

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PPoPP’11 February 12–16, 2011, San Antonio, Texas, USA.
Copyright © 2011 ACM 978-1-4503-0119-0/11/02…$10.00.

Communicating Memory Transactions

Mohsen Lesani Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles, USA

{lesani, palsberg}@cs.ucla.edu

Abstract

Many concurrent programming models enable both transactional
memory and message passing. For such models, researchers have
built increasingly efficient implementations and defined
reasonable correctness criteria, while it remains an open problem
to obtain the best of both worlds. We present a programming
model that is the first to have opaque transactions, safe
asynchronous message passing, and an efficient implementation.
Our semantics uses tentative message passing and keeps track of
dependencies to enable undo of message passing in case a
transaction aborts. We can program communication idioms such
as barrier and rendezvous that do not deadlock when used in an
atomic block. Our experiments show that our model adds little
overhead to pure transactions, and that it is significantly more
efficient than Transactional Events. We use a novel definition of
safe message passing that may be of independent interest.

Categories and Subject Descriptors D.1 [Programming

Techniques]: D1.3 Concurrent Programming – Parallel

programming

General Terms Languages, Design, Algorithms

Keywords Transactional Memory, Actor

1. Introduction

1.1. Background

Multi-cores are becoming the mainstream of computer
architecture, and they require parallel software to maximize
performance. Therefore, researchers sense the need for effective
concurrent programming models more than ever before. We
expect a concurrent programming model to provide means for
both isolation and communication: concurrent operations on
shared memory should be executed in isolation to preserve
consistency of data, while threads also need to communicate to
coordinate cooperative tasks. The classical means of programming
isolation and communication is locks and condition variables [16].
Locks protect memory by enforcing that the memory accesses of
blocks of code are isolated from each other by mutual exclusion.
Condition variables allow threads to communicate: a thread can
wait for a condition on shared memory locations and the thread
that satisfies the condition can notify waiting threads. However,
development and maintenance of concurrent data structures by
fine-grained locks is notoriously hard and error-prone, and lock-

based abstractions do not lend themselves well to composition.
We need a higher level of abstraction.

A promising isolation mechanism to replace locks is memory
transactions because they are easy to program, reason about, and
compose [12]. The idea is to mark blocks of code as atomic and
let the runtime system guarantee that these blocks are executed in
isolation from each other. Researchers have developed several
implementations [5][13], semantics [1][24][15], and correctness
criteria [10][24] for memory transactions. In particular, we prefer
to work with memory transactions that satisfy a widely recognized
correctness criterion called opacity [10]. To complement memory
transactions, which communication mechanism should replace
condition variables? We want the addition of a communication
mechanism to preserve opacity while adding little implementation
overhead to pure transactions. Let us review the strengths and
weaknesses of several known mechanisms.

1.2. Synchronizers, retry, and punctuation

Luchango and Marathe were the first to consider the interaction of
memory transactions and they introduced synchronizers. A
synchronizer encapsulates shared data that can be accessed
simultaneously by every transaction that synchronizes (i.e.
requests access) to it. The transactions that synchronize on a
synchronizer (that is either read from or write to it) all commit or
abort together. Additional concurrency control mechanisms are
needed to protect the shared data against race conditions [20]. The
work is recently extended to transaction communicators [22].

To enable a transaction to wait for a condition, Harris and
Fraser introduced guarded atomic blocks [11], and Haskell added
the "retry" keyword [12]. On executing "retry", Haskell aborts and
then retries the transaction. Later, Smaragdakis et al. [28]
established the need for transactional communication. They
showed that neither of the previous mechanisms supports
programming of a composable barrier abstraction: if used in an
atomic block, the barrier deadlocks. In contrast to Haskell's
"retry", Smaragdakis et al. [28] and also Dudnik and Swift [7]
advocated that the waiting transaction should be committed rather
than aborted. They observed that if the transaction is aborted, all
its writes are discarded, while if it is committed, its writes will be
visible to other transactions, thereby enabling the transaction to
leave information for other transactions before it starts waiting.

Dudnik and Swift used their observation as the basis for
designing transactional condition variables [7]; their model allows
no nesting of atomic blocks. Smaragdakis et al. [28] used their
observation as the basis for designing TIC which enables
programming of a barrier abstraction that won't deadlock even if it
is used in an atomic block. TIC splits (“punctuates”) each
transaction into two transactions; this may violate local invariants
and therefore requires the programmer to provide code for
reestablishing the local invariants. TIC executes that code at the
point of the split, that is, after wait is called and before the first

half of the transaction is committed. As explained in [28], TIC
breaks isolation and therefore doesn't satisfy opacity.

1.3. Message Passing

A dual approach to providing means for isolation and
communication is to begin with a message passing model such as
Actors [2] and Concurrent ML (CML) [26], and then add an
isolation mechanism. Examples of such combinations include
Stabilizers [30], Transactional Events (TE) [6], and Transactional
Events for ML (TE for ML) [8].

In Stabilizers, threads can communicate by sending and
receiving synchronous messages on channels. The programmer
can mark locations of code as stable checkpoints. If a thread
encounters a transient fault, it calls "stabilize", which causes the
run-time system to revert back the current thread, and all threads
with which it has transitively communicated, to their latest
possible stable checkpoints. In summary, Stabilizers support
program location recovery but not atomicity and isolation as
explained in [30].

Inspired by CML and Haskell STM, TE provides the
programmer with a sequencing combinator to combine two events
such as synchronous sends and receives into one compound event.
The combination is an all-or-nothing transaction in the sense that
executing the resulting event performs either both or none of the
two events. The sequencing combinator enables straightforward
programming of: (1) a modular abstraction of guarded
(conditional) receive (this is not possible in CML), (2) three-way-
rendezvous (a generalization of barrier) (this is not possible with
pure memory transactions [6]), and (3) memory transactions (by
representing each location as a server thread). TE supports the
completeness property, namely: if there exists an interleaving for
a set of compound events such that their sends and receives are
matched to each other, the interleaving is guaranteed to be found.
While the completeness property can terminate some scheduler-
dependent programs, scheduler-independence is the well known
property expected from concurrent algorithms. More importantly,
finding such an interleaving is NP-hard [6] and can be
implemented with an exponential number of run-time search
threads [6]. Our experiments show that the performance penalty
can be excessive.

TE supports all-or-nothing compound events but it prevents
any shared memory mutation inside compound events. In follow-
up work on TE, the authors of TE in ML [8] explain that encoding
memory as a ref server is inefficient. They extend TE to support
mutation of shared memory in compound events. TE for ML
logically divides a compound event into sections called chunks.
Chunks are delimited by the sends and receives of the compound
event. The semantics of TE for ML breaks the isolation of shared
memory mutations of a compound event at the end of its chunks.
At these points (i.e. before sends and receives), the shared
memory mutations that are done in the chunk can be seen by
chunks of other synchronizing events. Similar to the punctuation
in TIC, chunking breaks isolation and thus doesn't satisfy opacity.

1.4. Our Approach

The above review shows that previous work has problems with

either nesting of atomic blocks, opacity, or efficiency. Our goal is

to do better. In this paper, we present Communicating Memory

Transactions (CMT) that integrates memory transactions with a

style of asynchronous communication known from the Actor

model. CMT is the first model to have opaque transactions, safe

asynchronous message passing, and an efficient implementation.

We use a novel definition of safety for asynchronous message

passing that generalizes previous work. Safe communication

means that every committed transaction has received messages

only from committed transactions. To satisfy communication

safety, CMT keeps track of dependencies to enable undo of

message passing in case a transaction aborts. We show how to

program three fundamental communication abstractions in CMT,

namely synchronous queue, barrier, and three-way rendezvous. In

particular we show that our barrier and rendezvous abstractions do

not deadlock when used in an atomic block. To enable an efficient

implementation, CMT does not satisfy the completeness property

[8] found in TE. Based on the transactional memory

implementations TL2 [5] and DSTM2 [13], we present two

efficient implementations of CMT. We will explain several subtle

techniques that we use to implement the semantics. Our

experiments show that our model adds little overhead to pure

transactions, and that it is significantly more efficient than

Transactional Events.

In Section 2 we discuss five CMT programs. In Section 3 we
recall the optimistic semantics of memory transactions by
Koskinen, Parkinson, and Herlihy [15], and in Section 4 we give a
semantics of CMT as an extension of the semantics in Section 3.
In Section 5 we explain our implementation of CMT, and in
Section 6 we show our experimental results.

2. Examples

The goal of this section is to give examples of CMT programs and
give an informal discussion of the semantics of CMT. In
particular, we will illustrate the notions of communication safety,
dependency and collective commit. We use the following syntax:
to delimit parallel sections of the program, is used.
sends the result of expression to channel .
receives a message from channel and assigns it to the thread
local variable . To provide means of programming abstractions,
macro definitions are allowed: . The
body term of the macro is inlined with at the call sites.

Let us start with a simple example: a server thread that
executes a transaction in response to request messages from a
client thread.

The server transaction receives the tentative message from the

client transaction and mutates memory according to the message.
If the client transaction aborts, the message that it has sent is
invalid. Therefore, the server transaction should commit only if
the client transaction is committed. In other words, the
communication is safe under the condition that a receiving
transaction is committed only if the sender transaction is
committed. We say that the receiving transaction depends on the
sender transaction. If the sender aborts the receiver should abort
as well. The abortion is propagated to depending transactions. If a
receive is executed on a channel that is empty or contains an
invalid message (a message sent by an aborted transaction), the
receive suspends until a message becomes available.

Consider the two-way rendezvous abstraction that can swap
values between two threads. (Rendezvous is a generalization of
barrier that swaps values in addition to time synchronization.)

;

Consider the following program that employs the above
abstractions. Each abstraction is inlined at its call sites and its
parameters are substituted with passed arguments. Columns
represent parallel parts of the program. (To discuss the interaction
of transactions, the parties call inside atomic blocks.)

Figure 1 shows the steps of execution of the above program.

Solid arrows show messages and dashed arrows show
dependencies. Party1 sends a tentative Message1 to Rendezvous.
Rendezvous receives Message1 and becomes dependent on Party1
(Figure 1.A). The same happens for Party2 (Figure 1.B). At this
point, Rendezvous is dependent on both parties.

Assume that Party2 aborts. The abortion is propagated to
Rendezvous by Dependency2. Rendezvous is also aborted and
retried. On the retry, it receives Message1 again. But as Message2
is invalid, the second receive suspends. This means that
Rendezvous repeats Figure 1.A again. It effectively ignores the
aborted transaction of Party2 and waits for another.

When Party2 is retried, Figure 1.B is repeated. At this time,
Rendezvous has received request messages from both parties. It
tentatively sends swapped messages back to both Party1 and
Party2. The parties are released from suspension and receive the
messages. They get dependent on Rendezvous (Figure 1.C). At
this time, parties and Rendezvous are interdependent (Figure 1.D).

