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Abstract

In this paper, we address the new problem of protecting volunteer computing
systems from malicious volunteers who submit erroneous results, by presenting
sabotage-tolerance mechanisms that work without depending on checksums or cryp-
tographic techniques. We first analyze the traditional technique of voting, and show
how it reduces error rates exponentially with redundancy, but requires all work to
be done several times, and does not work well when there are many saboteurs. We
then present a new technique called spot-checking which reduces the error rate lin-
early (i.e., inversely) with the amount of work to be done, while only costing an
extra fraction of the original time. Integrating these mechanisms, we then present
the new idea of credibility-based fault-tolerance, wherein we estimate the conditional
probability of results and workers being correct, based on the results of using vot-
ing, spot-checking, and other techniques, and then use these probability estimates
to direct the use of further redundancy. Using this technique, we are able to attain
mathematically guaranteeable levels of correctness, and do so with much smaller
slowdown than possible with voting or spot-checking alone. Finally, we validate
these new ideas with Monte Carlo simulations, and discuss other possible variations
of these techniques.
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1 Introduction

In recent years, there has been a rapidly-growing interest in volunteer comput-
ing systems, which allow people from anywhere on the Internet to contribute
their idle computer time towards solving large parallel problems. Probably the
most popular examples of these are distributed.net, which gained fame in 1997
by solving the RSA RC5-56 challenge using thousands of volunteers’ personal
computers around the world [2], and SETI@home, which is currently employ-
ing hundreds of thousands of volunteer machines to search massive amounts
of radio telescope data for signs of extraterrestrial intelligence [9]. A num-
ber of academic projects have also ventured to study and develop volunteer
computing systems, including some, like our own Bayanihan [8], that promote
web-based systems using Java [1,4]. Even the commercial sector has joined
the fray, with a number of new startup companies seeking to put volunteer
computing systems to commercial use, and pay volunteers for their computer
time [3,5-7].

The key advantage of volunteer computing over other forms of metacomput-
ing is its ease-of-use and accessibility to the general public. By making it easy
for anyone — even casual users — on the Internet to join in a parallel com-
putation, volunteer computing makes it possible to build very large global
computing networks very quickly, as proven by the success of SETI@home
and distributed.net. This same advantage, however, also creates a new prob-
lem: if we allow anyone to join a computation, how do we prevent malicious
volunteers from sabotaging the computation by submitting bad results?

Traditional fault-tolerance techniques that work well against random faults,
such as using parity and checksum schemes, will not be effective in this case
because they cannot protect against intentional attacks by malicious volun-
teers — or saboteurs — who can disassemble the code, and figure out how to
produce valid checksums for bad data. Thus, there is a need for new sabotage-
tolerance mechanisms that work in the presence of malicious saboteurs without
depending on checksums or cryptographic techniques.

In this paper, we present such techniques. We begin with the traditional tech-
nique of voting, and present the new mechanisms of spot-checking, backtracking
and blacklisting. We then integrate these mechanisms by presenting the new
idea of credibility-based fault-tolerance. In this technique, we estimate the cred-
bility of results and workers as the probability of their being correct given the
results of using voting, spot-checking, and other techniques. By then using
these estimates to determine whether a piece of work needs to be repeated or
is credible enough to be accepted, we are not only able to attain mathemati-
cally guaranteeable levels of correctness, but are also able to do so with much
smaller slowdown than possible with traditional voting techniques. Finally,



we validate these new ideas with Monte Carlo simulations, and discuss other
possible variations and extensions of these techniques.

2 Models and Assumptions

Basic Model. In this paper, we assume a work-pool-based master-worker
model of computation, which is used in practically all volunteer computing
systems today, as well as in many grid systems, metacomputing systems, and
other wide-area network-based parallel computing systems in general.! In
this model, a computation is divided into a sequence of batches, each of which
consists of IV independent work objects. At the start of each batch, these work
objects are placed in a work pool by the master node, and are then distributed
to P different worker nodes who execute them in parallel and return their
results to the master. When the master has collected the results for all the
work objects, it generates the next batch of work objects and repeats the
whole process until the computation is done.

