T in
H. A completed transaction is either committed or aborted. A live transaction
is a transaction that is not completed. A transaction history is complete if all
its transactions are completed. A pending transaction has a pending event and
a commit-pending transaction has a commit pending event. An extension of a
transaction history is obtained by committing or aborting its commit-pending
transactions and aborting the other live transactions. If H ∈ THistory and p is a
predicate on transaction identifiers, we define filter(H, p) to be the subsequence
of H that contains the events of transactions T for which p(T) is true. The visible
history for a transaction T in a sequential transaction history S, V isible(S, T),
is the sequence of committed transactions before T in S and T itself. The se-
quential specification of a location i, SeqSpec(i), is the set of sequential histories
of read and write method calls on i where every read returns the value given as
the argument to the latest preceding write (regardless of thread identifiers). It
is essentially the sequential specification of a register. Transactional sequential
specification is the set of complete sequential transaction histories S that for
every transaction T and location i, V isible(S, T)|i is in the sequential specifica-
tion of i. A transaction history H is final-state-opaque if there is an equivalent
sequential transaction history S that is real-time-preserving and a member of
transactional sequential specification. In other words, every correct concurrent
execution is indistinguishable from a correct sequential execution.

Note that opacity and linearizability are at two different levels. In fact, lin-
earizability is the correctness condition for the base concurrent objects. TM
algorithms rely on the guarantees of several of these objects to guarantee the
correctness conditions for memory transactions.

A.3 Proof of Theorem 1

We now prove Theorem 1, which we restate here.

Theorem 1. {HWS , HWE , HWE2, H1, H2} ∩ F inalStateOpaque = ∅.

Proof. We consider each of HWS , HWE , H1, H2 in turn.
First we consider HWS . We have that

HWS = Init · readT1(1):v0 · readT2(1):v0 ·
readT1(2):v0 · readT2(2):v0 ·
writeT1(1,−v0) · writeT2(2,−v0) ·
invT1(commitT1) · invT2(commitT2) · retT1(C) · retT2(C)

We will prove the lemma by contradiction. Suppose HWS ∈ F inalStateOpaque.
HWS is a complete history, thus TExtension(HWS) = {HWS}. By definition of

F inalStateOpaque, we have that there exists a history S such that (1) S ∈
TSequential, (2) HWS ≡ S, (3) ≤HWS

⊆ ≤S and (4) S ∈ TSeqSpec. From the
definition of HWS above, we have that T0 ≺HWS

T1 and T0 ≺HWS
T2. Thus,

from [3] we have that (5) T0 ≺S T1 ∧ T0 ≺S T2. From [1], we have that (6)
T1 ≺S T2 ∨ T2 ≺S T1. From [2], [5] and [6], we have that S is either of the
following two histories

– Case S = HWS |T0 ·HWS |T1 ·HWS |T2.
We have that
V isible(S, T2)|1 =

writeT0(1, v0), readT1(1):v0, writeT1(1,−v0), readT2(1):v0
Thus, V isible(S, T2)|1 6∈ SeqSpec(1). Thus, S 6∈ TSeqSpec, a contradiction
to [4].

– Case S = HWS |T0 ·HWS |T2 ·HWS |T1.
We have that
V isible(S, T1)|2 =

writeT0
(2, v0), readT2

(2):v0, writeT2
(2,−v0), readT1

(2):v0
Thus, V isible(S, T1)|2 6∈ SeqSpec(2). Thus, S 6∈ TSeqSpec, a contradiction
to [4].

This completes the proof for HWS .
Second we consider HWE . We have that

HWE = Init · invT1
(readT1

(2)) · writeT2
(2, v1) · retT1

(v1) ·
invT2

(readT2
(1)) · writeT1

(1, v1) · retT2
(v1) ·

invT1
(commitT1

) · invT2
(commitT2

) · retT1
(A) · retT2

(A)

We will prove the lemma by contradiction. Suppose HWE ∈ F inalStateOpaque.
HWE is a complete history, thus TExtension(HWE) = {HWE}. By definition
of F inalStateOpaque, we have that there exists a history S such that (1) S ∈
TSequential, (2) HWE ≡ S, (3) ≤HWE

⊆ ≤S and (4) S ∈ TSeqSpec. From
the definition of HWE above, we have that T0 ≺HWE

T1 and T0 ≺HWE
T2.

Thus from [3] we have that (5) T0 ≺S T1 ∧ T0 ≺S T2. From [1], we have
that (6) T1 ≺S T2 ∨ T2 ≺S T1. From [2], [5] and [6], we have that S is
either HWE |T0 · HWE |T1 · HWE |T2 or HWE |T0 · HWE |T2 · HWE |T1. In both of
these cases, we have that V isible(S, T1)|2 = writeT0

(2, v0), readT1
(2):v1. Thus,

as v0 6= v1, we have that V isible(S, T1)|2 6∈ SeqSpec(2). Thus, S 6∈ TSeqSpec,
a contradiction to [4]. This completes the proof for HWE .

Third, we consider HWE2. We have that

HWE2 = Init · invT1
((writeT1(1, v1)) · readT2

(1):v1 · retT1
(ok) ·

writeT1
(1, v2) · commitT1

():C · commitT2
():A

We will prove the lemma by contradiction. Suppose HWE2 ∈ F inalStateOpaque.
HWE2 is a complete history, thus TExtension(HWE2) = {HWE2}. By definition
of F inalStateOpaque, we have that there exists a history S such that (1) S ∈
TSequential, (2) HWE2 ≡ S, (3) ≤HWE2

⊆ ≤S and (4) S ∈ TSeqSpec. From

the definition of HWE2 above, we have that T0 ≺HWE2
T1 and T0 ≺HWE2

T2.
Thus from [3] we have that (5) T0 ≺S T1 ∧ T0 ≺S T2. From [1], we have
that (6) T1 ≺S T2 ∨ T2 ≺S T1. From [2], [5] and [6], we have that S is either
HWE2|T0 · HWE2|T1 · HWE2|T2 or HWE2|T0 · HWE2|T2 · HWE2|T1. In both of
these cases, we have that V isible(S, T2)|1 = writeT0

(1, v0), readT1
(1):v1. Thus,

as v0 6= v1, we have that V isible(S, T1)|1 6∈ SeqSpec(1). Thus, S 6∈ TSeqSpec,
a contradiction to [4]. This completes the proof for HWE2.

Fourth, we consider H1. We have that

H1 = H0 · writeT2
(i2, j) · readT1

(i2):j · writeT1
(i1, j) · readT2

(i1):A

where H0 is a history that does not contain a write operation that writes value
j.

We prove the lemma based on the following idea. To justify the read of value
j by T1, a committed transaction should have written the value j. The only
transaction that writes value j is T2 but it is aborted.

We will prove the theorem by contradiction. Suppose H1 ∈ F inalStateOpaque.
TExtension(H1) = {H ′

1, H
′′
1 } where H ′

1 = H1 · commitT1
:A and H ′′

1 = H1 ·
commitT1 :C. By definition of F inalStateOpaque, we have that there exists
H ∈ TExtension(H1) such that there exists a history S such that (1) S ∈
TSequential, (2) H ≡ S, (3) ≤H ⊆ ≤S and (4) S ∈ TSeqSpec. We consider
two cases:

– Case H = H ′
1.

