
 

 

Aria Language, 

Towards Agent Orientation Paradigm 

Mohsen Lesani 

Computer Engineering Department 

Sharif University of Technology 

Tehran, Iran 

Mohsen_lesani@ce.sharif.edu 

Niloufar Montazeri 

Computer Engineering Department 

Sharif University of Technology 

Tehran, Iran 

montazeri@ce.sharif.edu

Abstract 

As building large-scale software systems is complex, several software 

engineering paradigms have been devised. Agent oriented paradigm is 

one of the most predominant contributions to the field of software 

engineering and has the potential to significantly improve current 

practice of the field. The paradigm should be elaborated both practically 

and conceptually. Most existing agent oriented frameworks do not offer 

agent definition languages but propose to define agents with the help of 

agent libraries in existing object oriented languages. Few frameworks 

that propose languages lack conceptual principles for agent orientation. 

The contribution of this paper is twofold. Firstly, an agent oriented 

language called Aria and its compiler are proposed. Aria language is a 

superset of Java language and the compiler compiles a program in Aria 

to an equivalent program in Java. These enable Aria to fully integrate 

with and preserve all the existing knowledge and code in Java. Secondly, 

the three well-known object oriented principles of abstraction, 

inheritance and polymorphism are redefined for agent orientation. As 

chat room is a distributed application, it is selected as a sample case, 

designed and developed successfully in Aria. In addition, agent MVC 

architecture is offered as the second case. 

1. Introduction 

Programming languages seem to be the heart of computer science. Programming is to define a 

problem for a machine to get the solution. The difficulty is that the underlying hardware 

supports the machine to understand a primitive language while human speaks the natural 

language. Programming languages are devised to fill this gap. The distance from the 

 



 

 

programming language to the machine language is the way that the compilers bypass for 

human. It first became possible to make practical use of high level programming languages in 

the 1950s. Since then, successive innovations in programming languages such as procedural, 

functional and object oriented approaches all were attempts to make the machine understand 

human more. Programming languages advance to help the programmer to code a problem 

definition as it really is in the problem domain or as people view and abstract it, not to code it 

how the machine simply understands. In other words, we attempt to make the programming 

language as close as possible to the natural language or human mind abstractions. The closer 

the code can be written to human mind abstractions and parlance, the more easily it can be 

written, understood, maintained and reused. 

Object orientation was a great step toward modeling systems close to how people conceive 

them. Object orientation breaks a problem domain from the data point of view. It can well 

design systems that are data oriented, but process oriented systems that require multiple 

entities to execute concurrently, especially distributed systems, are hard to be neatly designed 

in object oriented paradigm. The problem is that objects are passive entities and the thread of 

execution is not a primary concept in object orientation. On the other hand, increasing multi 

core architectures provide hardware support for concurrency. Multi threaded applications 

should be developed in order to make use of computational power of such architectures [16]. 

These facts reveal the need for a more powerful modeling than object orientation. 

Systems are most naturally viewed as a team of cooperating subsystems. A software system is 

best designed as multiple interacting proactive elements, called agents. Agents that were first 

proposed in AI community  [12] represent high level abstractions of active entities in a software 

system  [9] [17]. The behavior of a multi-agent software system is the emergence of cooperation 

of the agents. Agents are desired to be capable of autonomously making intelligent decisions to 

perform actions in furtherance of their responsibilities. This grounds the need for a language 

paradigm that supports multi-agent software design. Languages are required for agent 

specification and compilers are necessary to compile the agent specifications. Platforms and 

tools are also required to support multi-agent software designers and developers. 

The term “agent-oriented programming language” was coined by Shoham from Stanford 

University in the late 1980s. In an influen8al paper, he proposed Agent-0 language  [13] and 

presented the concept of agent-oriented programming. Agent-0 is a fundamentally logic based 

declarative language. Some of the ideas that Shoham offered in his language especially the BDI 

(Belief Desire Intention)  [14] agent model became central to some languages emerged later. 

Some of these languages such as 3APL
1
  [6] [7] and Jason

2
  [3] [4] have close similarities to 

                                                      
1
 h?p://www.cs.uu.nl/3apl/ 

2
 http://jason.sourceforge.net 



 

 

Shoham's language. By contrast, other languages such as Jade
3
  [1] [2] (that is more precisely a 

library not a language), Jadex
4
  [10] [11] and Jack

5
  [5] [8] share some similar ideas but are 

fundamentally not logic based and are the result of object oriented practitioners’ shift towards 

agent orientation. 

