
Specifying Transactional Memories with Nontransactional
Operations

Mohsen Lesani
UCLA

mohsen.lesani@gmail.com

Victor Luchangco Mark Moir
Oracle Labs

{victor.luchangco, mark.moir}@oracle.com

1. Introduction
Although transactional memory (TM) is a promising approach for
synchronizing shared-memory concurrent programs, it will not
exist alone: real systems will provide a variety of synchronization
mechanisms, and TM must interact properly with them. Therefore,
a full specification for TM must specify how it interacts with
nontransactional operations.

One possibility is that there is no interaction: memory managed
by the TM is statically determined and accessed only through the
TM interface. However, TM-mediated access is more expensive
than unmediated access, particularly with software implementa-
tions, so programmers may want unmediated access to memory
when they know it will not be accessed concurrently by the TM.
Also, programmers may need to use existing libraries, or inte-
grate their TM-based programs into existing applications. In many
cases, it would be onerous, even infeasible, to rewrite the existing
code. Thus, we want a TM specification for implementations that
allow uninstrumented nontransactional access.

In this paper, we extend TMS1 [3] to allow nontransactional
operations. We call our extension NTMS1. TMS1 is designed
to specify requirements for a TM runtime library in unmanaged
languages such as C or C++, running on a system that may sup-
port other mechanisms for coordinating threads. Like most work
on specifying TM semantics (e.g., [4, 5, 8]), TMS1 specifies
semantics only for transactional operations, implicitly assuming
that memory accessed with transactions is not accessed outside
transactions. Because threads executing transactions might coor-
dinate using other mechanisms between transactions, TMS1 re-
quires transactions to respect the “external order” of transactions.
NTMS1 follows TMS1 in all these respects.

Prior work on verifying TM with nontransactional opera-
tions [2] required strong atomicity: nontransactional operations
are equivalent to “mini-transactions” that cannot abort. Because
such an implementation cannot be achieved in general without
instrumenting nontransactional operations, we do not follow this.
Rather, following Adve [1], NTMS1 defines transactional seman-
tics for programs without data races, and allows arbitrary behavior
for programs with such races.

As with TMS1, we want NTMS1 to afford TM implementors
as much flexibility as possible while still guaranteeing transac-
tional semantics, which we informally define as each transaction
appearing to execute one at a time without any interleaved oper-
ations by other threads. Handling active and aborted transactions
properly involves subtleties [3, 4, 5], even in the absence of non-
transactional operations. We discuss these subtleties, and further
ones introduced by nontransactional operations, in later sections.
We have proved that a data-race-free program (as defined later)
cannot distinguish a transactional memory implementation satis-
fying NTMS1 from one that provides strong atomicity.

2. Preliminaries
I/O automata We formalize our specifications as I/O automata
(IOAs) [7]. An IOA A specifies a set states(A) of states, a
nonempty subset start(A) ⊆ states(A) of start states, a set
acts(A) of actions, a signature sig(A) = (in(A), out(A), internal(A))
that partitions acts(A) into input, output and internal actions, and
a transition relation trans(A) ⊆ states(A)×acts(A)× states(A).
The external interface of A is defined by its external actions
(in(A), out(A)). An action a is enabled in a state s if (s, a, s′) ∈
trans(A) for some s′ ∈ states(A). An IOA must be input-
enabled: every input action must be enabled in every state.

An execution fragment of A is a sequence s0a1s1 . . . of alter-
nating states and actions such that (si−1, ai, si) ∈ trans(A) for
all i. An execution is an execution fragment with s0 ∈ start(A).
The trace of an execution fragment is the subsequence of its ex-
ternal actions. The traces of A are the traces of its executions; we
denote the set of such traces by traces(A). An IOA A implements
another IOA B if traces(A) ⊆ traces(B).

Sequential semantics of objects NTMS1 is defined for an arbi-
trary object type, which specifies the interface and sequential se-
mantics of an object. The interface consists of a set I of operation
invocations and a set R of operation responses. An operation is
an invocation-response pair, and a sequential history is a sequence
of operations. The sequential semantics is a set of legal sequential
histories, specified by a predicate legal on sequential histories.