To model sabotage, we assume that up to a certain faulty fraction f of the
P workers are saboteurs who submit bad results for the work they are given.
Without the use of sabotage-tolerance mechanisms, these bad results eventu-
ally get accepted at the end of each batch, and become errors. The average
fraction of final accepted results that are errors is defined as the error rate
(¢). This fraction is also equal to the probability of each individual final result
being bad.

The goal of our sabotage-tolerance mechanisms is to reduce the error rate to
an acceptably small value while minimizing the degradation of the system’s
performance.

Acceptable Error Rate. In reducing the error rate, we assume that there
is a non-zero acceptable error rate, €,.., below which occasional errors are
deemed acceptable.

For some applications, the acceptable error rate can be relatively high (1% or
more). These include applications such as image or video rendering, where a
few scattered erroneous pixels would not be noticeable to the human eye. These
also include “self-correcting” applications such as genetic algorithms, and some
statistics applications. Search applications with rare and easily verifiable true-
positive results, such as the SETI@home application and the code cracking

I Furthermore, although most message-passing and shared-memory programs do
not fall under this model, we have shown that these can also be implemented on
work-pool-based systems by using a BSP-style programming model [8].



applications of distributed.net, can also tolerate a relatively high error rate.
In these applications, all errors would be in the form of false negatives. These
can cause us to take a longer time to find the solution, but if we have more
good workers than bad, and we keep reassigning work until we find the desired
solution, we would eventually find the solution with only a little slowdown —
i.e., if we have a false negative rate of ¢, then the expected number of times
we would have to do all the work before finding the true positive solution is
only 1/(1—¢).2

Of course, there are also other applications — including many traditional sci-
entific computational applications — that cannot tolerate even a single error
in a batch (or even in several batches). Even in these cases, however, we can
still use our sabotage-tolerance mechanims by simply making the acceptable
error rate, €,.., small enough to make the probability of getting any error at
all acceptably small. For example, suppose that a computation has 10 batches
of 100 work objects each, and that a single error in any of the 10 batches will
cause the whole computation to fail. In this case, to reduce the probability of
the whole computation failing, P(fail), to less than 1%, the acceptable error
rate for each batch, €,.., which is equal to the probability of an individual
result failing, must be at most e,.. = P(fail)/(10 x 100) = 0.001% = 1 x 107°.
Fortunately, although this error rate may seem small, we show in Sect. 4 how
such low error rates can be achieved with only a small slowdown.

Performance. To measure the performance and efficiency of fault-tolerance
mechanisms, we consider redundancy and slowdown. Redundancy is defined
as the ratio of the average total number of work objects actually assigned to
the workers in a batch vs. the original number of work entries. Slowdown is
defined as a similar ratio between the running times of the computation with
and without the use of the mechanism. In general, redundancy leads to an
equivalent slowdown, but in some cases — especially when workers can join,
leave, or get blacklisted in the middle of a batch — slowdown may be different
from redundancy. If workers leave, for example, then the remaining workers
must take over their work. This increases the slowdown, even though the total
amount of work, and thus the redundancy is the same.

Saboteurs. For simplicity, we assume that each saboteur is a Bernoulli process
with a constant probability s of submitting a bad result, known as the sabotage
rate. In reality, saboteurs may communicate and collude with other saboteurs
to try to increase their chances of getting their bad answers accepted. They
may also change their sabotage rates in time in order to try to fool techniques
such as credibility-based fault-tolerance. For now, we do not address these
possibilities, and simply assume that we can employ other techniques such as
checksums and randomization to make such attacks difficult. As discussed in

2 This is computed as: Zé:fo P(solution found in 4 rounds)-i = Zé:fo gt (1—¢)-i.



Sect. 6, however, if we can model these situations mathematically and derive
the appropriate conditional probabilities, we can adapt the general idea of
credibility-based fault-tolerance accordingly to cover these situations as well.