From the definition of H ′
1 and H1, we have ∀T ∈ H0 : T ≺H′

1
T1 ∧ T ≺H′

1
T2.

Thus, by [3], we have (5) ∀T ∈ H0 : T ≺S T1 ∧ T ≺S T2. From [1],
we have that (6) T1 ≺S T2 ∨ T2 ≺S T1. Thus, from [5], [6] and [2], we
have that S is either of the following two histories: S = S0 · H ′

1|T2 · H ′
1|T1

or S = S0 · H ′
1|T1 · H ′

1|T2 where S0 is a serialization of H0. For both of
these histories, we have that V isible(S, T1)|2 = S0|2 · readT1

(2):j where
no transaction in S0|2 writes value j. Thus, V isible(S, T1)|2 6∈ SeqSpec(2).
Thus, S 6∈ TSeqSpec, a contradiction to [4].

– Case H = H ′′
1 .

Similar to the previous case, we will have that V isible(S, T1)|2 = S0|2 ·
readT1(2):j.

This completes the proof for H1.
Fifth, we consider H2. We have

H2 = H0 · writeT2
(i2, j) · readT1

(i2):j · writeT1
(i1, j) · readT2

(i1):j

where H0 is a history that does not contain a write operation that writes value
j.

We prove the lemma based on the following idea. The two transactions T1, T2

have read value j from locations 2 and 1 respectively. The only transaction that
writes value j to locations 2 and 1 is T2 and T1 respectively. Thus, to justify the
two read operations, each of the transactions should have been ordered before
the other one in the justifying sequential history, which is impossible.

We will prove the theorem by contradiction. Suppose H2 ∈ F inalStateOpaque.
TExtension(H2) = {H ′

2, H
′′
2 , H

′′′
2 , H ′′′′

2 } where
H ′

2 = H2 · commitT1 :C · commitT2 :C,
H ′′

2 = H2 · commitT1 :C · commitT2 :A,
H ′′′

2 = H2 · commitT1
:A · commitT2

:C,
H ′′′′

2 = H2 · commitT1
:A · commitT2

:A.
By definition of F inalStateOpaque, we have that there exists H ∈ TExtension(H2)
such that there exists a history S such that (1) S ∈ TSequential, (2) H ≡ S,
(3) ≤H ⊆ ≤S and (4) S ∈ TSeqSpec. We consider four cases:

– Case H = H ′
2.

Similar to the proof for H1, we have that S is either of the following two
histories: S1 = S0 · H ′

2|T1 · H ′
2|T2 or S2 = S0 · H ′

2|T2 · H ′
2|T1 where S0 is a

serialization of H0. We consider two cases
• S = S1:

We have that V isible(S, T1)|2 = S0|2 ·readT1
(2):j. where no transaction

in S0|2 writes value j.
Thus, V isible(S, T1)|2 6∈ SeqSpec(2).
Thus, S 6∈ TSeqSpec, a contradiction to [4].

• S = S2:
We have that V isible(S, T2)|1 = S0|1 ·readT2(1):j. where no transaction
in S0|1 writes value j.
Thus, V isible(S, T2)|1 6∈ SeqSpec(1).
Thus, S 6∈ TSeqSpec, a contradiction to [4].

– Case H = H ′′
2 .

Similar to the previous case, we will have that V isible(S, T1)|2 = S0|2 ·
readT1(2):j.

– Case H = H ′′′
2 .

Similar to the previous case, we will have that V isible(S, T2)|1 = S0|1 ·
readT2

(1):j.
– Case H = H ′′′′

2 .
Similar to the previous case, we will have that V isible(S, T2)|1 = S0|1 ·
readT2

(1):j.

2

Reads(H) = {lR | lR ∈ H ∧ objH(lR) = mem ∧
nameH(lR) = read ∧ retvH(lR) 6= A}

W rites(H) = {lW | lW ∈ H ∧ objH(lW) = mem ∧
nameH(lW) = write ∧ retvH(lW) 6= A}

Trans(H) = {T | ∃l ∈ H : threadH(l) = T}
TSequential = {S ∈ THistory | ��S is a total order of Trans(S)}

Committed(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = C}
Aborted(H) = {T | ∃l ∈ H : threadH(l) = T ∧ retvH(l) = A}

Completed(H) = Committed(H) ∪Aborted(H)

Live(H) = Trans(H) \ Completed(H)

TComplete = {H ∈ THistory | ∀T ∈ Trans(H) : T ∈ Completed(H)}
Pending(H) = {T ∈ Live(H) | ∃l ∈ H : threadH(l) = T ∧

iEv(l) b H ∧ ¬(rEv(l) b H)}
CommitPending(H) = {T ∈ Live(H) | ∃l ∈ H : threadH(l) = T ∧ nameH(l) = commit

iEv(l) b H ∧ ¬(rEv(l) b H)}
TExtension(H) = {H ′ ∈ THistory | H is a prefix of H ′ ∧ ∀T ∈ H ′ ⇒ T ∈ H ∧

Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T) = filter
(
S, λt′. (t′ = T) ∨

(
(t′ ≺≺S T) ∧ t′ ∈ Committed(S)

))
NoWriteBetweenS(lW , lR) = ∀l′W ∈W rites(S) : l′W �S lW ∨ lR ≺S l

′
W

SeqSpec(i) = {S ∈ Sequential | ∀lR ∈ Reads(S) : ∃lW ∈W rites(S) :

lW ≺S lR ∧ NoWriteBetweenS(lW , lR) ∧
retvS(lR) = arg1S(lW)}

TSeqSpec = {S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I :

(V isible(S, T) | i) ∈ SeqSpec(i)}
F inalStateOpaque = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ��H′ ⊆ ��S ∧ S ∈ TSeqSpec}

Fig. 4. F inalStateOpaque

T1 T2

writeT2(i2, j):A

(a)

T1 T2

writeT2(i2, j)

readT1(i2):A
commitT2

(b)

T1 T2

writeT2(i2, j)

readT1(i2):j

writeT1(i1, j):A
commitT2

(c)

T1 T2

writeT2(i2, j)

readT1(i2):j

writeT1(i1, j)

readT2(i1):A

(d)

T1 T2

writeT2(i2, j)

readT1(i2):j

writeT1(i1, j)

readT2(i1):j

(e)

Fig. 5. Impossibility of Opacity and Local-progress for Direct-update TM Algorithms

B Proof of Theorem 3

Proof. Assume otherwise, that is, there is a direct-update algorithm that ensures
opacity and local progress. We exhibit a winning strategy for the environment
that acts as an adversary to the algorithm and results in either a non-opaque
history or an infinite history which does not satisfy local progress. The strategy
is as follows. The client iteratively executes the following sequence of operations.
Iteration number j is as follows

1. Invoke writeT2
(i2, j).

If the response is A,
leave this iteration and start the next iteration

Otherwise,
go to the next step.

2. Invoke readT1
(i2).

If the response is A,
invoke commitT2 and regardless of the response,
leave this iteration and start the next iteration.

Otherwise,
go to the next step.

3. Invoke writeT1
(i1, j).

If the response is A,
invoke commitT2

and regardless of the response,

leave this iteration and start the next iteration.
Otherwise,

go to the next step.
4. Invoke readT2(i1).

Regardless of the response, stop iterating.

In each iteration, the algorithm results in one of the executions depicted
in Figure 5. Note that as the algorithm ensures local progress, by definition,
every finite history of it can be extended to an infinite history of it. Thus,
the three operations of the algorithm should be obstruction-free [4]. Thus, as
the operations of the above strategy are called without interleaving from other
operations, every operation should return. Also note that as the algorithm is
direct-update, the reads return the newly written value j. We consider two cases:

– The execution stops. We consider two subcases:
• The last iteration results in the execution depicted in Figure 5(d), that

is, the history is of the form H1. From Theorem 1 we have that H1

doesn’t satisfy opacity, a contradiction.
• The last iteration results in the execution depicted in Figure 5(e), that is,

the history is of the form H1. From Theorem 1 we have that H2 doesn’t
satisfy opacity, a contradiction.

