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Abstract
Guerraoui and Kapalka defined opacity as a safety criterion for
transactional memory algorithms in 2008. Researchers have shown
how to prove opacity, while little is known about pitfalls that can
lead to non-opacity. In this paper, we identify two problems that
lead to non-opacity and we prove an impossibility result. We first
show that the well-known TM algorithms DSTM and McRT don’t
satisfy opacity. DSTM suffers from a write-skew anomaly, while
McRT suffers from a write-exposure anomaly. We then prove that
for direct-update TM algorithms, opacity is incompatible with a
liveness criterion called local progress, even for fault-free systems.
Our result implies that if TM algorithm designers want both opacity
and local progress, they should avoid direct-update algorithms.

1. Introduction
Transactional memory. Atomic statements can simplify concur-
rent programming that involves shared memory. Transactional
memory (TM) [21, 32] interleaves the bodies of atomic statements
as much as possible, while guaranteeing noninterleaving seman-
tics. Thus, the noninterleaving in the semantics can coexist with a
high degree of parallelism in the implementation. TM aborts an op-
eration that cannot complete without violating the semantics. The
use of TM provides atomicity, deadlock freedom, and composabil-
ity [18], and increases programmer productivity compared to use
of locks [27, 29]. Researchers have developed formal semantics
[1, 23, 26] and a wide variety of implementations of the TM in-
terface in both software [6, 7, 19, 20, 30] and hardware [2, 16].
Intel supports transactional synchronization primitives in its new
processor microarchitecture codenamed Haswell.

Safety. A TM interface consists of the operations read, write,
and commit. The task of a TM algorithm is to implement those
three operations. What is a correct TM algorithm? The traditional
safety criterion for database transactions is strict serializability
[28]. For TM algorithms, strict serializability [31] requires that
committed transactions together have an equivalent sequential ex-
ecution, that is, an execution that could also happen if the trans-
actions execute noninterleaved. However, to ensure semantic cor-
rectness, active and aborted transactions should execute correctly
too. This observation has led researchers to define the stronger
safety criteria TMS1 [8] and opacity [11]. We will focus on opacity,
which is the strongest safety criterion and requires all transactions
together to have an equivalent sequential execution.

Verification. Researchers have shown how to verify the safety
of TM algorithms. In pioneering work, Tasiran [33] proved serial-
izability for a class of TM algorithms. Cohen et al. [4, 5] were the
first to use a model checker to verify strict serializability of TM al-
gorithms for a bounded number of threads and memory locations.
Later, Guerraoui and Kapalka [15] proved opacity of two-phase
locking with a graph-based approach that is related to an earlier
approach to serializability. Guerraoui et al. [12–14] used a model
checker to verify opacity of TM algorithms that use an unbounded

number of threads and memory locations. One of their key innova-
tions was a reduction theorem that says that an algorithm is correct
for any number of threads and memory locations if and only if it
is correct for two threads and two memory locations. Their theo-
rem relies on four assumptions about TM algorithms. In follow-up
work, Emmi et al. [9] showed how to use a theorem prover to gener-
ate the invariants that are needed to prove strict serializability. Their
proofs work for TM algorithms that use an unbounded number of
threads and memory locations, and don’t rely on a reduction theo-
rem. Later, Lesani et al. [24] presented a verification framework for
transactional memory based on IO automata and simulation.

The problem: Which pitfalls lead to non-opacity?

Our results: We identify two problems that lead to non-opacity,
we find problems with DSTM and McRT, and we prove an impos-
sibility result.

We show that the well-known TM algorithms DSTM and McRT
don’t satisfy opacity. These results may be surprising because pre-
vious work has proved that DSTM and McRT satisfy opacity [9,
13, 14]. However, there is no conflict and no mystery: the previous
work focused on abstractions of DSTM and McRT, while we work
with specifications that are much closer to original formulations of
DSTM and McRT. Thus, we experience a common phenomenon:
once we refine a specification, we may lose some properties.

Let us recall common terminology. A TM algorithm is a
deferred-update algorithm if every transaction that writes a value
must commit before other transactions can read that value. All other
TM algorithms are direct-update algorithms. DSTM is a deferred-
update algorithm while McRT is a direct-update algorithm.

DSTM suffers from a write-skew anomaly, while McRT suffers
from a write-exposure anomaly. The write-skew anomaly is an
incorrectness pattern that is known in the database community [10].
The write-exposure anomaly happens when a direct-update TM
algorithm exposes written values to other transactions before the
transaction commits.

We present fixes to both DSTM and McRT that we conjecture
make the fixed algorithms satisfy opacity. Interestingly, we note
that writers can limit the progress of readers in the fixed McRT al-
gorithm. This is an instance of a general pattern: we prove that for
direct-update TM algorithms, opacity is incompatible with a live-
ness criterion called local progress [3], even for fault-free systems.
Our result implies that if TM algorithm designers want both opacity
and local progress, they should avoid direct-update algorithms.

We hope that our observations can help TM algorithm designers
to avoid the write-skew and write-exposure pitfalls, and to be aware
that if local progress is a goal, then deferred-update algorithms may
be the only option.