Assume that Party2 aborts in the code after .
Dependencies propagate abortion to Rendezvous and then to
Party1. In other words, if one of the parties aborts, the Rendezvous
and all the other parties are aborted and retried. This is the
expected behavior: as Party2 is aborted, the value that it has
swapped with Party1 is invalid. Therefore, Party1 should be
aborted as well. (This also matches the semantics expected from
the barrier. As Party2 aborts, it is retried. This means that it will
reach the barrier again. By the semantics of the barrier, no party
should pass the barrier when there is a party that has not reached
the barrier. Thus, as Party2 will reach the barrier, Party1 should not
have passed it. Therefore, Party1 should be aborted as well.)

Finally, the transactions of Rendezvous, Party1 and Party2
reach the end of the atomic blocks. As they are interdependent,
each of them can be committed only if the others are committed.
If each of them obliviously waits until its dependencies are
resolved, deadlock happens. As will be explained in the following
sections, interdependent transactions are recognized as a cluster
and transactions of a cluster are collectively committed.

In contrast to an implementation using Haskell retry, calling
 inside a nested atomic block does not lead to a deadlock. In

addition, in contrast to TIC and TE for ML, opacity of
transactions is satisfied.

Similar to Two-way Rendezvous, the abstractions for
Synchronous queue, Barrier and Three-way rendezvous can be
programmed in CMT as shown in Figure 2. Please note that it is
assumed that these basic abstractions are used only once. For
example, the basic barrier abstraction is not a cyclic barrier. For
the three-way rendezvous, we assume that can be pairs of the
form . Implementations of Barrier with Haskell retry, TIC
and TE for ML and an implementation of CMT can be seen in the
technical report [17] section 15.1. Implementations of
Synchronous Queue and Rendezvous can be seen in the technical
report [17] sections 15.2 and 15.3.

3. Memory Transactions

We now recall the optimistic semantics of memory transactions
by Koskinen, Parkinson, and Herlihy [15]. Their semantics is the
starting point for our semantics of CMT in Section 4. TL2 is an
implementation that realizes this semantics.

Note: we have fixed a few typos in the syntax, semantics and
definition of moverness after personal communication with the
authors of [15].

3.1. Syntax

A configuration is a triple of the form . (To simplify
reading of long configurations, “ ” is used to separate elements of
configurations.) represents the set of threads. denotes the
shared store that contains objects. is a log of pairs :
each committed transaction and the operations it has
performed . is a set of elements of the form . is

Figure 1. Interactions of 2-way Rendezvous

P1 R P2

D1

P1 R P2

P1 R P2

(B)

(C)

(D) M2

D1 D2

M3 M4

D1 D2

D4 D3

D2

M1

P2 P1 R

(A)

D1

Synchronous

Queue

The abstractions:

)

The program:

)
}

Barrier

The abstractions:

;
;

The program:

3-way Rendezvous

The abstractions:

;
;

;

The program:

Figure 2: CMT Programs

the transaction identifier (or that denotes that the code is
executing outside transactions). Transaction identifiers are
assumed to be ordered by the time that they are generated. is the
statement to be executed by the thread. Statements have the
following syntax:

 Statement

 Instruction

 and denote the start and end of transactions. We use
 as a syntactic sugar for . denotes calling

method on shared object . Commands (reading and writing)
that are applied to thread-local state are represented by . is the
transaction-local store of objects. is the backup store that stores
states of (thread-local) objects before the transaction is started. It
is used to recover state when the transaction aborts. The statement
before the transaction is started is also backed up in . The
pattern denotes a back up store that maps the backed
up statement to . is the ordered log of operations that has been
performed by the transaction. The initial configuration is of the
form . is where

. are the parallel segments of
the program. is the store where every object is mapped to its
initial state i.e. .

denotes assigning value to key in map . represents
value of key in map .

3.2. Operational Semantics

The semantics [15] is shown in Figure 3. The semantics is a

labeled transition system. The syntax supports nested atomic

blocks. We can transform a program with nested atomics into an

equivalent program with only top-level atomics by simply

removing all inner atomics. Hence, it is sufficient that the

semantics supports only top-level atomics.
We will now explain the five rules in Figure 3. The rule

applies the statement to the local store. denotes application
of the command to the local store . The rule starts a new
transaction. A transaction identifier is generated.

generates unique and increasing transaction identifiers . The
current store and also the current statement are stored in the
backup store. A snapshot of the current state of objects is taken
from the shared store to the local store. The rule executes a
method. The method is applied to the local store and is logged in
the local log. represents the returned value. As defined by [15],
read and write operations on memory locations are special cases
of method call. The rule checks that the methods of the

current transaction are right movers with respect to the methods of
the transactions that have been committed since the current
transaction has started. Right moverness ensures that tentative
execution of a transaction can be committed even though other
transactions have committed after it started. Please refer to the
appendix for a detailed definition of right moverness. If the
methods of the transaction satisfy the moverness condition, the
transaction is committed. The methods of the local log are applied
to the shared store. The local log is also saved with a id in
the shared log. This is used to check moverness while later
transactions are committing. The reduction aborts the
transaction. The store and the statement that were saved in the
backup store when the transaction was starting are restored.

3.3. Properties

The semantics satisfies opacity which is a correctness condition

for memory transactions [10]. We say that a sequence of labels

 is given by started from if there are

configurations such that for each

.

THEOREM 1 (Opacity). Every sequence of labels ,

, and given by started from is

opaque (Proposition 6.2 of [15]).

4. Communicating Memory Transactions

We now present the syntax and semantics of CMT. The semantics

adds a core message passing mechanism to the semantics

presented in the previous section.

4.1. Syntax

The syntax is extended as follows:
 Statement

Instruction

 sends the result of expression to channel .
 receives a message from channel and assigns it

to the thread local variable . We assume that messages are
primitive values.

The configuration of the semantics in section 3 is augmented

with the following elements: , and . Therefore a

configuration is a tuple of the form .

Figure 3: Optimistic Semantics of Memory Transactions

maps each transaction id to the state of the transaction. The state

of a transaction can be either (running), (committed), or

(aborted). A committed transaction has finished successfully,

while an aborted transaction has stopped execution and had its

tentative effects discarded. is a partial function that maps

channels to pairs of the form where is the sender

transaction and is the current value of the channel. To guarantee

communication safety, we track dependencies between

transactions. is the transaction dependency relation that is a set

of elements of the form . Transaction is dependent on

transaction , i.e. , if receives a message that is sent by .

The dependency to is said to be resolved, if is committed. The

initial configuration is . and

are defined as the prior semantics.

4.2. Operational Semantics

The rules , are not changed other than the addition of
 to both sides of the rules. The two rules and

have a small change. They set the state of the transaction in to
running and aborted , respectively.

The rule sends a message on a channel. The mapping
is updated to map the channel to the pair where is the id of
the current transaction and is the sent value. The id of the sender
transaction that is saved here is retrieved later when the message
is received to record a dependency from the receiver to the sender.
In CMT, each channel can hold a single value, while our

implementation supports an arbitrary number of messages, as
explained in section 5.

The rule receives a message from a channel. If there
exists a value in the channel, the value is received and the
dependency of the current transaction to the sender transaction is
added to . The condition that the sender transaction is not
aborted can be added as an optimization.

The semantics in Figure 4 supports transactions that can send
and receive. It is straightforward to extend the semantics to allow
code executing outside transactions to send and receive.

The rule encodes the collective commitment of a cluster.
A set of transactions are committed if they satisfy the following
two conditions.

To respect dependencies, the first condition is that only
transactions of clusters are committed where Cluster is defined as
follows. A set of transactions that have reached the end of their
atomic blocks (called terminated) is a cluster iff any unresolved
dependencies of them are to each other. The transactions that are
considered in the rule have already reached the end of their
atomic blocks. It is checked that their dependencies are either to
other transactions of the set or to committed transactions.

It is notable why the following simple commitment condition

is not used instead: a transaction that has reached the end of its

atomic block is committed only if all its dependencies are already

resolved. It is straightforward that this condition directly translates

to communication safety. But it can lead to deadlock. For

example, if two transactions receive messages from each other,

Figure 4: CMT Semantics

they are interdependent. As mentioned for the example of Section

2, if each transaction in a dependency cycle obliviously waits until

its dependencies are resolved, it may wait forever. In classical

distributed transactions [18][3], all receives happen at the

beginning of sub-transactions. Therefore, the dependencies form a

tree and hierarchical commit and two phase commit protocol

(2PC) can be employed. In CMT receives can happen in the

middle of transactions; thus, the dependencies can in general form

a cyclic graph. A commitment condition is needed that guarantees

communication safety and also allows commitment of

transactions with cyclic dependencies. It is also notable that in

contrast to edges in DB read-write dependence graphs [9] that

represent serialization precedence of source to the sink

transaction, edges in the message dependence graphs represent

commit dependence of source to the sink transaction. The former

cannot be cyclic but the latter can.
The second condition is the moverness of transactions of the

cluster with respect to each other. In the basic commit rule, the
moverness condition was that methods of the committing
transaction are right movers with respect to methods of the
recently committed transactions. In addition to that, as we commit
a set of transactions, we need to check that there is an order of
them where methods of each transaction in the order are right
movers with respect to method of earlier transactions in the order.
(Note that this order is not necessarily the causal order of sends
and receives.) If the conditions are met, the local logs of the
transactions are applied to the shared store, the local logs are
stored in the shared log with ids, and the state of the
transactions are set to committed in .

4.3. Properties

4.3.1. Opacity

The semantics of Figure 4 extends the semantics of Figure 3 with

communication semantics while preserving the opacity of

transactions. This enables programmers to reason locally about

the consistency of data in each atomic block.

THEOREM 2 (Opacity). Every sequence of labels ,

, and given by started from is

opaque.

High-level proof idea: Please refer to the technical report [17]

section 10.1 for the formalization and the proof (29 pages). We

reduce opacity for CMT to opacity for the semantics in Section 3.

We show that for every sequence of labels , ,

 and that can be obtained from transitions of , there

is a sequence of transitions of that yield a sequence of labels

that is the same as other than addition of calls to a definite new

object. By THEOREM 1, is opaque. We show that removing all

calls to an object from a sequence of labels preserves opaqueness

of the sequence. Therefore, as is opaque, is opaque.

4.3.2. Communication Safety

Assume that a transaction receives a message that is
tentatively sent by another transaction Receiving and using
its value is a part of the computation of . Therefore, validity of
the computation of relies on validity of . If finally aborts,
becomes invalid and should be prevented from committing.
This means that the receiving transaction should not commit
before the sending transaction is committed. The notion is
formalized as the following correctness condition:

DEFINITION 1 (Communication). The communication relation

for an execution is the set of receiver and sender transaction pairs

in the execution.