One important criterion of new languages is their backward compatibility. An agent oriented 

language is expected to support successful features and grammars of previous popular 

languages (such as object oriented languages) while granting new features for defining agent 

oriented concepts. In other words, the developer’s attitude to shift to the new language and 

hence the success of language is highly dependent on preserving the developer’s existing 

knowledge and code. Both Aagent-0 and 3APL are logic based languages. The employed logic 

syntax is not object oriented and linking to available object oriented libraries is impossible or 

hard. Hence the two languages have gained interest not in practical but research projects. On 

the other hand, Jade provides programming agents in Java but is not a standalone agent 

oriented language. It is a Java library for agent modeling. So the user should try to map agent 

oriented concepts into the object oriented definitions while at best, the user is expected to be 

able to program in a language that maintains exact features for definition of agent oriented 

concepts. Jadex can integrate with existing Java libraries but agents should be specified in an 

XML file that is hardly readable. Jack is an agent oriented language and integrates with Java but 

the syntax can get more developed i.e. all the constructs should currently begin with a dummy 

sharp sign in Jack agent specifications. More importantly, object orientation is known to have 

three principles of encapsulation, inheritance and polymorphism. The publications from neither 

of the previously mentioned languages including Jack have theoretical discussions of the new 

paradigm. It is expected to preserve at least the principles of object orientation but even agent 

inheritance is not present in Jack. 

While there are few agent oriented languages available, much way is remained to a mature 

agent oriented language. This research offers an agent oriented language called Aria
6
 that 

besides providing features to specify agent concepts, also supports full integration with Java. 

The three object orientation principles are conceptually overridden in Aria. The language is 

employed for developing chat room application and MVC architecture. 

In the remainder of this paper, an explanation of agent orientation precedes the description of 

Aria language. The three principles are explained along the language features. The paper 

proceeds with some remarks about the compiler followed by the implemented cases. Finally 

the conclusion and future works conclude the paper. 

                                                      
3
 http://jade.tilab.com 

4
 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/ 

5
 http://www.agent-software.com/ 

6
 Copyright Lesani 2007 



 

 

2. Aria Agent Orientation 

In a sheer agent oriented approach, a system is designed as a team of autonomous agents 

interacting and cooperating to achieve the system goals. In contrast to an object that is a 

passive entity, an agent is modeled as a proactive social entity. 

An object does not change state or make any other object to change state unless it is told 

through methods to do so. On the contrary, an agent has different concurrent behaviors in 

action without the need for any external authority. An agent is alive and its behaviors are 

autonomously effective regardless of other agents. Agents are social as they interact by sending 

messages to and receiving messages from each other. 

Aria agent oriented language proposes language built-in support for specification of 

autonomous agents. It conceptually overrides and extends the three well known object 

orientation principles. 

o Abstraction: Everything is an agent or an object. Agents interact by sending messages to 

each other. 

o Inheritance: An agent can inherit message servicing and behaviors from a parent agent. 

o Polymorphism: An agent can override its parent definitions for message servicing and 

behaviors and the overriding definitions are effective even when the agent is referenced 

as of its parent type. 

The principles are explained in the following sections. 

3. Aria Language 

Abstraction 

An agent is specified in Aria as syntax in Code Snippet 1. 



 

 

 

An agent is abstracted to perceive messages of definite types and have several concurrent 

behaviors. 

Aria proposes a superior abstraction of messaging concept in comparison to the abstraction of 

messaging proposed by object orientation. The object orientation abstraction for messaging is 

to call methods on objects that is conceptually a blocking message passing mechanism. Inter-

agent communication is possible through not only blocking but also non-blocking and polling 

mechanisms. An agent can send messages to other agents in three different ways that are 

through tell, tellAndWait and tellAndPoll message passing methods. An agent can send a 

message and proceed with its current behavior. An agent can also send a message and block for 

its reply before advancing. The third approach is to send a message and iteratively check for the 

reply. This approach called polling allows for situations when a behavior should be sustained 

while a message reply is also waited for. These approaches are syntactically specified as in Code 

Snippet 2, Code Snippet 3 and Code Snippet 4. 