The rest of the paper. In Section 2, we formalize opacity. In
Sections 3–4, we prove that core versions of DSTM and McRT
don’t satisfy opacity. In Section 5, we prove that for direct-update
TM algorithms, opacity and local progress are incompatible.
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W rites(H) = {W | ∃T ∈ H, i ∈ I, v ∈ V : W = writeT (i, v) b H}
TSequential = {S ∈ THistory | ≤S is a total order of Trans}

Committed(H) = {T ∈ Trans | retT (C) b H}
Aborted(H) = {T ∈ Trans | retT (A) b H},

Completed(H) = Committed(H) ∪Aborted(H),

Live(H) = {T ∈ H | T /∈ Completed(H)}
TComplete = {H ∈ THistory | ∀T ∈ H : T ∈ Completed(H)}
Pending(H) = {T ∈ Live(H) | T has a pending event in H}

CommitPending(H) = {T ∈ Pending(H) | T has a pending invT (commitT ) event in H}
TExtension(H) = {H ′ ∈ THistory | H is a prefix of H ′ ∧ ∀T ∈ H ′ ⇒ T ∈ H ∧

Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

V isible(S, T ) = filter
(
S, λT ′.(T ′ = T ) ∨

(
(T ′ <S T ) ∧ T ′ ∈ Committed(S)

))
NoWriteBetweenS(W,R) = ∀W ′ ∈W rites(S) : W ′ �S W ∨R ≺S W

′

SeqSpec(i) = {S ∈ Sequential | ∀T ∈ S : ∀v ∈ V :

∀R = readT (i):v b S : ∃T ′ ∈ S :

∃W = writeT ′(i, v) b S :

W ≺S R ∧NoWriteBetweenS(W,R)}
TSeqSpec = {S ∈ TSequential ∩ TComplete | ∀T ∈ S : ∀i ∈ I :

(V isible(S, T ) | i) ∈ SeqSpec(i)}
F inalStateOpaque = {H ∈ THistory | ∃H ′ ∈ TExtension(H) : ∃S ∈ TSequential :

H ′ ≡ S ∧ ≤H′ ⊆ ≤S ∧ S ∈ TSeqSpec}

Figure 1. F inalStateOpaque

2. Opacity
This section formalizes the notion of opacity [11]. The goal is to
enable formal proofs of our theorems.

2.1 Execution Histories
We now recall standard definitions of execution histories [22].

Strings. If s1 and s2 are strings, we write s1 b s2 iff s1 is a
subsequence of s2. For example, bd b abcde. Let s be an isogram,
that is, s contains no repeating occurrence of the alphabet. For any
s1, s2 b s, we write s1 �s s2 iff the last element of s1 occurs
before the first element of s2 in s. For example ab �abcde de. We
use s(i) to denote the ith element of s.

Objects and events. Let O denote the set of objects, let no

denote the set of methods of object o, let Trans denote the
set of thread (transaction) identifiers {T1, . . . , Tn}, and let V
denote the set of values. The set of method calls is MC =
{o.nT (v1, . . . , vn) | o ∈ O,n ∈ no, T ∈ Trans, v1, . . . , vn ∈
V }. In a method call mc = o.nT (v1, . . . , vn), we have that o is
the receiver object, n is the method called, T is the identifier of the
caller thread, and v1, . . . , vn are argument values. To differentiate
repeated method calls by the same thread, it is assumed that calls
from each thread have sequence numbers. Thus, the thread id and
the sequence number make a unique id for each method call. In the
interest of brevity, we only write the thread id in the notation and
elide the sequence number. We explicitly declare the uniqueness of
the method calls when it is not evident from the context. From the
point of view of the caller thread, the execution of a method call
has two events: an invocation event and, later, a response event.
An invocation event represents the time that the caller thread ini-
tiates the call, and a response event represents the time the call
returns to the caller thread. The set of invocation events is Inv =

{invT (mc) | T ∈ Trans,mc ∈ MC}. The set of response
events is Res = {retT (v) | T ∈ Trans, v ∈ V ∪ {A,C}}. (A
andC are used later to denote abortion and commitment of transac-
tions.) The set of events is Ev = Inv ∪Res. We will use the term
completed method call to denote a sequence of an invocation event
followed by the matching response event (with the same transaction
identifier and sequence number). The set of completed method calls
isM = {invT (mc), retT (v) | mc ∈MC, v ∈ V ∪{A,C}}. We
usemc:v to denote the completed method call invT (mc), retT (v).
For m ∈ M , we let invm denote the invocation event of m,
and we let retm denote the response event of m. The function
T id : Ev → Trans is defined as follows: T id(invT (mc)) = T
and T id(retT (v)) = T .

Operations on event sequences. Let E and E′ be event se-
quences. We use E · E′ to denote the concatenation of E and E′.
For a thread T , we useE|T to denote the subsequence of all events
of T in E. For an object o, we use E|o to denote the subsequence
of all events of o in E. We write E ≡ E′ iff ∀T : E|T = E′|T ,
and say that E and E′ are equivalent. We say that thread T is in
E, written T ∈ E iff ∃j : T id(E(j)) = T . Sequential is the set
of sequences of completed method calls possibly followed by an
invocation event.

Execution history. An execution history X is a sequence of
events such that ∀T ∈ X : X|T ∈ Sequential. Let H istory de-
note the set of execution histories. Note that the implicit sequence
number of method calls makes the events of a history distinct from
each other and hence every history is an isogram. An invocation
event e issued by a transaction T is pending in an execution history
X iff X|T contains no response event that matches and follows e.
For an execution history X , we let Extension(X) denote the set
of execution histories constructed from X by appending responses
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for some pending invocations in X . We let Complete(X) denote
the subsequence of X that consists of all completed method calls
in X .

Real-time relations. For an execution history X , we define the
real-time relations ≺X , �X , ∼X , -X on M as follows: First,
m1 ≺X m2 iff retm1 �X invm2 . m1 �X m2 iff m1 ≺X m2 ∨
m1 = m2. Second, m1 ∼X m2 iff m1 ⊀X m2 ∧ m2 ⊀X m1.
Third, m1 -X m2 iff m1 ≺X m2 ∨ m1 ∼X m2.

