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Abstract  

Many concurrent programming models enable both transactional 
memory and message passing. For such models, researchers have 
built increasingly efficient implementations and defined 
reasonable correctness criteria, while it remains an open problem 
to obtain the best of both worlds. We present a programming 
model that is the first to have opaque transactions, safe 
asynchronous message passing, and an efficient implementation. 
Our semantics uses tentative message passing and keeps track of 
dependencies to enable undo of message passing in case a 
transaction aborts. We can program communication idioms such 
as barrier and rendezvous that do not deadlock when used in an 
atomic block. Our experiments show that our model adds little 
overhead to pure transactions, and that it is significantly more 
efficient than Transactional Events. We use a novel definition of 
safe message passing that may be of independent interest. 

Categories and Subject Descriptors D.1 [Programming 

Techniques]: D1.3 Concurrent Programming – Parallel 

programming 

General Terms  Languages, Design, Algorithms 

Keywords  Transactional Memory, Actor 

1. Introduction 

1.1. Background 

Multi-cores are becoming the mainstream of computer 
architecture, and they require parallel software to maximize 
performance. Therefore, researchers sense the need for effective 
concurrent programming models more than ever before. We 
expect a concurrent programming model to provide means for 
both isolation and communication: concurrent operations on 
shared memory should be executed in isolation to preserve 
consistency of data, while threads also need to communicate to 
coordinate cooperative tasks. The classical means of programming 
isolation and communication is locks and condition variables [16]. 
Locks protect memory by enforcing that the memory accesses of 
blocks of code are isolated from each other by mutual exclusion. 
Condition variables allow threads to communicate: a thread can 
wait for a condition on shared memory locations and the thread 
that satisfies the condition can notify waiting threads. However, 
development and maintenance of concurrent data structures by 
fine-grained locks is notoriously hard and error-prone, and lock-

based abstractions do not lend themselves well to composition. 
We need a higher level of abstraction. 

A promising isolation mechanism to replace locks is memory 
transactions because they are easy to program, reason about, and 
compose [12]. The idea is to mark blocks of code as atomic and 
let the runtime system guarantee that these blocks are executed in 
isolation from each other. Researchers have developed several 
implementations [5][13], semantics [1][24][15], and correctness 
criteria [10][24] for memory transactions. In particular, we prefer 
to work with memory transactions that satisfy a widely recognized 
correctness criterion called opacity [10]. To complement memory 
transactions, which communication mechanism should replace 
condition variables? We want the addition of a communication 
mechanism to preserve opacity while adding little implementation 
overhead to pure transactions. Let us review the strengths and 
weaknesses of several known mechanisms. 

1.2. Synchronizers, retry, and punctuation 

Luchango and Marathe were the first to consider the interaction of 
memory transactions and they introduced synchronizers. A 
synchronizer encapsulates shared data that can be accessed 
simultaneously by every transaction that synchronizes (i.e. 
requests access) to it. The transactions that synchronize on a 
synchronizer (that is either read from or write to it) all commit or 
abort together. Additional concurrency control mechanisms are 
needed to protect the shared data against race conditions [20]. The 
work is recently extended to transaction communicators [22]. 

To enable a transaction to wait for a condition, Harris and 
Fraser introduced guarded atomic blocks [11], and Haskell added 
the "retry" keyword [12]. On executing "retry", Haskell aborts and 
then retries the transaction. Later, Smaragdakis et al. [28] 
established the need for transactional communication. They 
showed that neither of the previous mechanisms supports 
programming of a composable barrier abstraction: if used in an 
atomic block, the barrier deadlocks. In contrast to Haskell's 
"retry", Smaragdakis et al. [28] and also Dudnik and Swift [7] 
advocated that the waiting transaction should be committed rather 
than aborted. They observed that if the transaction is aborted, all 
its writes are discarded, while if it is committed, its writes will be 
visible to other transactions, thereby enabling the transaction to 
leave information for other transactions before it starts waiting. 

Dudnik and Swift used their observation as the basis for 
designing transactional condition variables [7]; their model allows 
no nesting of atomic blocks. Smaragdakis et al. [28] used their 
observation as the basis for designing TIC which enables 
programming of a barrier abstraction that won't deadlock even if it 
is used in an atomic block. TIC splits (“punctuates”) each 
transaction into two transactions; this may violate local invariants 
and therefore requires the programmer to provide code for 
reestablishing the local invariants. TIC executes that code at the 
point of the split, that is, after wait is called and before the first 



half of the transaction is committed. As explained in [28], TIC 
breaks isolation and therefore doesn't satisfy opacity. 

1.3. Message Passing 

A dual approach to providing means for isolation and 
communication is to begin with a message passing model such as 
Actors [2] and Concurrent ML (CML) [26], and then add an 
isolation mechanism. Examples of such combinations include 
Stabilizers [30], Transactional Events (TE) [6], and Transactional 
Events for ML (TE for ML) [8].  

In Stabilizers, threads can communicate by sending and 
receiving synchronous messages on channels. The programmer 
can mark locations of code as stable checkpoints. If a thread 
encounters a transient fault, it calls "stabilize", which causes the 
run-time system to revert back the current thread, and all threads 
with which it has transitively communicated, to their latest 
possible stable checkpoints. In summary, Stabilizers support 
program location recovery but not atomicity and isolation as 
explained in [30]. 

Inspired by CML and Haskell STM, TE provides the 
programmer with a sequencing combinator to combine two events 
such as synchronous sends and receives into one compound event. 
The combination is an all-or-nothing transaction in the sense that 
executing the resulting event performs either both or none of the 
two events. The sequencing combinator enables straightforward 
programming of: (1) a modular abstraction of guarded 
(conditional) receive (this is not possible in CML), (2) three-way-
rendezvous (a generalization of barrier) (this is not possible with 
pure memory transactions [6]), and (3) memory transactions (by 
representing each location as a server thread). TE supports the 
completeness property, namely: if there exists an interleaving for 
a set of compound events such that their sends and receives are 
matched to each other, the interleaving is guaranteed to be found. 
While the completeness property can terminate some scheduler-
dependent programs, scheduler-independence is the well known 
property expected from concurrent algorithms. More importantly, 
finding such an interleaving is NP-hard [6] and can be 
implemented with an exponential number of run-time search 
threads [6]. Our experiments show that the performance penalty 
can be excessive. 

TE supports all-or-nothing compound events but it prevents 
any shared memory mutation inside compound events. In follow-
up work on TE, the authors of TE in ML [8] explain that encoding 
memory as a ref server is inefficient. They extend TE to support 
mutation of shared memory in compound events. TE for ML 
logically divides a compound event into sections called chunks. 
Chunks are delimited by the sends and receives of the compound 
event. The semantics of TE for ML breaks the isolation of shared 
memory mutations of a compound event at the end of its chunks. 
At these points (i.e. before sends and receives), the shared 
memory mutations that are done in the chunk can be seen by 
chunks of other synchronizing events. Similar to the punctuation 
in TIC, chunking breaks isolation and thus doesn't satisfy opacity. 

1.4. Our Approach 

The above review shows that previous work has problems with 

either nesting of atomic blocks, opacity, or efficiency.  Our goal is 

to do better. In this paper, we present Communicating Memory 

Transactions (CMT) that integrates memory transactions with a 

style of asynchronous communication known from the Actor 

model. CMT is the first model to have opaque transactions, safe 

asynchronous message passing, and an efficient implementation. 

We use a novel definition of safety for asynchronous message 

passing that generalizes previous work. Safe communication 

means that every committed transaction has received messages 

only from committed transactions. To satisfy communication 

safety, CMT keeps track of dependencies to enable undo of 

message passing in case a transaction aborts. We show how to 

program three fundamental communication abstractions in CMT, 

namely synchronous queue, barrier, and three-way rendezvous. In 

particular we show that our barrier and rendezvous abstractions do 

not deadlock when used in an atomic block. To enable an efficient 

implementation, CMT does not satisfy the completeness property 

[8] found in TE. Based on the transactional memory 

implementations TL2 [5] and DSTM2 [13], we present two 

efficient implementations of CMT. We will explain several subtle 

techniques that we use to implement the semantics. Our 

experiments show that our model adds little overhead to pure 

transactions, and that it is significantly more efficient than 

Transactional Events. 

In Section 2 we discuss five CMT programs. In Section 3 we 
recall the optimistic semantics of memory transactions by 
Koskinen, Parkinson, and Herlihy [15], and in Section 4 we give a 
semantics of CMT as an extension of the semantics in Section 3. 
In Section 5 we explain our implementation of CMT, and in 
Section 6 we show our experimental results. 

2. Examples 

The goal of this section is to give examples of CMT programs and 
give an informal discussion of the semantics of CMT.  In 
particular, we will illustrate the notions of communication safety, 
dependency and collective commit. We use the following syntax: 
to delimit parallel sections of the program,  is used.  
sends the result of expression  to channel .  
receives a message from channel  and assigns it to the thread 
local variable . To provide means of programming abstractions, 
macro definitions are allowed: . The 
body term  of the macro is inlined with  at the call sites. 

Let us start with a simple example: a server thread that 
executes a transaction in response to request messages from a 
client thread. 

 
 

 

  

 

 

 

 
The server transaction receives the tentative message from the 

client transaction and mutates memory according to the message. 
If the client transaction aborts, the message that it has sent is 
invalid. Therefore, the server transaction should commit only if 
the client transaction is committed. In other words, the 
communication is safe under the condition that a receiving 
transaction is committed only if the sender transaction is 
committed. We say that the receiving transaction depends on the 
sender transaction. If the sender aborts the receiver should abort 
as well. The abortion is propagated to depending transactions. If a 
receive is executed on a channel that is empty or contains an 
invalid message (a message sent by an aborted transaction), the 
receive suspends until a message becomes available. 

Consider the two-way rendezvous abstraction that can swap 
values between two threads. (Rendezvous is a generalization of 
barrier that swaps values in addition to time synchronization.) 
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Consider the following program that employs the above 
abstractions. Each abstraction is inlined at its call sites and its 
parameters are substituted with passed arguments. Columns 
represent parallel parts of the program. (To discuss the interaction 
of transactions, the parties call  inside atomic blocks.) 

 

 

 
 

 
 

  

 
 

 

 

  

 
 

 
 

 
 

 
Figure 1 shows the steps of execution of the above program. 

Solid arrows show messages and dashed arrows show 
dependencies. Party1 sends a tentative Message1 to Rendezvous. 
Rendezvous receives Message1 and becomes dependent on Party1 
(Figure 1.A). The same happens for Party2 (Figure 1.B). At this 
point, Rendezvous is dependent on both parties. 

Assume that Party2 aborts. The abortion is propagated to 
Rendezvous by Dependency2. Rendezvous is also aborted and 
retried. On the retry, it receives Message1 again. But as Message2 
is invalid, the second receive suspends. This means that 
Rendezvous repeats Figure 1.A again. It effectively ignores the 
aborted transaction of Party2 and waits for another.  

When Party2 is retried, Figure 1.B is repeated. At this time, 
Rendezvous has received request messages from both parties. It 
tentatively sends swapped messages back to both Party1 and 
Party2. The parties are released from suspension and receive the 
messages. They get dependent on Rendezvous (Figure 1.C). At 
this time, parties and Rendezvous are interdependent (Figure 1.D).  

Assume that Party2 aborts in the code after . 
Dependencies propagate abortion to Rendezvous and then to 
Party1. In other words, if one of the parties aborts, the Rendezvous 
and all the other parties are aborted and retried. This is the 
expected behavior: as Party2 is aborted, the value that it has 
swapped with Party1 is invalid. Therefore, Party1 should be 
aborted as well. (This also matches the semantics expected from 
the barrier. As Party2 aborts, it is retried. This means that it will 
reach the barrier again. By the semantics of the barrier, no party 
should pass the barrier when there is a party that has not reached 
the barrier. Thus, as Party2 will reach the barrier, Party1 should not 
have passed it. Therefore, Party1 should be aborted as well.) 

