Ph.D. Thesis
MIT Department of Electrical Engineering and Computer Science

Volunteer Computing
by
Luis F. G. Sarmenta
March 2001

This thesis presents the idea of volunteer computing, which allows high-performance parallel computing networks to be formed easily, quickly, and inexpensively by enabling ordinary Internet users to share their computers' idle processing power without needing expert help. In recent years, projects such as SETI@home have demonstrated the great potential power of volunteer computing. In this thesis, we identify volunteer computing's further potentials, and show how these can be achieved.

We present the Bayanihan system for web-based volunteer computing. Using Java applets, Bayanihan enables users to volunteer their computers by simply visiting a web page. This makes it possible to set up parallel computing networks in a matter of minutes compared to the hours, days, or weeks required by traditional NOW and metacomputing systems. At the same time, Bayanihan provides a flexible object-oriented software framework that makes it easy for programmers to write various applications, and for researchers to address issues such as adaptive parallelism, fault-tolerance, and scalability.

Using Bayanihan, we develop a general-purpose runtime system and APIs, and show how volunteer computing's usefulness extends beyond solving esoteric mathematical problems to other, more practical, master-worker applications such as image rendering, distributed web-crawling, genetic algorithms, parametric analysis, and Monte Carlo simulations. By presenting a new API using the bulk synchronous parallel (BSP) model, we further show that contrary to popular belief and practice, volunteer computing need not be limited to master-worker applications, but can be used for coarse-grain message-passing programs as well.

Finally, we address the new problem of maintaining reliability in the presence of malicious volunteers. We present and analyze traditional techniques such as voting, and new ones such as spot-checking, encrypted computation, and periodic obfuscation. Then, we show how these can be integrated in a new idea called credibility-based fault-tolerance, which uses probability estimates to limit and direct the use of redundancy. We validate this new idea with parallel Monte Carlo simulations, and show how it can achieve error rates several orders-of-magnitude smaller than traditional voting for the same slowdown.

Other Keywords:  distributed computing, grid computing, anti-sabotage techniques

Download: PDF 1.6MB