Sequential specifications of objects. In Appendix A [25], we
specify the classes of objects that we use in this paper. We let
SafeReg[V ] denote the class of safe registers on the set of values
V , AtomicReg[V ] denote the class of atomic registers on the set
of values V , CASReg[V ] denote the class of CAS registers on the
set of values V , SCounter denote the class of strong counters,
Lock denote the class of locks, TryLock denote the class of try-
locks, Set[V ] denote the class of subsets of set V , Map[K,V ]
denote the class of maps from the set of keys K to the set of values
V . Note that Set and Map types provide no safety. For brevity,
we write r as a syntactic sugar for r.read. Also r := v is used
as a syntactic sugar for r.write(v). The sequential specification
of an object o, denoted by SeqSpec(o), is a set of prefix-closed,
sequential histories of o that declares the set of correct sequential
histories of o.

Linearizability. An execution history X is linearizable for an
object o iff ∃X ′ ∈ Extension(X|o) : ∃L ∈ Sequential :
L ≡ Complete(X ′) ∧ L ∈ SeqSpec(o) ∧ ≺X|o ⊆ ≺L, and
we say that such an L is a linearization and ≺L is a linearization
order of X|o.

2.2 Shared Memory and Transaction Histories
We now define shared memory and transaction histories.

Shared Memory. The shared memory is a singleton object
mem that encapsulates the set of locations Loc where each lo-
cation loci, i ∈ I , I = {1, . . . ,m} stores a value v ∈ V .
The object mem has three methods readT (i), writeT (i, v) and
commitT . The method call readT (i) returns the value of loci or
A (if the transaction is aborted). The method writeT (i, v) writes v
to loci and returns ok or returns A. The method commitT tries to
commit transaction T and returns C (if the transaction is success-
fully committed) or returns A (if it is aborted). The object mem
is implicit in method calls on mem, that is, readT (i) abbrevi-
ates mem.readT (i). For an execution history X , the subsequence
X|mem is the sequence of all events of X on mem.

Transaction History. A transaction history H is Init · H ′,
where Init is the transactionwriteT0(1, v0), . . . , writeT0(m, v0),
commitT0 :C that initializes every location to v0, and for all
T ∈ H ′ : H ′|T is a prefix of O.F where O is a sequence of reads
readT (i):v and writes writeT (i, v) (for some i ∈ I , and v ∈ V )
and F is one of the following sequences: (1) invT (readT (i)),
retT (A) (for some i ∈ I) , (2) invT (writeT (i, v)), retT (A)
(for some i ∈ I , and v ∈ V ), (3) invT (commitT ), retT (C),
or (4) invT (commitT ), retT (A). Let THistory denote the
set of transaction histories. The projection of H on i, written
H|i, denotes the subsequence of history H that contains exactly
the events on location i. For a transaction history H , we define
the real-time relations <H and ≤H on Trans as follows. First,
∀T, T ′ ∈ Trans : T <H T ′ iffH|T�HH|T ′. Second, T ≤H T ′

iff T <H T ′ ∨ T = T ′.

2.3 A Formal Definition of Opacity
Opacity of a TM algorithm is defined in two steps. First, it is
defined what it means for a transaction history to be opaque which
is called final-state-opacity. Then, a TM algorithm is defined to
be opaque if every transaction history of every source program
running on top of that TM algorithm is final-state-opaque.

F inalStateOpaque is defined in Figure 1. We use T prefix
before some of the terms to avoid confusion with the terms that
we defined above for execution histories of objects. We say that a
transaction history is sequential if it is a sequence of transactions. A
transaction T is committed or aborted in a transaction history H if
there is respectively a commit or abort response event for T inH . A
completed transaction is either committed or aborted. A live trans-
action is a transaction that is not completed. A transaction history
is complete if all its transactions are completed. A pending trans-
action has a pending event and a commit-pending transaction has a
commit pending event. An extension of a transaction history is ob-
tained by committing or aborting its commit-pending transactions
and aborting the other live transactions. If H ∈ THistory and
p is a predicate on transaction identifiers, we define filter(H, p)
to be the subsequence of H that contains those events e in H
for which p(T id(e)) is true. The visible history for a transaction
T in a sequential transaction history S, V isible(S, T ), is the se-
quence of committed transactions before T in S and T itself. The
sequential specification of a location i, SeqSpec(i), is the set of se-
quential histories of read and write method calls on i where every
read returns the value given as the argument to the latest preceding
write (regardless of thread identifiers). It is essentially the sequen-
tial specification of a register. Transactional sequential specification
is the set of complete sequential transaction histories S that for ev-
ery transaction T and location i, V isible(S, T )|i is a member of
the sequential specification of i. A transaction history H is final-
state-opaque if there is an equivalent sequential transaction history
S that is real-time-preserving and a member of transactional se-
quential specification. In other words, every correct concurrent ex-
ecution is indistinguishable from a correct sequential execution.

Note that opacity and linearizability are at two different levels.
In fact, linearizability is the correctness condition for the base
concurrent objects. TM algorithms rely on the guarantees of several
of these objects to guarantee the correctness conditions for memory
transactions. At the time that the paper [20] was published, no
correctness criteria had been proposed for TM. Thus, that paper
used the term linearizability as the correctness criterion for TM.

3. Core DSTM doesn’t satisfy Opacity
We will analyze a core version of DSTM that we call Core DSTM.

The context. We believe that Core DSTM matches the paper
on DSTM [20]. While we prove that Core DSTM doesn’t satisfy
opacity, we have learned from personal communication with Victor
Luchangco, one of the DSTM authors, that the implementation of
DSTM implements more than what was said in the paper and most
likely satisfies opacity. We will briefly summarize the additional
feature of the implementation after our analysis.