Finally, the transactions of Rendezvous, Party1 and Party2 
reach the end of the atomic blocks. As they are interdependent, 
each of them can be committed only if the others are committed. 
If each of them obliviously waits until its dependencies are 
resolved, deadlock happens. As will be explained in the following 
sections, interdependent transactions are recognized as a cluster 
and transactions of a cluster are collectively committed.  

In contrast to an implementation using Haskell retry, calling 
 inside a nested atomic block does not lead to a deadlock. In 

addition, in contrast to TIC and TE for ML, opacity of 
transactions is satisfied. 

Similar to Two-way Rendezvous, the abstractions for 
Synchronous queue, Barrier and Three-way rendezvous can be 
programmed in CMT as shown in Figure 2. Please note that it is 
assumed that these basic abstractions are used only once. For 
example, the basic barrier abstraction is not a cyclic barrier. For 
the three-way rendezvous, we assume that  can be pairs of the 
form . Implementations of Barrier with Haskell retry, TIC 
and TE for ML and an implementation of CMT can be seen in the 
technical report [17] section 15.1. Implementations of 
Synchronous Queue and Rendezvous can be seen in the technical 
report [17] sections 15.2 and 15.3. 

3. Memory Transactions 

We now recall the optimistic semantics of memory transactions 
by Koskinen, Parkinson, and Herlihy [15].  Their semantics is the 
starting point for our semantics of CMT in Section 4. TL2 is an 
implementation that realizes this semantics.  

Note: we have fixed a few typos in the syntax, semantics and 
definition of moverness after personal communication with the 
authors of [15]. 

3.1. Syntax 

A configuration is a triple of the form . (To simplify 
reading of long configurations, “ ” is used to separate elements of 
configurations.)  represents the set of threads.  denotes the 
shared store that contains objects.  is a log of pairs : 
each committed transaction  and the operations it has 
performed .  is a set of elements of the form .  is 

 
Figure 1. Interactions of 2-way Rendezvous 
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Barrier 

The abstractions: 
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3-way Rendezvous 

The abstractions: 
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; 
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The program: 

  

  

  

Figure 2: CMT Programs 

 

 

 

 

 

 



the transaction identifier (or  that denotes that the code is 
executing outside transactions). Transaction identifiers are 
assumed to be ordered by the time that they are generated.  is the 
statement to be executed by the thread. Statements have the 
following syntax: 

 Statement 

 Instruction 

 and  denote the start and end of transactions. We use 
 as a syntactic sugar for .  denotes calling 

method  on shared object . Commands (reading and writing) 
that are applied to thread-local state are represented by .  is the 
transaction-local store of objects.  is the backup store that stores 
states of (thread-local) objects before the transaction is started. It 
is used to recover state when the transaction aborts. The statement 
before the transaction is started is also backed up in . The 
pattern  denotes a back up store that maps the backed 
up statement to .  is the ordered log of operations that has been 
performed by the transaction. The initial configuration is of the 
form .  is  where 

.  are the parallel segments of 
the program.  is the store where every object is mapped to its 
initial state i.e. .  

denotes assigning value  to key  in map .  represents 
value of key  in map . 

3.2. Operational Semantics 

The semantics [15] is shown in Figure 3. The semantics is a 

labeled transition system. The syntax supports nested atomic 

blocks.  We can transform a program with nested atomics into an 

equivalent program with only top-level atomics by simply 

removing all inner atomics.  Hence, it is sufficient that the 

semantics supports only top-level atomics. 
We will now explain the five rules in Figure 3. The  rule 

applies the statement to the local store.  denotes application 
of the command  to the local store . The  rule starts a new 
transaction. A  transaction identifier is generated.  

generates unique and increasing transaction identifiers . The 
current store and also the current statement are stored in the 
backup store. A snapshot of the current state of objects is taken 
from the shared store to the local store. The  rule executes a 
method. The method is applied to the local store and is logged in 
the local log.  represents the returned value. As defined by [15], 
read and write operations on memory locations are special cases 
of method call. The  rule checks that the methods of the 

current transaction are right movers with respect to the methods of 
the transactions that have been committed since the current 
transaction has started. Right moverness ensures that tentative 
execution of a transaction can be committed even though other 
transactions have committed after it started. Please refer to the 
appendix for a detailed definition of right moverness. If the 
methods of the transaction satisfy the moverness condition, the 
transaction is committed. The methods of the local log are applied 
to the shared store. The local log is also saved with a  id in 
the shared log. This is used to check moverness while later 
transactions are committing. The  reduction aborts the 
transaction. The store and the statement that were saved in the 
backup store when the transaction was starting are restored. 

3.3. Properties 

The semantics satisfies opacity which is a correctness condition 

for memory transactions [10]. We say that a sequence of labels 

 is given by  started from  if there are 

configurations  such that for each 

. 

 

THEOREM 1 (Opacity).  Every sequence of labels , 

,  and  given by  started from  is 

opaque (Proposition 6.2 of [15]). 

4. Communicating Memory Transactions 

We now present the syntax and semantics of CMT. The semantics 

adds a core message passing mechanism to the semantics 

presented in the previous section. 

4.1. Syntax 

The syntax is extended as follows:  
 Statement 

 
 

Instruction 

 sends the result of expression  to channel . 
 receives a message from channel  and assigns it 

to the thread local variable . We assume that messages are 
primitive values. 

The configuration of the semantics in section 3 is augmented 

with the following elements: ,  and . Therefore a 

configuration is a tuple of the form .  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Optimistic Semantics of Memory Transactions 



maps each transaction id to the state of the transaction. The state 

of a transaction can be either  (running),  (committed), or  

(aborted). A committed transaction has finished successfully, 

while an aborted transaction has stopped execution and had its 

tentative effects discarded.  is a partial function that maps 

channels  to pairs of the form  where  is the sender 

transaction and  is the current value of the channel. To guarantee 

communication safety, we track dependencies between 

transactions.  is the transaction dependency relation that is a set 

of elements of the form . Transaction  is dependent on 

transaction , i.e. , if  receives a message that is sent by . 

The dependency to  is said to be resolved, if  is committed. The 

initial configuration is .  and  

are defined as the prior semantics. 

4.2. Operational Semantics 

The rules ,  are not changed other than the addition of 
 to both sides of the rules. The two rules  and  

have a small change. They set the state of the transaction in  to 
running  and aborted , respectively.  

The  rule sends a message on a channel. The mapping  
is updated to map the channel to the pair  where  is the id of 
the current transaction and  is the sent value. The id of the sender 
transaction that is saved here is retrieved later when the message 
is received to record a dependency from the receiver to the sender. 
In CMT, each channel can hold a single value, while our 

implementation supports an arbitrary number of messages, as 
explained in section 5. 

The  rule receives a message from a channel. If there 
exists a value in the channel, the value is received and the 
dependency of the current transaction to the sender transaction is 
added to . The condition that the sender transaction is not 
aborted can be added as an optimization. 

The semantics in Figure 4 supports transactions that can send 
and receive.  It is straightforward to extend the semantics to allow 
code executing outside transactions to send and receive. 

The  rule encodes the collective commitment of a cluster. 
A set of transactions are committed if they satisfy the following 
two conditions. 

To respect dependencies, the first condition is that only 
transactions of clusters are committed where Cluster is defined as 
follows. A set of transactions that have reached the end of their 
atomic blocks (called terminated) is a cluster iff any unresolved 
dependencies of them are to each other. The transactions that are 
considered in the  rule have already reached the end of their 
atomic blocks. It is checked that their dependencies are either to 
other transactions of the set or to committed transactions. 

It is notable why the following simple commitment condition 

is not used instead: a transaction that has reached the end of its 

atomic block is committed only if all its dependencies are already 

resolved. It is straightforward that this condition directly translates 

to communication safety. But it can lead to deadlock. For 

example, if two transactions receive messages from each other, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: CMT Semantics 

 

 

 

 

 

 



they are interdependent. As mentioned for the example of Section 

2, if each transaction in a dependency cycle obliviously waits until 

its dependencies are resolved, it may wait forever. In classical 

distributed transactions [18][3], all receives happen at the 

beginning of sub-transactions. Therefore, the dependencies form a 

tree and hierarchical commit and two phase commit protocol 

(2PC) can be employed. In CMT receives can happen in the 

middle of transactions; thus, the dependencies can in general form 

a cyclic graph. A commitment condition is needed that guarantees 

communication safety and also allows commitment of 

transactions with cyclic dependencies. It is also notable that in 

contrast to edges in DB read-write dependence graphs [9] that 

represent serialization precedence of source to the sink 

transaction, edges in the message dependence graphs represent 

commit dependence of source to the sink transaction. The former 

cannot be cyclic but the latter can. 
The second condition is the moverness of transactions of the 

cluster with respect to each other. In the basic commit rule, the 
moverness condition was that methods of the committing 
transaction are right movers with respect to methods of the 
recently committed transactions. In addition to that, as we commit 
a set of transactions, we need to check that there is an order of 
them where methods of each transaction in the order are right 
movers with respect to method of earlier transactions in the order. 
(Note that this order is not necessarily the causal order of sends 
and receives.) If the conditions are met, the local logs of the 
transactions are applied to the shared store, the local logs are 
stored in the shared log with  ids, and the state of the 
transactions are set to committed  in . 

4.3. Properties 

4.3.1. Opacity 

The semantics of Figure 4 extends the semantics of Figure 3 with 

communication semantics while preserving the opacity of 

transactions. This enables programmers to reason locally about 

the consistency of data in each atomic block. 

 

THEOREM 2 (Opacity).  Every sequence of labels , 

,  and  given by  started from  is 

opaque. 

 

High-level proof idea: Please refer to the technical report [17] 

section 10.1 for the formalization and the proof (29 pages). We 

reduce opacity for CMT to opacity for the semantics in Section 3. 

We show that for every sequence  of labels , , 

 and  that can be obtained from transitions of , there 

is a sequence of transitions of  that yield a sequence of labels  

that is the same as  other than addition of calls to a definite new 

object. By THEOREM 1,  is opaque. We show that removing all 

calls to an object from a sequence of labels preserves opaqueness 

of the sequence. Therefore, as  is opaque,  is opaque.  

4.3.2. Communication Safety 

Assume that a transaction  receives a message  that is 
tentatively sent by another transaction  Receiving  and using 
its value is a part of the computation of . Therefore, validity of 
the computation of  relies on validity of . If  finally aborts,  
becomes invalid and  should be prevented from committing. 
This means that the receiving transaction  should not commit 
before the sending transaction  is committed. The notion is 
formalized as the following correctness condition: 

 

DEFINITION 1 (Communication).  The communication relation 

for an execution is the set of receiver and sender transaction pairs 

in the execution. 

Suppose . We define 
    

                                          

                                          

Intuitively,  is the last sender on  before  receives. 

 

DEFINITION 2 (Unsafe execution)  A configuration  can 

execute to an unsafe configuration iff there is an execution 

, where  
,  

 

 

 
 

THEOREM 3: Communication Safety: An initial configuration 

 cannot execute to an unsafe configuration. 

 

Please refer to the technical report [17] section 10.2 for the proof 

(16 pages). 

High level proof idea: The first step is to prove  

and thereby show that all members of  stem from the 

 rule. Next we prove that when  s a message from 

,  is running, and we notice that the  rule adds  

to . Later in the execution,  may want to commit, 

and now the  in  forces the  rule to ensure 

that  only commits if either  has already committed, or  and 

 commit together as members of the same cluster.  