Suppose . We define

Intuitively, is the last sender on before receives.

DEFINITION 2 (Unsafe execution) A configuration can

execute to an unsafe configuration iff there is an execution

, where
,

THEOREM 3: Communication Safety: An initial configuration

 cannot execute to an unsafe configuration.

Please refer to the technical report [17] section 10.2 for the proof

(16 pages).

High level proof idea: The first step is to prove

and thereby show that all members of stem from the

 rule. Next we prove that when s a message from

, is running, and we notice that the rule adds

to . Later in the execution, may want to commit,

and now the in forces the rule to ensure

that only commits if either has already committed, or and

 commit together as members of the same cluster.

Our notion of communication safety generalizes a correctness
criterion in [8]; let us explain why. Both TE and TE for ML
support synchronous message passing. A high-level
nondeterministic semantics “defines the set of correct
transactions”. In the high-level semantics, a set of starting
transactions are stepped as follows: if there is a sequence of sub-
steps that can match all the sends and receives of the transactions
to each other, the transactions are committed together in single
step. A low-level semantics is also defined that specifies stepping
of the search threads that find the matching. It is proved that the
low-level semantics complies with the high-level semantics. This
essentially means that if a set of transactions are committed in the
low-level semantics, each of them has communicated with
transactions that are also committed at the same time. Our
approach supports asynchronous messages. When a transaction
sends a message, the message is enqueued in the recipient
channel. Therefore, when a transaction is committing, there may
not be matched receivers for the messages that it has sent but
definite senders have sent the messages that it has received.
Therefore, communication safety defines the condition that sender
transactions are committed.

5. Implementation

We will now explain how we have implemented the calculus in
Section 4 as the core functionality of a Scala [25] library called
Transactors. Transactors integrate features of both memory
transactions and actors. A transactor is an abstraction that consists
of a thread and a channel that is called its mailbox. A mailbox is
essentially a queue that can hold an arbitrary number of messages.
Similar to the actor semantics [2], the messages in the mailbox are
unordered. The thread of a transactor can perform the following
operations both outside and inside transactions: reading from and

writing to shared memory and also sending messages to other
transactors and receiving messages from its mailbox.

Recall that the starting point for Section 4 was Section 3 with
its semantics of memory transactions. Similarly, the starting point
for our implementation of the semantics in Section 4 is TL2,
which implements Section 3's semantics of memory transactions.
We explain how we have extended TL2 with an implementation
of the new concepts in Section 4. In particular, we will explain
about data structures that are built when messages are sent and
received, the mechanism that notifies waiting transactions, cluster
search and collective commit. (Our technique can work for other
implementations of the semantics in Section 3 as well. In the
technical report [17] section 13 we will explain how we have
extended the implementation of DSTM2 in much the same way as
we extended TL2. The pseudo codes of these two
implementations can be found in the technical report [17] sections
12 and 14.)

In TL2, all memory locations are augmented with a lock that
contains a version number. Transactions start by reading a global
version-clock. Every read location is validated against this clock
and added to the read-set. Written location-value pairs are added
to the write-set. At commit, locks of locations in the write-set are
acquired, the global version-clock is incremented and the read-set
is validated. Then the memory locations are updated with the new
global version-clock value and the locks are released.

In the implementation of transactors, the read and write
procedures remain unchanged. As will be explained in subsection
for the implementation of the rule, we adapt the commit
procedure to perform collective commitment of a cluster.

Each transaction has a descriptor that is a data structure that
stores information regarding that transaction. This information
includes the state of the transaction and a set that holds references
to descriptors of depended transactions. Transactions change state
as shown in Figure 7. Compared to the semantics in Section 4, the
possible states of a transaction also include terminated. A
transaction is terminated if it has reached the end of its atomic
block and is not committed or aborted yet. The transaction
descriptor also contains a set of notifiables and a message backup
set that will be explained as we proceed.

In terms of and from the semantics, the descriptor of each
transaction stores its state, , and a set that holds references
to descriptors of each that . The mailboxes of
transactors correspond to channels of . The semantics in Section
4 has seven rules. Two of those rules, and , make no
changes to the transaction map, channels, and dependencies. In
the following five subsections we will explain how we implement
the other five rules.

5.1. Starting a Transaction

We begin with the rule. The rule changes to
. When a transaction is started, a new transaction

descriptor with the running state is created and stored in a thread
local variable. (Later, to get the descriptor of the current
transaction, this thread local variable is checked. If the variable
has no value, the execution is outside atomic blocks and
otherwise, the value is the descriptor of the current transaction.)
The global version-clock is read and the body of the atomic block
is started.

5.2. Sending and Receiving a Message

Next we consider the rule. The rule changes to
. When a message is being sent, a new cell

containing the message is enqueued to the mailbox. As the
rule defines, besides the message, the sender transaction saves a
reference to the descriptor of itself in the new cell. If the recipient
transactor has been suspended inside a transaction to receive a
message, it is resumed. If the send is being executed outside
transactions, a reference to a dummy transaction descriptor that is
always committed is saved as the sender transaction in the cell
and if the recipient transactor has been suspended to receive a
message (inside or outside a transaction), it is desuspended.
Figure 6Figure 6 depicts relations of data structures while a
message is being sent.

Next we consider the rule. The rule requires that
 and changes to . When a

receive is being executed, cells of the mailbox are iterated. The
reference to the descriptor of the sender transaction is obtained
from each cell. The state of is read from its descriptor and the
state of the message of the cell is determined according to the
state of . We use the terminology that (1) if the sender is
committed, then the message is stable; and (2) if the sender is
aborted, then the message is invalid. (3) if the sender is running or
terminated, then the message is tentative. As any transaction that
receives an invalid message should finally abort, invalid messages
are dropped. This is the optimization that was mentioned for the

 rule. Thus, if the receive is being executed inside a
transaction, a stable or tentative message is required to be taken
from the mailbox. As executions that are outside transactions
cannot be aborted, tentative messages can not be given to receives
that are executed outside transactions. Therefore, a stable message
is required for receives that are outside transactions. Cells are
iterated and any invalid message is dropped until a required
message is found. The thread suspends if a required message is
not found until one becomes available. To track dependencies, if

Figure 5. Receiving

Figure 6. Sending

Figure 7. State transitions of a transaction

Running Terminated Committed

Aborted

 Descriptor

State

DependedSet

Notifiables

 Mailbox (of Transactor2)

 Descriptor

State

DependedSet

Notifiables

Cell

Message

SenderTrans T1 Desc

Transactor1 Transactor2

T2

Depende

ncies

Notifiabl

es

Mailbox (of Transactor2)

Cell

Message

SenderTrans T1 Desc

 Descriptor

State

DependedSet

Notifiables

 Descriptor

State

DependedSet

Notifiables

Transactor1 Transactor2

the found message is tentative, a reference to the descriptor of

is added to the depended set of the descriptor of the current
transaction . The depended sets of descriptors constitute a
dependency graph. We say that is adjacent to if the descriptor
of is in the depended set of the descriptor of .

Figure 5 depicts data structures and their relations while a
message is being received. Assume that a transaction has sent a
message that is received by another transaction . Assume that

 is running and is being terminated. As has an unresolved
dependency, it cannot be committed yet. Therefore, the thread
running goes to the waiting state until aborts or commits.
Hence, when is aborted or committed, it should notify .
Notification is done by notifiables. When is receiving the
tentative message , the reference to the descriptor of is
obtained from the cell that contains and a reference to the
descriptor of is subscribed to it as a notifiable. On abortion or
commitment of a transaction (), all its registered notifiables are
notified.

When a transaction aborts, its effects should be rolled back.
The messages that it has received from its mailbox should be put
back. Therefore, to track messages that are received inside a
transaction, when a message is being received, the cell that the
message is obtained from is added to a backup set in the
transaction descriptor (not shown in the figures). The set is
iterated when the transaction is being aborted and any cell that is
not invalid is put back to the mailbox.

5.3. Abortion

Next, we consider the rule. The rule changes to
. A transaction may deterministically abort as the result

of resolution of a shared memory conflict. When is aborting, its
state is set to aborted in its descriptor. Any cell of its backup set
that is not invalid is put back to the mailbox. In addition, to wake
up waiting transactions, propagates abortion to dependent
transactions. Assume that is the set of transactions that are
dependent on and is the set of notifiables that reference
descriptors of . notifies each . The notification makes
an abort event for if it is waiting. Finally, after notification,
restarts its atomic block as a new transaction. On abortion of each

, the same situation recurs, i.e. each of them notifies its own
notifiables. Therefore, abortion of is propagated to transactions
that are (transitively) dependent on . Note that by an implicit
traversal of notifiable objects, abortion is propagated in the
reverse direction of dependencies. The traversal avoids infinite
loops by terminating at previously aborted transaction descriptors.

5.4. Termination and Commitment

Termination Every transaction that reaches the end of its atomic

block sets the state of its descriptor to terminated. Then, the

cluster search is started from the descriptor of the current

transaction to check if it is possible to commit the transaction at

this time. If the cluster search succeeds in finding a cluster, the

transactions of the cluster are collectively committed and the

atomic block returns successfully. Cluster search and collective

commit are explained in the next subsection. If the cluster search

cannot find a cluster at this time, the thread running the

transaction goes to the waiting state. There are three different

events that wake up a transaction from the waiting state:
 An Abortion event is raised when the transaction is notified of

abortion of a depended transaction. On this event, the
transaction starts abortion as explained above.

 A Dependency Resolution event: As will be explained in the
collective commit procedure, a transaction that commits

notifies all of the transactions that are dependent on it about
the dependency resolution. On this event, as a dependency of
the current transaction is known to be resolved, it may be able
to commit; therefore, the cluster search is retried.

 A Commitment event is raised when the transaction is notified
that it is committed by the cluster search and collective
commit that is started from another transaction. On this event,
the notifiables that are registered to the descriptor of
transaction are notified of the dependency resolution. The
atomic block returns successfully.

Commitment Next, we consider the rule. The rule has the

condition that the set of transactions should be a cluster

 and also two moverness conditions

 and

. If the rule is applied, it changes to

. According to the first condition, to commit a

transaction, the dependency graph should be searched for a cluster

containing the transaction. If the cluster search succeeds in finding

a cluster, the collective commit algorithm is executed on the

found cluster to check moverness conditions.