We also make the simplifying assumption that all workers, whether saboteurs
or not, run at roughly the same speed so that they get roughly equal shares of
work. Note, however, that under this assumption, we can still handle saboteurs
who are faster than others by simply treating them as multiple saboteurs.

3 Basic Mechanisms

Aside from the mechanisms presented here, there are also other ways to protect
a computation against sabotage. These include techniques that take advan-
tage of authentication, encrypted computation, and obfuscation to make it
difficult for saboteurs to understand the computational code and thus to pro-
duce valid-looking, but erroneous, results [8]. Such techniques, however, may
be application-specific and may rely on heuristics that are difficult to analyze
mathematically.

In this paper, therefore, we focus on mechanisms that rely on the more general
principles of redundancy and randomization. Not only are these mechanisms
more robust (i.e., they assume less about the application, and thus work for a
broader range of applications and assumptions), but they can also be combined
with other approaches to achieve even better reliability.

3.1 Majority Voting

The most basic such mechanism is the traditional mechanism of majority
voting, wherein we do each piece of work several times, and decide which
result to accept through a vote. As shown in Fig. 1, we can easily implement
this scheme by using a modified eager scheduling work pool. Here, as in normal
eager scheduling [1,8], the master continuously goes through the work entries
in the work pool in round-robin fashion, until the done flags of all work entries
are set. In this case, however, the done flag of each work entry is left unset
until we collect m matching results for that work entry, thus implementing an
m-first voting scheme.

Assuming that bad answers match (so that saboteurs can vote together), this
voting scheme can be shown to have an expected redundancy of m/(1 — f),
and an error rate that shrinks roughly exponentially in m, as shown in Fig-
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Fig. 1. Eager scheduling work pool with m-first majority voting.
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Fig. 2. Error rate of majority voting for various values of m and f.

ure2.? This exponentially shrinking error rate means that voting works very
well in systems with a small faulty fraction, f, and furthermore, that it gets
increasingly better as f decreases. Thus, in systems with very low error rates
to begin with, such as hardware systems, it does not take much redundancy
to shrink the error to extremely low levels.

Unfortunately, however, voting also has its drawbacks. First, it is inefficient
when f is not so small. As shown in Fig.2, for example, at f = 20%, doing
all the work at least m = 6 times still leaves an error rate larger than 1%.
Secondly, and more importantly, it has a minimum redundancy of 2, regardless
of f and the target error rate, €,... For these reasons, voting is only practical
in cases where: (1) f is small (i.e., f <~ 1%), and (2) either (a) we have
enough idle or spare nodes to take on the extra load without causing additional
slowdown (as in the case of hardware-redundant triple modular redundancy
systems), or (b) a slowdown of at least 2 (or in general m) is deemed to be an
acceptable price to pay to reduce errors.

2m —1

3 More precisely, emajy(f,m) = Z?Z;ll fi(1 — f)@m=1-9)  which is
J

(@ra=pm
bounded by 2 /e D) [8,10].



3.2 Spot-Checking

In cases where either f is large, or our maximum acceptable error rate is
not too small, we can use a novel alternative we call spot-checking. In spot-
checking, the master node does not redo all the work objects two or more
times, but instead randomly gives a worker a spotter work object whose cor-
rect result is already known or will be known by checking it in some manner
afterwards. Then, if a worker is caught giving a bad result, the master back-
tracks through all the results received from that worker so far, and invalidates
all of them. The master may also blacklist the caught saboteur so that it is
prevented from submitting any more bad results in the future.