To specify data races, an object type also specifies a conflict
relation, a symmetric binary relation on operation invocations,
represented by a predicate conflict.

TM interface Given a set T of transaction identifiers and a set
N for nontransactional operation identifiers, the external interface
of a transactional memory system supporting an object type with
operation invocations I and operation responsesR is:

Input actions Output actions
begint for t ∈ T beginOkt for t ∈ T
tInvt(i) for t ∈ T , i ∈ I tRespt(r) for t ∈ T , r ∈ R
committ for t ∈ T commitOkt for t ∈ T
cancelt for t ∈ T abortt for t ∈ T
nInvn(i) for n ∈ N , i ∈ I nRespn(r) for n ∈ N , r ∈ R

We call the input actions invocations and the output actions re-
sponses.

Clients using the TM have the opposite interface (i.e., with in-
vocations as output actions and responses as input actions). Al-
though a TM implementation that supports uninstrumented trans-
actional operations would not actually see the invocations and re-
sponses of such operations, we include them in the TM interface to
specify the interaction between transactions and nontransactional
operations.

Well-formedness A TM implementation and its clients usually
obey some simple well-formedness conditions, such as that a re-
sponse other than abort occurs only in response to a correspond-
ing invocation (e.g., beginOkt in response to begint)—abort may
be the response to any invocation—and that a client thread does
not issue an invocation while it has one pending, it does not is-
sue multiple nontransactional operation invocations with the same
identifier, and it does not issue any invocation for transaction t be-
fore it issues begint or after it receives commitOkt or abortt. (As
discussed in Section 4, well-formedness may be violated by racy
programs because we allow arbitary behavior in the presence of
races.)

For a well-formed execution and a transaction t, we say that
begint is the beginning invocation, and commitOkt or abortt is
the final response, if it exists in the execution, and the opera-
tion sequence of t is the sequence of operations (i.e., operation
invocation-response pairs) it has invoked and received a (non-
abort) response to. For convenience, the invocation and response
of a nontransactional operation n are its beginning invocation
and final response respectively, and its operation sequence is the
empty sequence unless n has completed, in which case it has a
single operation with n’s operation invocation and response. We
also define the external order to be a partial order on X = T ∪N
that orders x before x′ in the external order if the final response
of x precedes the beginning invocation of x′ in the execution. We
say that a sequence σ ∈ X ∗ with no duplicate elements is a legal
serialization if σ respects the external order and the concatenation
of the operation sequences of the elements of σ (in the order they
appear in σ) is a legal sequential history of the TM’s object type.

Serial executions Informally, we want a programmer using
transactions to be able to reason about the correctness of a pro-
gram as though each transaction executes atomically. We make
this precise by defining a serial execution as a well-formed exe-
cution in which all events associated with each transaction occur
consecutively, and every transaction and nontransactional opera-
tion, except possibly the last one, has completed (i.e., committed
or aborted for a transaction, responded for a nontransactional oper-
ation). Thus, the external order of a serial execution totally orders
the transactions and nontransactional operations that occur in the
execution.

In a serial execution, we say that a transaction or nontransac-
tional operation sees itself and every committed transaction and
nontransactional operation that occurs before itself. A transaction
or nontransactional operation is legal in a serial execution if the
sequence of transactions and nontransactional operations it sees
(in the order that they appear in the serial execution) is a legal
serialization. A serial execution is legal if every transaction and
nontransactional operation is legal in that execution.

3. TMS1
The TMS1 correctness condition [3] is designed to maximize
implementation flexibility subject to the following constraints:

• no transaction observes partial effects of any other transaction;
• there must always be a legal serialization that includes all

committed transactions and no aborted transactions; and
• the behavior observed by each transaction, even one that sub-

sequently aborts, is consistent with being part of some serial
execution.

To specify the first condition, we say that a transaction is visi-
ble if it has invoked commit. Before it is visible, the transaction is
still active, and may have further effects, so effects it has already
had should not be seen by any other transaction.

The second condition corresponds to the usual serializability
requirement for transactional systems.