– The execution does not stop. The repeated iterations are depicted in Fig-
ure 5(a)-(c). We consider two subcases:
• From some point in time, only Figure 5(a) is repeated:
T2 is executing alone and is aborted an infinite number of times. T2 has
an infinite number of operations, thus is not crashing. T2 gets an infinite
number of abort response events, thus is not parasitic. Therefore T2 is
a correct process. But T2 does not receive an infinite number of commit
response events thus does not make progress. Therefore, the history does
not satisfy local progress, a contradiction.

• Figure 5(b) or (c) happen infinitely often in the history:
T1 has an infinite number of operations, thus is not crashing. T1 gets an
infinite number of abort response events, thus is not parasitic. Therefore,
T1 is a correct process. But T1 does not receive an infinite number of
commit response events thus does not make progress. Therefore, the
history does not satisfy local progress, a contradiction.

2

C TM Algorithms

C.1 DSTM

DSTM allows only one writer to a location at a time. Therefore, the two fields
oldVal and newVal of Locator are sufficient to represent the values of a location.
While the current writer transaction is writing to newVal, oldVal stores the
stable value. Committing a transaction T takes effect by a cas on stateT . During
the commit, a transaction does not update the oldVal of the locations it has
written to. Whether oldVal or newVal is the stable value is decided according
to whether the state of the writer of the location is Committed or Aborted. To
decide the stable value, if the state of the current writer is Active, it is cased to
Aborted. Then, if the state of writer is Committed, newVal is the stable value;
if it is Aborted, oldVal is the stable value. A new writer transaction of a location
needs to set itself as the writer and also before overwriting newVal, if the state
of the previous writer is Committed, the new writer needs to copy newVal (that
is the stable value) to oldVal. As writer and oldVal may be concurrently read
by readers of the location, the updates of the new writer to them need to be
done in isolation. Thus, the first write of a writer transaction instantiates a new
Locator object with the current transaction as the writer, the stable value of
the location as OldV al and the value that it wants to write as newVal. Then,
the new locator is installed in isolation by a cas on starti. On a global read, the
pair of the read index and the read value is added to the read set rsetT that is
validated before returning from a read or commit method call. Validation checks
the equality of the logged value in rsetT to the last committed value of the
location and that the transaction is not aborted by others.

The idea. DSTM is a deferred-update TM algorithm (The updates are de-
layed until a transaction commits [20]). Each location is represented as a refer-
ence to a record that stores the last and tentative states of the location. The
current value of a location is decided according to the state of the last writer
transaction to the location. Thus, a committing transaction updates the value
of the locations that it has written to with a single CAS operation on its own
state.

The algorithm. Figure 1 shows the Core DSTM algorithm. For a detailed
walk-through of the algorithm, see the DSTM paper [23]. Here, we will merely
summarize the data structures and then explain a particular execution that
proves non-opacity.

The data structures. Let Loc be the class of objects with three fields:
writer, oldVal and newVal. The field writer is a basic register that stores trans-
action identifiers. The two fields oldVal and newVal are basic registers that
store values. Core DSTM uses the following shared objects. state is an array of
atomic cas registers of size equal to the number of threads. For each transaction
t, state[t] represents the state of t that is {R,A,C} (running, aborted or com-
mitted) with the default value R. start is an array of atomic cas registers of size
equal to the number of memory locations. For each memory location i, start[i]
stores a reference to a locator object that represents the current state of location

i. The default value is a reference to a locator with writer set to T0. The read
set rset is a thread-local (transaction-local) set that stores vectors of index and
value of read locations, and is ∅ initially.

Fix. We learned from Victor Luchangco that the implementation of DSTM
aborts the writer transactions of the locations in the read set rsetT during
validation of the commit method call. We can model this fix by adding the
following lines between C01 and C02:

foreach (i ∈ dom(rsetT))
st := start[i].read()
t′ := st.writer.read()
state[t′].cas(R,A)

Those lines prevent H1 because each transaction will abort the other transaction
and thus both of them abort.

Another fix to the algorithm is to let R09 store the locator reference (in-
stead of the value) in the read set, and to change the validation for the commit
procedure to the following lines:

def validateT ()
foreach ((i, ref) ∈ rsetT)

start := start[i].read()
if (start 6= ref)

return false
s := state[T].read()
return s = R

Those lines prevent H1 because both transactions observe that the locator is
changed, fail the validation at C02 and abort.

C.2 McRT

The first write to location i, tries to acquire li at W03 before writing to ri at
W08. McRT is a direct-update algorithm. It directly writes to ri during the write
method call before the commit method is invoked. Therefore, the old value of ri
is read and cached in the undo set usetT at W06−W07 and restored to ri while
the transaction is aborting at A02−A04. A non-local read method call reads veri
and then li at R03−R04. If li is locked, the transaction is aborted at R05−R06.
The first non-local read method call from a location caches the version in the
read set rsetT at R08 which is used during the validation at C02−C06. For each
read location i, the validation checks that the lock li is unlocked and the version
veri is unchanged since it is read at R03. This ensures that ri is unchanged since
it is read at R09. For each written location, the version veri is incremented at
C08 and the lock li is released at C09.

The idea. McRT is a direct-update TM algorithm, which means that trans-
actions directly modify memory locations [20]. Each transaction maintains an
undo-log of values that it has overwritten. If the transaction aborts, it restores
the old values from the log.

The algorithm. Figure 2 shows the Core McRT algorithm. For a detailed
walk-through of the algorithm, see the McRT paper [33]. Here we will merely
summarize the data structures and then explain a particular execution that
proves non-opacity.

The data structures. Core McRT uses the following shared objects. r is an
array of basic registers of size equal to the number of memory locations. For each
location i, r[i] stores the value of location i. ver is an array of atomic registers of
size equal to the number of memory locations. For each location i, ver[i] stores
the version for location i that is initially 0. l is an array of try-locks of size equal
to the number of memory locations. For each location i, l[i] is initially released.
Core McRT uses the following thread-local (transaction-local) objects. The read
set rset is a map from location indices to versions which is ∅ initially, and the
undo set uset is a map from location indices to overwritten values which is ∅
initially.

In the original implementation, ver[i] and l[i] are stored in a single word. In
our specification, we make the distinction explicit and specify the order of ac-
cesses to these registers. In addition, the original implementation overwrites the
version bits with the transaction descriptor during the lock acquisition. There-
fore, the versions had to be cached not only during the read method call but
also during the write method call. Our specification stores only versions in the
version registers and avoids caching of those registers during the write method
call.

Fix to McRT. The validation in the commit method ensures that only
transactions that have read consistent values can commit; this is the key to why
Core McRT is serializable. A possible fix to make McRT opaque is to let also the
read method do validation, that is, to insert a copy of lines C03−C06 between
line R09 and line R10. Note though that in the fixed algorithm, a sequence of
writer transactions can make a reader transaction abort an arbitrary number of
times. This observation motivated our study of progress for direct-update TM
algorithms such as McRT.

D Base Objects

We now define the base objects and their guarantees.
In this subsection, we use ∀ and ∃ as a notational convenience. ∀l : p can be

rewritten as
∧

(l∈Labels(X)) p and ∃l : p can be rewritten as
∨

(l∈Labels(X)) p.
We first define the abstract types.