Because spot-checking does not involve replicating all the work objects, it has a
much lower redundancy than voting. If we assume that the master spot-checks
each worker with a Bernoulli probability ¢, called the spot-check rate, then the
redundancy, on average, will just be 1/(1 — ¢). For example, if ¢ = 10%, then
10% of the work the master gives would be spotter works. This means that on
average, the master gives out (1/(1 — 0.1)) = 1.11N work objects during the
course of a batch with N original work objects.

3.2.1 Spot-checking with Blacklisting

Even with this low redundancy, however, spot-checking can still achieve very
low error rates. To see this, consider the case where caught saboteurs are
blacklisted and never allowed to return or do any more work (at least within
the current batch). In this case, errors can only come from saboteurs that
survive until the end of the batch. Assuming that a saboteur is given a total
of n work objects, including spotter works, during a batch (where n is the
saboteur’s share in the total work, i.e., N/ P, plus the 1/(1 — ¢) redundancy of
spot-checking and the extra load that the remaining workers have to take when
a worker gets blacklisted), then the average final error rate with spot-checking
and blacklisting, 41,1, can be computed as:

sf(1—qgs)”
L—f)+ f(1—gs)

where s is the sabotage rate of a saboteur, f is the fraction of the original
population that were saboteurs, (1 — ¢s)" is the probability of a saboteur
surviving through n turns, and the denominator represents the fraction of the
original worker population that survive to the end of the batch, including both
good and bad workers.

(1)

Escbl(qa n, f: 3) = (

Closer analysis of this function [8] shows that it has maximum at roughly



§%pi(g,n) = min (1, m) and has a maximum value that can be bounded as
follows:
f 1

Esen(q, ) < T—F ane (2)

Intuitively, this means that if a saboteur knows n in advance, then it should
set its sabotage rate to be §%,,, since a higher sabotage rate would lead to a
saboteur being caught too quickly, while having a lower sabotage rate would
lead to fewer errors in the end. Even if saboteurs optimize their sabotage rates
in this way, however, Eq.2 says that the average error rate cannot be larger
than &g, That is, spot-checking reduces worst-case average error rate linearly
with n (for a constant f). Thus, to reduce the error rate, it is to the master’s
advantage to make the batches longer so that n is larger.

3.2.2  Spot-checking without Blacklisting

Unfortunately, it may not always be possible to enforce blacklisting. Although
we can blacklist saboteurs based on email address, it is not too hard for a
saboteur to create a new email address and volunteer as a “new” person.
Blacklisting by IP address would not work either because many people use
ISPs that give them a dynamic address that changes every time they dial up.
Requiring more verifiable forms of identification such as home address and a
telephone number can turn away saboteurs, but would probably turn away
many well-meaning volunteers as well.

It is thus useful to consider the effectivity of spot-checking when blacklisting
cannot be enforced. Unfortunately, in these cases, saboteurs can increase the
error rate significantly by leaving after doing only a limited number of work
objects, [, and then rejoining under a new identity. We can show that this
changes the upper bound on the worst-case average error rate to f/ql [8]. This
is significantly worse than before, because unlike Eq.2, this does not shrink
inversely with n, and thus cannot be expected to shrink with the length of
a batch. The best thing that a master can do in this case, is to try to force
saboteurs to stay longer (i.e., increase [) by making it hard for them to forge
a new identity or by imposing delays.

4 Credibility-based Fault-Tolerance

Although useful alone, voting and spot-checking can also be combined to in-
crease reliability. One way to do so is to simply apply the two mechanisms
independently on the same system. If blacklisting is enforced, then this simple



hybrid approach effectively allows us to take the linearly-reduced error rate
due to spot-checking and exponentially reduce it by voting. This allows us to
achieve error rates that are orders-of-magnitude smaller than those of voting
or spot-checking alone for the same slowdown [8].

Another, even better way of combining voting, spot-checking, as well as other
mechanisms we may develop in the future, is through a new generalizable
technique we call credibility-based fault-tolerance.