The last condition allows a programmer to reason about the
correctness of a program by considering only serial executions.
Without it, a transaction might observe a pattern of responses that
violates some property assumed by the programmer because it
is true in all serial executions, and thus invoke an operation that
causes an unrecoverable error (e.g., dividing by zero or accessing
memory not allocated to the application). In an unmanaged lan-
guage, this can result, for example, in program termination before
the transactional memory implementation can abort the offending
transaction. Because the only purpose of this condition is to avoid
unrecoverable errors, different transactions need not be “justified”
by the same serial execution. Only transactions that commit need
to be consistent with each other: while a transaction is active, no
other transaction can infer what operations it has invoked; if it
aborts, no other transaction can ever infer them.

TMS1 is defined as an IOA that tracks, for each transaction,
the sequence of operations it invoked, and responses generated,
and whether the transaction committed or aborted. It also main-
tains the external order on transactions. The interesting aspects
of this automaton are captured by validCommit, validFail and
validResp, three “validation” conditions on responses (no valida-
tion condition is needed for beginOkt) that ensure the TM satisfies
the constraints above.

The validation conditions for committing and aborting are
straightforward (though it may be surprising that there is such
a condition for aborting; see [3] for a discussion of this point),
but validResp is tricky because the response to an operation of an
active transaction may reflect the effects of an aborted transaction,
provided that the two transactions were concurrent and the aborted
transaction invoked commit before it aborted. (To conform to the
first constraint above, a transaction must not observe the effects of
any transaction that has not invoked commit.) However, if it sees
the effect of any transaction t, then it must also see the effect of
any committed transaction that precedes t in the external order and
it must not see the effect of any aborted transaction that precedes
t in the external order, because t must see the effects of the former
and not the latter. We capture this requirement with the notion
of an externally consistent prefix. That is, a set S of transaction
identifiers in a state of TMS1 is an externally consistent prefix if
for all t ∈ T and t′ ∈ S, if t precedes t′ in the external order, then
t ∈ S if and only if t is committed.

With this notion, the validation condition for tRespt(r) in re-
sponse to an invocation i is that there must be a subset of visi-
ble transactions that, together with t, form an externally consistent
prefix with a legal serialization after the new operation has been
added to the operation sequence of t.

4. NTMS1
To extend TMS1 to support nontransactional operations, we adapt
the various definitions and conditions used by TMS1 to apply to
X = T ∪ N rather than just T . We also define data races, and
allow NTMS1 to exhibit arbitrary behavior when they occur. The
resulting IOA appears in Figure 1. (Due to space constraints, this
IOA is really the composition of NTMS1 with an IOA modeling
data-race-free clients, which we describe after NTMS1.)

The adaptation to use X is straightforward, and much of it can
already be seen in Section 2. As in TMS1, we maintain the “sta-
tus” of each transaction, indicating whether it has not yet started,
is “ready” to invoke an operation, has a pending invocation (and
what kind), or has committed or aborted. It also maintains the op-
eration invocation if it has an operation pending, the operation se-
quence (i.e., the operations for which it already has a response),
and a flag indicating whether it invoked commit (to determine

State variables
status[X]: {notStarted, beginning, ready, opPending, committing,

canceling, committed, aborted}; initially all notStarted
ops[X]: (I ×R)∗ (i.e., sequence of operations); initially all empty
opInv[X]: I; initially arbitrary
invokedCommit[T]: Boolean; initially false

extOrder : binary relation on X ; initially empty
tHavoc: Boolean; initially false
cHavoc: Boolean; initially false

Actions
begint, t ∈ T
Pre: cHavoc ∨ status[t] = notStarted
Eff: status[t]← beginning

extOrder← extOrder ∪ (DX× {t})

beginOkt, t ∈ T
Pre: tHavoc ∨ status[t] = beginning
Eff: status[t]← ready

tInvt(i), t ∈ T , i ∈ I
Pre: cHavoc ∨ (status[t] = ready ∧ ¬tRace(t, i))
Eff: status[t]← opPending

opInv[t]← i

tRespt(r), t ∈ T , r ∈ R
Pre: tHavoc ∨ (status[t] = opPending ∧ tValidResp(t, opInv[t], r))
Eff: status[t]← ready

ops[t]← ops[t] ◦ (opInv[t], r)