Our notion of communication safety generalizes a correctness 
criterion in [8]; let us explain why. Both TE and TE for ML 
support synchronous message passing. A high-level 
nondeterministic semantics “defines the set of correct 
transactions”. In the high-level semantics, a set of starting 
transactions are stepped as follows: if there is a sequence of sub-
steps that can match all the sends and receives of the transactions 
to each other, the transactions are committed together in single 
step. A low-level semantics is also defined that specifies stepping 
of the search threads that find the matching. It is proved that the 
low-level semantics complies with the high-level semantics. This 
essentially means that if a set of transactions are committed in the 
low-level semantics, each of them has communicated with 
transactions that are also committed at the same time. Our 
approach supports asynchronous messages. When a transaction 
sends a message, the message is enqueued in the recipient 
channel. Therefore, when a transaction is committing, there may 
not be matched receivers for the messages that it has sent but 
definite senders have sent the messages that it has received. 
Therefore, communication safety defines the condition that sender 
transactions are committed. 

5. Implementation 

We will now explain how we have implemented the calculus in 
Section 4 as the core functionality of a Scala [25] library called 
Transactors. Transactors integrate features of both memory 
transactions and actors. A transactor is an abstraction that consists 
of a thread and a channel that is called its mailbox. A mailbox is 
essentially a queue that can hold an arbitrary number of messages. 
Similar to the actor semantics [2], the messages in the mailbox are 
unordered. The thread of a transactor can perform the following 
operations both outside and inside transactions: reading from and 



writing to shared memory and also sending messages to other 
transactors and receiving messages from its mailbox.  

Recall that the starting point for Section 4 was Section 3 with 
its semantics of memory transactions. Similarly, the starting point 
for our implementation of the semantics in Section 4 is TL2, 
which implements Section 3's semantics of memory transactions. 
We explain how we have extended TL2 with an implementation 
of the new concepts in Section 4. In particular, we will explain 
about data structures that are built when messages are sent and 
received, the mechanism that notifies waiting transactions, cluster 
search and collective commit. (Our technique can work for other 
implementations of the semantics in Section 3 as well. In the 
technical report [17] section 13 we will explain how we have 
extended the implementation of DSTM2 in much the same way as 
we extended TL2. The pseudo codes of these two 
implementations can be found in the technical report [17] sections 
12 and 14.) 

In TL2, all memory locations are augmented with a lock that 
contains a version number. Transactions start by reading a global 
version-clock. Every read location is validated against this clock 
and added to the read-set. Written location-value pairs are added 
to the write-set. At commit, locks of locations in the write-set are 
acquired, the global version-clock is incremented and the read-set 
is validated. Then the memory locations are updated with the new 
global version-clock value and the locks are released. 

In the implementation of transactors, the read and write 
procedures remain unchanged. As will be explained in subsection 
for the implementation of the  rule, we adapt the commit 
procedure to perform collective commitment of a cluster. 

Each transaction has a descriptor that is a data structure that 
stores information regarding that transaction. This information 
includes the state of the transaction and a set that holds references 
to descriptors of depended transactions. Transactions change state 
as shown in Figure 7. Compared to the semantics in Section 4, the 
possible states of a transaction also include terminated. A 
transaction is terminated if it has reached the end of its atomic 
block and is not committed or aborted yet. The transaction 
descriptor also contains a set of notifiables and a message backup 
set that will be explained as we proceed. 

In terms of  and  from the semantics, the descriptor of each 
transaction  stores its state, , and a set that holds references 
to descriptors of each  that . The mailboxes of 
transactors correspond to channels of . The semantics in Section 
4 has seven rules. Two of those rules,  and , make no 
changes to the transaction map, channels, and dependencies. In 
the following five subsections we will explain how we implement 
the other five rules. 

5.1. Starting a Transaction 

We begin with the  rule. The rule changes  to 
. When a transaction  is started, a new transaction 

descriptor with the running state  is created and stored in a thread 
local variable. (Later, to get the descriptor of the current 
transaction, this thread local variable is checked. If the variable 
has no value, the execution is outside atomic blocks and 
otherwise, the value is the descriptor of the current transaction.) 
The global version-clock is read and the body of the atomic block 
is started. 

5.2. Sending and Receiving a Message 

Next we consider the  rule. The rule changes  to 
. When a message  is being sent, a new cell 

containing the message is enqueued to the mailbox. As the  
rule defines, besides the message, the sender transaction  saves a 
reference to the descriptor of itself in the new cell. If the recipient 
transactor has been suspended inside a transaction to receive a 
message, it is resumed. If the send is being executed outside 
transactions, a reference to a dummy transaction descriptor that is 
always committed is saved as the sender transaction in the cell 
and if the recipient transactor has been suspended to receive a 
message (inside or outside a transaction), it is desuspended. 
Figure 6Figure 6 depicts relations of data structures while a 
message is being sent. 

Next we consider the  rule. The rule requires that 
 and changes  to . When a 

receive is being executed, cells of the mailbox are iterated. The 
reference to the descriptor of the sender transaction  is obtained 
from each cell. The state of  is read from its descriptor and the 
state of the message  of the cell is determined according to the 
state of . We use the terminology that (1) if the sender is 
committed, then the message is stable; and (2) if the sender is 
aborted, then the message is invalid. (3) if the sender is running or 
terminated, then the message is tentative. As any transaction that 
receives an invalid message should finally abort, invalid messages 
are dropped. This is the optimization that was mentioned for the 

 rule. Thus, if the receive is being executed inside a 
transaction, a stable or tentative message is required to be taken 
from the mailbox. As executions that are outside transactions 
cannot be aborted, tentative messages can not be given to receives 
that are executed outside transactions. Therefore, a stable message 
is required for receives that are outside transactions. Cells are 
iterated and any invalid message is dropped until a required 
message is found. The thread suspends if a required message is 
not found until one becomes available. To track dependencies, if 
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the found message is tentative, a reference to the descriptor of  

is added to the depended set of the descriptor of the current 
transaction . The depended sets of descriptors constitute a 
dependency graph. We say that  is adjacent to  if the descriptor 
of  is in the depended set of the descriptor of . 

Figure 5 depicts data structures and their relations while a 
message is being received. Assume that a transaction  has sent a 
message  that is received by another transaction . Assume that 

 is running and  is being terminated. As  has an unresolved 
dependency, it cannot be committed yet. Therefore, the thread 
running  goes to the waiting state until  aborts or commits. 
Hence, when  is aborted or committed, it should notify . 
Notification is done by notifiables. When  is receiving the 
tentative message , the reference to the descriptor of  is 
obtained from the cell that contains  and a reference to the 
descriptor of  is subscribed to it as a notifiable. On abortion or 
commitment of a transaction ( ), all its registered notifiables are 
notified. 

When a transaction aborts, its effects should be rolled back. 
The messages that it has received from its mailbox should be put 
back. Therefore, to track messages that are received inside a 
transaction, when a message is being received, the cell that the 
message is obtained from is added to a backup set in the 
transaction descriptor (not shown in the figures). The set is 
iterated when the transaction is being aborted and any cell that is 
not invalid is put back to the mailbox. 

5.3. Abortion 

Next, we consider the  rule. The rule changes  to 
. A transaction  may deterministically abort as the result 

of resolution of a shared memory conflict. When  is aborting, its 
state is set to aborted in its descriptor. Any cell of its backup set 
that is not invalid is put back to the mailbox. In addition, to wake 
up waiting transactions,  propagates abortion to dependent 
transactions. Assume that  is the set of transactions that are 
dependent on  and  is the set of notifiables that reference 
descriptors of .  notifies each . The notification makes 
an abort event for  if it is waiting. Finally, after notification,  
restarts its atomic block as a new transaction. On abortion of each 

, the same situation recurs, i.e. each of them notifies its own 
notifiables. Therefore, abortion of  is propagated to transactions 
that are (transitively) dependent on . Note that by an implicit 
traversal of notifiable objects, abortion is propagated in the 
reverse direction of dependencies. The traversal avoids infinite 
loops by terminating at previously aborted transaction descriptors. 

5.4. Termination and Commitment 

Termination Every transaction that reaches the end of its atomic 

block sets the state of its descriptor to terminated. Then, the 

cluster search is started from the descriptor of the current 

transaction to check if it is possible to commit the transaction at 

this time. If the cluster search succeeds in finding a cluster, the 

transactions of the cluster are collectively committed and the 

atomic block returns successfully. Cluster search and collective 

commit are explained in the next subsection. If the cluster search 

cannot find a cluster at this time, the thread running the 

transaction goes to the waiting state. There are three different 

events that wake up a transaction from the waiting state: 
 An Abortion event is raised when the transaction is notified of 

abortion of a depended transaction. On this event, the 
transaction starts abortion as explained above. 

 A Dependency Resolution event: As will be explained in the 
collective commit procedure, a transaction that commits 

notifies all of the transactions that are dependent on it about 
the dependency resolution. On this event, as a dependency of 
the current transaction is known to be resolved, it may be able 
to commit; therefore, the cluster search is retried. 

 A Commitment event is raised when the transaction is notified 
that it is committed by the cluster search and collective 
commit that is started from another transaction. On this event, 
the notifiables that are registered to the descriptor of 
transaction are notified of the dependency resolution. The 
atomic block returns successfully. 

Commitment Next, we consider the  rule. The rule has the 

condition that the set of transactions should be a cluster 

 and also two moverness conditions 

 and 

. If the rule is applied, it changes  to 

. According to the first condition, to commit a 

transaction, the dependency graph should be searched for a cluster 

containing the transaction. If the cluster search succeeds in finding 

a cluster, the collective commit algorithm is executed on the 

found cluster to check moverness conditions. 

Cluster Search: A cluster is a set of terminated transactions 

whose dependencies are all to members of that same cluster or to 

committed transactions. A cluster search inputs a terminated 

transaction , and outputs either the smallest cluster that contains 

, or reports that no such cluster exists, or reports that  must 

abort. We are looking for the smallest cluster because in a later 

phase we will have to order them, which is a time-consuming 

task. The smallest cluster is necessarily a strongly connected 

component (SCC) so we do cluster search with Tarjan's algorithm 

[29] for identifying SSCs. The idea is to gradually expand a 

candidate set of transactions containing  until the candiate set is a 

cluster or the algorithm reports that no such clusters exists or that 

 must abort. Specifically, if we have a candidate set and a 

dependency , where  is a member of the candidate set, 

then the cluster search does a case analysis of . If  is: 

 Terminated: we add  to the candidate set. 

 Committed: we do nothing, since the dependency is resolved. 

 Running: we report that no such cluster exists. 

 Aborted: we report that  must abort. 

If the Tarjan algorithm finds only one SCC, a cluster containing  

is found. On the other hand, if more than one SCC is found, the 

last SCC (that contains ) is dependent on other SCCs. It is not a 

cluster before the other SCCs commit. Therefore, we report that 

no such cluster exists. (If more than one SCC is found, it is still 

possible to commit them. They can be committed in the order that 

they are found by Tarjan algorithm. This is because, the first SCC 

that is found is a cluster and also any SCC in the found sequence 

will be a cluster if the SCCs before it in the sequence are 

committed. But for simplicity, the current transaction waits for 

other SCCs to finalize.) 

After the cluster search, we take one of three actions 

depending on the output. (1) if a cluster containing  is found, 

then we commit all the transactions in the cluster; (2) if the result 

is that no such cluster exists, then we cache that information to 

avoid needlessly doing the search again before the graph changes: 

the thread running  goes to the waiting state; and (3) if the result 

is that  must abort, then we abort . 
Although a transaction may wait after termination to be 

notified by other transactions, the implementation satisfies 
finalization, the progress property that we define as follows. We 
define that a transaction is finalized iff it is aborted or committed. 