Cluster Search: A cluster is a set of terminated transactions

whose dependencies are all to members of that same cluster or to

committed transactions. A cluster search inputs a terminated

transaction , and outputs either the smallest cluster that contains

, or reports that no such cluster exists, or reports that must

abort. We are looking for the smallest cluster because in a later

phase we will have to order them, which is a time-consuming

task. The smallest cluster is necessarily a strongly connected

component (SCC) so we do cluster search with Tarjan's algorithm

[29] for identifying SSCs. The idea is to gradually expand a

candidate set of transactions containing until the candiate set is a

cluster or the algorithm reports that no such clusters exists or that

 must abort. Specifically, if we have a candidate set and a

dependency , where is a member of the candidate set,

then the cluster search does a case analysis of . If is:

 Terminated: we add to the candidate set.

 Committed: we do nothing, since the dependency is resolved.

 Running: we report that no such cluster exists.

 Aborted: we report that must abort.

If the Tarjan algorithm finds only one SCC, a cluster containing

is found. On the other hand, if more than one SCC is found, the

last SCC (that contains) is dependent on other SCCs. It is not a

cluster before the other SCCs commit. Therefore, we report that

no such cluster exists. (If more than one SCC is found, it is still

possible to commit them. They can be committed in the order that

they are found by Tarjan algorithm. This is because, the first SCC

that is found is a cluster and also any SCC in the found sequence

will be a cluster if the SCCs before it in the sequence are

committed. But for simplicity, the current transaction waits for

other SCCs to finalize.)

After the cluster search, we take one of three actions

depending on the output. (1) if a cluster containing is found,

then we commit all the transactions in the cluster; (2) if the result

is that no such cluster exists, then we cache that information to

avoid needlessly doing the search again before the graph changes:

the thread running goes to the waiting state; and (3) if the result

is that must abort, then we abort .
Although a transaction may wait after termination to be

notified by other transactions, the implementation satisfies
finalization, the progress property that we define as follows. We
define that a transaction is finalized iff it is aborted or committed.

We define that a transaction is settled iff it is terminated and it is
not transitively dependent on a running transaction. The
finalization property is that every settled transaction is eventually
finalized.

Collective Commit: To commit a set of transactions, it should
be checked that there exists an order of commitment of the
transactions where earlier transactions in the order do not
invalidate later transactions in the order. This check corresponds
to the condition that requires an order of
transactions where operations of later transactions in the order are
right movers in respect to operations of earlier transactions. In
TL2, a write to a location invalidates a read from the same
location. Therefore, an order is required where for each location,
the reading transaction comes before the writing transaction. This
condition is implemented as follows. A graph of transactions is
made where a transaction has an edge to transaction if the
read set of has an intersection with the write set of . If there
is a cycle in the graph, a desired order does not exist. In this case,
the current transaction starts abortion. Otherwise, it is possible to
commit the transactions of the cluster together. Note that a pure
write (writing to a location without reading it) does not conflict
with another pure write and any order of commitment is valid for
them. The lock for each location in the write sets of all the
transactions is acquired. The global counter is incremented and is
read as the write version. The read set of each transaction in the
cluster is validated. This validation corresponds to the condition

. If one of the locks
cannot be acquired or a read set is not validated, the acquired
locks are released and the current transaction is aborted.
Otherwise, collective commit can be done. The write sets of the
transactions are written to memory with the write version. The
acquired locks are released. The state of the descriptor of each
transaction is set to committed. Each transaction other than is
notified of commitment. This notification makes a Commitment
event. Each transaction that is committed sends dependency
resolution notification to all notifiables that are registered
to its descriptor. Each references a receiving transaction .

The notification makes a Dependency Resolution event for , if
it is waiting. When a transaction is committed, the messages that
it has sent become stable. Therefore, they can be received by
receives that are executed outside transactions. Each transaction
that is committed desuspends the transactors that it has sent a
message to and are suspended on receives that are executed out of
transactions.

6. Experimental Results

6.1. Benchmarks and Platform

We experiment with three benchmarks: A server benchmark and

two benchmarks from STAMP [23]. We adopt the Server

benchmark that is independently explained by [20] as the

Vacation Reservation, by [14] as the Server Loop programming

idiom and by [21] as the Job Handling system. A server thread

handles requests from client threads. Each request should appear

to be handled atomically i.e. the handling code of the server is a

transaction. In addition, the request of the client thread may be

sent inside a transaction. The transaction of a client may request

the service multiple times. We experiment with two instances of

this benchmark.
The service can simply be provision of unique ids [14]. A

generic function (serverLoop) is offered in [14] to create
servers. Employing Transactors, we provide a generic class
(Server) that can be extended to create servers. The pseudo code
of Server can be found in the technical report [17] section 15.4.

We compare the message passing performance of our two
implementations of Transactors with the implementation of TE for
ML on a Server instance that generates unique ids. To the best of
our knowledge, TE for ML is the closest semantics with similar
goals. (We programmed and tried to conduct comparisons on
other cases such as barrier, but the implementation of TE for ML
took a very long time or deadlocked on these cases.)

As a tangible application of this programming idiom, consider
a web application with two tiers: the application logic tier and the
database tier. The system may be organized such that separate
threads run the two tiers. The case study in [4] showed that to
speed up handling future requests, the application logic tier may
cache some of the data that it sends to the database tier. The
application tier updates the cached data in the data structures and
the database tier updates the data in the database. Although the
updates are performed by different threads, they should be done
atomically; either both or none should be seen by other threads.

We adopt the method suggested by [4] to unify memory and
database transactions. The approach benefits form handlers that
are registered to be run at different points of the transaction
lifecycle. We extended our library to support registration of
handlers for both of the implementations. We experiment with the
authorship database scheme from [4]. We consider inserting a new
paper info including its authors. Using our library, we define
application logic transactor and database server transactor. The
application logic transactor starts a transaction, sends an update
request to the database server transactor, performs updates to the
data structures and finishes the transaction after receiving an
acknowledge message from the database server transactor. Upon
receipt of a request, the database server transactor, executes a
transaction comprised of queries to update data in the database
and sends back an acknowledge message. The two transactions
are interdependent and are collectively committed. (Note that if
writing to the database is only to maintain a log for later accesses,
the application logic transactor does not need to wait for the
acknowledge message. In this case, only the database transaction
is dependent on the application logic transaction and therefore, the
application logic transaction can commit before the database
transaction is done.) We study the overhead of cluster search and
collective commit on this case.

To study the overhead of transactions supported by

Transactors over pure transactions, we have adopted Kmeans

clustering and Genome sequencing benchmarks from the Stanford

transactional benchmark suite [23] and have programmed them in

Scala using our Transaction and Transactors libraries.

The experiments are done on Intel(R) Core(TM)2 Duo CPU

T7250 @2.00GHz and Linux 2.6.31-21-generic #59-Ubuntu.

Scala version is 2.7.7.final (Oracle Java HotSpot(TM) Server VM,

Java 1.6.0_17). TE for ML patch is on OCaml 3.08.1. Oracle

MySQL version is 14.14 distribution 5.1.41. The database

connector is MySQL Connector/J v.5.1.13. All the reported

numbers are after warmup and are averages of results from

repeated experiments.

6.2. Measurements

Message Passing Performance The first experiment compares
the performance of the unique id generator server in Transactors
and in TE for ML over different number of repetitions of the
client transaction. The same thread repeats the client transaction.
(New threads are not launched for each repetition.) In this
experiment, the number of requests of the client transaction is
constant (equal to 2). Performance ratio represents the
performance of Transactors divided by the performance of TE for

ML. The two lines in Figure 8 show the performance ratio of the
two implementations of Transactors over the implementation of
TE for ML. The performance ratio increases with the number of
client iterations.

The second experiment compares the performance of the

server case over different number of requests of the client

transaction. In this experiment, the number of repetitions of the

client transaction is constant (equal to 40). Figure 9 shows the

performance ratio of each of the implementations of Transactors

over the implementation of TE for ML. As the number of requests

increase, the performance ratio grows fast. (The two curves

overlap at this scale.)

Overhead of Cluster Search and Collective Commit In this

experiment, the application logic transactor maintains the set of

papers and the map of each author to her set of papers. Upon

addition of a new paper, the application logic transactor updates

the papers set and the author-to-papers map. The database

transactor inserts a row to the Paper table, gets the unique id

assigned to the paper and for each author, inserts a row to the

PaperAuthor table. We measure the time of the application logic

transaction for insertion of a paper with four authors. Table 1

shows the percent of time that is spent in the cluster search and

collective commit procedures.

Overhead over Pure Transactions Atomic blocks of

Transactors provide opacity just like atomic blocks of basic

memory transactions. Therefore, Transactors can be used

wherever basic transactions are used. But as Transactors support

communication, there is an overhead. We study this overhead on

Kmeans clustering and Genome sequencing benchmarks. Each of

our implementations of Transactors is based on an implementation

of memory transactions. We compare the performance of each

implementation of Transactors over the implementation of the

memory transactions that it is based on. The performance

overhead for the Kmeans and Genome cases over different input

sizes is shown respectively in Figure 10 and Figure 11. The

experiments show that the overhead is below ten percent.

6.3. Assessment

Message Passing Performance In the first experiment, the

performance ratio increases with the number of client iterations.

This is because Transactors use a constant number of threads. On

the other hand in TE for ML, to support the completeness

property, when a thread receives on a channel, every message that

has been sent to the channel should be tried by a search thread. As

the messages that are sent to a channel increase, the number of

search threads for a receive statement increases and affects

performance.
In the second experiment, in the executions with more requests

in the client transaction, more messages are sent to the server
channel. As mentioned for the first experiment, in TE for ML,
increase in the number of messages that are sent to a channel
affects performance of receive statements on the channel.
Furthermore, for clients that send more requests, more
chooseEvt statements are executed at the server thread. The
number of search threads that reach a chooseEvt statement are
doubled to try each branch. In effect, the exponential number of
search threads aggravates the performance of TE for ML.

As mentioned before, TE for ML is inherently inefficient as its
semantics requires finding the successful matching which is NP-
hard. The measurements indicate that Transactors provide up to a
thousand times faster communication than TE for ML.

Overhead of Cluster Search and Collective Commit The
overhead in the implementation based on DSTM2 is relatively
low. The overhead of the collective commit procedure in the
implementation based on TL2 is relatively high due to the time
consuming procedure of checking existence of an order of
commitment that respects moverness. This procedure is the hot
spot to be optimized.