 

 

 
Message message = agentName.tellAndWait(messageName) 
 

Code Snippet 3 

 
agentName.tell(messageName) 
 

Code Snippet 2 

    
publicpublicpublicpublic agentagentagentagent AgentType 

specializesspecializesspecializesspecializes parentAgentType 
servicesservicesservicesservices ServiceType1, ServiceType2, ... 

{ 
 

atBirthatBirthatBirthatBirth    
{ 
 
} 
    
perceiveperceiveperceiveperceive(Massageclass1 message) 
{ 
 
} 
 
behaviorbehaviorbehaviorbehavior behaviorName 
{ 
 
} 
  
behaviorbehaviorbehaviorbehavior behaviorName processesprocessesprocessesprocesses (MessageClass2 message) 
{ 
 
} 
 
atDeathatDeathatDeathatDeath    
{ 
 
} 
 
// Any OO field or method is also supported. 

} 
 

Code Snippet 1 



 

 

 

A message class can be a subtype of RequestMessage, OrderMessage or InfoMessage classes 

that are themselves subtypes of Message class. A message of type RequestMessage is a 

message that requests a service from the receiving agent. A message of type OrderMessage 

requests a service that finally results in a reply message. A reply message is usually a message 

of type InfoMessage which contains a bit of information. 

An agent may receive messages of different class types. The perceive block for a definite 

message class is where every received message that is an instance of that class is directed to. 

Every agent has a hidden thread-safe message queue. All the messages that other agents send 

to the agent are put into its message queue. When an agent specification is compiled, a hidden 

message dispatching behavior is added to the agent behaviors. To be more precise, the 

message dispatching behavior is a thread that continuously iterates the message queue, 

identifies the type of each message and runs the perceive block of the identified message type 

with the message as the parameter. All the message queuing and runtime type identification 

issues are handled behind the scene by the code that is generated and inserted by the compiler 

into the user code and in part by classes of Aria core package. Hence the user is not needed to 

be concerned about queuing and other low level issues but focuses on the concerns of the 

problem domain. 

As it was explained all the perceive blocks of an agent are executed sequentially in a single 

thread; hence, a perceive block can only contain a short processing on the message. For 

instance it can contain the action that a simple reflex agent
7
 performs in realizing a message of 

a definite type. This is most common for user interface agents. As most of the messages they 

receive are requests for presentation and such requests can be carried out rapidly, user 

interface agents are usually reflex agents. 

Behaviors are where the agent’s intelligent processing should be coded. The code snippet of a 

behavior is translated to a repeatedly running code. Every behavior is executed on a separate 

thread by default and this supports concurrent behaviors in an agent. While the user only 

specifies the behavior, the threading and scheduling issues are handled by Aria. 

                                                      
7
 The Simple reflex term is from  [1]. 

 
MessageWaitedFor messageWaitedfor = agentName.tellAndPoll(messageName) 
while (!messageWaitedFor.isMessageReplied()) 
{ 

// Do some tasks 
} 
Message replyMessage = messageWaitedFor.getMessage(); 
 

Code Snippet 4 



 

 

Processing needed to reply some message types may be time consuming and messages of such 

types can not be promptly answered. As perceive blocks should only contain short processing 

tasks, there is a need that messages of time consuming types be directed to a behavior to be 

further processed. To this end, if there were no specific construct for defining message 

processing behaviors in the language, the user was required to define a thread-safe queue to 

hold messages of the type and a perceive block for the message type to save the messages of 

the type to that queue. A behavior could then get a message from the queue to be further 

processed. This could be coded in Aria as coded in Code Snippet 5. 

 

To support the user to accomplish this much easier, Aria allows defining message processing 

behaviors. A behavior can declare to process a definite message type; the message queue, the 

perceive block which queues the messages and the code that dequeues messages in the 

behavior block are automatically generated by the compiler. This means that Code Snippet 6 

has exactly the same effect as Code Snippet 5. 

 

A message that is being processed either in a perceive or behavior block can be replied by the 

reply keyword as shown in Code Snippet 7 and Code Snippet 8. 