We define that a transaction is settled iff it is terminated and it is 
not transitively dependent on a running transaction. The 
finalization property is that every settled transaction is eventually 
finalized. 

Collective Commit: To commit a set of transactions, it should 
be checked that there exists an order of commitment of the 
transactions where earlier transactions in the order do not 
invalidate later transactions in the order. This check corresponds 
to the condition  that requires an order of 
transactions where operations of later transactions in the order are 
right movers in respect to operations of earlier transactions. In 
TL2, a write to a location invalidates a read from the same 
location. Therefore, an order is required where for each location, 
the reading transaction comes before the writing transaction. This 
condition is implemented as follows. A graph of transactions is 
made where a transaction  has an edge to transaction  if the 
read set of  has an intersection with the write set of . If there 
is a cycle in the graph, a desired order does not exist. In this case, 
the current transaction starts abortion. Otherwise, it is possible to 
commit the transactions of the cluster together. Note that a pure 
write (writing to a location without reading it) does not conflict 
with another pure write and any order of commitment is valid for 
them. The lock for each location in the write sets of all the 
transactions is acquired. The global counter is incremented and is 
read as the write version. The read set of each transaction in the 
cluster is validated. This validation corresponds to the condition 

. If one of the locks 
cannot be acquired or a read set is not validated, the acquired 
locks are released and the current transaction is aborted. 
Otherwise, collective commit can be done. The write sets of the 
transactions are written to memory with the write version. The 
acquired locks are released. The state of the descriptor of each 
transaction is set to committed. Each transaction other than  is 
notified of commitment. This notification makes a Commitment 
event. Each transaction that is committed sends dependency 
resolution notification to all notifiables  that are registered 
to its descriptor. Each  references a receiving transaction . 

The notification makes a Dependency Resolution event for , if 
it is waiting. When a transaction is committed, the messages that 
it has sent become stable. Therefore, they can be received by 
receives that are executed outside transactions. Each transaction 
that is committed desuspends the transactors that it has sent a 
message to and are suspended on receives that are executed out of 
transactions. 

6. Experimental Results 

6.1. Benchmarks and Platform 

We experiment with three benchmarks: A server benchmark and 

two benchmarks from STAMP [23]. We adopt the Server 

benchmark that is independently explained by [20] as the 

Vacation Reservation, by [14] as the Server Loop programming 

idiom and by [21] as the Job Handling system. A server thread 

handles requests from client threads. Each request should appear 

to be handled atomically i.e. the handling code of the server is a 

transaction. In addition, the request of the client thread may be 

sent inside a transaction. The transaction of a client may request 

the service multiple times. We experiment with two instances of 

this benchmark. 
The service can simply be provision of unique ids [14]. A 

generic function (serverLoop) is offered in [14] to create 
servers. Employing Transactors, we provide a generic class 
(Server) that can be extended to create servers. The pseudo code 
of Server can be found in the technical report [17] section 15.4. 

We compare the message passing performance of our two 
implementations of Transactors with the implementation of TE for 
ML on a Server instance that generates unique ids. To the best of 
our knowledge, TE for ML is the closest semantics with similar 
goals. (We programmed and tried to conduct comparisons on 
other cases such as barrier, but the implementation of TE for ML 
took a very long time or deadlocked on these cases.) 

As a tangible application of this programming idiom, consider 
a web application with two tiers: the application logic tier and the 
database tier. The system may be organized such that separate 
threads run the two tiers. The case study in [4] showed that to 
speed up handling future requests, the application logic tier may 
cache some of the data that it sends to the database tier. The 
application tier updates the cached data in the data structures and 
the database tier updates the data in the database. Although the 
updates are performed by different threads, they should be done 
atomically; either both or none should be seen by other threads.  

We adopt the method suggested by [4] to unify memory and 
database transactions. The approach benefits form handlers that 
are registered to be run at different points of the transaction 
lifecycle. We extended our library to support registration of 
handlers for both of the implementations. We experiment with the 
authorship database scheme from [4]. We consider inserting a new 
paper info including its authors. Using our library, we define 
application logic transactor and database server transactor. The 
application logic transactor starts a transaction, sends an update 
request to the database server transactor, performs updates to the 
data structures and finishes the transaction after receiving an 
acknowledge message from the database server transactor. Upon 
receipt of a request, the database server transactor, executes a 
transaction comprised of queries to update data in the database 
and sends back an acknowledge message. The two transactions 
are interdependent and are collectively committed. (Note that if 
writing to the database is only to maintain a log for later accesses, 
the application logic transactor does not need to wait for the 
acknowledge message. In this case, only the database transaction 
is dependent on the application logic transaction and therefore, the 
application logic transaction can commit before the database 
transaction is done.) We study the overhead of cluster search and 
collective commit on this case. 

To study the overhead of transactions supported by 

Transactors over pure transactions, we have adopted Kmeans 

clustering and Genome sequencing benchmarks from the Stanford 

transactional benchmark suite [23] and have programmed them in 

Scala using our Transaction and Transactors libraries. 

The experiments are done on Intel(R) Core(TM)2 Duo CPU 

T7250 @2.00GHz and Linux 2.6.31-21-generic #59-Ubuntu. 

Scala version is 2.7.7.final (Oracle Java HotSpot(TM) Server VM, 

Java 1.6.0_17). TE for ML patch is on OCaml 3.08.1. Oracle 

MySQL version is 14.14 distribution 5.1.41. The database 

connector is MySQL Connector/J v.5.1.13. All the reported 

numbers are after warmup and are averages of results from 

repeated experiments. 

6.2. Measurements 

Message Passing Performance  The first experiment compares 
the performance of the unique id generator server in Transactors 
and in TE for ML over different number of repetitions of the 
client transaction. The same thread repeats the client transaction. 
(New threads are not launched for each repetition.) In this 
experiment, the number of requests of the client transaction is 
constant (equal to 2). Performance ratio represents the 
performance of Transactors divided by the performance of TE for 



ML. The two lines in Figure 8 show the performance ratio of the 
two implementations of Transactors over the implementation of 
TE for ML. The performance ratio increases with the number of 
client iterations. 

The second experiment compares the performance of the 

server case over different number of requests of the client 

transaction. In this experiment, the number of repetitions of the 

client transaction is constant (equal to 40). Figure 9 shows the 

performance ratio of each of the implementations of Transactors 

over the implementation of TE for ML. As the number of requests 

increase, the performance ratio grows fast. (The two curves 

overlap at this scale.) 

Overhead of Cluster Search and Collective Commit  In this 

experiment, the application logic transactor maintains the set of 

papers and the map of each author to her set of papers. Upon 

addition of a new paper, the application logic transactor updates 

the papers set and the author-to-papers map. The database 

transactor inserts a row to the Paper table, gets the unique id 

assigned to the paper and for each author, inserts a row to the 

PaperAuthor table. We measure the time of the application logic 

transaction for insertion of a paper with four authors. Table 1 

shows the percent of time that is spent in the cluster search and 

collective commit procedures. 

Overhead over Pure Transactions  Atomic blocks of 

Transactors provide opacity just like atomic blocks of basic 

memory transactions. Therefore, Transactors can be used 

wherever basic transactions are used. But as Transactors support 

communication, there is an overhead. We study this overhead on 

Kmeans clustering and Genome sequencing benchmarks. Each of 

our implementations of Transactors is based on an implementation 

of memory transactions. We compare the performance of each 

implementation of Transactors over the implementation of the 

memory transactions that it is based on. The performance 

overhead for the Kmeans and Genome cases over different input 

sizes is shown respectively in Figure 10 and Figure 11. The 

experiments show that the overhead is below ten percent. 

6.3. Assessment 

Message Passing Performance  In the first experiment, the 

performance ratio increases with the number of client iterations. 

This is because Transactors use a constant number of threads. On 

the other hand in TE for ML, to support the completeness 

property, when a thread receives on a channel, every message that 

has been sent to the channel should be tried by a search thread. As 

the messages that are sent to a channel increase, the number of 

search threads for a receive statement increases and affects 

performance. 
In the second experiment, in the executions with more requests 

in the client transaction, more messages are sent to the server 
channel. As mentioned for the first experiment, in TE for ML, 
increase in the number of messages that are sent to a channel 
affects performance of receive statements on the channel. 
Furthermore, for clients that send more requests, more 
chooseEvt statements are executed at the server thread. The 
number of search threads that reach a chooseEvt statement are 
doubled to try each branch. In effect, the exponential number of 
search threads aggravates the performance of TE for ML. 

As mentioned before, TE for ML is inherently inefficient as its 
semantics requires finding the successful matching which is NP-
hard. The measurements indicate that Transactors provide up to a 
thousand times faster communication than TE for ML. 

Overhead of Cluster Search and Collective Commit  The 
overhead in the implementation based on DSTM2 is relatively 
low. The overhead of the collective commit procedure in the 
implementation based on TL2 is relatively high due to the time 
consuming procedure of checking existence of an order of 
commitment that respects moverness. This procedure is the hot 
spot to be optimized. 

Overhead over Pure Transactions  In our implementations, 
special care is devoted to optimization of the paths that are passed 
by transactions that do not send or receive messages. The 

 
Figure 8. Server – Performance over Client Iteration Count 

 
Figure 9. Server – Performance over Service Request Count 

Table 1. Percent of Total Time Spent in Cluster Search and 

Collective Commit 

 Cluster Search Collective Commit 

Xactors (DSTM2) 2.5 8.6 

Xactors (TL2) 3.6 19.3 

 
Figure 10. Kmeans Clustering – Performance Overhead 

 
Figure 11. Genome Sequencing – Performance Overhead 
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measurements suggest that Transactors add less than ten percent 
overhead to non-communicating transactions. 

7. Conclusion 

This paper presents CMT that defines the semantics of 

transactional communication. The usefulness of CMT is shown by 

expressing three fundamental communication idioms. It is proved 

that the semantics satisfies opacity and communication safety. 

The semantics is implemented on top of two implementations of 

memory transactions. The experiments show that the 

implementations provide considerably efficient communication 

and add low overhead to non-communicating transactions. 
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9. Appendix 

The semantics uses a notion of right moverness [18] that we 

define here. Let  denote all the possible states of the store . 

Let  denote the set of registers. For each , let 

 denote the set of methods of . For ,  

and , let  denote the state transition from  to  

by calling  on that returns value . Right moverness is defined 

as follows: 
 

 

  

According to the above definition, the right moverness 
relations are: 

 

 

 

 
Note that  is not correct. 

Now we define right moverness for sequences of method calls. 

Let  denote a sequence of method calls on registers  (that is 
). Let  denote the concatenation 

of the two sequences  and . Let  denote the th method call 
in the sequence . Let  denote the sequence of the first  
method calls in the sequence . Let  denote multiple step 
transitions by . That is if  then 

. Lifted right moverness is 

defined as follows: If  and  are two 

sequences of methods then 
  

  

Note that although  is not correct, 

 is correct. 
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10. Properties 

10.1. Opacity 

10.1.1. Definitions 

DEFINITION 3:  of a sequence of reductions by : 

Intuitively,  of a sequence of reductions by  is the sequence of labels of the reductions. 

 

 

 

       

 

 

 

 

 

 

DEFINITION 4:  of a sequence of reductions by : 

Intuitively,  of a sequence of reductions by  is the sequence of labels of the reductions except send and receive labels. 

 

 

 

       

 

 

 

 

 

 

 

 

DEFINITION 5: Object  is a stateless random value generator1 with a single method . 

The method  is semantically right mover to methods of any object and methods of any object are right mover to it. 

 

 
 

DEFINITION 6: 

We define that two sets (or sequence of) methods are equivalent ( ) iff the difference of the two is only calls to method  of  

object. 

Formally: 

 

                                                                 
1 A stateless random value generator can generate different values according for example to the time that it is called and state of other 

objects in the memory.  