Overhead over Pure Transactions In our implementations,
special care is devoted to optimization of the paths that are passed
by transactions that do not send or receive messages. The

Figure 8. Server – Performance over Client Iteration Count

Figure 9. Server – Performance over Service Request Count

Table 1. Percent of Total Time Spent in Cluster Search and

Collective Commit

 Cluster Search Collective Commit

Xactors (DSTM2) 2.5 8.6

Xactors (TL2) 3.6 19.3

Figure 10. Kmeans Clustering – Performance Overhead

Figure 11. Genome Sequencing – Performance Overhead

0

20

40

60

80

100

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

3
9
0

4
2
0

P
e

rf
o

rm
an

ce
 R

at
io

Client Iteration Count
Xactors(DSTM2)/TEML Xactors(TL2)/TEML

0

200

400

600

800

1000

1200

1 2 3 4

P
e

rf
o

rm
an

ce
 R

at
io

Service Request Count Per Client Transaction
Xactors(DSTM2)/TEML Xactors(TL2)/TEML

0

5

10

15

20

5000 10000 15000 20000 25000 30000

O
ve

rh
e

ad
 %

Point Count
Xactors(DSTM2)/DSTM2 Xactors(TL2)/TL2

0

5

10

15

20

1000 2000 3000 4000 5000 6000

O
ve

rh
e

ad
 %

Segment Count
Xactors(DSTM2)/DSTM2 Xactors(TL2)/TL2

measurements suggest that Transactors add less than ten percent
overhead to non-communicating transactions.

7. Conclusion

This paper presents CMT that defines the semantics of

transactional communication. The usefulness of CMT is shown by

expressing three fundamental communication idioms. It is proved

that the semantics satisfies opacity and communication safety.

The semantics is implemented on top of two implementations of

memory transactions. The experiments show that the

implementations provide considerably efficient communication

and add low overhead to non-communicating transactions.

8. References

[1] Abadi, M., Birrell, A., Harris, T., and Isard, M. 2008. Semantics of
transactional memory and automatic mutual exclusion. SIGPLAN

Not. 43, 1 (Jan. 2008), 63-74.

[2] Agha, Gul A. ACTORS: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, Massachusetts, 1986.

[3] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and
Karamanolis, C. 2007. Sinfonia: a new paradigm for building

scalable distributed systems. In Proc. of SOSP '07. 159-174.

[4] Dias, R. J. and Lourenco, J. M.. 2009. Unifying Memory and

Database Transactions. In Proc. of Euro-Par '09

[5] Dice, D., Shalev O., and Shavit N. Transactional locking II. In

DISC’06, volume 4167 of Lecture Notes in Computer Science.

Springer, 2006.

[6] Donnelly, K. and Fluet, M. 2008. Transactional events. J. Functional

Programming. 18, 5-6 (Sep. 2008), 649-706.

[7] Dudnik P. and Swift, M. M. Condition Variables and Transactional

Memory: Problem or Opportunity? In Proc. of TRANSACT’09.

[8] Effinger-Dean, L., Kehrt, M., and Grossman, D. 2008. Transactional

events for ML. In Proc. of ICFP '08. 103-114.

[9] Gray J. Reuter A. 1992. Transaction Processing: Concepts and

Techniques (1st ed.). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[10] Guerraoui, R. and Kapalka, M. 2008. On the correctness of

transactional memory. In Proc. of PPoPP '08. 175-184.

[11] Harris, T. and Fraser, K. 2003. Language support for lightweight

transactions. SIGPLAN Not. 38, 11 (Nov. 2003), 388-402.

[12] Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. 2005.
Composable memory transactions. In Proc. of PPoPP '05. 48-60.

[13] Herlihy, M., Luchangco, V., and Moir, M. 2006. A flexible
framework for implementing software transactional memory. In

Proc. of OOPSLA '06. 253-262.

[14] Kehrt, M., Effinger-Dean L., Schmitz M., Grossman D.

Programming Idioms for Transactional Events. PLACES 2009.

[15] Koskinen, E., Parkinson, M., and Herlihy, M. 2010. Coarse-grained

transactions. In Proc. of POPL '10. 19-30.

[16] Lampson, B. W. and Redell, D. D. 1980. Experience with processes
and monitors in Mesa. Commun. ACM 23, 2 (Feb. 1980), 105-117.

[17] Lesani, M. and Palsberg J. Communicating Memory Transactions.

Technical report, 2010.

http://www.cs.ucla.edu/~lesani/papers/CommMemTrans.pdf

[18] Lipton, R. J. 1975. Reduction: a method of proving properties of

parallel programs. Commun. ACM 18, 12 (Dec. 1975), 717-721.

[19] Liskov, B. 1988. Distributed programming in Argus. Commun.
ACM 31, 3 (Mar. 1988), 300-312.

[20] Luchangco, V. and Marathe, V. J. Transaction Synchronizers. In
Proc. of SCOOL’05.

[21] Luchangco, V. and Marathe, V. J. You are not alone: breaking

transaction isolation. In Proc. of IWMSE '10. 50-53.

[22] Luchangco, V. and Marathe, V. J. Transaction Communicators:

Enabling Cooperation Among Concurrent Transactions. In Proc. of
PPoPP’11.

[23] Minh, C. C., Chung, J., Kozyrakis, C., Olukotun K. STAMP:
Stanford Transactional Applications for Multi-Processing. In Proc.

of IISWC '08.

[24] Moore, K. F. and Grossman, D. 2008. High-level small-step
operational semantics for transactions. In Proc. of POPL '08. 51-62.

[25] Odersky, M. The Scala Language Specification. 2010. Programming
Methods Laboratory. EPFL.

[26] Reppy, J. H. 1999 Concurrent Programming in ML. Cambridge
University Press.

[27] Scott, M. L. Sequential specification of transactional memory
semantics. In Proc. of TRANSACT’06.

[28] Smaragdakis, Y., Kay, A., Behrends, R., and Young, M. 2007.
Transactions with isolation and cooperation. In Proc. of OOPSLA

'07. 191-210.

[29] Tarjan, Robert, 1971. Depth-first search and linear graph

algorithms. In Proc. of the 12th Annual Symposium on Switching

and Automata Theory (13-15 Oct. 1971).,114-121.

[30] Ziarek, L., Schatz, P., and Jagannathan, S. 2006. Stabilizers: a
modular checkpointing abstraction for concurrent functional

programs. In Proc. of ICFP '06. 136-147.

9. Appendix

The semantics uses a notion of right moverness [18] that we

define here. Let denote all the possible states of the store .

Let denote the set of registers. For each , let

 denote the set of methods of . For ,

and , let denote the state transition from to

by calling on that returns value . Right moverness is defined

as follows:

According to the above definition, the right moverness
relations are:

Note that is not correct.

Now we define right moverness for sequences of method calls.

Let denote a sequence of method calls on registers (that is
). Let denote the concatenation

of the two sequences and . Let denote the th method call
in the sequence . Let denote the sequence of the first
method calls in the sequence . Let denote multiple step
transitions by . That is if then

. Lifted right moverness is

defined as follows: If and are two

sequences of methods then

Note that although is not correct,

 is correct.

Technical Report
10. Properties

10.1. Opacity

10.1.1. Definitions

DEFINITION 3: of a sequence of reductions by :

Intuitively, of a sequence of reductions by is the sequence of labels of the reductions.

DEFINITION 4: of a sequence of reductions by :

Intuitively, of a sequence of reductions by is the sequence of labels of the reductions except send and receive labels.

DEFINITION 5: Object is a stateless random value generator1 with a single method .

The method is semantically right mover to methods of any object and methods of any object are right mover to it.

DEFINITION 6:

We define that two sets (or sequence of) methods are equivalent () iff the difference of the two is only calls to method of

object.

Formally:

1 A stateless random value generator can generate different values according for example to the time that it is called and state of other

objects in the memory.

The definition can also be lifted to commit sequences.

LEMMA 1:

PROOF:

Direct from DEFINITION 5 (that is statelesss) and DEFINITION 6.

LEMMA 2:

PROOF:

Direct from DEFINITION 6 and that DEFINITION 5 (that is stateless).

DEFINITION 7: We define the transformation function on statements as follows:

DEFINITION 8:

Transactions:

“Every transaction has a unique identifier from a set, . Every transaction is initially live and may eventually become

either committed or aborted” PPoPP’08

DEFINITION 9:

Transaction History:

“History is the sequence of all invocation and response events that were issued and received by transactions in a given execution.”

PPoPP’08

“ denotes the longest subsequence of history that contains only events executed by transaction .” PPoPP’08

 denotes the longest subsequence of history that contains only operations on object o.

 denotes the longest subsequence of history that does not contains operations on object o.

 “ denotes the concatenation of histories and .” PPoPP’08

“We say that a transaction is in history H, and write , if is a non-empty sequence.” PPoPP’08

A history is well-formed if for each transaction , no event follows commit or abort event in .

DEFINITION 10:

Equivalence of Histories:

“We say the histories and are equivalent and write , if, for every transaction , .” PPoPP’08

DEFINITION 11:

Happen-before Relation:

“For every history , relation is the partial order on the transactions in , such that, for any two transactions , if is

completed and the first event of follows the last event of in , then .” PPoPP’08

Concurrent Transactions:

“We say that transactions are concurrent in history if they are not ordered by the happen-before relation , i.e., if

and .” PPoPP’08

Preservation of Real-time Order:

“We say that a history preserves the real-time order of a history , if . That is, if , then , for any two

transactions and in .” PPoPP’08

DEFINITION 12:

Sequential History:

“A (well-formed) history is sequential if no two transactions in are concurrent.” PPoPP’08

(That is for each pair of transactions , either or .)

DEFINITION 13:

Complete Transaction:

“We say that a history is complete if does not contain any live transaction.” PPoPP’08

Complete histories set:

A history is in if is well-formed and every transaction that is live in is aborted in .

DEFINITION 14:

All-committed sequential history:

A sequential history is all-committed, if all the transactions of except possibly the last one are committed.

Filtered history:

Filtered history for transaction in a sequential history is the largest subsequence of such that for every transaction , either

(1) or (2) is committed in and . A filtered history is an all-committed history.

DEFINITION 15:

Legal histories and transactions:

An all-committed sequential history is legal if for each , . (where denotes sequential specification of)

DEFINITION 16:

A transaction in a sequential history is legal if the filtered history for in is legal.

DEFINITION 17:

Opacity:

“A history is opaque if there exists a sequential history equivalent to some history in , such that

(1) preserves the real-time order of , and (2) every transaction is legal in .” PPoPP’08

10.1.2. Property Statement

THEOREM 2 (Opacity). Every sequence of labels , , and given by started from is opaque.

Formally:

If

then

 is opaque.

Proof:

By LEMMA 3 on

it is concluded that

We define

From

it is concluded that

By THEOREM 1 on

it is concluded that

 is opaque.

By LEMMA 6 on

it is concluded that

 is opaque.

10.1.3. Helper lemmas

THEOREM 1 (Opacity). Every sequence of labels , , and given by started from is opaque

Formally:

If

then

 is opaque.

Proposition 6.2 of [15]

LEMMA 3:

If

then

PROOF:

By definition

We define

It is trivial that

From

it is concluded that

By LEMMA 4 on

it is concluded that

The conclusion is:

 1

LEMMA 4:

If

then

PROOF:

Induction on the length of

1. Base case:

 Length of is zero.