Here, the key idea is to compute the credibility of each tentative result as the
conditional probability that the result is correct, based on voting (i.e., the
more workers agreeing on a result, the higher its credibility), spot-checking
(i.e., the higher the number of spot-checks passed by the workers who produced
these results, the higher the credibility of the workers and the results), and
other factors (e.g., human knowledge that some worker machines are more
trustworthy than others). While the credibility of a result is below a certain
credibility threshold v, which we set to ¥ = 1 — €., we continue to have it
recomputed by other workers, and continue to spot-check workers. When the
credibility threshold is reached (which can happen either because we gather
enough matching results, or the workers pass enough spot-checks, or both),
then we accept the result as final. By waiting for the threshold to be reached in
this way, we guarantee that on average, the error rate will not exceed 1 —9 =
Eacc- At the same time, we allow the system to automatically combine voting
and spot-checking, and efficiently trade-off redundancy for more reliability,
using only as much redundancy as necessary to reach the threshold. The result
is mathematically guaranteeable correctness with “minimal” (i.e., given what
we can know and control) slowdown.

4.1 Implementation

We can implement this idea by attaching credibility values to different objects
in the system, as shown in Fig.1, where the credibility of some object X,
written Cr(X), is defined as an estimate of the conditional probability, given
the current observed state of the system, that object X is, or will give, a
good result. As shown, we have four different types of credibility: that of
workers (Crp), results (Crg), result groups (Crg), and work entries (Cry ).
The credibility of a worker depends on its observed behavior such as the
number of spot-checks it has passed, as well as other assumptions such as the
upper bound on the faulty fraction, f. In general, we give less credibility to
new workers who have not yet been spot-checked enough, and more credibility
to those who have passed many spot-checks and are thus less likely to be
saboteurs or have high sabotage rates. The credibility of a worker determines
the credibility of its results, which in turn determine the credibility of the
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Fig. 3. A credibility-enhanced eager scheduling work pool (using Eq. 6 and Eq. 7).

result groups in which they respectively belong. The credibility of a result
group (which is composed of matching results for a work entry) is computed as
the conditional probability that its results are correct, given their credibilities,
and the credibilities of other results in other result groups for the same work
entry. Finally, the credibility of the best result group in a work entry gives
us the credibility of the work entry itself, and gives us an estimate of the
probability that we will get a correct result for that work entry if we accept
its currently best result.

In the course of running a parallel batch, the credibilities of the objects in
the system change as workers pass spot-checks or get caught, and as matching
results are received for the same work entry. Assuming there are enough good
workers, the credibility of each work entry W eventually reaches the desired
threshold value 1. When this happens, the work entry is marked done and
the server stops reassigning it to workers. When all the work entries reach
the desired threshold ¥, the batch ends. At this point, assuming that our
credibilities are good estimates of the conditional probabilities they represent,
the expected fraction of final results that will be correct should then be at
least 19, and the error rate would thus be at most ;.

4.2 Calculating Credibility

A key trick in this technique is computing the credibility values correctly. In
general, there are many possible credibility metrics, corresponding to different
ways of observing the current state of the system, as well as different ways of
computing or estimating the conditional probability of correctness based on
observations. In this section, we present particular metrics that we have found
to be effective.

10



4.2.1  Credibility of Workers and their Results

Without Spot-checking. Without spot-checking, the credibility of a worker,
and thus of its results, must be taken solely from assumptions that we are will-
ing to make. In most cases, if we can assume a bound f on the faulty fraction
of the worker population, then we simply let Crp(P) =1 — f for all workers,
since f is the probability that a worker chosen at random would be bad. In
some cases, we can assign some workers different credibilities based on human
knowledge — e.g., workers from trusted domains get high credibility, while
those from a domain that has had saboteurs in the past get low credibility.