 

The definition can also be lifted to commit sequences. 

 

 

 

LEMMA 1: 

 

PROOF: 

Direct from DEFINITION 5 (that  is statelesss) and DEFINITION 6. 

 

LEMMA 2:  

 
PROOF: 

Direct from DEFINITION 6 and that DEFINITION 5 (that  is stateless). 

 

DEFINITION 7: We define the transformation function  on statements as follows: 

 

 

 

 

 

 

 

 

 

DEFINITION 8: 

Transactions: 

“Every transaction has a unique identifier from a set, . Every transaction is initially live and may eventually become 

either committed or aborted” PPoPP’08 

 

DEFINITION 9:  

Transaction History: 

“History is the sequence of all invocation and response events that were issued and received by transactions in a given execution.” 

PPoPP’08 

“  denotes the longest subsequence of history  that contains only events executed by transaction .” PPoPP’08 

 denotes the longest subsequence of history  that contains only operations on object o. 

 denotes the longest subsequence of history  that does not contains operations on object o. 

 “  denotes the concatenation of histories  and .” PPoPP’08 

“We say that a transaction  is in history H, and write , if  is a non-empty sequence.” PPoPP’08 

A history is well-formed if for each transaction , no event follows commit or abort event in . 

 

DEFINITION 10: 

Equivalence of Histories: 

“We say the histories  and  are equivalent and write , if, for every transaction , .” PPoPP’08 

 

DEFINITION 11:  

Happen-before Relation: 

“For every history , relation  is the partial order on the transactions in , such that, for any two transactions , if  is 

completed and the first event of  follows the last event of  in , then .” PPoPP’08 

Concurrent Transactions: 

“We say that transactions  are concurrent in history  if they are not ordered by the happen-before relation , i.e., if  

and .” PPoPP’08 

Preservation of Real-time Order: 

“We say that a history  preserves the real-time order of a history , if . That is, if , then , for any two 

transactions  and  in .” PPoPP’08 

 

DEFINITION 12: 

Sequential History: 

“A (well-formed) history  is sequential if no two transactions in  are concurrent.” PPoPP’08 

(That is for each pair of transactions , either  or .) 

 



DEFINITION 13: 

Complete Transaction: 

“We say that a history  is complete if  does not contain any live transaction.” PPoPP’08 

Complete histories set: 

A history  is in  if  is well-formed and every transaction that is live in  is aborted in . 

 

DEFINITION 14: 

All-committed sequential history: 

A sequential history  is all-committed, if all the transactions of  except possibly the last one are committed. 

Filtered history: 

Filtered history for transaction  in a sequential history  is the largest subsequence  of  such that for every transaction , either 

(1)  or (2)  is committed in  and . A filtered history is an all-committed history. 

 

DEFINITION 15:  

Legal histories and transactions: 

An all-committed sequential history  is legal if for each , . (where  denotes sequential specification of ) 

 

DEFINITION 16:  

A transaction in a sequential history  is legal if the filtered history for  in  is legal. 

 

DEFINITION 17: 

Opacity: 

“A history  is opaque if there exists a sequential history  equivalent to some history in , such that 

(1)  preserves the real-time order of , and (2) every transaction  is legal in .” PPoPP’08 

 

10.1.2. Property Statement 

THEOREM 2 (Opacity).  Every sequence of labels , ,  and  given by  started from  is opaque. 

Formally: 

If 

                              
                              
then  

     is opaque. 

 

Proof: 

By LEMMA 3 on 

     

     

it is concluded that 

     
                              

                              
 

We define 

                              
 

From 

     

     

it is concluded that 

                              
 

By THEOREM 1 on 

     

     

it is concluded that 

     is opaque.                          

 

By LEMMA 6 on 

     



     

it is concluded that 

     is opaque. 

 

10.1.3. Helper lemmas 

THEOREM 1 (Opacity).  Every sequence of labels , ,  and  given by  started from  is opaque 

Formally: 

If 

     

     
then 

     is opaque. 

Proposition 6.2 of [15] 

 

LEMMA 3:  

If 

                               
                                
then 

      
         
      
 

PROOF: 

By definition 

                                

                                

 
We define 

                                

                                

                                

 
 
It is trivial that  

                                
 

From 

      

      
      
      

it is concluded that 

      
           

                       
 

By LEMMA 4 on 

      

      

      

      

      
      

      

it is concluded that 

      
                  

                  



                  
      
           

                       
                  

 

The conclusion is: 

     1 

      

 

 

LEMMA 4: 

If 

                               
                                
                                

                                

                                

      
           

                       
                                

then 

      
      

         
      
      
           

           
      

 

PROOF: 

Induction on the length of  

1. Base case: 

     Length of  is zero. 

                                    
                                    
 
          From 

                
                
                
          it is concluded that 

                                         
                                         

                                         

 
          By DEFINITION 4 on  

                                         
 
          From 

                
                
          it is concluded that 

                                         

 
          We define 

                                         



                                         
 
          From 

                

                
                
          it is concluded that 

                                         
                                         

                                         

 
          From 

                

                
          it is concluded that 

                                         

 
          From 

                

                
                
          it is concluded that 

                                         

 
          From 

                

                

          it is concluded that 

                                         

 
          We define 

                     (that is equal to )                    
 
          By DEFINITION 3 and : 

                                         
 
          From 

                
                
          it is concluded that 

                                         

 
          From 

                
                
                
          it is concluded that 

                
                

                     
 
          The conclusion of this case is 

                
                
                
                
                
 
2. Inductive case: 

     Induction hypothesis: 



          If 
                                         
                                          
                                          

                                          

                                          

                
                     

                                 
                                          

          then 

                
                

                   
                
                
                    

                    
                

 
     From 
           
     it is concluded that 

                                    
 
     We define 

                                     

                                     
                                     
 

     From DEFINITION 4 on 

           

           
           

           

     it is concluded that 

                                     
 

     By induction hypothesis on 

           

           

           

           

           

           

           

     it is concluded that 

           
                                     

                                     

                                     
            
                 

                             
                                     

 

     By LEMMA 5 on 

           

           

           



           

           

           

     it is concluded that 

           
                                     

                                     

                                     
           
               

                       
                                     

 

     We define 

                                     

 

     From 

           

           
           

     it is concluded that  

                                     

 

     From 

          DEFINITION 3 

           
           

           
     it is concluded that 

                                     

 

     From 

           
           
     it is concluded that 

                                     

 

 

     The conclusion for this case is: 

           

           

           

           

           

 

 

LEMMA 5: 

If 

                                
                                

                                

                                

      
           

                       
                                

then 

      
      

      



      
      
           

           
      

 
PROOF: 

Case Analysis on : 

      1. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

          From 

                             

          it is concluded that 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

                                         
 

          From DEFINITION 7, it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                                         



 

          We define 

                                         

                                         

                                         

      
          From 

                

                

                

                

                

                

          it is concluded that 

                                         

 

          From 

                

                

                
          it is concluded that 

                
          We define 

                                         

 

          By DEFINITION 3 on  

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

          it is concluded that 

                

                

                     
 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                



                

          it is concluded that 

                

                

                     
 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

 

      2. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                (Note that ) 

                

          it is concluded that 

                                         

 

          From DEFINITION 7, it is concluded that 



                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                                         

 

          We define 

                                         

                                         

                                         

      
          From 

                

                

                

                

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                

          Therefore, there exists  such that 

                                         
 

          By DEFINITION 3 on  

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                



                

                

          it is concluded that 

                

                

                     

 

          From 

                

                

                

          it is concluded that 

                

                

                     

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

 

      3. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

                



          it is concluded that 

                                         

                

          From 

                

                

          it is concluded that 

                                         

                                         

 

          From DEFINITION 7, it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                            

 

          We define 

                                         

                                         

                                         

      
          From 

                

                

                

                

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                

          therefore, there exists  such that 

                                         
 

          By DEFINITION 3 on  

                                         
 

          From 

                

                



          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

          it is concluded that 

                

                

                     

 

          From 

              DEFINITION 6 

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

                

          it is concluded that 

                

                

                     

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

 

      4. Case : 



                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

                                     

                                     

               

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

          it is concluded that 

                

          Thus from 

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

                                         

 

          From DEFINITION 7, it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          We define 

                               

                                         

                                         

               (  is for helper.) 

 

          From 

                

               6 

          it is concluded that 

                                         



 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          We define 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          We define 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

              LEMMA 2 

          it is concluded that 

                                         

 

          We define 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

                

              DEFINITION 6 

          it is concluded that 

                                         

 

          From 

                

                

              LEMMA 1 



          it is concluded that 

                                         

 
          From 

                

                

              LEMMA 1 

          it is concluded that 

                                         

           

          We show that: 

                                         

              First, we show that the condition of the reduction: 

                                             

              is valid.  

 

                  From 

                        

                  it is concluded that 

                                                 

 

                  From 

                        

                  it is concluded that 

                                                 

 

                  From 

                        

                        

                  it is concluded that 

                                                 

                  that is equivalent to 

                                                 

 

                  From 

                        

                        

                  it is concluded that 

                                                 

                       that is the conclusion ( ). 

 

              Second, we show that the result of the reduction is : 

                                             

 

                 From 

                        

                        

                        

                 it is concluded that 

                        

                                        

 

                  By the rule : 



                        

       

 

 

                  

 

                  can be rewritten as                          

                   

 

                  From definition of  

                                                

 

                  From definition of  

                                                

 

                 From 

                        

                        

                        

                        
                 it is concluded that 

                        

                               

 

                 From 

                        

                 it is concluded that 

                                   

 

                 From 

                        

                 it is concluded that 

                                                 

 

                 From 

                        

                 it is concluded that 

                                                 

 

                 From 

                        

                        

                        

                        

                        

                 it is concluded that 



                                                 

                       That is the conclusion ( ). 

 

          From 

                

          it is concluded that 

                                         

 

 

          From 

                

                
          it is concluded that 

                                        

 

          From 

                

                

                

                

                

                

                

          it is concluded that 

                                         

 

          We define 

                                         

 

          From 

                

                

                

          it is concluded that 

                                          

 

          From 

                

           there exists  

                                          

 

          By DEFINITION 3, definition of , on  

                                           

 

          From 

                

           it is concluded that 

                                           

 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                



          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         

 
          From 

                

                

                

          it is concluded that 

                

                

                               

 

 

          It is trivial that 

                                         

 

          From DEFINITION 7 

                                         

 

          From 

                

                

                

                

                

          it is concluded that 

                

                

                               

 

          The conclusion of this case is: 

                

                

                

                

                

 

 

      5. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 



          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

                                         
 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                                         

 

          We define 

                                         

                                         

                                         

      
          From 

                

                

                

                

                

                

          it is concluded that 

                                         

 
          From  

                

                

                

          it is concluded that 

                
          We define 

                                         

 

          By DEFINITION 3 on  



                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

          it is concluded that 

                

                

                     

 

          From 

                

                

                

          it is concluded that 

                

                

                

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

 

      6. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     



 

          From DEFINITION 4 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

                                         

 

          From DEFINITION 7, it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                                         

 

          We define 

                                         

                                         

                                         

 

          It is obvious that 

                                         
 
          From 

                

                

          it is concluded that 

                                         

 
          From 



                

                

                

                

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                

          We define 

                                         

 

          By DEFINITION 3 on  

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

          it is concluded that 

                

                

                

 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

                

          it is concluded that 

                

                

                

 

          From 

                



                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

 

      7. Case : 

      We define  to be number of the thread that reduction is done in. 