 From

 it is concluded that

 By DEFINITION 4 on

 From

 it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 We define

 (that is equal to)

 By DEFINITION 3 and :

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

2. Inductive case:

 Induction hypothesis:

 If

 then

 From

 it is concluded that

 We define

 From DEFINITION 4 on

 it is concluded that

 By induction hypothesis on

 it is concluded that

 By LEMMA 5 on

 it is concluded that

 We define

 From

 it is concluded that

 From

 DEFINITION 3

 it is concluded that

 From

 it is concluded that

 The conclusion for this case is:

LEMMA 5:

If

then

PROOF:

Case Analysis on :

 1. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 From

 it is concluded that

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 We define

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

 2. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 From

 it is concluded that

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 (Note that)

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 Therefore, there exists such that

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

 3. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 From

 it is concluded that

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 therefore, there exists such that

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 DEFINITION 6

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

 4. Case :

 From DEFINITION 4

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 Thus from

 it is concluded that

 From

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 We define

 (is for helper.)

 From

 6

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 We define

 From

 it is concluded that

 We define

 From

 it is concluded that

 From

 LEMMA 2

 it is concluded that

 We define

 From

 it is concluded that

 From

 DEFINITION 6

 it is concluded that

 From

 LEMMA 1

 it is concluded that

 From

 LEMMA 1

 it is concluded that

 We show that:

 First, we show that the condition of the reduction:

 is valid.

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 that is equivalent to

 From

 it is concluded that

 that is the conclusion ().

 Second, we show that the result of the reduction is :

 From

 it is concluded that

 By the rule :

 can be rewritten as

 From definition of

 From definition of

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 That is the conclusion ().

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 We define

 From

 it is concluded that

 From

 there exists

 By DEFINITION 3, definition of , on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 It is trivial that

 From DEFINITION 7

 From

 it is concluded that

 The conclusion of this case is:

 5. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 We define

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

 6. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 From

 it is concluded that

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 We define

 It is obvious that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 We define

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

 7. Case :

 We define to be number of the thread that reduction is done in.

 From DEFINITION 4

 From

 it is concluded that

 We define to be the statement that is mapped to in . Therefore, we have

 From

 it is concluded that

 From

 it is concluded that

 From DEFINITION 7, it is concluded that

 From

 it is concluded that

 From

 it is concluded that is of the form (there exists a such that)

 From the rule , it is concluded that

 As, by definition, is stateless

 The random value generator can generate any value (The assumptions are true for any value that it generates.). If it generates :

 From

 it is concluded that

 We define

 From

 it is concluded that

 From

 it is concluded that

 We define

 By DEFINITION 3 on

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 By DEFINITION 6

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 From

 it is concluded that

 The conclusion of this case is

LEMMA 6:

If

 a history is opaque,

then

 for every object , the history is also opaque.

Proof:

By DEFINITION 17 on

there exists a sequential history equivalent to some history in , such that

 preserves the real-time order of ,

 every transaction is legal in .

It is trivial that

 If is an equivalent sequential history for is an equivalent sequential history for
 If preserves the real-time order of , preserves the real-time order of .

From

it is concluded that

 there exists the sequential history equivalent to some history in

From

it is concluded that

 preserves the real-time order of .

By DEFINITION 16 on

it is concluded that

 For every transaction

 the filtered history for in is legal.

By DEFINITION 15 on

it is concluded that

 For every transaction

 for each , . (where is filtered history for in)

From

it is concluded that

 For every transaction

 for each , . (where is filtered history for in)

By DEFINITION 15 on

it is concluded that

 For every transaction

 the filtered history for in is legal.

By DEFINITION 16 on

it is concluded that

 every transaction is legal in .

By DEFINITION 17 on

it is concluded that

 the history is also opaque.

10.2. Communication Safety

10.2.1. Definitions

DEFINITION 18: Let be the smallest partial order of such that .

DEFINITION 19: Define iff .

DEFINITION 20: Define

DEFINITION 21: Dependency respect:

A configuration is dependency-respecting iff

for each dependency in the configuration, the dependent transaction is committed only if the depended transaction is committed.

Formally:

Suppose

.

DEFINITION 22: State-consistency

A configuration is state-consistent iff

for every transaction that is running, its state is running and

for every transaction id, there is at most one running transaction.

Formally:

Suppose

.

10.2.2. Property Statement

THEOREM 3: Communication Safety: An initial configuration cannot execute to an unsafe configuration.

PROOF:

By contradiction on LEMMA 7.

10.2.3. Helper Lemmas

LEMMA 7:

At any runtime state, if a receiver is committed, the sender is committed.

Formally:
If

 EQ. 1

 EQ. 2

then

PROOF:
By LEMMA 8 on

EQ. 1

EQ. 2

it is concluded that

 EQ. 3

By DEFINITION 21 on

EQ. 2

EQ. 3
it is concluded that

 EQ. 4

By LEMMA 13 on

EQ. 1

EQ. 2
it is concluded that

 EQ. 5

From

EQ. 4

EQ. 5
it is concluded that

 EQ. 6

LEMMA 8: Every execution from an initial configuration leads to a dependency-respecting and state-consistent configuration.

Formally:
If

 EQ. 7

 EQ. 8

then

PROOF:

Induction on the length of :

Base case:

By definition

Thus

 EQ. 9

From

EQ. 9

it is concluded that

 EQ. 10

By DEFINITION 21 on

EQ. 10
it is concluded that

 EQ. 11

By definition

Thus

 EQ. 12

From

EQ. 12

it is concluded that

 EQ. 13

By DEFINITION 22 on

EQ. 13

it is concluded that

 EQ. 14

The conclusion for this case is

EQ. 11

EQ. 14

Inductive case:

Induction hypothesis:

If

then

From

EQ. 7

it is concluded that

 EQ. 15

 EQ. 16

We define

 EQ. 17

 EQ. 18

By induction hypothesis on

EQ. 17

EQ. 18

it is concluded that

 EQ. 19

 EQ. 20

By LEMMA 9 on

EQ. 16

EQ. 19

EQ. 20

it is concluded that

LEMMA 9: The operational semantics preserves dependency-respect and state-consistency.

Formally:

 If

 EQ. 21

 EQ. 22

 EQ. 23

then

PROOF:

We define

 EQ. 24

 EQ. 25

Consider an arbitrary transaction id

Suppose EQ. 26

We show that

 EQ. 27

We consider two cases:

If EQ. 28

From

EQ. 24

EQ. 25

EQ. 28

EQ. 26

 is the only rule that updates the state of a transaction in to ,

it is concluded that

the reduction of EQ. 21 is done by the rule.

From the rule, it is concluded that

 EQ. 29

 EQ. 30

 EQ. 31

 EQ. 32

Replacing with and

substituting

EQ. 30

EQ. 32

in EQ. 31, we have

 EQ. 33

From

EQ. 29

it is concluded that

 EQ. 34

 EQ. 35

Substituting

EQ. 34 for the first disjunct and

EQ. 35 for the second disjunct

of EQ. 33

it is concluded that

 EQ. 36

Simplifying EQ. 36

it is concluded that

 EQ. 37

that is equivalent to

 EQ. 38

If EQ. 39

From DEFINITION 21 on

EQ. 22

EQ. 24

it is concluded that

 EQ. 40

From

EQ. 39

EQ. 40

it is concluded that

 EQ. 41

By DEFINITION 22 on

EQ. 23

EQ. 24

it is concluded that

 EQ. 42

By LEMMA 10 on

EQ. 21

EQ. 24

EQ. 25

EQ. 39

EQ. 42

it is concluded that

 EQ. 43

From

EQ. 41

EQ. 43

it is concluded that

 EQ. 44

By LEMMA 12 on

EQ. 21

EQ. 24

EQ. 25

EQ. 42

it is concluded that

 EQ. 45

From DEFINITION 19 and DEFINITION 18 on

EQ. 45

it is concluded that

 EQ. 46

From

EQ. 44

EQ. 46

it is concluded that

 EQ. 47

From

EQ. 26

EQ. 27

it is concluded that

 EQ. 48

That is equivalent to

 EQ. 49

By DEFINITION 21 on

EQ. 25

EQ. 49

it is concluded that

 EQ. 50

By LEMMA 11 on

EQ. 21

EQ. 23

it is concluded that

 EQ. 51

The conclusion is

EQ. 50

EQ. 51

LEMMA 10: The set of dependencies of a committed transaction do not change.

If

 EQ. 52

 EQ. 53

 EQ. 54

 EQ. 55

 EQ. 56

then

PROOF:

Case analysis on EQ. 52
Case: Six Rules (Rules other than):

 EQ. 57

Therefore

Case: Rule :

Form rule on

EQ. 53

EQ. 54

it is concluded that

 EQ. 58

 EQ. 59

 EQ. 60

By DEFINITION 20 on

EQ. 59

EQ. 67

it is concluded that

 EQ. 61

From

EQ. 56

EQ. 61

it is concluded that

 EQ. 62

From

EQ. 55

EQ. 62

it is concluded that

 EQ. 63

From

EQ. 60

EQ. 63

it is concluded that

LEMMA 11: The semantics preserves state-consistency.

If

 EQ. 64

 EQ. 65

then

PROOF:

Suppose

 EQ. 66

 EQ. 67

By DEFINITION 22 on

EQ. 65

EQ. 66

it is concluded that

 EQ. 68

 EQ. 69

We show that

 EQ. 70

Case analysis on EQ. 66

Case , , , , , :

In each of these rules, we have

 EQ. 71

From

EQ. 69

EQ. 75
it is concluded that

 EQ. 72

Case :

From the rule, we have

 EQ. 73

 EQ. 74

From

EQ. 69

EQ. 73

EQ. 74

it is concluded that

It remains to show that

 EQ. 75

We proceed by
Case analysis on the rule used to derive :

Cases , , , , , :

In each of these rules, we have

, and if

we let be restricted to and

we let be restricted to ,

then we have

 EQ. 76

So , from

EQ. 68

EQ. 76

it is concluded that

Case :

We have

 and

, where .
 EQ. 77

From

EQ. 68

EQ. 77

it is concluded that

By DEFINITION 22 on

EQ. 75

EQ. 70

it is concluded that

LEMMA 12:

If

 EQ. 78

 EQ. 79

 EQ. 80

 EQ. 81

then

PROOF:
Case analysis on the rule used to derive .

Cases , , , :

We have ,

Hence .

Case :

We have where .

Hence, , so .