The idea. DSTM is a deferred-update TM algorithm, which
means that updates are delayed until a transaction commits [17].
Each transaction maintains a log of locations and tentative values;
the write operations add to the log. When a transaction commits,
it updates the locations with the values stored in the log. When a
transaction aborts, it discards the log.

The algorithm. Figure 2(a) shows the Core DSTM algorithm.
For a detailed walk-through of the algorithm, either see the DSTM
paper [20] or Appendix B in the full version of this paper [25]. Here
we will merely summarize the data structures and then explain a
particular execution that proves non-opacity.

The data structures. We first introduce some notation. Let
Ref [T ] be the class of references to objects of class T. The derefer-
ence operator is denoted by !. Let Loc be the class of objects with
three fields:writer, oldValue and newValue. The fieldwriter is
a safe register on Trans. The two fields oldValue and newValue
are safe registers on V .
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R01 : def readT (i) W01 : def writeT (i, v)
R02 : if (stateT = A) W02 : if (stateT = A)
R03 : return A W03 : return A
R04 : loc := !starti W04 : start := starti
R05 : v := stableValueT (loc) W05 : loc := !start
R06 : if (loc.writer 6= T ) W06 : if (loc.writer = T )
R07 : rsetT ⊕ (i, v) W07 : loc.newValue := v
R08 : if (¬validateT ()) W08 : return ok
R09 : return A W09 : v′ := stableValueT (loc)
R10 : return v W10 : start′ := new Loc(T, v′, v)
C01 : def commitT W11 : if (starti.cas(start, start′))
C02 : if (¬validateT ()) W12 : return ok
C03 : return A W13 : else
C04 : if (stateT .cas(R,C)) W14 : return A
C05 : return C V 01 : def validateT ()
C06 : else V 02 : foreach ((i, v) ∈ rsetT )
C07 : return A V 03 : loc := !starti
CV 1 : def stableValueT (loc) V 04 : T ′ := loc.writer
CV 2 : T ′ := loc.writer V 05 : if (stateT ′ = C)
CV 3 : if (T ′ 6= T ∧ stateT ′ = R) V 06 : v′ := loc.newValue
CV 4 : stateT ′ .cas(R,A) V 07 : else
CV 5 : if (stateT ′ = A) V 08 : v′ := loc.oldValue
CV 6 : return loc.oldValue V 09 : if (v 6= v′)
CV 7 : else V 10 : return false
CV 8 : return loc.newValue V 11 : return stateT = R
The required orders are enforced by the data and control dependencies.

(a) The Obstruction-free DSTM algorithm

T1 T2

readT1(i1):v0 readT2(i1):v0
readT1(i2):v0 readT2(i2):v0
writeT1(i1,−v0) writeT2(i2,−v0)
commitT1 .C01–C03 commitT2 .C01–C03
commitT1 .C04–C07 commitT2 .C04–C07

(b) DSTM Counterexample

Figure 2. DSTM Algorithm

Core DSTM uses the following shared objects. For each T ∈
Trans, stateT is a CAS register on {R,A,C} (that is, running,
aborted or committed) with the default value R. For each i ∈ I ,
starti is a CAS register on references to locator objects. The
default value of each starti is a locator with writer set to T0.
Each T ∈ Trans has the transaction-local read set rsetT , which
is a set of vectors (i, v), for i ∈ I and v ∈ V , and is ∅ initially.

The problem. Core DSTM can produce the transaction history
H1, as we will show below:

H1 = Init · readT1(i1):v0 · readT2(i1):v0 ·
readT1(i2):v0 · readT2(i2):v0 ·
writeT1(i1,−v0) · writeT2(i2,−v0) ·
invT1(commitT1) · invT2(commitT2) ·
retT1(C) · retT2(C)

After initialization, H1 has four completed read operations, then
two completed write operations, and finally an interleaving of two
commit operations. Near the end of this section we prove that H1

isn’t opaque, which shows that Core DSTM isn’t opaque. Intu-
itively,H1 is not opaque because Core DSTM suffers from a write-
skew anomaly: if we order T1 before T2, then the values read by T2

violate opacity; and if we order T2 before T1, then the values read
by T1 violate opacity. Note that since H1 is not opaque and all the
transactions in H1 are committed, H1 is not even serializable.

Write-skew. Let us recall the essence of the write-skew anomaly.
Consider a transaction that updates a set of locations and commits.
To have serializability, other transactions should be prevented from
observing the values of some of these locations before the update
and some of the rest of the locations after the update. The prop-
erty that all reads of a transaction observe a consistent snapshot
is called snapshot isolation. DSTM provides snapshot isolation by
validating the read set (at R08) before the read method returns.

Snapshot isolation is a necessary but not a sufficient condition for
serializability: algorithms that only support snapshot isolation are
known to be prone to the write-skew anomaly, as shown by Fekete
et al. [10]. A correct TM algorithm should both provide snapshot
isolation and prevent the write-skew anomaly.

Let us consider H1 more closely. Assume that a person has two
bank accounts that are stored at loci1 and loci2 with the initial
balances v0 = 10000. Assume also that the regulations of the
bank require the sum of a person’s accounts to be positive or zero.
Thus, a transaction that updates the value of one of the accounts
with the previous value of the account minus the sum of the two
accounts is authorized because the transaction makes the sum of
the two accounts zero. In H1, the initial value of i1 is v0, and the
initial value of i2 is v0. The transaction T1 attempts to update i1
with v0 − (v0 + v0) = −v0. Similarly, the transaction T2 attempts
to update i2 with−v0. Both transactions are authorized, they begin
execution in a consistent state, they both commit, and yet they result
in an inconsistent state. This example is an instance of the general
write-skew anomaly where ReadSet(T1) ∩WriteSet(T2) 6= ∅
and ReadSet(T2) ∩ WriteSet(T1) 6= ∅, and both T1 and T2

commit.
The problematic execution. Figure 2(b) shows a concurrent

execution of transactions T1 and T2 with Core DSTM that produces
H1. Each transaction executes from top to bottom and the horizon-
tal lines denote barriers, that is, the operations above the line are
finished before the operations below the line are started.