Register ADT. A register reg is an object that encapsulates a value and sup-
ports read and write methods. The method call reg.read() returns the current
encapsulated value of reg. The method call reg.write(v) where v ∈ V overwrites
the encapsulated value of reg with v. For brevity, we write r as a syntactic sugar
for r.read. Also r := v is used as a syntactic sugar for r.write(v).

The sequential specification of register reg, SeqSpec(reg), is the set of se-
quential histories of read and write method calls on reg where every read re-
turns the value given as the argument to the latest preceding write (regardless of
thread identifiers). (Note that it is assumed that a write method call initializes
the register before other methods are invoked.)

isXReadX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = read

isXWriteX,r(lW) = lW ∈ X ∧ objX(lW) = r ∧ nameX(lW) = write

NoWriteBetweenX,X′,r(lW , lR) = ∀l′W : isXWriteX,r(l′W)⇒ (l′W �X′ lW ∨ lR �X′ l′W)

isXWriterX,X′,r(lW , lR) = isXWriteX,r(lW) ∧
lW ≺X′ lR ∧
NoWriteBetweenX,X′,r(lW , lR)

SeqSpec(r) = {S ∈ Sequential | S|r = S ∧
∀lR : isXReadS,r(lR)⇒
∃lW : isXWriterS,S,r(lW , lR) ∧

retvS(lR) = arg1S(lW)}

CAS (Compare-And-Swap) Register ADT. A CAS register is an object
that encapsulates a value from the definite set of values V and supports the cas
method in addition to read and write methods. The method call r.cas(v1, v2)
updates the value of the register to v2 and returns true if the current value of
the register is v1. It returns false otherwise.

We call a write method call or a successful cas method call, a successful
write. The sequential specification of cas register reg, SeqSpec(reg), is the set
of sequential histories of read, write and cas method calls on reg with the
following two conditions. Every read returns the value given as the argument
to the latest preceding successful write (regardless of thread identifiers). (Note
that it is assumed that a write method call initializes the register before other
methods are invoked.) Every cas with the first argument v1 returns true if the
latest preceding successful write writes value v1 and returns false otherwise.
Lock ADT. A lock l is an object that encapsulates an abstract state, acquired
A or released R, and supports the following methods: lock: The method call
l.lock changes the abstract state from R to A. unlock: The method call l.unlock

changes the state from A to R. read: The method call l.read returns true if the
state of lock is A and false otherwise. The method calls lock and unlock are
mutating method calls. The method call read is an accessor method call.

The sequential specification of a lock l, SeqSpec(l), is the set of sequential
histories L of lock, unlock, and read method calls on l where the sub-history of
L for mutating methods is an alternating sequence of lock and unlock methods
and every read method call in L returns true if the last mutating method call
before it in L is a lock and returns false if the last mutating method call before
it in L is an unlock.

Try-Lock ADT. A try-lock l is an object that encapsulates an abstract state,
acquired A or released R, and supports the following methods: trylock: The
method call l.trylock: if the state of the lock is R, it is changed to A and true is
returned. Otherwise false is returned. unlock: The method call l.unlock changes
the state from A to R. read: The method call l.read returns true if the state of
the lock is A and false otherwise.

We call a lock or successful try-lock, a successful lock method call. We call a
lock, successful try-lock or unlock method call, a mutating method call. The se-
quential specification of a try-lock l, SeqSpec(l), is the set of sequential histories
L of tryLock, unlock, and read method calls on l with the following conditions:
The last mutating method call before a successful lock method call is an unlock
method call. Similarly, the last mutating method call before an unlock method
call is a successful lock method call. A tryLock method call returns true if the
latest preceding mutating method call is an unlock and returns false other-
wise. Similarly, A read method call returns true if the latest preceding mutating
method call is an unlock and returns false otherwise.

Counter ADT. A counter c is an object that encapsulates a natural number
and supports the following two methods: The method call c.read returns the
current value of c. The method call c.iaf increments the value of c and returns
the incremented value.

The sequential specification of a counter c, SeqSpec(c), is the set of sequential
histories of read and iaf method calls on c where every method call returns the
number of iaf method calls before it (including the method call itself). Note that
it is assumed that the initial value of the counter is zero.

Set ADT. A set s is an object that represents a set of values and supports the
following methods: Add ⊕: The method call s⊕ v adds value v to set s. Remove
	: The method call s	v removes v from s. Membership ∈ : v ∈ s returns true if
s contains v and false otherwise. (In fact, v ∈ s is a syntactic sugar for s. 3 (v).)
Iterator: Iterator of elements (used in foreach).

Map ADT. A map m is an object that represents a mapping from a set of keys
K to a set of values V and supports the following methods: Add ⊕: The method
call m ⊕ (k 7→ v) adds or updates the mapping for key k ∈ K to value v ∈ V
in map m. Remove 	: The method call m 	 k removes k from the domain of
m. Lookup (): The method call m(k) returns the value that map m associates
with key k ∈ K. Domain dom: The method call m.dom returns the set of keys
that are mapped by map m (dom(m) is a syntactic sugar for m.dom). Iterator:

Iterator of key, value pairs (used in foreach).
We have already formally defined basic and linearizable objects. We now define
concrete types.
Basic Register. A basic register is a basic object of register ADT.

Let BasicRegister denote the class of basic registers.
Atomic Register. An atomic register is a linearizable object of register ADT.

Let AtomicRegister denote the class of atomic registers.

Lemma 1. Consider an atomic register reg. For every read method call R on
reg, there is a write method call W on reg that writes the same value that R
has returned and W is the last write method call that is linearized before R.

Formally, if X is a history of an atomic register reg and Reg is the lineariza-
tion of X, then

∀lR : isXReadX,reg(lR)⇒
∃lW : isXWriterX,Reg,reg(lW , lR) ∧

retvX(lR) = arg1X(lW)

This is a restatement of Theorem 3 from the original definition of lineariz-
ability. Immediate from linearizability of the atomic register and sequential spec-
ification of register.
Atomic CAS Register. A CAS register is a linearizable object of CAS register
ADT.

Let AtomicCASRegister denote the class of Atomic CAS registers.

Lemma 2. Consider an atomic cas register reg. For every read method call R
on reg, there is a successful write W on reg that writes the same value that R
has returned and W is the last successful write that is linearized before R.

Lemma 3. Consider an atomic cas register reg. A cas method call C on reg
with first argument v1 returns false if the last successful write linearized before
C writes v1 and returns false otherwise.

Lock. A lock is a linearizable object of lock ADT.
Let Lock denote the class of locks.
Intuitively, a history is owner-respecting for a lock if every thread in the

history releases the lock only after it has already acquired it. Formally, a history
X on a lock l is owner-respecting iff for every thread T , the sub-history of X|T
for mutating method calls is a sequence of pairs of lock and unlock method calls
(possibly followed by a lock method call).

OwnerRespectingX(lo) =

∀T, l :
(l ∈ X|T ∧ objX|T (l) = lo ∧ nameX|T (l) = unlock)

⇒ ∃l′ :
(l′ ∈ X|T ∧ objX|T (l′) = lo ∧ nameX|T (l′) = lock ∧
l′ ≺X|T l ∧
∀l′′ : (l′ ≺X|T l′′ ≺X|T l)⇒ ¬(objX|T (l′′) = lo ∧ nameX|T (l′′) = unlock)

Lemma 4. If l is a lock, X is an owner-respecting history of l and L is the
linearization of X, then the sub-history of L for mutating method calls is a
sequence of pairs of lock and unlock method calls by the same thread (possibly
followed by a lock method call).