Case :

we have

 EQ. 82

 EQ. 83

From

EQ. 82

EQ. 83

it is concluded that

 EQ. 84

 EQ. 85

From

EQ. 83

EQ. 81

it is concluded that

 EQ. 86

From

EQ. 86

EQ. 82

DEFINITION 18

it is concluded that

 EQ. 87

From DEFINITION 19 on

EQ. 84

EQ. 85

EQ. 87

it is concluded that

Case of :

We have

 EQ. 88

 EQ. 89

From

EQ. 88

EQ. 89

it is concluded that

 EQ. 90

 EQ. 91

From

EQ. 89

EQ. 81

it is concluded that

 EQ. 92

From

EQ. 88

EQ. 92

DEFINITION 18

it is concluded that

 EQ. 93

From DEFINITION 19 on

EQ. 90

EQ. 93

EQ. 91

we have

LEMMA 13: The set of dependencies and the communication relation are equivalent.

If

 EQ. 94

 EQ. 95

then

PROOF:

We first show the completeness of :

By DEFINITION 1 on

EQ. 94

it is concluded that

 EQ. 96

 EQ. 97

 EQ. 98

The only rule where its label matches is the rule .Thus, from EQ. 96 we have

 EQ. 99

 EQ. 100

 EQ. 101

From

EQ. 101
it is concluded that

 EQ. 102

From
EQ. 94

it is concluded that

 EQ. 103

We define that

 EQ. 104

By LEMMA 15 (plus induction on the number of steps) on

EQ. 103

EQ. 100

EQ. 104

EQ. 98

it is concluded that

 EQ. 105

From

EQ. 102

EQ. 105
It is concluded that

 EQ. 106

The only rule that its label matches is the rule. Thus, from EQ. 97 and EQ. 106, we have

 EQ. 107

 EQ. 108

 EQ. 109

From

EQ. 109

it is concluded that

 EQ. 110

Form

EQ. 94
it is concluded that

 EQ. 111

By LEMMA 16 (plus induction on the number of steps) on

EQ. 111

EQ. 108

EQ. 95

it is concluded that

 EQ. 112

From

EQ. 112

EQ. 110

it is concluded that

We now show the accuracy of :

We show that

We define that for

 EQ. 113

We accuracy this by proving the stronger property

We proceed by induction on :
Base case:

By definition

Thus

 EQ. 114

From
EQ. 114

it is concluded that

 EQ. 115

Inductive case:

Induction hypothesis:

 EQ. 116

Suppose : EQ. 117

We consider two cases:

Case : EQ. 118

By

EQ. 116

EQ. 118

it is concluded that

 EQ. 119

Case : EQ. 120

From

EQ. 120

EQ. 117

The only rule that updates is the rule.

it is concluded that

 is by the rule.

From rule on

EQ. 113

it is concluded that

 EQ. 121

 EQ. 122

From LEMMA 14 on

EQ. 113

EQ. 122

it is concluded that

 EQ. 123

Thus

 EQ. 124

From

EQ. 121

EQ. 124

it is concluded that

 EQ. 125

From DEFINITION 1 on

EQ. 125

it is concluded that

LEMMA 14: Every message is sent by a sender.
If

 EQ. 126

 EQ. 127

 EQ. 128

then

PROOF:

First, we show that

 EQ. 129

Proof by contradiction: If

 EQ. 130

That is equivalent to

 EQ. 131

That is equivalent to

 EQ. 132

By definition

 EQ. 133

Thus

 EQ. 134

By LEMMA 15 (plus induction on the number of steps) on

EQ. 126

EQ. 133

EQ. 127

EQ. 132

it is concluded that

 EQ. 135

From

EQ. 128

EQ. 135

it is concluded that

 EQ. 136

There is a contradiction between

EQ. 134

EQ. 136

From

EQ. 129

let be the largest possible that is

 EQ. 137

that is equivalent to

 EQ. 138

that is equivalent to

 EQ. 139

LEMMA 15:

If no message is sent to a channel, the value of a channel remains unchanged.
Formally:
If

 EQ. 140

 EQ. 141

 EQ. 142

 EQ. 143

then

PROOF:
Case analysis on

Case rule :

 EQ. 144

 EQ. 145

We consider two cases

If EQ. 146

From

EQ. 145

EQ. 146

it is concluded that

 EQ. 147

That is a contradiction to EQ. 143.

If EQ. 148

From

EQ. 144

EQ. 148

it is concluded that

 EQ. 149

Case other six rules:

In each of these rules:

 EQ. 150

Thus:

 EQ. 151

LEMMA 16:

Dependencies are maintained through the execution.

Formally:

If

 EQ. 152

 EQ. 153

 EQ. 154

then

PROOF:
We proceed by case analysis on the rule used to derive . For six of the rules, we have , hence . For the
seventh rule, , we have , hence .

11. Updates to the Semantics in Figure 3

We have fixed a few typos in the syntax and semantics, after personal communication with the authors of [15].

11.1. Syntax

The original grammar is

 Statement

 Term

 Command

The problem with the grammar in the original paper is that the grammar defines as a single statement, while the semantics
splits it into and , and reduces them in two different rules. The following two rewritings can be considered for the grammar.

 Statement

 Instruction

If the first one is used, some of 's need to be changed to 's in the semantics.
If the second one is used, the semantics remains unchanged.
Programs with nested s and s can be written with the first grammar. Similarly unmatched s and s can be written with the
second grammar. The semantics is not intended for these programs. Although this does not have any effect on the correctness of semantics
and theorems, a pre-phase can filter such programs.
To have the minimum possible change to the semantics, we selected the second grammar.

11.2. Operational Semantics

- The grammar has an command, while the semantics of does not change the evaluation flow in the CMD rule. Therefore is
removed from the set of commands.

- In the definition of , is changed to
It is fixed from

to

- In the definition of , is changed to

It is updated form

to

- In the definition of rule, is changed to and is changed to .

It is updated form

to

12. Memory Transactions Implementations

12.1. DSTM2

Memory

 Store of locations:

 : The last writing transaction of location

 : The transactions that have read

 : Primary and shadow values of

Transactions

 Each transaction descriptor has

12.2. TL2

Memory

 : Store of locations

 : The value of the location

 is a pairs of

 has two values 0 and 1.

 is the writing version of the value

Transactions

 Each transaction descriptor has:

 : Read version

 : Read set

 : Write set

 : Global version clock (strong counter)

13. Transactors Implementation

13.1. DSTM2

DSTM2 allows one writer at a time for each transactional object and therefore, each transactional object maintains two copies of its data. A
reference to the descriptor of the last writing transaction is saved in the object. The current state of a transactional object is determined
according to the state of the last writing transaction. With visible reads [13], a list of descriptors of the reader transactions is maintained in
the transactional object and every read-write and write-write conflict is resolved early when the second operation is requested. A
transaction is committed by atomically changing the state of its descriptor to committed which effectively updates all the objects that it has
written.

We have extended DSTM2 in a similar fashion that we extended TL2; many of the implementation details are highly similar. We will
now explain only the key difference between the two extensions. The key difference lies in the implementation of commit procedure i.e.
cluster search and collective commit.

Cluster Search: The same cluster search algorithm that was explained for TL2 can be employed for DSTM2; but as there is no overhead
of ordering in the collective commit procedure of DSTM2, a simple depth first traversal can replace the Tarjan algorithm. Getting the set of
adjacent nodes of each current node is where the cluster search hooks to the depth first search algorithm. Before returning the set of
adjacent transactions, each adjacent transaction is treated according to its state similar to the cluster search explained in the previous
section.

Collective Commit: As the updates should be done atomically, the state lock of descriptor of each transaction is acquired. To prevent

deadlock, the locks are acquired in the order of the unique numbers of the transaction descriptors. After the locks are acquired, the state of

each descriptor is checked to be still terminated. This check is done to make sure that none of them was aborted by other transactions

before all the locks were acquired. If any of them is found to be aborted, the locks are released and the current transaction starts abortion.

With visible reads and early conflict detection, one of any two conflicting transactions is aborted before termination. As all the transactions

of the cluster are terminated, they have not had any conflict with each other or other transactions. Therefore, the two moverness conditions

are satisfied. The collective commitment can be performed. State of the descriptor of each transaction is set to committed and then the locks

are released.

14. Transactors Implementation Pseudo Codes

14.1. Sending and Receiving Messages

The pseudo code of the send and receive methods are as follows:
Send:
def send(msg: T) {

 val senderTransDesc =

 thread local variable for transaction descriptor

 val cell = new Cell(msg, senderTransDesc)

 if (senderTransDesc != null) { //inside atomic

 cell.setTentative

 senderTransDesc.addNotifiable(notifiable)

 }

 if (isReceiverSuspended) {

 cellForSuspendedReceiver = cell

 desuspendReceiver

 } else

 mailbox.enqueue(cell)

}

Receive:
def receive(): T = {

 val currentTransDesc =

 thread local variable for transaction descriptor

 if (currentTransDesc == null) //outside of atomic

 a stable cell is required

 else //inside atomic

 a non-annihilated cell is required

 iterate the mailbox to find a required cell

 while (a required cell is not found) {

 suspend

 cell = cellForSuspendedReceiver

 if (the cell is not a required cell)

 mailbox.enqueue(cell)

 }

 val msg = cell.message

 if (currentTransDesc == null) //outside of atomic

 return msg

 val senderTransDesc = cell.senderTransDesc

 if (!cell.isStable) {

 currentTransDesc.addDependency(senderTransDesc)

 senderTransDesc.addNotifiable(currentTransDesc)

 }

 currentTrans.backupCell(cell)

 msg

}

14.2. Abortion

def abortion {

 val currentTransDesc =

 thread local variable for transaction descriptor

 for each cell in the backup cells

 if (!cell.isInvalid)

 mailbox.enqueue(cell)

 currentTransDesc.notifyNotifiersOfAbortion

}

14.3. Termination

def termination {

 thisTransDesc.setTerminated

 var state = TERMINATED;

 do {

 try {

 commitment()

 } catch {

 case we: WaitException ={

 thisTransDesc.waitForEvent

 thisTransDesc.getEvent match {

 case ABORT =

 state = ABORTED

 case DEP_RESOLVE =>

 ; // Retry collectiveCommit

 case COMMIT =>

 state = COMMITTED

 }

 }

 case we: AbortException ={

 state = ABORTED

 }

 }

 } while (state == TERMINATED)

 if (state == ABORTED)

 abort()

}

14.4. Commitment

def commitment {

 val cluster = clusterSearch(thisTransDesc)

 collectiveCommit(cluster)

}

14.4.1. DSTM2

14.4.1.1. Cluster Search

def clusterSearch(node: Node) {

 return depthFirstSearch(node)

 def depthFirstSearch(node: Node): Set[Node] = {

 // ...