 

 
replyreplyreplyreply message 
 

Code Snippet 7 

    
behaviorbehaviorbehaviorbehavior behaviorName processesprocessesprocessesprocesses (MessageClassType message) 
{ 

// behavior code to process message 
} 
 

Code Snippet 6 

    
privateprivateprivateprivate ThreadSafeQueue<MessageClassType> ariaMessageClassTypeQueue = 

newnewnewnew ThreadSafeQueue<MessageClassType>(); 
    
percievepercievepercievepercieve(MessageClass message) 
{ 

ariaMessageClassQueue.add(message); 
} 
    
behaviorbehaviorbehaviorbehavior behaviorName 
{ 

trytrytrytry    
{ 

  MessageClass message = ariaMessageClassQueue.remove(); 
 // behavior code to process message 
} 
catchcatchcatchcatch (Exception e) 
{ 

  idle(); 
} 

} 
 

Code Snippet 5 



 

 

 

When a message is replied, if the sender is waiting for the reply, the sender unblocks and gets 

the reply message as the return value of tell method. But if the sender is not waiting for the 

reply, the reply is simply sent to it to be queued and processed later. A reply statement without 

a message is exactly similar to replying with a message of type DoneMessage. Reply statements 

without an explicit message are usually used for unblocking sender agents that are waiting for a 

requested task to be finished. All the needed synchronizations are handled by Aria core 

package. 

An agent is created and made alive as shown in Code Snippet 9. 

 

Agent’s (hidden) message dispatching behavior and all the behaviors in the agent definition are 

started when the agent is commanded to become live. The atBirth block is executed when the 

agent is becoming live just before any of the behaviors are started. An agent can be requested 

to terminate by telling it a message of TerminateRequestMessage class. When a message of 

TerminateRequestMessage class is received, the agent dies by default by terminating all its 

behaviors and executing the atDeath block when all the behaviors are terminated. This default 

reaction to TerminateRequestMessage can also be overridden easily by providing a perceive 

block for it. An agent can terminate itself not only by sending a TerminateRequestMessage to 

itself but also by calling die() method. 

Agent definitions support all the constructs that can be defined inside class definitions. Fields 

can be defined for agent information storage. As fields are accessible from all the perceive and 

behavior blocks and agent behaviors can execute concurrently, care should be taken for 

synchronizing field access. Methods are also allowed to be defined for an agent but rarely an 

agent’s method has a public access. Using one of the mentioned telling approaches is proposed 

for inter agent message passing in contrast to object oriented method calls for message 

passing; Hence, methods are expected to have private or protected rather than public or 

package access specifiers. Private and protected methods can be employed to break the 

functionality in perceive and behavior blocks to manageable functions and subprocedures. 

Composition serves as a way to reuse existing agents and built more high-level agents with 

greater capabilities from them. An agent can obviously be composed of other agents. Each 

 
AgentType agentName = newnewnewnew AgentType(); 
agentname.becomeLive(); 
 

Code Snippet 9 

 
replyreplyreplyreply    
    

Code Snippet 8 



 

 

subagent can be capable of performing a part of the agent’s responsibilities. The agent itself 

can act as a manager or coordinator.  

Inheritance 

Aria agent specification supports agent specialization and servicing declarations. 

Agent Specialization 

In addition to agent composition, agent specialization can be employed to achieve software 

reuse principle. All the capabilities present in an existing agent type can be reused by 

specializing a new agent from it and then the new agent can be supplemented with further 

capabilities. 

Agent specialization is the counterpart to object inheritance. While object oriented inheritance 

involves fields and methods, agent orientated specialization concerns also message processing 

mechanisms and behaviors. When an agent inherits from a parent agent, the entire parent’s 

perceive and behavior blocks are inherited by the agent. The child agent can perceive all the 

message types that its parent could perceive and has all the behaviors that its parent has. The 

child agent has all the parent agent’s functionalities in addition to new specific functionalities 

that can be added. 

Service Provision 

A service is specified in Aria in the syntax shown in Code Snippet 10. 

 

A service specification formally defines a service that agents may provide. A service 

specification declares some message or request types. An agent that declares to support a 

service should be able to perceive all the message types declared in the service specification. 

An agent that has declared the perceive block for a message type is able to perceive messages 

of that type. An agent that has a message processing behavior for a definite message type is 

also considered to be able to perceive messages of that type. This is because a message 

processing behavior automatically generates a perceive block for the message type it is 

processing. Service provision is the counterpart of interface realization in object orientation. 

A service can declare to extend other services. An agent that declares to service a definite 

Service B that extends another Service A should be able not only to perceive all the messages 

 
publicpublicpublicpublic serviceserviceserviceservice ServiceType extendsextendsextendsextends AnotherServiceType1, AnotherServiceType2, ... 
{ 

servservservservicesToicesToicesToicesTo(MessageClass1); 
servservservservicesToicesToicesToicesTo(MessageClass2); 

} 
 

Code Snippet 10 



 

 

declared in Service B but also all the messages declared in A. An agent can offer different 

services. Different agents can provide a unique service with different policies. 