This is immediate from the sequential specification of the lock, owner-respecting
and real-time-preservation properties.

Lemma 5. In an owner-respecting execution, if a lock method call of a thread
T1 is linearized before an unlock method call of a thread T2, then an unlock
method call of T1 is linearized before a lock method call of T2.
Formally, if l is a lock, X is an owner-respecting history of l and L is the
linearization of X, then

∀ll1, lu2 :

(ll1 ∈ X ∧ nameX(ll1) = lock ∧
lu2 ∈ X ∧ nameX(lu2) = unlock ∧
ll1 ≺L lu2)⇒

∃lu1, ll2 :

lu1 ∈ X ∧ nameX(lu1) = unlock ∧ threadX(ll1) = threadX(lu1) ∧
ll2 ∈ X ∧ nameX(ll2) = lock ∧ threadX(ll2) = threadX(lu2) ∧
lu2 ≺L ll1

This is immediate from Lemma 4.

Lemma 6. In an owner-respecting execution, if a lock method call of a thread
T1 is linearized before a read method call of a thread T2 that returns false, then
an unlock method call of T1 is linearized before the read method call.
Formally, if l is a lock, X is an owner-respecting history of l and L is the
linearization of X, then

∀ll1, lr2 :

(ll1 ∈ X ∧ nameX(ll1) = lock ∧
lr2 ∈ X ∧ nameX(lr2) = read ∧ retvX(lr2) = false

ll1 ≺L lr2)⇒
∃lu1 :

lu1 ∈ X ∧ nameX(lu1) = unlock ∧ threadX(ll1) = threadX(lu1) ∧
lu1 ≺L lr2

This is immediate from Lemma 4 and the sequential specification of the lock.

Try-Lock. A try-lock is a linearizable object of try-lock ADT.
Let TryLock denote the class of try-locks.

Strong Counter. A strong counter is a linearizable object of counter ADT.
Let SCounter denote the class of strong counters.

Lemma 7. The return values of method calls that are linearized before an iaf
method call are smaller than the return value of the iaf method call.
Formally, if X is a history of a strong counter s and S is the linearization of
X, then

∀l, l′ :
l ∈ X ∧ l′ ∈ X ∧ nameX(l′) = iaf ∧ l ≺S l′ ⇒
retvX(l) < retvX(l′)

Immediate from linearizability of the strong counter and sequential specifi-
cation of counter.
Basic Set. A basic set is a basic object of set ADT.

Let Set denote the class of basic sets.
Basic Map. A basic set is a basic object of map ADT.

Let Map denote the class of basic maps.

E Reconstruction Tool

E.1 A DSL for Concurrent Objects

Separation of specification and implementation is a classical design principle.
Unfortunately, this principle is absent in much of the current literature on syn-
chronization algorithms. The algorithms are usually presented in text or in
architecture-dependent and optimized code. In particular, the algorithms are
tailored for particular memory models and specify particular fences. Striving for
efficiency, distinct objects are packed to the bit space of a memory location. To
avoid false sharing phenomenon, objects are explicitly padded.

These specifications can have unfortunate effects. Orders that are implicitly
respected by a memory model may not be provided by another. Thus, port-
ing algorithms can introduce bugs.1 This can may require repetition of time-
consuming verification efforts. The details of how the layout of an object affects
space and time can obfuscate the algorithm intents. So the specifications may
not be self-contained, general, portable, amenable to verification and readily
understandable.

We note that an algorithm relies on two sets of properties, namely the type of
the employed base objects and the preservation of certain orders in the program.
A definite type of object such as lock declares the safety and liveness properties
that the objects of the type guarantee and is abstract from its implementations.
Similarly, the required program orders are abstract from the memory model or
the fences needed to satisfy them. We introduce Samand, a DSL where the type
of the base objects and the required program orders are explicitly declared. The
algorithms that are represented in Samand can be specified and verified once
and then translated to multiple low level models.

The specification can specify an assertion as the correctness condition. This
assertion can be a partial correctness condition such as negation of a bug pattern.
We have built a checking tool that analyzes the specification and verifies the
correctness assertion. If the program does not meet the correctness condition,
the tool reports an illustrative trace of the program that violates the correctness
condition. The history semantics i.e. the set of histories that a specification
can generate is a set of constraints. The tool translates the specification into
constraints. The negation of the correctness condition is also translated to a
constraint. These constraints are represented in the SMT2 format and fed to Z3
SMT solver. If Z3 does not find a model, the specification is verified. If a model is
found, an execution that violates the specification assertion is found. The model
is read and a program trace is reconstructed from it.

E.2 Example: Dekker Mutual Exclusion

We introduce a DSL called Samand for the specification of concurrent object
algorithms. A specification of a concurrent object declares the type of a set of

1 For example, an earlier release of the STAMP benchmarks had an incorrect port of
the TL2 algorithm from SPARC to x86.

1 DekkerSpec {

2 f_1: AtomicRegister

3 f_2: AtomicRegister

4 r: BasicRegister

5

6 def this() {

7 W_01 > f_1.write (0)

8 W_02 > f_2.write (0)

9 }

10

11 main {

12 {

13 W_1 > f_1.write (1)

14 R_2 > x_2 = f_2.read()

15 I_1 > if (x_2 = 0)

16 C_1 > r.write (1)

17 } || {

18 W_2 > f_2.write (1)

19 R_1 > x_1 = f_1.read()

20 I_2 > if (x_1 = 0)

21 C_2 > r.write (2)

22 }

23 }

24

25 order {

26 W_1 -> R_2 &&

27 W_2 -> R_1

28 }

29

30 spec {

31 ~ (

32 exec(C_1) /\

33 exec(C_2)

34)

35 }

36 }

Fig. 6. Dekker Algorithm Specification

shared base objects and defines a set of methods. The set of supported base
object types are BasicRegister, AtomicRegister, AtomicCASRegister, Lock
and TryLock. There is also support for arrays of these types and thread-local
objects. User can define record types. A record type contains a set of object
declarations. The new operator dynamically allocates an instance of a record
type and returns a reference to it. The method definitions call methods on the
base objects. Method calls are ordered by program control and data dependencies
and lock happens-before orders. To allow for performance benefits of out-of-order

1 W_01 > f_1.write (0)

2 W_02 > f_2.write (0)

3

4

5

6

7

8

9

10 .

1

2

3

4

5

6

7 W_1 > f_1.write (1)

8 R_2 > x_2 = f_2.read()

9 I_1 > if (x_2 =1)

10 C_1 > r.write (1)

1

2

3 W_2 > f_2.write (1)

4 R_1 > x_1 = f_1.read()

5 I_2 > if (x_1 =0)

6 C_2 > r.write (2)

7

8

9

10 .

Fig. 7. Bug Trace for Incorrect If Condition

execution, method calls that are unordered by the program are allowed to appear
reordered in the histories of the program. The user can explicitly require specific
orders in the order block. Note that these orders can be translated to fences
for specific architectures. In order to represent complete specifications, there is
no implicit program order in the language. The language enforces the discipline
that the object types and the program order are explicitly declared.

In the main block, the user can write a concurrent program that calls the
methods of the specified concurrent object. The main block is a sequence of
blocks, one for each thread. Finally, the spec block specifies the correctness
assertion. Every history of the concurrent program is expected to satisfy the
correctness assertion. The correctness assertion can assert a partial correctness
condition. In particular, it can be the negation of a bug pattern.