Both T1 and T2 read the initial values of i1 and i2 (the initial
snapshot of the memory). Next, T1 and T2 write the new value
−v0 to locations i1 and i2 respectively. Then, each of them invokes
commit and finishes the validation phase (C01 − C03) before the
other one effectively commits (executes the cas method call at
C05). During the validation, the two transactions still see v0 as
the stable value of the two locations; thus, both of them can pass

4 2012/12/16



the validation phase. Finally, both of them succeed at cas and the
result is a memory with loci1 = −v0 and loci2 = −v0, which is
not an authorized state.

Note that the counterexample happens when the two commit
method calls interleave between C03 and C04.

Theorem 1. H1 6∈ F inalStateOpaque.

Proof. We will prove the theorem by contradiction. Suppose
H1 ∈ F inalStateOpaque. H1 is a complete history, thus
TExtension(H1) = {H1}. By definition of F inalStateOpaque,
we have that there exists a history S such that (1) S ∈TSequential,
(2) H1 ≡ S, (3) ≤H1 ⊆ ≤S and (4) S ∈ TSeqSpec. From the
definition of H1 above, we have that T0 ≺H1 T1 and T0 ≺H1 T2.
Thus, from [3] we have that (5) T0 ≺S T1 ∧ T0 ≺S T2. From [1],
we have that (6) T1 ≺S T2 ∨ T2 ≺S T1. From [2], [5] and [6],
we have that S is either of the following two histories

• Case S = H1|T0 ·H1|T1 ·H1|T2.
We have that
V isible(S, T2)|i1 =

writeT0(i1, v0), readT1(i1):v0, writeT1(i1,−v0),
readT2(i1):v0

Thus, V isible(S, T2)|i1 6∈ SeqSpec(i1). Thus, S 6∈ TSeqSpec,
a contradiction to [4].

• Case S = H1|T0 ·H1|T2 ·H1|T1.
We have that
V isible(S, T1)|i2 =

writeT0(i2, v0), readT2(i2):v0, writeT2(i2,−v0),
readT1(i2):v0

Thus, V isible(S, T1)|i2 6∈ SeqSpec(i2). Thus, S 6∈ TSeqSpec,
a contradiction to [4].

2

The fix. We learned from Victor Luchangco that the implemen-
tation of DSTM aborts the writer transactions of the locations in
the read set rsetT during validation of the commit method call. We
can model this fix by adding the following lines between C01 and
C02:

foreach (i ∈ dom(rsetT ))
loc := !starti
T ′ := loc.writer
stateT ′ .cas(R,A)

Those lines prevent H1 because each transaction will abort the
other transaction and thus both of them abort.

Another fix to the algorithm is to let R07 store the locator
reference (instead of the value) in the read set, and to change the
validation for the commit procedure to the following lines:

def validateT ()
foreach ((i, ref) ∈ rsetT )

start := starti
if (start 6= ref)

return false
return stateT = R

Those lines prevent H1 because both transactions observe that the
locator is changed, fail the validation at C02 and abort.

4. Core McRT doesn’t satisfy Opacity
We will analyze a core version of McRT that we call Core McRT.

The context. McRT [30] predates the definition of opacity [11]
and wasn’t intended to satisfy such a property, as far as we know.
Rather, McRT is serializable, by design. Still, we prove that Core
McRT doesn’t satisfy opacity.

The idea. McRT is a direct-update TM algorithm, which means
that transactions directly modify memory locations [17]. Each
transaction maintains an undo-log of values that it has overwrit-
ten. If the transaction aborts, it restores the old values from the log.
If the transaction commits, it discards the log.

The algorithm. Figure 3(a) shows the Core McRT algorithm.
For a detailed walk-through of the algorithm, either see the McRT
paper [30] or Appendix B in the full version of this paper [25]. Here
we will merely summarize the data structures and then explain a
particular execution that proves non-opacity.

The data structures. Core McRT uses the following shared
objects. For each i ∈ I , ri is a safe register on V , veri is an atomic
register on V er = {0, . . . V ermax} that is initially 0, and li is
a try-lock that is initially released. Core McRT uses the following
transaction-local objects. For each T ∈ Trans, the read set rsetT
is a map from I to V er which is ∅ initially, and the undo set usetT
is a map from I to V which is ∅ initially.

In the original implementation, veri and li are stored in a
single word. In our specification, we make the distinction explicit
and specify the order of accesses to these registers. In addition,
the original implementation overwrites the version bits with the
transaction descriptor during the lock acquisition. Therefore, the
versions had to be cached not only during the read method call
but also during the write method call. Our specification stores
only versions in the version registers and avoids caching of those
registers during the write method call.

The problem. Core McRT can produce the transaction history
H2, as we will show below:

H2 = Init · readT2(i1):v0 · invT1(readT1(i2)) ·
writeT2(i2, v1) · retT1(v1) · writeT1(i1, v1) ·
invT1(commitT1) · invT2(commitT2) ·
retT1(A) · retT2(A)

After initialization, H2 has a completed read operation, then an
interleaving of a read operation and a completed write operation,
then another completed write operation, and finally an interleaving
of two commit operations. Near the end of this section we prove
that H2 isn’t opaque, which shows that Core McRT isn’t opaque.
Intuitively, H2 is not opaque because Core McRT suffers from the
write-exposure anomaly: a written value is exposed to readers be-
fore the writer commits. Thus, active or aborting transactions can
read inconsistent values, although they cannot eventually commit.
For example, in H2 location i2 has initial value v0 and no commit-
ted transaction writes a different value to i2, and yet the invocation
invT1(readT1(i2)) returns the value v1.