committ, t ∈ T
Pre: cHavoc ∨ status[t] = ready
Eff: status[t]← committing

invokedCommit[t]← true

commitOkt, t ∈ T
Pre: tHavoc ∨ (status[t] = committing ∧ validCommit(t))
Eff: status[t]← committed

cancelt, t ∈ T
Pre: cHavoc ∨ status[t] = ready
Eff: status[t]← canceling

abortt, t ∈ T
Pre: tHavoc ∨ (status[t] ∈ {beginning, opPending, committing, canceling} ∧ validFail(t))
Eff: status[t]← aborted

nInvn(i), n ∈ N , i ∈ I
Pre: cHavoc ∨ (status[n] = notStarted ∧ ¬nRace(i))
Eff: status[n]← opPending

opInv[n]← i

nRespn(r), n ∈ N , r ∈ R
Pre: tHavoc ∨ (status[n] = opPending ∧ nValidResp(n, opInv[t], r))
Eff: status[n]← committed

ops[t]← (opInv[t], r)

observeIncorrectTM
Pre: ¬correctTM
Eff: cHavoc← true

observeRace
Pre: ∃t ∈ T, n ∈ N, tnRace(t, n) ∨ ∃n, n′ ∈ N, nnRace(n, n′)
Eff: tHavoc← true

Derived state variables and predicates

DX , {x | status[x] ∈ {committed, aborted}}

CX , {x | status[x] = committed}

CPX , {x | status[x] = committing}

VX , {t | invokedCommit[t]} ∪ {n | status[n] = committed}

extConsPrefix(S) , ∀x, x′ ∈ X, x′ ∈ S ∧ (x, x′) ∈ extOrder =⇒ (x ∈ S ⇐⇒ status[x] = committed)

validCommit(t) , ∃S ⊆ CPX, ∃σ ∈ ser(CX ∪ S, extOrder), t ∈ S ∧ legal(◦k(ops[σk]))

validFail(t) , ∃S ⊆ CPX, ∃σ ∈ ser(CX ∪ S, extOrder), t /∈ S ∧ legal(◦k(ops[σk]))

tValidResp(t, i, r) , ∃S ⊆ VX, ∃σ ∈ ser(S, extOrder), extConsPrefix(S ∪ {t}) ∧ legal(◦k(ops[σk]) ◦ ops[t]) ◦ (i, r))

nValidResp(n, i, r) , ∃S ⊆ CPX, ∃σ ∈ ser(CX ∪ S ∪ {n}, extOrder), legal(◦k(ops′[σk])) where ops′[n] = (i, r) and ops′[x] = ops[x] for x 6= n

x ‖ x′ , x 6= x′ ∧ status[x] 6= notStarted ∧ status[x′] 6= notStarted ∧ (x, x′) /∈ extOrder ∧ (x′, x) /∈ extOrder

tnRace(t, n) , t ‖ n ∧ (∃(i, r) ∈ ops[t], conflict(i, opInv[n]) ∨ status[t] = opPending ∧ conflict(opInv[t], opInv[n]))

nnRace(n, n′) , n ‖ n′ ∧ conflict(opInv[n], opInv[n′])

tRace(t, i) , ∃n ∈ N, status[n] 6= notStarted ∧ (n, t) /∈ extOrder ∧ conflict(opInv[n], i)

nRace(i) , (∃x ∈ X, status[x] = opPending ∧ conflict(opInv[x], i))

∨ (∃t ∈ T, (status[t] /∈ {notStarted, committed, aborted} ∧ ∃(i′, r) ∈ ops[t], conflict(i′, i))

correctTM , (∃S ⊆ CPX, ∃σ ∈ ser(CX ∪ S, extOrder), legal(◦k(ops[σk]))

∧ (∀t ∈ T, ∃S ⊆ VX, ∃σ ∈ ser(S, extOrder), extConsPrefix(S ∪ {t}) ∧ legal(◦k(ops[σk]) ◦ ops[t]))