Polymorphism 

A general agent with definite capabilities can be specialized to have the capabilities more 

specifically defined. Different specialized agents can expertize different capabilities of a 

generally defined parent agent. A perceive or behavior block can be overridden by an inheriting 

agent. 

An overriding perceive or behavior block contains the child agent’s specific definitions that are 

different from that of its parent. A behavior defined in a child agent that has the same name as 

of a behavior in its parent agent overrides the parent’s behavior. An overriding behavior 

replaces the overridden behavior and will be active instead of it. 

A perceive block defined in a child agent for a specific message class overrides the perceive 

block for the same message class in the parent agent. Sending a message to an upcasted child 

agent is polymorphic. This means that the perceive block defined in the child agent specification 

is executed rather than the perceive block defined in the parent agent specification. 

An agent can add a perceive or behavior block to itself at runtime. The added perceive or 

behavior block can be a new or an overriding one. An agent can not only override the perceive 

and behavior blocks of its ancestors at compile time, but it can also override inherited and even 

its own perceive and behavior blocks at runtime. This supports an agent to change its behaviors 

in the course of its life as a result of learning or adaptation. Emerging a new or changing an 

existing perceive or behavior block can be performed at runtime as coded in Code Snippet 11, 

Code Snippet 12 and Code Snippet 13. 

 

 
addPerceiver( 
 newnewnewnew Perceiver<MessageClass>() 
 { 
  publicpublicpublicpublic voidvoidvoidvoid perceive(MessageClass message) 
  { 
   //Perceive code 
  } 
 } 
); 
    

Code Snippet 11 



 

 

 

 

4. Aria Compiler (Ariac) 

Aria compiler is developed employing Antlr v.3 tool. Antlr
8
 has been the most prominent 

compiler development tool for at least 5 past years. Ariac translates a program in Aria language 

to a semantically equivalent program in Java language that is then compiled to the (platform 

independently executable) Java bytecode. Besides agent and service specifications, Ariac 

compiler also accepts all the Java language constructs. It means that Aria language is a superset 

of Java language and Aria code is fully integrable with Java code. This maintains two favored 

software engineering practices that are backward compatibility and code reuse. All the existing 

Java packages can be still benefited from while agent definition constructs are also available. 

The compiler has successfully passed compiling two sample cases implemented in Aria. 

5. Sample Cases 

Chat Room 

Chat room application is selected as a case to employ Aria because of its distributed nature. The 

application is straightly designed though a sheer agent oriented approach as shown in Figure 1. 

                                                      
8
 http://www.antlr.org 

 
addBehavior( 
 newnewnewnew MessageProcessingBehavior<MessageClass>("BehaviorName") 
 { 
  public voidpublic voidpublic voidpublic void behavior(MessageClass messasge) 
  { 
   //Message Processing behavior code 
  } 
 } 
); 
 

Code Snippet 13 

 
addBehavior( 
 newnewnewnew Behavior("BehaviorName") 
 { 

 public voidpublic voidpublic voidpublic void behavior() 
 { 
  //Behavior code 
 } 
} 

); 
 
 

Code Snippet 12 



 

 

 

Figure 1 Chat Room Application Architecture  

 

The chat room application consists of two subcomponents: ClientAgent and ServerAgent. 



 

 

ClientAgent is composed of three different agents: a UIAgent, a Sender agent and a Receiver 

agent. The UIAgent interacts with the user. It gets chat messages from the user and sends them 

to the Sender agent. The Sender agent sends any message it receives to the server. The 

Receiver agent gets all the messages coming from the server and directs them to the UIAgent to 

be presented to the user. 

Supporting codes are provided in Aria core package for defining user interface frames as agents 

while all Swing features are still present. JFrameAgent that is the parent of all the frame agents 

is capable of receiving requests to appear, change its title and get a line of text from the user. It 

can be specialized for a particular application to be capable of receiving application specific 

messages as well. 