The problematic execution. Figure 3(b) shows a concurrent
execution of transactions T1 and T2 with Core McRT that produces
H2. As in the DSTM example, each transaction executes from
top to bottom and the horizontal lines denote barriers, that is, the
operations above the line are finished before the operations below
the line are started.

The execution interleaves writeT2(i2, v1) between statements
readT1(i2).R01 − R04 and readT1(i2).R05 − R10 such that
the old value of l2 and the new value of r2 are read. Also,
commitT2 .C01−C04 is executed before commitT1 .C05−C06
such that T2 finds l1 locked and aborts.

At readT1(i2).R01 − R04, l2 is read before it is locked in
writeT2(i2, v1). Thus, readT1(i2) is not aborted at R06. At R09,
v1 is read from r2 (v1 is the value that writeT2(i2, v1).W08 has
written to r2) and v1 is returned. On the invocation of the commit,
T1 and T2 have already calledwriteT1(i1, v1) andwriteT2(i2, v1)
and acquired locks l1 and l2 at W03 respectively. Additionally, T1

and T2 have already called readT1(i2) and readT2(i1) and thus
i2 ∈ dom(rsetT1) and i1 ∈ dom(rsetT2). Thus, T1 and T2 read
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R01 : def readT (i) C01 : def commitT ()
R02 : if (i 6∈ dom(usetT )) C02 : foreach ((i 7→ rver) ∈ rsetT )
R03 : ver := veri C03 : locked := li
R04 : locked := li C04 : ver := veri
R05 : if (locked) C05 : if (locked ∨ rver 6= ver)
R06 : return abortT () C06 : return abortT ()
R07 : if (i 6∈ dom(rsetT )) C07 : foreach (i ∈ dom(usetT ))
R08 : rsetT ⊕ (i 7→ ver) C08 : veri := veri + 1
R09 : v := ri C09 : li.unlock
R10 : return v C10 : return C
W01 : def writeT (i, v) A01 : def abortT ()
W02 : if (i 6∈ dom(usetT )) A02 : foreach ((i 7→ v) ∈ usetT )
W03 : locked := li.tryLock A03 : ri := v
W04 : if (¬locked) A04 : li.unlock()
W05 : return abortT () A05 : return A
W06 : oldV := ri
W07 : usetT ⊕ (i 7→ oldV )
W08 : ri := v
W09 : return ok
In addition to the orders imposed by the data and control dependencies
and lock synchronization, the following orders are required:

R03 ≺X R04, C03 ≺X C04

(a) The McRT Algorithm

T1 T2

readT1(i2).R01–R04 readT2(i1)
writeT2(i2, v1)

readT1(i2).R05–R10
writeT1(i1, v1)
commitT1 .C01–C04 commitT2 .C01–C04
commitT1 .C05–C06 commitT2 .C05–C06

(b) McRT Counterexample

Figure 3. McRT Algorithm

l2 and l1 at C03 respectively. Each of the two transactions read
the value of a lock that is held by the other transaction. Thus, both
transactions finally abort at C05− C06.

Theorem 2. H2 6∈ F inalStateOpaque.

Proof. We will prove the theorem by contradiction. Suppose
H2 ∈ F inalStateOpaque. H2 is a complete history, thus
TExtension(H2) = {H2}. By definition of F inalStateOpaque,
we have that there exists a history S such that (1) S ∈TSequential,
(2) H2 ≡ S, (3) ≤H2 ⊆ ≤S and (4) S ∈ TSeqSpec. From the
definition of H2 above, we have that T0 ≺H2 T1 and T0 ≺H2 T2.
Thus from [3] we have that (5) T0 ≺S T1 ∧ T0 ≺S T2.
From [1], we have that (6) T1 ≺S T2 ∨ T2 ≺S T1. From
[2], [5] and [6], we have that S is either H2|T0 · H2|T1 · H2|T2

or H2|T0 · H2|T2 · H2|T1. In both of these cases, we have that
V isible(S, T1)|i2 = writeT0(i2, v0), readT1(i2):v1. Thus, as
v0 6= v1, we have that V isible(S, T1)|i2 6∈ SeqSpec(i2). Thus,
S 6∈ TSeqSpec, a contradiction to [4]. 2

The fix. The validation in the commit method ensures that only
transactions that have read consistent values can commit; this is
the key to why Core McRT is serializable. A possible fix to make
McRT opaque is to let also the read method do validation, that
is, to insert a copy of lines C03 − C06 between line R09 and
line R10. Note though that in the fixed algorithm, a sequence of
writer transactions can make a reader transaction abort an arbitrary
number of times. This observation motivated our study of progress
for direct-update TM algorithms such as McRT.

5. Local Progress and Opacity
We will prove that for direct-update TM algorithms, opacity and
local progress are incompatible, even for fault-free systems.

Local progress. We first recall the notion of local progress [3].
Intuitively, a TM algorithm ensures local progress if every trans-
action that repeatedly tries to commit eventually commits success-
fully. A process is a sequential thread that executes transactions

with the same identifier. A process T is crashing in an infinite his-
tory H if H|T is a finite sequence of operations. In other words,
a process is crashing if from some point in time, it stops sending
invocation events. A process T is pending in infinite history H if
H has only a finite number of commit response retT (C) events.
A process makes progress in an infinite history, if it is not pending
in it. A process T is parasitic in the infinite history H if H|T is
infinite and in history H|T , there are only a finite number of com-
mit invocation invT (commit) or abort response retT (A) events.
In other words, a parasitic process is a process that from some point
in time keeps executing operations without being aborted and with-
out attempting to commit. A process is correct in an infinite history
if it is not parasitic and not crashing in the history. A process that
is not correct is faulty. An infinite history satisfies local progress, if
every correct process in it makes progress. A TM algorithm ensures
local progress, if every infinite history of it satisfies local progress
and every finite history of it can be extended to an infinite history
of it that satisfies local progress. A system is fault-prone if at least
one process can be crashing or parasitic. A system is fault-free if it
is not fault-prone.