Figure 1. NTMS1×RFC with transaction identifiers T and nontransactional operation identifiersN (andX = T ∪N), for object type
with operation invocations I, operation responsesR, sequential semantics defined by legal, and conflict relation conflict. Some notation
requires explanation: ser(S, extOrder) is the set of all serializations of S that respect extOrder; that is, σ ∈ ser(S, extOrder) if and only
if σ contains every element of S exactly once and for all x, x′ ∈ S, x precedes x′ in σ whenever (x, x′) ∈ extOrder. The ◦ operator is for
concatenation, and ◦k(ops[σk]) = ops[σ1] ◦ · · · ◦ ops[σm], where m = |σ|. Thus, σ ∈ ser(S, extOrder) ∧ legal(◦k(ops[σk])) means
that σ is a legal serialization of S, as defined in Section 2.

whether the transaction is visible). We maintain similar informa-
tion, except for the flag, for each nontransactional operation, but
its status can only be that it has not yet started, has a pending op-
eration, or is done. (For convenience, we use committed as the
status of a completed nontransactional operation.) We also main-
tain the external order. These variables are updated in the obvious
way in NTMS1 (as they are in TMS1).

The validation conditions for transactional invocations in
NTMS1 are essentially the same as in TMS1, except that a
nontransactional operation is visible when it is done though it
never invokes commit. We rename the validation condition for
a transactional operation response tValidResp, to distinguish it
from nValidResp, a new validation condition for the response to
a nontransactional operation. This new validation condition is
more similar to validCommit than to tValidResp because the re-
sponse to a nontransactional operation invocation is immediately
visible, and so is akin to committing a transaction: it must be
consistent with committed transactions and other completed non-
transactional operations.

We define data races using the conflict relation of the object
type, which must be a symmetric relation. Specifically, two non-
transactional operations race if they overlap in time and their op-
eration invocations conflict according the conflict relation; this is
modeled by the predicate nnRace. Transactions never race with
each other (the TM implementation coordinates their accesses),
but a transaction races with a nontransactional operation if they
overlap in time and any operation invoked by the transaction con-
flicts with the nontransactional operation invocation; this is mod-
eled by the predicate tnRace.

To model the freedom from constraints in the presence of data
races, we augment NTMS1 with a boolean flag tHavoc and an
internal action observeRace that sets tHavoc to true if there is a
data race, and we allow any response once tHavoc is set (i.e., we
add tHavoc as a disjunct to the precondition of every response).
Thus, once a data race is detected, NTMS1 may exhibit arbitrary
behavior, possibly violating even well-formedness.

To use NTMS1 effectively, a program must not produce any
data races. We call such a program data-race-free. Although it is
easy in principle to determine whether a given execution has a data
race, determining whether a program is data-race-free is tricky,
because what operations a program invokes may depend in part
on the responses it receives. Thus, a faulty TM implementation
may cause a correct (i.e., data-race-free) program to be racy.

We address this issue by defining another automaton RFC
(“race-free clients”), which specifies precisely what it means for
the clients to be data-race-free. Because RFC models the clients,
invocations are its output actions and responses are its input ac-
tions. In addition to the basic well-formedness conditions, RFC
adds a conjunct to the preconditions of tInvt(i) and nInvn(i) to
ensure that the new operation invocation does not introduce a
data race (using predicates tRace and nRace). RFC maintains ex-
actly the same state as NTMS1 except that instead of tHavoc,
it has its own cHavoc flag, which it sets when it detects that
the TM has given an incorrect response. This is modeled by the
observeIncorrectTM internal action. (Note that we use “detect”
here in an abstract sense: once a TM has given an incorrect re-
sponse, RFC allows arbitrary behavior. The program might not
actually know that the TM was incorrect.)

As mentioned above, the automaton presented in Figure 1 is re-
ally the composition of NTMS1 and RFC. It is easy to extract the
component automata, because all state variables other than tHavoc
(which is only in NTMS1) and cHavoc (which is only in RFC)
are updated in exactly the same way by both NTMS1 and RFC,
and these flags are updated only by observeRace (for tHavoc) and
observeIncorrectTM (for cHavoc), which are internal actions of

NTMS1 and RFC respectively. All the other actions are external
actions, and each is an input action of one of NTMS1 or RFC and
an output action of the other, so the precondition goes with the au-
tomaton for which it is an output action (recall that IOA must be
input-enabled, so their input actions do not have preconditions).