ServerAgent consists of an AccepterAgent, and a number of ReceiverAgents (one for each 

connected client) and a BroadcasterAgent. The accepter agent is responsible for accepting new 

client connections. A ReceiverAgent receives messages from the client and directs them to the 

BroadcasterAgent. The broadcaster agent consists of SenderAgents that are responsible for 

sending messages to the connected clients. The BroadcasterAgent sends every message it 

receives to all the sender agents and the sender agents send the messages to their associated 

clients. Hence, all of the chat users can see any message that any of them writes. 

Figure 2 depicts three chat client agents all running on the same machine. 

 

Figure 2 Chat Room Application Snapshot 



 

 

 

Agent MVC (Model View Controller) 

MVC architecture offers an elegant design for a complex element in terms of three logical sub 

elements:  [15]  

• Model: The element’s state, and means for changing the state. 

• View: The representation of the element (visual or non-visual). There may be various 

views representing the model differently. 

• Controller: The element’s control functionality, mapping actions on the view to their 

impact on the model. 

This separation makes it easier to modify or customize each part. As the separated parts are 

autonomous message passing entities, aria offers agents as ideal modeling elements for the 

parts. In addition to better modeling and design, Aria helps for responsiveness of views. 

There is only one thread of execution that runs all the three parts in an object oriented 

implementation of MVC. All the process should execute in a single thread and all the message 

passings are through method calls. When a view should send a message to the controller as a 

result of user action on the view, the view calls a method on the controller. If the controller 

procedure is time-consuming the view freezes and becomes unresponsive until the controller 

finishes the called method. The problem gets worse when the controller has to update the view 

successively in order to show an animation, for example. The view remains frozen until the 

controller finishes and then all the updates that the controller has requested for are executed 

on the view rapidly in sequence. But in fact, this is not the gradual effect the controller 

intended to make. Besides, Update messages from the model to the views are also forced to 

execute sequentially i.e. one updates only after another even if the first is very time-consuming. 

If the parts are modeled as autonomous agents, a view can send a message to the controller 

and then just continue its behaviors. Hence the view can always respond to the user and never 

freezes. The agent oriented views are autonomous and concurrent in responding to messages 

they receive. All views can start updating concurrently as soon as the model broadcasts a 

change to the views and no view waits for another view to finish updating. 

The selection sort animation is implemented in Aria with MVC architecture as shown in Figure 

3. 



 

 

 

Figure 3 Agent MVC Architecture 

 

The selection sort application consists of these three MVC sub elements: 

• SelectionSortModelAgent 

receives requests to offer or change the sort state elements 

• SelectionSortGuiViewAgent and SelectionSortConsoleViewAgent 

are different representations of selection sort state (a graphical and a text based). They 

receive similar requests to display sort state. SelectionSortGuiViewAgent sends a 

request to the SelectionSortControllerAgent to run the sort algorithm when the start (or 

restart button is pressed. 

• SelectionSortControllerAgent 



 

 

runs the selection sort algorithm when a message is received from the view to start the 

sort. It sends change requests to the model with a predefined delay between requests. 

The model informs any known views of any change it experiences and the views reflect 

the model change to the user. As the changes are made gradually to the model, updates 

in the view animate the sort procedure. 

Figure 4 depicts a snapshot of the selection sort animation application were both the graphical 

and console views are demonstrating sort states. 

 

Figure 4 Selection Sort Animation Snapshot 

6. Conclusion and Future Works 

Multi agent systems represent a natural abstraction for architecture of complex systems. 

Agents as live entities can elegantly represent interacting elements of the system. As 

organizational processes are essentially interactions between individuals or organizations, 

constructing organizational software systems with agent oriented architectures can be 

straightforward. To make agent orientation a concrete paradigm, it should be developed in 

practice with well defined semantics. This research proposed Aria language and its compiler 

which supports defining agents at the language level. The offered language features are 

accompanied with proposed semantics. Three eminent object oriented principles are redefined 

in terms of the language features. A chat room application and MVC architecture are selected 

as cases to employ Aria. The cases are easily designed as interacting agents and the Ariac 

compiler successfully compiled the implemented codes. 



 

 

As a future work, the compiler should be improved to provide better error handling. The 

language is flexible enough to support implementation of the well known BDI (Belief, Desire 

and Intention)  [14] agent architecture and also get FIPA
9
 compliant. To demonstrate the 

implementation of BDI agents in Aria besides maintaining FIPA standards are other future 

works of this paper. In addition, a plug-in should be developed for IntelliJ Idea or Eclipse IDEs in 

order to facilitate Aria developer’s job. The agent diagrams are obtained from an editor for Aria 

agent oriented design developed in this research as an extension of Violet
10

 UML editor. The 

editor and the modeling language should get more developed. 