The seminal result. Theorem 3 is the seminal result on the
incompatibility of opacity and local progress.

Theorem 3. (Bushkov, Guerraoui, and Kapalka [3]) For a fault-
prone system, no TM algorithm ensures both opacity and local
progress.

Considering a fault-prone system, the proof uses strategies that
result in either a crashing or parasitic process.

Fault-prone versus fault-free. The large class of fault-prone
systems presents a formidable challenge for designers of TM al-
gorithms who want some form of progress. A crashing or parasitic
process may never relinquish the ownership of a resource that an-
other process must acquire before it can make progress. Bushkov,
Guerraoui, and Kapalka [3] consider a liveness property called solo
progress that guarantees that a process that eventually runs alone
will make progress. They conjecture that obstruction-free TM al-
gorithms (as defined in [20]) ensure solo progress in parasitic-free
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T1 T2

writeT2(i2, j):A

(a)

T1 T2

writeT2(i2, j):ok
readT1(i2):A

commitT2

(b)

T1 T2

writeT2(i2, j):ok
readT1(i2):j
writeT1(i1, j):A

commitT2

(c)

T1 T2

writeT2(i2, j):ok
readT1(i2):j
writeT1(i1, j):ok

readT2(i1):A

(d)

T1 T2

writeT2(i2, j):ok
readT1(i2):j
writeT1(i1, j):ok

readT2(i1):j

(e)

Figure 4. Impossibility of Opacity and Local-progress for Direct-update TM Algorithms

systems, and that lock-based TM algorithms ensure solo progress
in systems that are both parasitic-free and crash-free. Those con-
jectures embody the following idea and practical advice.

Bushkov, Guerraoui, and Kapalka’s advice [3]: If design-
ers of TM algorithms want opacity and progress, they must
consider either weaker progress properties or fault-free sys-
tems.

TM algorithms for fault-free systems can rely on that no processes
are crashing or parasitic.

Local progress for fault-free systems. Following the advice
embodied in the paper by Bushkov, Guerraoui, and Kapalka [3], we
study liveness in the setting of fault-free systems. Our main result
is that an entire class of TM algorithms cannot ensure both opacity
and local progress for fault-free systems.

We need two definitions before we can state our result formally.
A TM algorithm is a deferred-update algorithm if every transaction
that writes a value must commit before other transactions can read
that value. All other TM algorithms are direct-update algorithms.
For example, DSTM is a deferred-update algorithm while McRT is
a direct-update algorithm.

Our main result is Theorem 4 which says that direct-update
TM algorithms cannot ensure both opacity and local progress for
fault-free systems. Thus we can refine Bushkov, Guerraoui, and
Kapalka’s advice.

Our advice: If designers of TM algorithms want opacity
and local progress, they might have success with deferred-
update TM algorithms that work for fault-free systems.

The proof of Theorem 4 is different from the proof of Theorem 3
because the proof of Theorem 4 cannot use crashing or parasitic
processes.

Theorem 4. For a fault-free system, no direct-update TM algo-
rithm ensures both opacity and local progress.

Proof. Assume otherwise, that is, there is a direct-update algorithm
that ensures opacity and local progress. We exhibit a winning strat-
egy for the environment that acts as an adversary to the algorithm
and results in either a non-opaque history or an infinite history
which does not satisfy local progress. The strategy is as follows.
The client iteratively executes the following sequence of opera-
tions. Iteration number j is as follows

1. Invoke writeT2(i2, j).
If the response is A,

leave this iteration and start the next iteration

Otherwise,
go to the next step.

2. Invoke readT1(i2).
If the response is A,

invoke commitT2 and regardless of the response,
leave this iteration and start the next iteration.

Otherwise,
go to the next step.

3. Invoke writeT1(i1, j).
If the response is A,

invoke commitT2 and regardless of the response,
leave this iteration and start the next iteration.

Otherwise,
go to the next step.

4. Invoke readT2(i1).
Regardless of the response, stop iterating.

In each iteration, the algorithm results in one of the executions
depicted in Figure 4. As the algorithm is direct-update, the reads
return the newly written value j. We consider two cases:

• The execution stops:
We consider two subcases:

The last iteration results in the execution depicted in Fig-
ure 4(d):
By Lemma 1, the history doesn’t satisfy opacity, a contra-
diction.
The last iteration results in the execution depicted in Fig-
ure 4(e):
By Lemma 2, the history doesn’t satisfy opacity, a contra-
diction.

• The execution does not stop:
The repeated iterations are depicted in Figure 4(a)-(c). We con-
sider two subcases:

From some point in time, only Figure 4(a) is repeated:
T2 has an infinite number of operations, thus is not crashing.
T2 gets an infinite number of abort response events, thus is
not parasitic. Therefore T2 is a correct process. But T2 does
not receive an infinite number of commit response events
thus does not make progress. Therefore, the history does
not satisfy local progress, a contradiction.
Note that in this case, T1 has a finite number of opera-
tions. As mentioned above, if we assume that empty trans-
actions have no effect on the responses from the algorithm,
we can construct a similar history where after each iteration
of writeT2(i2, j), the commit operation commitT1 is ex-
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ecuted that commits an empty transaction. The constructed
history is indistinguishable for T2 and T1 is a correct pro-
cess in the history.
Figure 4(b) or (c) happen infinitely often in the history:
T1 has an infinite number of operations, thus is not crashing.
T1 gets an infinite number of abort response events, thus is
not parasitic. Therefore T1 is a correct process. But T1 does
not receive an infinite number of commit response events
thus does not make progress. Therefore, the history does
not satisfy local progress, a contradiction.