Using a framework we have developed in PVS for verifying
TM [6], we have formalized these automata, along with an au-
tomaton that specifies strong atomicity, and we have proven that
the composite IOA NTMS1 × RFC implements the automaton
for strong atomicity. This implies that data-race-free clients can-
not distinguish a TM implementation satisfying NTMS1 from one
that guarantees strong atomicity.

One possibly surprising aspect of our definitions is that the
conflict relation of an object type can be any symmetric binary
predicate, and imposes no restriction on the sequential semantics
(i.e., the set of legal sequential histories). One might think that two
operations that do not conflict ought to commute, for some defini-
tion of “commute”. We expect that this will typically be so. How-
ever, it is not necessary for our specification: the choice of conflict
relation simply shifts the burden between TM implementors and
clients. For example, if the conflict relation is empty, there are
no data races, so the TM implementation must effectively guaran-
tee strong atomicity. At the other extreme, if every operation con-
flicts with every operation (including itself), then any nontransac-
tional operation that overlaps either a (nontrivial) transaction or
another nontransactional operation forms a data race, so program-
mers must synchronize all their accesses accordingly.

5. Discussion
Although we intended NTMS1 to restrict TM implementors as
little as possible, on further consideration, it could be relaxed by
making nontransactional operations visible before they complete.
For example, we could use an internal action that effectively does
the operation, after which its effects can be seen by transactions
and other nontransactional operations. We believe it would be
straightforward to make this change.

It may be possible to go further still, and allow a nontransac-
tional operation to be visible immediately upon invocation. This
change is trickier because the operation response is not yet fixed,
and we must ensure that we won’t get “stuck” in a state in which
there is no valid response for a nontransactional operation.

Note that NTMS1 does not guarantee “privatization-safety”:
For example, one transaction may write a location x and then in-
voke commit, and do everything necessary to successfully com-
mit except send the response. If another transaction then priva-
tizes x and accesses it nontransactionally before the first trans-
action returns, this forms a data race according to our definition.
So NTMS1 allows arbitrary behavior from that point on. This is
a concern because a motivation for this work is to specify TM
for unmanaged languages like C++. However, the transactional
constructs being considered for C++ do guarantee privatization-
safety. We are thus motivated to consider alternatives that do guar-
antee privatization-safety.

Unfortunately, we don’t know of any precise characterization
of privatization-safety. Rather, what exists is an intuition and some
examples of programs (or patterns of access) that we want to
consider correct (i.e., data-race-free) and so should be guaranteed
“transactional semantics”. It is difficult to see how a property like
privatization-safety could even be stated in the generic context
of NTMS1, which treats the entire memory as a single object.
Even restricting to TM specifications for read-write memory, the
notion of “privatization” suggests some kind of unique ownership
or control over some locations in memory, which would require
us to model threads or some similar entities to be the owners or
controllers of privatized locations, which NTMS1 does not do.

References
[1] Sarita Adve. Designing Memory Consistency Models for Shared-

Memory Multiprocessors. PhD thesis, University of Wisconsin-
Madison, 1993.

[2] Ariel Cohen, Amir Pnueli, and Lenore Zuck. Mechanical verification
of transactional memories with non-transactional memory accesses.
In Proceedings of the 20th International Conference on Computer
Aided Verification (CAV), pages 121–134, 2008.

[3] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir.
Towards formally specifying and verifying transactional memory.
Formal Aspects of Computing, 2012.

[4] Rachid Guerraoui and Michal Kapalka. On the correctness of
transactional memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 175–184, 2008.

[5] Damien Imbs, Jose de Mendivil, and Michel Raynal. Virtual world
consistency: A new condition for STM systems. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC),
pages 280–281, 2009.

[6] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework
for formally verifying software transactional memory algorithms. In
Proceedings of the 23rd International Conference on Concurrency
Theory (CONCUR), pages 516–530, 2012.

[7] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, pages 137–151,
August 1987.

[8] Michael Scott. Sequential specification of transactional memory
semantics. In Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional
Computing, 2006.