The set of histories of a specification are constrained by two set of constraints.
Firstly, every history respects the guarantees of the base objects. For example, if
a base object is an atomic register, then the sub-history for that register should
be linearizable. Secondly, every history respects the control, data and program
order dependencies. For example, if a method call is data-dependent on another
method call, then the latter should precede the former in the history.

Figure 6 shows the specification of Dekker mutual exclusion algorithm in
Samand. The two flags are declared as atomic registers. The optional this

method specifies the initialization statements. This method is executed before
the concurrent execution begins. This simple specification does not define any
other method. The main block specifies the concurrent program. The order

block specifies that each thread should set its own flag before reading the other
thread’s flag. Finally, the spec block specifies the correctness assertion i.e. the
two critical sections should not both execute.

Running Samand checker on the specification of Dekker results in approval
of the specification.

If the specification is not met, the Samand checker reports the trace that leads
to violation of the specification in a graphical user interface. If the condition of
the statement at line I_1 is replaced with the incorrect condition (x_2 = 1),
Samand checker shows the interleaving depicted in Figure 7. If the declared

1 W_02 > f_2.write (0)

2 W_01 > f_1.write (0)

3

4

5

6

7

8

9

10 .

1

2

3 R_2 > x_2 = f_2.read()

4 I_1 > if (x_2 =0)

5

6

7 W_1 > f_1.write (1)

8

9

10 C_1 > r.write (1)

1

2

3

4

5 W_2 > f_2.write (1)

6 R_1 > x_1 = f_1.read()

7

8 I_2 > if (x_1 =0)

9 C_2 > r.write (2)

10 .

Fig. 8. Bug Trace for Removed Program Order

1 W_02 > f_2.write (0)

2 W_01 > f_1.write (0)

3

4

5

6

7

8 .

1

2

3 W_1 > f_1.write (1)

4 R_2 > x_2 = f_2.read()

5

6

7 I_1 > if (x_2 =0)

8 C_1 > r.write (1)

1

2

3

4

5 W_2 > f_2.write (1)

6 R_1 > x_1 = f_1.read()

7

8 .

Fig. 9. Dekker Random Execution

order W_1 -> R_2 is removed, Samand checker shows the interleaving depicted
in Figure 8.

Samand checker is not only a checking tool but can also be viewed as an
execution tool. The false literal is an assertion that any execution violates.
Therefore, declaring false as the specification assertion results in a random
execution. Updating the spec block of the dekker specification as follows shows an
execution instance such as the execution depicted in Figure 9. In this execution
only one of the critical sections C_1 is executed.

spec {

false

}

E.3 Language

The set of currently supported object types are basic registers BasicRegister,
atomic registers AtomicRegister, atomic cas registers AtomicCASRegister, locks
Lock and try-locks TryLock. As defined in the base objects section, atomic reg-
isters, atomic cas registers, locks and try-locks are linearizable objects and basic
registers behave as registers only if they are not accessed concurrently.

A base object called r of type BasicRegister is declared as follows:

r: BasicRegister

There is also support for arrays. The following declaration declares an array of
try-locks objects of size 10.

tryLocks: TryLock [10]

The 7th element of the array can be accessed by tryLocks[6]. There is also
support for thread-local objects. A thread-local basic register can be declared as

reg: TLocal BasicRegister

Thread-local objects are arrays in nature. The thread identifier is implicitly
passed for accesses to thread-local variables, and hence thread-local variables
are conveniently accessed as normal objects. It is also possible to declare thread-
local arrays. User-defined record types are also supported. For example, a Node

type can be defined as follows:

Node {

lock: Lock

value: BasicRegister

next: BasicRegister

}

A specification can declare methods. For instance, the following lines show
the declaration of a transfer method.

def transfer(a) {

L> lock.lock()

R1 > v1 = b1.read()

R2 > v2 = b2.read()

C1 > v3 = v1 - a

C2 > v4 = v2 + a

W1 > b1.write(v3)

W2 > b2.write(v4)

U> lock.unlock ()

F> return

}

Each method declaration has an implicit parameter for the calling thread iden-
tifier. The variable name t is reserved for this parameter and should not be used
to name any other variable. The argument for this parameter is automatically
passed at the call site. A statement is either a method call, a record creation, an
if statement, a return statement or a math statement. The following statement
allocates memory for an object of record type Node and returns a reference to it
that is assigned to ref.

ref = new Node()

The following statement calls the method method on the base object object

with the argument arg and assigns the return value to ret.

ret = object.method(arg)

If no receiver object is specified for a method call, the receiver is the current
object. The following statement calls the method method on the field object

of the record referenced by ref with the argument arg and assigns the return
value to ret.

ret = ref.object.method(arg)

The supported math statements are of the form x3 = x1 + x2 or x3 = x1 -

x2.

The main block specifies the concurrent program. The thread blocks are
separated by ||.

Data and control dependencies order method call. Correctness of the specified
algorithm may be dependent on a specific order of method calls that are not
ordered by data and control dependencies. The user can declare the required
order of method calls in the order block. The program order of a specification
is the transitive closure of data and control dependencies, the declared orders
and the following conventional orders for locks and this method calls.

Locks (and try-locks) as the foundation of mainstream language memory
models have ordering implications (in addition to the linearizability property).
Every statement after a lock method (or a successful try-lock method) is ordered
after it and every statement before an unlock method is ordered before it. Method
calls on this object have ordering implications as well. A function call whose
side effects are not clear is even stronger than a compiler barrier. This excludes
inline functions and functions known to be pure. We consider full ordering for
method calls on this object. The statements before and after method calls on
this object (and their enclosing statements) are ordered respectively before and
after the call. In addition, the statements of this and ~this methods are ordered
respectively before and after all the statements of the concurrent program (the
main block).

Finally, the spec block specifies the assertion that every history of the spec-
ification should satisfy. Note that the correctness assertion can assert complete
or partial correctness of the specification such as the negation of a bug pattern.
The assertion language supports conjunction /\, disjunction \/, negation ~ of
assertions. Currently, atomic assertions can be that a specific method call is
executed

exec(M)

a method call is executed before another method call

M1 \prec M2

an equality for variables and values

x1 = 2

x1 = x2

and true and false literals.

E.4 Implementation

The specification is analyzed and a skeleton execution graph is built. The con-
straints are generated from the specification. The constraints are fed to the SMT
solver. If it finds a model for the constraints, the model represents the violating
execution. The execution order is extracted from the model and added to the
execution graph. A topological sort of the graph is computed and the resulting
trace is rendered to the user. We describe this process in more detail in the
following paragraphs.

We analyze the specification and extract the following information that is
later consulted during building the execution graph. We compute the control
and data dependencies of the specification. Then, we compute the complete set
of dependencies in the specification as the transitive closure of the control and
data dependencies, the declared program orders and also the orders imposed by
locks and this method calls. Each statement of the specification is in the scope
of (a possibly empty) sequence of if and else conditions. For each statement, we
call the conjunct of these conditions the execution condition of the statement.
We compute the execution condition of every base object method call and return
statement. For a method definition n and for a method call or return statement
l, let preReturnsn(l) be the set of return statements before l in n. We compute
preReturnsn(l) for each method definition n and each method call or return
statement l in n.