                                     

                                     

                                     

                                     

                                     

                                     

 

          From DEFINITION 4 

                                         

 

          From 

                

          it is concluded that 

                                         

 

          We define  to be the statement that  is mapped to in . Therefore, we have 

                                         

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         

                                         

 

          From DEFINITION 7, it is concluded that 

                                         

 

          From 

                

                

          it is concluded that 

                                         



 

          From 

                

          it is concluded that  is of the form (there exists a  such that) 

                                         

 

          From the rule , it is concluded that 

                         

                
 

          As, by definition,  is stateless  

                                         

 

          The random value generator can generate any value (The assumptions are true for any value that it generates.). If it generates : 

                                         

 

          From 

                

                

                

          it is concluded that 

                            

 

          We define 

                                         

                                         

                                         

 
          From 

                

                

                

                

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                
          We define 

                                         

 

          By DEFINITION 3 on  

                                         
 

          From 

                

                
          it is concluded that 

                                         



 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

          it is concluded that 

                

                

                

 

          From 

                

                

          it is concluded that 

                                         

 

          By DEFINITION 6 

                                         

 

          From 

                

                

          it is concluded that 

                                         
 

          From 

                

                

                

                

          it is concluded that 

                

                

                

 

          From 

                

                

          it is concluded that 

                                         

 

          From 

                

                

                

          it is concluded that 

                                         

 

          The conclusion of this case is 

                

                

                

                

                

  



LEMMA 6:  

If  

    a history  is opaque,                          

then 

    for every object , the history  is also opaque. 

 

Proof: 

By DEFINITION 17 on 

     

there exists a sequential history  equivalent to some history  in , such that                          

     preserves the real-time order of ,                          

    every transaction  is legal in .                          
 
It is trivial that 

                              

    If  is an equivalent sequential history for    is an equivalent sequential history for                           
    If  preserves the real-time order of ,  preserves the real-time order of .                          

 

From 

     

     

     

it is concluded that 

    there exists the sequential history  equivalent to some history  in                           

 

From 

     

     

it is concluded that 

     preserves the real-time order of .                          

 

By DEFINITION 16 on 

     

it is concluded that 

    For every transaction  

        the filtered history for  in  is legal.                          

 

By DEFINITION 15 on 

     
it is concluded that 

    For every transaction  

        for each , .   (where  is filtered history for  in )                       

 

From 

     
it is concluded that 

    For every transaction  

        for each , .   (where  is filtered history for  in )                       

 

By DEFINITION 15 on 

     
it is concluded that 

    For every transaction  

        the filtered history for  in  is legal.                          

 

By DEFINITION 16 on 

     
it is concluded that 

    every transaction  is legal in .                          
 

By DEFINITION 17 on 



     

     

     

it is concluded that 

    the history  is also opaque. 

 

  



10.2. Communication Safety 

10.2.1. Definitions 

DEFINITION 18: Let  be the smallest partial order of  such that . 

 

DEFINITION 19: Define  iff . 

 

DEFINITION 20: Define  

 

DEFINITION 21: Dependency respect: 

A configuration is dependency-respecting iff 

for each dependency in the configuration, the dependent transaction is committed only if the depended transaction is committed. 

Formally: 

Suppose 

  

 

. 

 

DEFINITION 22: State-consistency 

A configuration is state-consistent iff 

for every transaction that is running, its state is running and 

for every transaction id, there is at most one running transaction. 

Formally: 

Suppose 

  

 

 
 

. 

 

10.2.2. Property Statement 

THEOREM 3: Communication Safety: An initial configuration  cannot execute to an unsafe configuration. 

PROOF: 

By contradiction on LEMMA 7. 

 

10.2.3. Helper Lemmas 

LEMMA 7:  

At any runtime state, if a receiver is committed, the sender is committed.  

Formally: 
If 

        EQ. 1 

        EQ. 2 

then 

 
 

 

PROOF: 
By LEMMA 8 on 

EQ. 1 

EQ. 2 

it is concluded that 

        EQ. 3 

 
By DEFINITION 21 on 

EQ. 2 

EQ. 3 
it is concluded that 

        EQ. 4 



 

By LEMMA 13 on 

EQ. 1 

EQ. 2 
it is concluded that 

        EQ. 5 

 

From 

EQ. 4 

EQ. 5 
it is concluded that 

        EQ. 6 

 

 

LEMMA 8: Every execution from an initial configuration leads to a dependency-respecting and state-consistent configuration. 

Formally: 
If 

        EQ. 7 

        EQ. 8 

then 

 

 

 

PROOF: 

Induction on the length of : 

Base case: 

By definition  

Thus 

        EQ. 9 

 

From 

EQ. 9 

it is concluded that 

        EQ. 10 

 

By DEFINITION 21 on 

EQ. 10 
it is concluded that 

        EQ. 11 

 

By definition  

Thus 

        EQ. 12 

 

From 

EQ. 12 

it is concluded that 

 

 

 

       EQ. 13 

By DEFINITION 22 on 

EQ. 13 

it is concluded that 

        EQ. 14 

 

The conclusion for this case is 

EQ. 11 

EQ. 14 

 

Inductive case: 

Induction hypothesis: 



If 

 

 

then 

 

 

 

From 

EQ. 7 

it is concluded that 

        EQ. 15 

        EQ. 16 

 

We define 

        EQ. 17 

        EQ. 18 

 

By induction hypothesis on  

EQ. 17 

EQ. 18 

it is concluded that 

        EQ. 19 

        EQ. 20 

 

By LEMMA 9 on 

EQ. 16 

EQ. 19 

EQ. 20 

it is concluded that 

 

 

 

 

LEMMA 9: The operational semantics preserves dependency-respect and state-consistency. 

Formally: 

 If 

        EQ. 21 

        EQ. 22 

        EQ. 23 

then 

 

 

 

PROOF: 

We define 

        EQ. 24 

        EQ. 25 

 

Consider an arbitrary transaction id  

Suppose         EQ. 26 

 

We show that 

        EQ. 27 

We consider two cases: 

If         EQ. 28 

From 

EQ. 24 

EQ. 25 

EQ. 28 



EQ. 26 

 is the only rule that updates the state of a transaction in  to , 

it is concluded that 

the reduction of EQ. 21 is done by the  rule. 

From the  rule, it is concluded that 

        EQ. 29 

        EQ. 30 

        EQ. 31 

        EQ. 32 

 

Replacing  with  and 

substituting 

EQ. 30 

EQ. 32 

in EQ. 31, we have 

        EQ. 33 

 

From 

EQ. 29    

it is concluded that 

        EQ. 34 

        EQ. 35 

 

Substituting 

EQ. 34 for the first disjunct and 

EQ. 35 for the second disjunct  

of EQ. 33 

it is concluded that 

        EQ. 36 

 

Simplifying EQ. 36 

it is concluded that 

        EQ. 37 

that is equivalent to 

        EQ. 38 

 

If         EQ. 39 

 

From DEFINITION 21 on 

EQ. 22 

EQ. 24 

it is concluded that 

        EQ. 40 

 

From 

EQ. 39 

EQ. 40 

it is concluded that 

        EQ. 41 

 

By DEFINITION 22 on 

EQ. 23 

EQ. 24 

it is concluded that 



        EQ. 42 

 

By LEMMA 10 on 

EQ. 21 

EQ. 24 

EQ. 25 

EQ. 39 

EQ. 42 

it is concluded that 

        EQ. 43 

 

From 

EQ. 41 

EQ. 43 

it is concluded that 

        EQ. 44 

 

By LEMMA 12 on 

EQ. 21 

EQ. 24 

EQ. 25 

EQ. 42 

it is concluded that 

        EQ. 45 

 

From DEFINITION 19 and DEFINITION 18 on 

EQ. 45 

it is concluded that 

        EQ. 46 

 

From 

EQ. 44 

EQ. 46 

it is concluded that 

        EQ. 47 

 

From 

EQ. 26 

EQ. 27 

it is concluded that 

        EQ. 48 

That is equivalent to 

        EQ. 49 

 

By DEFINITION 21 on 

EQ. 25 

EQ. 49 

it is concluded that 

        EQ. 50 

 

By LEMMA 11 on 

EQ. 21 

EQ. 23 

it is concluded that 

        EQ. 51 

 

The conclusion is 

EQ. 50 

EQ. 51 

 

 

LEMMA 10: The set of dependencies of a committed transaction do not change. 



If 

        EQ. 52 

        EQ. 53 

        EQ. 54 

        EQ. 55 

        EQ. 56 

then 

 

 

PROOF: 

Case analysis on EQ. 52 
Case: Six Rules (Rules other than ): 

        EQ. 57 

Therefore 

 

Case: Rule : 

Form rule  on 

EQ. 53 

EQ. 54 

it is concluded that 

        EQ. 58 

        EQ. 59 

        EQ. 60 

 
By DEFINITION 20 on 

EQ. 59 

EQ. 67 

it is concluded that 

        EQ. 61 

 

From 

EQ. 56 

EQ. 61 

it is concluded that 

        EQ. 62 

 

From 

EQ. 55 

EQ. 62 

it is concluded that 

        EQ. 63 

 

From 

EQ. 60 

EQ. 63 

it is concluded that 

 

 

 

LEMMA 11: The semantics preserves state-consistency. 

If 

        EQ. 64 

        EQ. 65 

then 

 

 

PROOF: 

Suppose 

        EQ. 66 

        EQ. 67 



 

By DEFINITION 22 on 

EQ. 65 

EQ. 66 

it is concluded that 

        EQ. 68 

        EQ. 69 

 

We show that 

        EQ. 70 

Case analysis on EQ. 66 

Case , , , , , : 

In each of these rules, we have 

        EQ. 71 

 
From 

EQ. 69 

EQ. 75 
it is concluded that 

        EQ. 72 

 

Case : 

From the  rule, we have 

        EQ. 73 

        EQ. 74 

 
From 

EQ. 69 

EQ. 73 

EQ. 74 

it is concluded that 

 

 

It remains to show that 

        EQ. 75 

We proceed by  
Case analysis on the rule used to derive : 

Cases , , , , , : 

In each of these rules, we have  

, and if  

we let  be  restricted to  and 

we let  be  restricted to ,  

then we have 

        EQ. 76 

 

So , from 

EQ. 68 

EQ. 76 

it is concluded that 

 

 

Case : 

We have 

 and  

, where  . 
       EQ. 77 

 

From 

EQ. 68 

EQ. 77 

it is concluded that 

 

 



By DEFINITION 22 on 

EQ. 75 

EQ. 70 

it is concluded that 

 

 

 

LEMMA 12: 

If 

        EQ. 78 

        EQ. 79 

        EQ. 80 

        EQ. 81 

then 

 

 

PROOF: 
Case analysis on the rule used to derive . 

Cases , , , : 

We have , 

Hence . 

 

Case : 

We have  where .   

Hence, , so . 

 

Case : 

we have 

        EQ. 82 

        EQ. 83 

 

From 

EQ. 82 

EQ. 83 

it is concluded that 

        EQ. 84 

        EQ. 85 

 

 

From 

EQ. 83 

EQ. 81 

it is concluded that 

        EQ. 86 

 

From 

EQ. 86 

EQ. 82 

DEFINITION 18  

it is concluded that 

        EQ. 87 

 

From DEFINITION 19 on 

EQ. 84 

EQ. 85 

EQ. 87 

it is concluded that 

 

 

Case of : 

We have 



        EQ. 88 

        EQ. 89 

 

From  

EQ. 88 

EQ. 89 

it is concluded that 

        EQ. 90 

        EQ. 91 

 

From 

EQ. 89 

EQ. 81 

it is concluded that 

        EQ. 92 

 

From 

EQ. 88 

EQ. 92 

DEFINITION 18  

it is concluded that 

        EQ. 93 

 

From DEFINITION 19 on 

EQ. 90 

EQ. 93 

EQ. 91 

we have  

 

 

 

LEMMA 13: The set of dependencies  and the communication relation  are equivalent. 