 // Uses the getNeighbors method below

 // Return the set of visited nodes

 }

}

def getNeighbors = {

 val deps = transDesc.getDependencies

 val neighbors = Set[Node]()

 for (depTransDesc <- deps) {

 if (transDesc.isActive)

 throw new WaitException

 if (transDesc.isAborted)

 throw new AbortException

 if (!depTransDesc.isCommitted)

 neighbors += depTransDesc

 }

 neighbors

}

14.4.1.2. Collective Commit

def collectiveCommit(cluster: Set[Node]) {

 sort transaction of the cluster according to their id

 for each transDesc of the cluster in the order

 transDesc.acquireStatusLock

 for each transDesc of the cluster

 if (transDesc.status != running) {

 for each transDesc’ of the cluster

 transDesc’.releaseStatusLock

 throw new AbortException

 }

 for each transDesc of the cluster {

 transDesc.status = Committed

 transDesc.notifyNotifiablesOfCommitment

 }

 for each transDesc of the cluster

 transDesc.releaseStatusLock

}

14.4.2. TL2

14.4.2.1. Cluster Search

def clusterSearch(node: Node) {

 val sccs = Set[Set[Node]]

 tarjan(node)

 if (sccs.size == 1)

 throw new AbortException

 val scc = the only element of sccs

 return scc

 def tarjan(node: Node): Set[Set[Node]] = {

 node.index = index

 node.lowlink = index

 index += 1

 stack.push(node)

 for (n <- node.getNeighbors) {

 if (n.index == initialValue) {

 tarjan(n)

 node.lowlink = min(node.lowlink, n.lowlink)

 } else

 node.lowlink = min(node.lowlink, n.index)

 if (node.lowlink == node.index) {

 var n: Node = null

 do {

 n = stack.pop

 scc += n

 } while (n != node)

 sccs += scc

 }

 }

 }

}

def getNeighbors = {

 val deps = transDesc.getDependencies

 val neighbors = Set[Node]()

 for (depTransDesc <- deps) {

 if (transDesc.isActive)

 throw new WaitException

 if (transDesc.isAborted)

 throw new AbortException

 if (!depTransDesc.isCommitted)

 neighbors += depTransDesc

 }

 neighbors

}

14.4.2.2. Collective Commit

15. Implemented Cases

15.1. Barrier

Consider the following example: Barrier, the simplest thread coordination abstraction

15.1.1. retry

The following is the implementation of barrier with memory transactions (with Haskell retry mechanism) that we adopted from [28].
class Barrier(partiesCount: Int) {

 val count = new TInt(0)

 def await() {

 atomic {

 count.value = count.value + 1

 }

 atomic {

 if (!(count.value == partiesCount))

 retry

 }

 }

}

class Party(barrier: Barrier) extends Thread {

 override def run {

 // Do before await

 barrier.await

 // Do after await

 }

}

The field count counts the number of parties that have called the await method. There are two atomic blocks in the await method. The
first one increments the value of count. The second one waits for equality of count to the number of expected parties, partiesCount that is
initialized in the constructor. If the condition is not true, retry aborts the transaction and suspends the thread until count, the only object
that is read in the previous execution of the transaction, is updated. When the value of count is incremented to partiesCount, all of the
suspended parties retry the atomic block and as the condition is satisfied, pass the atomic block. Effectively, the parties continue together
after calling the await method.

The implemented Barrier works properly if the await method is not called inside a transaction. But consider the following class that
calls await inside an atomic block.
class TParty(barrier: Barrier) extends Thread {

 override def run {

 atomic {

 // code before await

 barrier.await

 // code after await

 }

 }

}

According to closed nesting semantics, the nesting can be syntactically written as follows:
atomic {

 // code before await

 count.value = count.value + 1

 if (!(count.value == partiesCount))

 retry

 // code after await

}

If the parties call the await method of Barrier inside nested atomic blocks, they can not progress. Intuitively, this is because the

semantics of TM [10] requires an equivalent sequential order of transactions while in this case, each of the parties needs to observe updates

of other parties to count before it can progress and commit.

15.1.2. TIC

A solution to this problem called TIC is offered by Smaragdakis et al. [28]. TIC commits the transaction and starts a new one before the
wait statement. By their terminology, the transaction is punctuated before the wait statement. Committing before the wait statement
exposes updates to other transactions and thus provides means of communication. But punctuation of an atomic block breaks its isolation.
Furthermore, if an atomic block is inside method and is called by another method inside a nesting atomic block ,
punctuating breaks isolation of not only but also . To make this break explicit to the programmer, TIC designed a type system that
tracks methods that contain punctuated atomic blocks. If the programmer wants to call such methods in an atomic block, the type system
forces him to call it inside expose() and to write code to compensate breaking of isolation in an establish{} block. The barrier case is
implemented as follows in TIC:

class TICBarrier(partiesCount: Int) {

 val count = new TInt(0)

 def await() {

 atomic {

 count.value = count.value + 1

 wait(count.value == partiesCount)

 }

 }

}

class TParty(barrier: TICBarrier) extends Thread {

 override def run {

 atomic {

 // Do some job

 expose (barrier.await)

 establish { //... }

 // Do some other job

 }

 }

}

Even if any compensation is possible, re-establishing local invariants is a burden on the programmer. More importantly, TIC breaks
isolation to provide communication while isolation is the main promise of TM. Actually, TIC regards communication the same as I/O. Side
effects caused by I/O operations are out of control of TM runtime system; thus they cannot be rolled back and retried. In contrast to I/O,
proper mechanisms can be designed to perform communications tentatively and to discard and retry them on aborts. Our proposal provides
the programmer with the facility to send and receive messages inside transactions.

15.1.3. Transactors

The transactions of parties need to communicate with each other before they are finished. We observe that to preserve isolation of

transactions, a means of communication other than shared variables is needed so that the transactions can communicate tentatively before

they are committed.

A class called BarrierActor that extends the base class Transactor is defined inside Barrier class. In the act method of BarrierActor,

inside an atomic block, BarrierActor waits to receive JoinNotificationRequest message from the parties and adds the sender transactor

of each received message to parties set. After receiving the request form partiesCount parties, it sends a JoinNotification message to

all the parties in parties set. On construction of a Barrier, a new object called barrierActor of type BarrierActor is created and started.

When a party calls the await method on a Barrier object, it sends a JoinNotificationRequest message to the barrierActor and waits to

receive a JoinNotification message.

To see composability of the abstraction and the interactions of transactions, we compose the await method inside an atomic block.
class Barrier(partiesCount: Int) {

 class BarrierActor extends Transactor {

 override def act {

 atomic {

 val parties = Set[Transactor]()

 for(i <- 0 until partiesCount)

 receive {

 case r: JoinNotificationRequest =>

 parties += r.sender

 }

 for(party <- parties)

 party ! new JoinNotification

 }

 }

 }

 val barrierActor = new BarrierActor

 barrierActor.start

 def await() {

 barrierActor ! new JoinNotificationRequest

 self.receive { case JoinNotification =}

 }

}

class TParty(barrier: Barrier) extends Transactor {

 override def act {

 atomic {

 // Do before await

 barrier.await

 // Do after await

 }

 }

}

15.1.4. TE for ML

15.1.4.1. Implementation 1

let client bc =

 let cc = newChan() in

 (thenEvt

 (sendEvt bc cc)

 (fun _ -recvEvt cc)

)

;;

let leader bc =

 (thenEvt (recvEvt bc)

 (fun cc1 -(thenEvt (recvEvt bc)

 (fun cc2 -(thenEvt (sendEvt cc1 ())

 (fun _ -(sendEvt cc2 ()))

))

))

)

;;

let barrier bc =

 sync (chooseEvt

 (client bc)

 (leader bc)

)

;;

let party bc =

 (barrier bc)

;;

let main () =

 let bc = newChan() in

 let t1 = Thread.create (fun x -(party bc)) () in

 let t2 = Thread.create (fun x -(party bc)) () in

 let t3 = Thread.create (fun x -(party bc)) () in

 Thread.join t1;

 Thread.join t2;

 Thread.join t3

;;

15.1.4.2. Implementation 2

let client bc =

 let cc = newChan() in

 sync (thenEvt

 (sendEvt bc cc)

 (fun x -recvEvt cc)

)

;;

let leader bc =

 sync (

 (thenEvt (recvEvt bc)

 (fun cc1 -(thenEvt (recvEvt bc)

 (fun cc2 -(thenEvt (recvEvt bc)

 (fun cc3 -(thenEvt (sendEvt cc1 ())

 (fun _ -(thenEvt (sendEvt cc2 ())

 (fun _ -(sendEvt cc3 ())))))))))))

)

;;

let main () =

 let bc = newChan() in

 let t1 = Thread.create (fun x -(leader bc)) () in

 let t2 = Thread.create (fun x -(client bc)) () in

 let t3 = Thread.create (fun x -(client bc)) () in

 let t4 = Thread.create (fun x -(client bc)) () in

 Thread.join t1;

 Thread.join t2;

 Thread.join t3;

 Thread.join t4

;;

15.2. Synchronous Queue

class SyncQueue[T] {

 val sCh = new Transactor[T]

 val rCh = new Transactor[Ack]

 def send(message: T) {

 atomic {

 sCh ! message

 rCh.receive

 }

 }

 def receive(): T = {

 atomic {

 val message = sCh.receive

 rCh ! new Ack

 message

 }

 }

}

15.3. Rendezvous

class Rendezvous[T]() {

 class PartyInfo(var element: T, var party: Transactor[Pair[T, T]])

 class RendezvousActor extends Transactor[PartyInfo] {

 override def act {

 val partiesInfo = new Array[PartyInfo](3)

 atomic {

 for (i <- 0 until 3)

 partiesInfo(i) = receive

 for (i <- 0 until 3) {

 val party = partiesInfo(i).party

 val index1 = (i+1)%3

 val index2 = (i+2)%3

 party ! new Pair(partiesInfo(index1).element, partiesInfo(index2).element)

 }

 }

 }

 }

 val rendezvousActor = new RendezvousActor

 rendezvousActor.start

 def swap(message: T): Pair[T, T] = {

 atomic {

 val thisTransactor = self.asInstanceOf[Transactor[Pair[T, T]]]

 rendezvousActor ! new PartyInfo(message, thisTransactor)

 thisTransactor.receive

 }

 }

}

15.4. Server

abstract class Server[T] extends Transactor[T] {

 val executor = Executors.newCachedThreadPool()

 override def act {

 while(true) {

 val cell = serverReceive

 val fun = (_:Unit) ={

 setForEndReceiver(cell)

 }

 executor.execute(new Runnable() {

 def run = {

 service(fun)

 }

 })

 }

 }

 def service(getRequest: Unit => T)

}

class MyIdServer extends Server[IdRequest] {

 val id = new TInt(0)

 override def service(getRequest: Unit => IdRequest) {

 val newId = atomic {

 id.value = id.value + 1

 id.value

 }

 atomic {

 val request = getRequest()

 val sender = request.sender

 sender ! new IdRespond(newId)

 }

 }

}