The execution graph is an inlined representation of the concurrent program.
Edges between statements of the graph represent execution order. Each method
call on a linearizable object and also each return statement is represented as
a node in the graph. Each method call on a basic object is represented as two
invocation and response nodes in the graph. There is a node for every if and also
every else statement and there is an edge from them to any statement in their
scope. There are invocation and response nodes for each method call on this

object. We call the nodes corresponding to the statements of a method call on
this object the body nodes. The body nodes are inlined between the invocation
and response events of the call in the graph. There is an edge from the invocation
node to every body node and from every body node to the response node. We use
the dependencies between the statements of the specification that we computed
before to add dependencies between the nodes of the execution graph. If the
statements of two nodes are dependent, an edge is added between the nodes in
the execution graph. An edge is added from every node of the this method to
every node of the concurrent program and from every node of the concurrent
program to every node of the ~this method. Also, using the execution conditions
for statements that we computed before, we compute the execution conditions
for nodes.

We next generate constraints. We assert the properties of each node in the
graph. For example for a method call, we assert the receiver object, the name of
the method, the arguments and the return variable. We also assert that a node
is executed if and only if its execution condition (computed above) is valid and

none of its pre-returns are executed. We also assert the edges of the graph as
the program order.

We represent the following properties of the execution order as constraints.
The execution order is a total order (transitive, asymmetric and total) on the
set of executed nodes. If there is an edge from a node to another and both are
executed, then the former is executed before the latter.

The following constraints are asserted for method calls on this object. The
parameter variables and arguments are equal. If the response event is executed,
one (and only one) of the return nodes are executed and the returned variable
is equal to the argument of the return statement. If a return node is executed,
the response event is executed and the returned value is equal to the argument
of the return statement.

The safety of each base object is known according to its declared type. We
represent the safety properties of the base objects as constraints. Locks, try-
locks atomic registers and atomic cas registers are linearizable objects. For each
linearizable object, the linearization order is the subset of the execution order
on the set of executed labels on the object.

Consider an atomic register. The write method call that is linearized last in
the set of write method calls that are linearized before a read method call R is
called the writer method call for R. The return value of each read method call is
equal to the argument of its writer method call. Consider an atomic cas register.
A successful write is either a write method call or a successful cas method call.
The written value of a successful write is its first argument if it is a write method
call or is its second argument if it is a cas method call. For a method call m, the
successful write method call that is linearized last in the set of successful write
method calls that are linearized before m is called the writer method call for
m. The return value of each read method call is equal to the written value of
its writer method call. A cas method succeeds if and only if its first argument
is equal to the written value of its writer method call. A basic register behaves
similar to an atomic register only if there are no concurrent method calls on it
that is for every pair of method calls on it, the response event of one is before
the invocation event the other one.

Consider a lock object. The last method call linearized before a lock method
call is an unlock method call. Similarly, the last method call linearized before an
unlock method call is a lock method call. Consider a try-lock object. We call a
lock method call or successful tryLock method call, a successful lock method call.
We call a lock method call, successful tryLock method call or unlock method
call, a mutating method call. We call a failed tryLock or read method call, an
accessor method call. The last mutating method call linearized before a suc-
cessful lock method call is an unlock method call. Similarly, the last mutating
method call linearized before an unlock method call is a successful lock method
all. A tryLock succeeds if the last mutating method before it in the linearization
order is an unlock. It fails otherwise (if the last mutating method before it in
the linearization order is a successful lock). The rules for the read method call
are similar to the rules for tryLock method call.

The negation of the specification assertion is translated to a constraint. All
these constraints are fed to the constraint solver. If a model is found, it represents
the set of executed method calls and their execution order. This information is
extracted from the model and added to the execution graph. Execution order
specifies the order of method calls that were not ordered by the program order.
The resulting graph is topologically sorted and the resulting trace is shown to
the user in a graphical user interface.

E.5 TM Algorithms in Samand

Note that we have restated the algorithms for the number of threads and lo-
cations that are needed for the testing program. Also the foreach loops and
procedure callas are inlined. The set and map objects are implemented by reg-
isters.

The specification is DSTM is as follows:

Loc {

writer: AtomicRegister

oldValue: AtomicRegister

newValue: AtomicRegister

// These could be basic registers.

// The bug exists even with these stronger registers.

}

DSTM {

state: AtomicCASRegister [4] // To store thread

identifiers

// Let state [3] be the state of the init trans

start: AtomicCASRegister [2] // To store Reference to Loc

rset: TLocal AtomicRegister [2]

// This could be a basic register array.

// The bug exists even with these stronger registers.

def this() {

// init state and start

I01 > state [1]. write (\R)

I02 > state [2]. write (\R)

I03 > state [3]. write (\C)

I04 > loc1 = new Loc()

I05 > loc1.writer.write (3)

I06 > loc1.newValue.write (0)

I07 > start [0]. write(loc1)

I08 > loc2 = new Loc()

I09 > loc2.writer.write (3)

I10 > loc2.newValue.write (0)

I11 > start [1]. write(loc2)

}

def read(i) {

R0> s = state[t].read()

R1> if (s = \A)

R2> return \A

R3> start = start[i].read()

// --------------

// Stable value

R4> tp = start.writer.read()

R5> sp = state[tp].read()

R6> if (tp != t && sp = \R)

R7> state[tp].cas(\R, \A)

R8> if (sp = \A)

R9> v = start.oldValue.read()

else

R10 > v = start.newValue.read()

// --------------

R11 > if (tp != t)

R12 > rset[i].write(v)

// --------------

// Validate

R13 > rv0 = rset [0]. read()

R14 > if (rv0 != \bot) {

R15 > s0 = start [0]. read()

R16 > wt0 = s0.writer.read()

R17 > st0 = state[wt0].read()

R18 > if (st0 = \C)

R19 > vp0 = s0.newValue.read()

else

R20 > vp0 = s0.oldValue.read()

R21 > if (rv0 != vp0)

R22 > return \A

R23 > cts0 = state[t].read()

R24 > if (cts0 != \R)

R25 > return \A

}

R26 > rv1 = rset [1]. read()

R27 > if (rv1 != \bot) {

R28 > s1 = start [1]. read()

R29 > wt1 = s1.writer.read()

R30 > st1 = state[wt1].read()

R31 > if (st1 = \C)

R32 > vp1 = s1.newValue.read()

else

R33 > vp1 = s1.oldValue.read()

R34 > if (rv1 != vp1)

R35 > return \A

R36 > cts1 = state[t].read()

R37 > if (cts1 != \R)

R38 > return \A

}

// --------------

R39 > return v

}

def write(i, v) {

W0> s = state[t].read()

W1> if (s = \A)

W2> return \A

W3> start = start[i].read()

W4> wt = start.writer.read()

W5> if (wt = t) {

W6> start.newValue.write(v)

W7> return \Ok

}

// --------------

// Stable value

W8> tp = start.writer.read()

W9> sp = state[tp].read()

W10 > if (tp != t && sp = \R)

W11 > state[tp].cas(\R, \A)

W12 > if (sp = \A)

W13 > vp = start.oldValue.read()

else

W14 > vp = start.newValue.read()

// --------------

W15 > startp = new Loc()

W16 > startp.writer.write(t)

W17 > startp.oldValue.write(vp)

W18 > startp.newValue.write(v)

W19 > b = start[i].cas(start , startp)

W20 > if (b = 1)

W21 > return \Ok

else

W22 > return \A

}

def commit () {

C01 > rv0 = rset [0]. read()

C02 > if (rv0 != \bot) {

C03 > s0 = start [0]. read()

C04 > wt0 = s0.writer.read()

C05 > st0 = state[wt0].read()