7. References 

[1] Bellifemine, F., Bergenti, F., Caire, G. and Poggi, A. 2005. JADE - A Java Agent Development 

Framework. In Multi-Agent Programming: Languages, Platforms and Applications, Bordini, 

R. H., Dastani, M., Dix, J., and El Fallah Seghrouchni, A., Ed. Springer-Verlag. Chapter 5. 

[2] Bellifemine, F., Rimassa, G., and Poggi, A. 1999. Jade - a Fipa-compliant agent framework. In 

Proceedings of 4th Interna8onal Conference on the Prac8cal Applica8ons of Intelligent 

Agents and Multi-Agent Technology (London, 1999). 

[3] Bordini, R. H., Hübner, J. F., and Vieira, R. 2005. Jason and the Golden Fleece of agent-

oriented programming. In Multi-Agent Programming: Languages, Platforms and 

Applications, Bordini, R. H., Dastani, M., Dix, J., and El Fallah Seghrouchni, A., Ed. Springer-

Verlag. Chapter 1, 3-37. 

[4] Bordini, R. H., Hübner, J. F., and Wooldridge, M. 2007. Programming Mul8-Agent Systems in 

AgentSpeak Using Jason. John Wiley & Sons, Ltd. 

[5] Busetta, R., Ronnqulst, R., Hodgson, A., and Lucas, A. 1998 JACK Intelligent Agents - 

Components for Intelligent Agents in Java. Technical report. Agent Oriented Software Pty. 

Ltd, Melbourne, Australia. 

[6] Dastani, M., Dignum, F., Meyer, J.J., 2003. 3APL: A Programming Language for Cognitive 

Agents. ERCIM News, European Research Consortium for Informatics and Mathematics, 

Special issue on Cogni8ve Systems. 53 (2003). 

[7] Hindriks, K.V., de Boer, F.S., van der Hoek, W. and Meyer, J.-J.Ch., 1999. Agent programming 

in 3APL. Autonomous Agents and Multi-Agent Systems. 2, 4 (1999), 357-401. 

[8] Howden, N., Ronnquist, R., Hodgson, A., and Lucas, A. 2001. JACK - Summary of an Agent 

Infrastructure. In proceedings of 5th Interna8onal Conference on Autonomous Agents 

(2001). 

[9] Jennings, N. R. An agent-based approach for building complex software systems. 

Communica8ons of the ACM, 44, 4 (2001), 35-41. 

                                                      
9
 http://www.fipa.org/ 

10
 http://horstmann.com/violet 



 

 

[10] Pokahr, A., Braubach, L. and Lamersdorf, W. 2003. Jadex: Implementing a BDI-

Infrastructure for JADE Agents. EXP - In Search of Innovation (Special Issue on JADE, 

Telecom Italia Lab, Turin, Italy). 3, 3 (September 2003), 76-85.  

[11] Pokahr, A., Braubach, L., and Lamersdorf, W. 2005. JADEX: A BDI Reasoning Engine. In 

Multi-Agent Programming: Languages, Platforms and Applications, Bordini, R. H., Dastani, 

M., Dix, J., and El Fallah Seghrouchni, A., Ed. Springer-Verlag. Chapter 6. 

[12] Russell, S., Norvig, P. 2003. Ar8ficial Intelligence, A modern Approach. Pren8ce Hall. 

[13] Shoham, Y. 1991. AGENT-0: A Simple Agent Language and its Interpreter. In Proceedings 

of 9th Na8onal Conference of Ar8ficial Intelligence (Anaheim, CA, 1991). MIT Press. 

[14] Shoham, Y. 1993. Agent-oriented programming. Ar8ficial Intelligence, 60, 1 (1993), 51–

92. 

[15] Stelting, S., Maassen, O. Applied Java Patterns. Prentice Hall, 2001, 598 pages 

[16] Su?er. H. (2005) The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in 

SoSware. Dr. Dobb’s Journal, 30, 3 (March 2005). 

[17] Yu, E. 2001. Agent-Oriented Modeling: Software Versus the World. In Proceedings of 

Agent-Oriented Software Engineering AOSE-2001 Workshop (2001). Springer Verlag, 206-

225. 

 

 