If  

        EQ. 94 

        EQ. 95 

then 

 

 

PROOF: 

We first show the completeness of : 

 
 
By DEFINITION 1 on 

EQ. 94 

 
it is concluded that 

 

        EQ. 96 

        EQ. 97 

        EQ. 98 

 
The only rule where its label matches  is the rule .Thus, from EQ. 96 we have 

        EQ. 99 

        EQ. 100 

        EQ. 101 

 
From 

EQ. 101 
it is concluded that 

        EQ. 102 

 



From 
EQ. 94 

it is concluded that 

        EQ. 103 

  
We define that 

        EQ. 104 

 
By LEMMA 15 (plus induction on the number of steps) on 

EQ. 103 

EQ. 100 

EQ. 104 

EQ. 98 

it is concluded that 

        EQ. 105 

 
From 

EQ. 102 

EQ. 105 
It is concluded that 

        EQ. 106 

 
The only rule that its label matches  is the  rule. Thus, from EQ. 97 and EQ. 106, we have 

        EQ. 107 

        EQ. 108 

        EQ. 109 

 
From 

EQ. 109 

it is concluded that 

        EQ. 110 

 
Form 

EQ. 94 
it is concluded that 

        EQ. 111 

 
By LEMMA 16 (plus induction on the number of steps) on 

EQ. 111  

EQ. 108 

EQ. 95 

it is concluded that 

        EQ. 112 

 
From 

EQ. 112 

EQ. 110 

it is concluded that 

 

 

We now show the accuracy of : 

We show that 

 

 

We define that for  

        EQ. 113 

 

We accuracy this by proving the stronger property 

 
 



We proceed by induction on : 
Base case: 

By definition  

Thus 

        EQ. 114 

 

From 
EQ. 114 

it is concluded that 

        EQ. 115 

 
Inductive case: 

Induction hypothesis: 

        EQ. 116 

 
 

Suppose :        EQ. 117 

We consider two cases: 

Case :        EQ. 118 

 

By 

EQ. 116 

EQ. 118 

it is concluded that 

        EQ. 119 

 

Case :        EQ. 120 

From 

EQ. 120 

EQ. 117 

The only rule that updates  is the  rule. 

it is concluded that  

 is by the  rule. 

From rule  on 

EQ. 113 

it is concluded that 

        EQ. 121 

        EQ. 122 

 

From LEMMA 14 on 

 

EQ. 113 

EQ. 122 

it is concluded that 

 
  

 

       EQ. 123 

Thus 

 
  

 

       EQ. 124 

 

From 

EQ. 121 

EQ. 124 

it is concluded that 

  

 

 

       EQ. 125 



 

From DEFINITION 1 on 

EQ. 125 

it is concluded that 

 

 

 

LEMMA 14: Every message is sent by a sender. 
If  

        EQ. 126 

        EQ. 127 

        EQ. 128 

then 

 
  

 

 

PROOF: 

First, we show that 

         EQ. 129 

 

Proof by contradiction: If 

         EQ. 130 

That is equivalent to 

        EQ. 131 

That is equivalent to 

        EQ. 132 

 

By definition 

        EQ. 133 

 

Thus 

        EQ. 134 

 
By LEMMA 15 (plus induction on the number of steps) on 

EQ. 126 

EQ. 133 

EQ. 127 

EQ. 132 

it is concluded that 

        EQ. 135 

 

From 

EQ. 128 

EQ. 135 

it is concluded that 

        EQ. 136 

 

There is a contradiction between 

EQ. 134 

EQ. 136 

 

From 

EQ. 129 

let  be the largest possible  that is 

 

 
       EQ. 137 

that is equivalent to 

 

 
       EQ. 138 



that is equivalent to 

 

 
       EQ. 139 

 
 

LEMMA 15: 

If no message is sent to a channel, the value of a channel remains unchanged. 
Formally: 
If  

        EQ. 140 

        EQ. 141 

        EQ. 142 

        EQ. 143 

then 

 
 
PROOF: 
Case analysis on  

Case rule : 

        EQ. 144 

        EQ. 145 

 

We consider two cases 

If         EQ. 146 

From 

EQ. 145 

EQ. 146 

it is concluded that 

        EQ. 147 

That is a contradiction to EQ. 143. 

If         EQ. 148 

From 

EQ. 144 

EQ. 148 

it is concluded that 

        EQ. 149 

Case other six rules: 

In each of these rules: 

        EQ. 150 

Thus: 

        EQ. 151 

 
 
LEMMA 16: 

Dependencies are maintained through the execution. 

Formally: 

If 

        EQ. 152 

        EQ. 153 

        EQ. 154 

then 

 
 
PROOF: 
We proceed by case analysis on the rule used to derive .  For six of the rules, we have , hence .  For the 
seventh rule, , we have , hence . 

 
 
  



11. Updates to the Semantics in Figure 3 

We have fixed a few typos in the syntax and semantics, after personal communication with the authors of [15]. 

11.1. Syntax 

The original grammar is 
 

 Statement 

 Term 

 Command 

 
The problem with the grammar in the original paper is that the grammar defines  as a single statement, while the semantics 
splits it into  and , and reduces them in two different rules. The following two rewritings can be considered for the grammar. 
 

 
 

 
 

 Statement 

 Instruction 

 
If the first one is used, some of 's need to be changed to 's in the semantics. 
If the second one is used, the semantics remains unchanged.  
Programs with nested s and s can be written with the first grammar. Similarly unmatched s and s can be written with the 
second grammar.  The semantics is not intended for these programs. Although this does not have any effect on the correctness of semantics 
and theorems, a pre-phase can filter such programs. 
To have the minimum possible change to the semantics, we selected the second grammar. 

11.2. Operational Semantics 

- The grammar has an  command, while the semantics of  does not change the evaluation flow in the CMD rule. Therefore  is 
removed from the set of commands. 
 
 
- In the definition of ,  is changed to  
It is fixed from 

 
to 

 
 

 

- In the definition of ,  is changed to   

It is updated form  

 

to 

 

 

 

- In the definition of  rule,  is changed to  and  is changed to . 

It is updated form  

 

to 

 

 

 

 

 

  



12. Memory Transactions Implementations 

12.1. DSTM2 

Memory 

   Store of locations:  

      : The last writing transaction of location  

      : The transactions that have read  

      : Primary and shadow values of  

Transactions 

   Each transaction descriptor has 

       
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

12.2. TL2 

Memory 

   : Store of locations 

      : The value of the location  

       is a pairs of  

          has two values 0 and 1. 

          is the writing version of the value 

Transactions 

   Each transaction descriptor has: 

      : Read version 

      : Read set 

      : Write set 

   : Global version clock (strong counter) 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

  



13. Transactors Implementation 

13.1. DSTM2 

DSTM2 allows one writer at a time for each transactional object and therefore, each transactional object maintains two copies of its data. A 
reference to the descriptor of the last writing transaction is saved in the object. The current state of a transactional object is determined 
according to the state of the last writing transaction. With visible reads [13], a list of descriptors of the reader transactions is maintained in 
the transactional object and every read-write and write-write conflict is resolved early when the second operation is requested. A 
transaction is committed by atomically changing the state of its descriptor to committed which effectively updates all the objects that it has 
written. 

We have extended DSTM2 in a similar fashion that we extended TL2; many of the implementation details are highly similar. We will 
now explain only the key difference between the two extensions. The key difference lies in the implementation of commit procedure i.e. 
cluster search and collective commit. 

Cluster Search: The same cluster search algorithm that was explained for TL2 can be employed for DSTM2; but as there is no overhead 
of ordering in the collective commit procedure of DSTM2, a simple depth first traversal can replace the Tarjan algorithm. Getting the set of 
adjacent nodes of each current node is where the cluster search hooks to the depth first search algorithm. Before returning the set of 
adjacent transactions, each adjacent transaction is treated according to its state similar to the cluster search explained in the previous 
section. 

Collective Commit: As the updates should be done atomically, the state lock of descriptor of each transaction is acquired. To prevent 

deadlock, the locks are acquired in the order of the unique numbers of the transaction descriptors. After the locks are acquired, the state of 

each descriptor is checked to be still terminated. This check is done to make sure that none of them was aborted by other transactions 

before all the locks were acquired. If any of them is found to be aborted, the locks are released and the current transaction starts abortion. 

With visible reads and early conflict detection, one of any two conflicting transactions is aborted before termination. As all the transactions 

of the cluster are terminated, they have not had any conflict with each other or other transactions. Therefore, the two moverness conditions 

are satisfied. The collective commitment can be performed. State of the descriptor of each transaction is set to committed and then the locks 

are released.  



14. Transactors Implementation Pseudo Codes 

14.1. Sending and Receiving Messages 

The pseudo code of the send and receive methods are as follows: 
Send: 
def send(msg: T) { 

  val senderTransDesc =  

    thread local variable for transaction descriptor 

  val cell = new Cell(msg, senderTransDesc) 

  if (senderTransDesc != null) { //inside atomic 

    cell.setTentative 

    senderTransDesc.addNotifiable(notifiable) 

  } 

 

  if (isReceiverSuspended) { 

    cellForSuspendedReceiver = cell 

    desuspendReceiver 

  } else 

    mailbox.enqueue(cell) 

} 

 

Receive: 
def receive(): T = { 

  val currentTransDesc = 

    thread local variable for transaction descriptor 

  if (currentTransDesc == null) //outside of atomic 

    a stable cell is required 

  else //inside atomic 

    a non-annihilated cell is required 

     

  iterate the mailbox to find a required cell 

  while (a required cell is not found) { 

    suspend 

    cell = cellForSuspendedReceiver 

    if (the cell is not a required cell) 

      mailbox.enqueue(cell) 

  } 

 

  val msg = cell.message 

   

  if (currentTransDesc == null) //outside of atomic 

    return msg 

   

  val senderTransDesc = cell.senderTransDesc 

 

  if (!cell.isStable) { 

    currentTransDesc.addDependency(senderTransDesc) 

    senderTransDesc.addNotifiable(currentTransDesc) 

  } 

 

  currentTrans.backupCell(cell) 

 

  msg 

} 

14.2. Abortion 

def abortion { 

  val currentTransDesc = 

    thread local variable for transaction descriptor 

 

  for each cell in the backup cells 

    if (!cell.isInvalid) 

      mailbox.enqueue(cell)   

 

  currentTransDesc.notifyNotifiersOfAbortion 

} 

14.3. Termination 

def termination { 

  thisTransDesc.setTerminated 

  var state = TERMINATED; 

  do { 

    try { 

      commitment() 

    } catch {  

      case we: WaitException ={ 

        thisTransDesc.waitForEvent 

        thisTransDesc.getEvent match { 

          case ABORT = 

            state = ABORTED 

          case DEP_RESOLVE => 

            ; // Retry collectiveCommit 

          case COMMIT => 

            state = COMMITTED 

        } 

      } 

      case we: AbortException ={ 

        state = ABORTED 

      } 

    } 

  } while (state == TERMINATED) 

  if (state == ABORTED) 

    abort() 

} 

14.4. Commitment 

def commitment { 

  val cluster = clusterSearch(thisTransDesc) 

  collectiveCommit(cluster) 

} 

14.4.1. DSTM2 

14.4.1.1. Cluster Search 

def clusterSearch(node: Node) { 

   return depthFirstSearch(node) 

 

   def depthFirstSearch(node: Node): Set[Node] = { 

      // ... 