C06 > if (st0 = \C)

C07 > vp0 = s0.newValue.read()

else

C08 > vp0 = s0.oldValue.read()

C09 > if (rv0 != vp0)

C10 > return \A

C11 > cts0 = state[t].read()

C12 > if (cts0 != \R)

C13 > return \A

}

C14 > rv1 = rset [1]. read()

C15 > if (rv1 != \bot) {

C16 > s1 = start [1]. read()

C17 > wt1 = s1.writer.read()

C18 > st1 = state[wt1].read()

C19 > if (st1 = \C)

C20 > vp1 = s1.newValue.read()

else

C21 > vp1 = s1.oldValue.read()

C22 > if (rv1 != vp1)

C23 > return \A

C24 > cts1 = state[t].read()

C25 > if (cts1 != \R)

C26 > return \A

}

C27 > b = state[t].cas(\R, \C)

C28 > if (b = 1)

C29 > return \C

else

C30 > return \A

}

main {

{

S11 > rset [0]. write (\bot)

S12 > rset [1]. write (\bot)

L11 > v10 = read (0)

L12 > v11 = read (1)

L13 > write(0, 7)

L14 > c1 = commit ()

} || {

S21 > rset [0]. write (\bot)

S22 > rset [1]. write (\bot)

L21 > v20 = read (0)

L22 > v21 = read (1)

L23 > write(1, 7)

L24 > c2 = commit ()

}

}

order {

R3 -> R15 &&

R3 -> R28 &&

W16 -> W19 &&

W17 -> W19 &&

W18 -> W19 &&

C02 -> C27 &&

C15 -> C27

}

spec {

~(

L11_Ret \prec L22_Inv /\

L21_Ret \prec L12_Inv /\

L12_Ret \prec L23_Inv /\

L22_Ret \prec L13_Inv /\

L13_Ret \prec L24_Inv /\

L23_Ret \prec L14_Inv /\

v10 = 0 /\

v11 = 0 /\

v20 = 0 /\

v21 = 0 /\

c1 = \C /\

c2 = \C

)

}

}

The specification of McRT is as follows:

McRT {

r: AtomicRegister [2]

ver: AtomicRegister [2]

lock: TryLock [2]

rset: TLocal AtomicRegister [2]

uset: TLocal AtomicRegister [2]

// These regs could be basic register arrays

def this() {

L01 > lock [0]. unlock ()

L02 > lock [1]. unlock ()

L03 > r[0]. write (0)

L04 > r[1]. write (0)

L05 > ver [0]. write (0)

L06 > ver [1]. write (0)

}

def read(i) {

R0> u = uset[i].read()

R1> if (u = \bot) {

R2> ve = ver[i].read()

R3> l = lock[i].read()

R4> if (l = 1) {

R5> ov0 = uset [0]. read()

R6> if (ov0 != \bot) {

R7> r[0]. write(ov0)

R8> lock [1]. unlock ()

}

R9> ov1 = uset [1]. read()

R10 > if (ov1 != \bot) {

R11 > r[1]. write(ov1)

R12 > lock [1]. unlock ()

}

R13 > return \A

}

R14 > r = rset[i].read()

R15 > if (r = \bot)

R16 > rset[i].write(ve)

}

R17 > v = r[i].read()

R18 > return v

}

def write(i, v) {

W0> u = uset[i].read()

W1> if (u = \bot) {

W2> l = lock[i]. tryLock ()

W3> if (l = 0) {

W4> ov0 = uset [0]. read()

W5> if (ov0 != \bot) {

W6> r[0]. write(ov0)

W7> lock [0]. unlock ()

}

W8> ov1 = uset [1]. read()

W9> if (ov1 != \bot) {

W10 > r[1]. write(ov1)

W11 > lock [1]. unlock ()

}

W12 > return \A

}

W13 > ov = r[i].read()

W14 > uset[i].write(ov)

}

W15 > r[i]. write(v)

W16 > return \Ok

}

def commit () {

C0> ove0 = rset [0]. read()

C1> if (ove0 != \bot) {

C2> l0 = lock [0]. read()

C3> ve0 = ver [0]. read()

C4> if ((l0 = 1)|| (ve0 != ove0)) {

C5> ov10 = uset [0]. read()

C6> if (ov10 != \bot) {

C7> r[0]. write(ov10)

C8> lock [0]. unlock ()

}

C9> ov11 = uset [1]. read()

C10 > if (ov11 != \bot) {

C11 > r[1]. write(ov11)

C12 > lock [1]. unlock ()

}

C13 > return \A

}

}

C14 > ove1 = rset [1]. read()

C15 > if (ove1 != \bot) {

C16 > l1 = lock [1]. read()

C17 > ve1 = ver [1]. read()

C18 > if ((l1 = 1) || (ve1 != ove1)) {

C19 > ov20 = uset [0]. read()

C20 > if (ov20 != \bot) {

C21 > r[0]. write(ov20)

C22 > lock [0]. unlock ()

}

C23 > ov21 = uset [1]. read()

C24 > if (ov21 != \bot) {

C25 > r[1]. write(ov21)

C26 > lock [1]. unlock ()

}

C27 > return \A

}

}

C28 > u0 = uset [0]. read()

C29 > if (u0 != \bot) {

C30 > v0 = ver [0]. read()

C31 > vp0 = v0 + 1

C32 > ver [0]. write(vp0)

C33 > lock [0]. unlock ()

}

C34 > u1 = uset [1]. read()

C35 > if (u1 != \bot) {

C36 > v1 = ver [1]. read()

C37 > vp1 = v1 + 1

C38 > ver [1]. write(vp1)

C39 > lock [1]. unlock ()

}

C40 > return \C

}

main {

{

I11 > rset [0]. write (\bot)

I12 > rset [1]. write (\bot)

I13 > uset [0]. write (\bot)

I14 > uset [1]. write (\bot)

L11 > r1 = read (1)

L12 > write(0, 7)

L13 > c1 = commit ()

} || {

I21 > rset [0]. write (\bot)

I22 > rset [1]. write (\bot)

I23 > uset [0]. write (\bot)

I24 > uset [1]. write (\bot)

L21 > write(1, 7)

L22 > r2 = read (0)

L23 > c2 = commit ()

}

}

order {

R2 -> R3 &&

R3 -> R17 &&

C2 -> C3 &&

C16 -> C17

}

spec {

~(

r1 = 7 /\

r2 = 7 /\

c1 = \A /\

c2 = \A

)

}

}

F On the Definition of Local Progress

We have sharpened the definition of crashing from
A process T is crashing in an infinite history H if H|T is a finite sequence of
operations.
to
A process T is crashing in an infinite history H if H|T is a finite sequence of
operations (not ending in an abort retT (A) or commit retT (C) response event).

Theorem 2 (from the original paper) continues to be correct and its proof
can be completed as follows:
The proof for the branch “Sys is crash-prone” considers two cases: (1) Process
p1 crashes in history H. (2) Process p1 does not crash in history H. There will
be an additional subcase for case 2 above.
Subcase: p1 ends in x.read1() ·A1.
The proof of this subcase is similar to the proof of case 1. Process H|p1 is
finite thus, process p2 is pending and invokes infinitely many operations. Process
p2 invokes infinitely many operations iff the strategy executes infinitely many
iterations of Step 2. At each iteration of Step 2 process p2 either receives abort
event or invokes commit, thus p2 is correct in H. Since M ensures local progress
and p2 is infinite and correct in H, then process p2 is not pending: a contradiction.