2

Lemma 1. H3 6∈ F inalStateOpaque where

H3 = H0 · writeT2(i2, j) · readT1(i2):j ·
writeT1(i1, j) · readT2(i1):A

and H0 is a history that does not contain a write operation that
writes value j.

Proof. We prove the lemma based on the following idea. To justify
the read of value j by T1, a committed transaction should have
written the value j. The only transaction that writes value j is T2

but it is aborted.
We will prove the theorem by contradiction. Suppose H3 ∈

F inalStateOpaque. TExtension(H3) = {H ′
3, H

′′
3 } where

H ′
3 = H3 · commitT1 :A and H ′′

3 = H3 · commitT1 :C. By def-
inition of F inalStateOpaque, we have that there exists H ∈
TExtension(H3) such that there exists a history S such that
(1) S ∈ TSequential, (2) H ≡ S, (3) ≤H ⊆ ≤S and (4)
S ∈ TSeqSpec. We consider two cases:

• Case H = H ′
3.

From the definition of H ′
3 and H3, we have ∀T ∈ H0 : T ≺H′

3

T1 ∧ T ≺H′
3
T2. Thus, by [3], we have (5) ∀T ∈ H0 : T ≺S

T1 ∧ T ≺S T2. From [1], we have that (6) T1 ≺S T2 ∨
T2 ≺S T1. Thus, from [5], [6] and [2], we have that S is either
of the following two histories: S = S0 · H ′

3|T2 · H ′
3|T1 or

S = S0 · H ′
3|T1 · H ′

3|T2 where S0 is a serialization of H0.
For both of these histories, we have that V isible(S, T1)|i2
= S0|i2 · readT1(i2):j where no transaction in S0|i2 writes
value j. Thus, V isible(S, T1)|i2 6∈ SeqSpec(i2). Thus, S 6∈
TSeqSpec, a contradiction to [4].

• Case H = H ′′
3 .

Similar to the previous case, we will have that V isible(S, T1)|i2
= S0|i2 · readT1(i2):j.

2

Lemma 2. H4 6∈ F inalStateOpaque where

H4 = H0 · writeT2(i2, j) · readT1(i2):j ·
writeT1(i1, j) · readT2(i1):j

and H0 is a history that does not contain a write operation that
writes value j.

Proof. We prove the lemma based on the following idea. The two
transactions T1, T2 have read value j from i2 and i1 respectively.
The only transaction that writes value j to i2 and i1 is T2 and T1

respectively. Thus, to justify the two read operations, each of the
transactions should have been ordered before the other one in the
justifying sequential history, which is impossible.

We will prove the theorem by contradiction. Suppose H4 ∈
F inalStateOpaque. TExtension(H4) = {H ′

4, H
′′
4 , H

′′′
4 , H

′′′′
4 }

where
H ′

4 = H4 · commitT1 :C · commitT2 :C,

H ′′
4 = H4 · commitT1 :C · commitT2 :A,

H ′′′
4 = H4 · commitT1 :A · commitT2 :C,

H ′′′′
4 = H4 · commitT1 :A · commitT2 :A.

By definition of F inalStateOpaque, we have that there exists
H ∈ TExtension(H4) such that there exists a history S such
that (1) S ∈ TSequential, (2) H ≡ S, (3) ≤H ⊆ ≤S and (4)
S ∈ TSeqSpec. We consider four cases:

• Case H = H ′
4.

Similar to Lemma 1, we have that S is either of the following
two histories: S1 = S0 ·H ′

4|T1 ·H ′
4|T2 or S2 = S0 ·H ′

4|T2 ·
H ′

4|T1 where S0 is a serialization ofH0. We consider two cases
S = S1:
We have that V isible(S, T1)|i2 = S0|i2 · readT1(i2):j.
where no transaction in S0|i2 writes value j.
Thus, V isible(S, T1)|i2 6∈ SeqSpec(i2).
Thus, S 6∈ TSeqSpec, a contradiction to [4].
S = S2:
We have that V isible(S, T2)|i1 = S0|i1 · readT2(i1):j.
where no transaction in S0|i1 writes value j.
Thus, V isible(S, T2)|i1 6∈ SeqSpec(i1).
Thus, S 6∈ TSeqSpec, a contradiction to [4].

• Case H = H ′′
4 .

Similar to the previous case, we will have that V isible(S, T1)|i2
= S0|i2 · readT1(i2):j.

• Case H = H ′′′
4 .

Similar to the previous case, we will have that V isible(S, T2)|i1
= S0|i1 · readT2(i1):j.

• Case H = H ′′′′
4 .

Similar to the previous case, we will have that V isible(S, T2)|i1
= S0|i1 · readT2(i1):j.

2

6. Conclusion
We have identified two problems that lead to non-opacity and we
have proved an impossibility result. We hope that our observations
can help TM algorithm designers to avoid the write-skew and write-
exposure pitfalls, and to be aware that if local progress is a goal,
then deferred-update algorithms may be the only option.

Our proofs of non-opacity for Core DSTM and Core McRT
show that care has to be taken when defining abstractions of TM
algorithms. Even if an algorithm satisfies opacity at a high level
of abstraction, it may fail to satisfy opacity at a lower level of
abstraction.
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