      // Uses the getNeighbors method below 

      // Return the set of visited nodes 

   } 

} 

 

def getNeighbors = { 

  val deps = transDesc.getDependencies 

  val neighbors = Set[Node]() 

  for (depTransDesc <- deps) { 

    if (transDesc.isActive) 

      throw new WaitException 

    if (transDesc.isAborted) 

      throw new AbortException 

    if (!depTransDesc.isCommitted) 

      neighbors += depTransDesc 

  } 

  neighbors 

} 

 

14.4.1.2. Collective Commit 

def collectiveCommit(cluster: Set[Node]) { 

  sort transaction of the cluster according to their id 

  for each transDesc of the cluster in the order 

    transDesc.acquireStatusLock 

  for each transDesc of the cluster 

    if (transDesc.status != running) { 

      for each transDesc’ of the cluster 

        transDesc’.releaseStatusLock 

      throw new AbortException 

    } 

  for each transDesc of the cluster { 

    transDesc.status = Committed 

    transDesc.notifyNotifiablesOfCommitment 

  }  

  for each transDesc of the cluster 

    transDesc.releaseStatusLock 

} 

14.4.2. TL2 

14.4.2.1. Cluster Search 

def clusterSearch(node: Node) { 



   val sccs = Set[Set[Node]] 

   tarjan(node) 

   if (sccs.size == 1) 

      throw new AbortException 

   val scc = the only element of sccs 

   return scc 

 

   def tarjan(node: Node): Set[Set[Node]] = { 

      node.index = index 

      node.lowlink = index 

      index += 1 

      stack.push(node) 

      for (n <- node.getNeighbors) { 

         if (n.index == initialValue) { 

            tarjan(n) 

            node.lowlink = min(node.lowlink, n.lowlink) 

         } else 

            node.lowlink = min(node.lowlink, n.index) 

         if (node.lowlink == node.index) { 

            var n: Node = null 

            do { 

               n = stack.pop 

               scc += n 

            } while (n != node) 

            sccs += scc 

         } 

      } 

   } 

} 

 

def getNeighbors = { 

  val deps = transDesc.getDependencies 

  val neighbors = Set[Node]() 

  for (depTransDesc <- deps) { 

    if (transDesc.isActive) 

      throw new WaitException 

    if (transDesc.isAborted) 

      throw new AbortException 

    if (!depTransDesc.isCommitted) 

      neighbors += depTransDesc 

  } 

  neighbors 

} 

14.4.2.2. Collective Commit 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

   



15. Implemented Cases 

15.1. Barrier 

Consider the following example: Barrier, the simplest thread coordination abstraction  

15.1.1. retry 

The following is the implementation of barrier with memory transactions (with Haskell retry mechanism) that we adopted from [28]. 
class Barrier(partiesCount: Int) { 

   val count = new TInt(0) 

   def await() { 

      atomic { 

         count.value = count.value + 1 

      } 

      atomic { 

         if (!(count.value == partiesCount)) 

            retry 

      } 

   } 

} 

class Party(barrier: Barrier) extends Thread { 

   override def run { 

      // Do before await 

      barrier.await 

      // Do after await 

   } 

} 

The field count counts the number of parties that have called the await method. There are two atomic blocks in the await method. The 
first one increments the value of count. The second one waits for equality of count to the number of expected parties, partiesCount that is 
initialized in the constructor. If the condition is not true, retry aborts the transaction and suspends the thread until count, the only object 
that is read in the previous execution of the transaction, is updated. When the value of count is incremented to partiesCount, all of the 
suspended parties retry the atomic block and as the condition is satisfied, pass the atomic block. Effectively, the parties continue together 
after calling the await method. 

The implemented Barrier works properly if the await method is not called inside a transaction. But consider the following class that 
calls await inside an atomic block. 
class TParty(barrier: Barrier) extends Thread { 

   override def run { 

      atomic { 

         // code before await 

         barrier.await  

         // code after await 

      } 

   } 

} 

According to closed nesting semantics, the nesting can be syntactically written as follows: 
atomic { 

   // code before await 

   count.value = count.value + 1 

   if (!(count.value == partiesCount)) 

      retry 

   // code after await 

} 

 

If the parties call the await method of Barrier inside nested atomic blocks, they can not progress. Intuitively, this is because the 

semantics of TM [10] requires an equivalent sequential order of transactions while in this case, each of the parties needs to observe updates 

of other parties to count before it can progress and commit. 

15.1.2. TIC 

A solution to this problem called TIC is offered by Smaragdakis et al. [28]. TIC commits the transaction and starts a new one before the 
wait statement. By their terminology, the transaction is punctuated before the wait statement. Committing before the wait statement 
exposes updates to other transactions and thus provides means of communication. But punctuation of an atomic block breaks its isolation. 
Furthermore, if an atomic block  is inside method  and  is called by another method  inside a nesting atomic block , 
punctuating  breaks isolation of not only  but also . To make this break explicit to the programmer, TIC designed a type system that 
tracks methods that contain punctuated atomic blocks. If the programmer wants to call such methods in an atomic block, the type system 
forces him to call it inside expose() and to write code to compensate breaking of isolation in an establish{} block. The barrier case is 
implemented as follows in TIC: 
 
class TICBarrier(partiesCount: Int) { 

   val count = new TInt(0) 

   def await() { 

      atomic { 

         count.value = count.value + 1 



         wait(count.value == partiesCount) 

      } 

   } 

} 

class TParty(barrier: TICBarrier) extends Thread { 

   override def run { 

     atomic { 

         // Do some job 

         expose (barrier.await) 

         establish { //... } 

         // Do some other job 

     } 

   } 

} 

Even if any compensation is possible, re-establishing local invariants is a burden on the programmer. More importantly, TIC breaks 
isolation to provide communication while isolation is the main promise of TM. Actually, TIC regards communication the same as I/O. Side 
effects caused by I/O operations are out of control of TM runtime system; thus they cannot be rolled back and retried. In contrast to I/O, 
proper mechanisms can be designed to perform communications tentatively and to discard and retry them on aborts. Our proposal provides 
the programmer with the facility to send and receive messages inside transactions. 

15.1.3. Transactors 

The transactions of parties need to communicate with each other before they are finished. We observe that to preserve isolation of 

transactions, a means of communication other than shared variables is needed so that the transactions can communicate tentatively before 

they are committed.  

A class called BarrierActor that extends the base class Transactor is defined inside Barrier class. In the act method of BarrierActor, 

inside an atomic block, BarrierActor waits to receive JoinNotificationRequest message from the parties and adds the sender transactor 

of each received message to parties set. After receiving the request form partiesCount parties, it sends a JoinNotification message to 

all the parties in parties set. On construction of a Barrier, a new object called barrierActor of type BarrierActor is created and started. 

When a party calls the await method on a Barrier object, it sends a JoinNotificationRequest message to the barrierActor and waits to 

receive a JoinNotification message. 

To see composability of the abstraction and the interactions of transactions, we compose the await method inside an atomic block. 
class Barrier(partiesCount: Int) { 

   class BarrierActor extends Transactor { 

      override def act { 

         atomic { 

            val parties = Set[Transactor]() 

            for(i <- 0 until partiesCount) 

               receive { 

                  case r: JoinNotificationRequest => 

                     parties += r.sender  

               } 

            for(party <- parties) 

               party ! new JoinNotification 

         } 

      } 

   } 

   val barrierActor = new BarrierActor  

   barrierActor.start  

   def await() { 

      barrierActor ! new JoinNotificationRequest  

      self.receive { case JoinNotification =} 

   } 

} 

class TParty(barrier: Barrier) extends Transactor { 

   override def act { 

      atomic { 

         // Do before await 

         barrier.await  

         // Do after await 

      } 

   } 

} 

15.1.4. TE for ML 

15.1.4.1. Implementation 1 

let client bc =  

   let cc = newChan() in 

      (thenEvt  

          (sendEvt bc cc) 

          (fun _ -recvEvt cc) 

      ) 

;; 

 



let leader bc = 

    (thenEvt (recvEvt bc) 

       (fun cc1 -(thenEvt (recvEvt bc) 

          (fun cc2 -(thenEvt (sendEvt cc1 ()) 

             (fun _ -(sendEvt cc2 ())) 

          )) 

       )) 

    ) 

;; 

 

let barrier bc = 

   sync (chooseEvt  

      (client bc) 

      (leader bc) 

   ) 

;; 

 

let party bc = 

   (barrier bc) 

;; 

 

let main () = 

   let bc = newChan() in 

   let t1 = Thread.create (fun x -(party bc)) () in 

   let t2 = Thread.create (fun x -(party bc)) () in 

   let t3 = Thread.create (fun x -(party bc)) () in 

      Thread.join t1; 

      Thread.join t2; 

      Thread.join t3  

;; 

15.1.4.2. Implementation 2 

let client bc = 

   let cc = newChan() in 

      sync (thenEvt  

         (sendEvt bc cc) 

         (fun x -recvEvt cc) 

      ) 

;; 

  

let leader bc = 

   sync ( 

      (thenEvt (recvEvt bc) 

         (fun cc1 -(thenEvt (recvEvt bc) 

    (fun cc2 -(thenEvt (recvEvt bc) 

    (fun cc3 -(thenEvt (sendEvt cc1 ()) 

         (fun _ -(thenEvt (sendEvt cc2 ()) 

         (fun _ -(sendEvt cc3 ()))))))))))) 

   ) 

;; 

 

 

let main () = 

   let bc = newChan() in 

   let t1 = Thread.create (fun x -(leader bc)) () in 

   let t2 = Thread.create (fun x -(client bc)) () in 

   let t3 = Thread.create (fun x -(client bc)) () in 

   let t4 = Thread.create (fun x -(client bc)) () in 

      Thread.join t1; 

      Thread.join t2; 

      Thread.join t3; 

      Thread.join t4 

;; 

 

15.2. Synchronous Queue 

class SyncQueue[T] { 

 

  val sCh = new Transactor[T] 

  val rCh = new Transactor[Ack] 

 

  def send(message: T) { 

    atomic { 

      sCh ! message 

      rCh.receive 

    } 

  } 

 

  def receive(): T = { 



    atomic { 

      val message = sCh.receive 

      rCh ! new Ack 

      message 

    }     

  } 

} 

15.3. Rendezvous 

class Rendezvous[T]() { 

 

  class PartyInfo(var element: T, var party: Transactor[Pair[T, T]]) 

 

  class RendezvousActor extends Transactor[PartyInfo] { 

 

    override def act { 

      val partiesInfo = new Array[PartyInfo](3) 

      atomic { 

        for (i <- 0 until 3) 

          partiesInfo(i) = receive 

        for (i <- 0 until 3) { 

          val party = partiesInfo(i).party 

          val index1 = (i+1)%3 

          val index2 = (i+2)%3 

          party ! new Pair(partiesInfo(index1).element, partiesInfo(index2).element) 

        } 

      } 

    } 

  } 

  val rendezvousActor = new RendezvousActor 

  rendezvousActor.start 

 

 

  def swap(message: T): Pair[T, T] = { 

    atomic { 

      val thisTransactor =    self.asInstanceOf[Transactor[Pair[T, T]]] 

      rendezvousActor ! new PartyInfo(message, thisTransactor) 

      thisTransactor.receive 

    } 

  } 

} 

15.4. Server 

 
abstract class Server[T] extends Transactor[T] { 

 

  val executor = Executors.newCachedThreadPool() 

 

  override def act { 

    while(true) { 

      val cell = serverReceive 

      val fun = (_:Unit) ={ 

        setForEndReceiver(cell) 

      } 

      executor.execute(new Runnable() { 

        def run = { 

          service(fun) 

        } 

      }) 

    } 

  } 

 

  def service(getRequest: Unit => T) 

} 

 

class MyIdServer extends Server[IdRequest] { 

  val id = new TInt(0) 

 

  override def service(getRequest: Unit => IdRequest) { 

    val newId = atomic { 

      id.value = id.value + 1 

      id.value 

    } 

 

    atomic { 

      val request = getRequest() 

      val sender = request.sender 

      sender ! new IdRespond(newId) 



    } 

  } 

} 

 

 

 

 