With Spot-checking and Blacklisting. If we have spot-checking, then we
can use the number of spot-checks passed by a worker, k, to estimate how
likely a worker is to give a good result. Intuitively, the more spot-checks a
worker passes, the more confident we can be that the worker is a good worker,
or at least does not have a very high sabotage rate. (Note that we do not need
to consider the credibility of workers who are spot-checked and caught, since
these are removed from the system.)

If we have blacklisting, then we can compute the credibility of a worker Crp(P)
from £ as one minus the conditional probability of receiving a bad result from
a worker, given that the worker has survived k spot-checks. This probability
is similar to that in Eq. 1, and can be computed and bounded as follows:

P(result from P is bad | P survived k spot-checks)

C sfi-s)
TA-Drfa- ¥
f 1
< ﬁ . E (fOI" any S) (4)

This gives us the following credibility metric for spot-checking with blacklist-
ing:

CTP(P)scbl =1- % ) é (5)

which is a strict lower bound on the conditional probability of a worker P
giving a good result.

Note that this equation does not apply to workers that have not yet been
spot-checked, i.e., whose k is 0. In this case, we can just set Crp(P)=1— f.
Alternatively, we can choose to just ignore results from workers that have not
yet been spot-checked.

Without Blacklisting. Unfortunately, deriving a worker’s credibility in the

11



case when there is no blacklisting is not as straightforward. In general, the
probability of errors is higher, so we need to assign lower credibilities to work-
ers. Deriving an exact conditional probability like Eq. 5, however, is difficult,
since saboteurs can leave and come back in under new identities, creating
many different possible cases to consider. Thus, we take a different approach.

First, we note that if we assume that workers who leave or get caught rejoin
immediately, then the faulty fraction of the worker population stays constant
at around f. This implies that the probability of a randomly chosen worker
being bad is around f, and thus the probability of a randomly chosen answer
being bad is f-s, where s is the sabotage rate of the saboteurs. Unfortunately,
however, we do not know s. We can, however, derive a reasonable estimate,
§, based on k, and use that instead. One such estimate is § = 1/k, which we
can intuitively arrive at by noting that a saboteur with a sabotage rate of 1/k
would have an average survival period of k£ spot-checks. Using this estimate
gives us the following credibility metric for spot-checking with no blacklisting:

CTP(P)scnb =1~ % (6)

As shown in Sect. 5.2, this metric proves to work well in simulations, where it
always achieved the desired final error rate 1 — ¢, without overly sacrificing
performance.

Credibility of Results. For now, we will simply assume that the credibility
of a result R, Cry(R), is simply equal to Crp(R.solver) where R.solver is the
worker which produced the result. In general, however, it is possible to distin-
guish it from the solver’s credibility. For example, we may give results received
later lower credibility to guard against saboteurs who give good results at the
beginning to earn credibility, but then start giving more bad results later on,
once they know their credibility is high already.

4.2.2  Credibility of Result Groups and Work Entries

If a work entry W has only one result R; so far, then Cry (W) is simply
Crr(R) of the result, which, under our assumptions, is equal to the credibility
Crp(Ry.solver). If a work entry has several results, then we divide the results
into g groups, G,, for 1 < a < g, with m, members respectively, and then
compute the credibility for each group based on the conditional probability of
correctness, given the current combination of results received so far. This can
be computed as:

Cra(Ga) (7)

12
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where P(G, good) is the probability of all the results in G, being good, com-
puted as [T;"4 Crgr(R,;) for all results R,; in group G, and correspondingly,

P(G, bad) is the probability of all the results in G, being bad, given as
ITi2 (1 — Crr(Rq;)). Figure3 show some examples of how Eq.7 is used (note
especially works 1 and 998).

4.8 Using Credibility

4.8.1 Voting and Spot-checking Combined

Although credibility-based fault-tolerance can be used with voting alone or
spot-checking alone, it is best used to integrate voting and spot-checking to-
gether. In this case, we start with all workers effectively having a credibility of
1 — f and start collecting results. If the credibility threshold  is low enough,
and the batch is long, then by the time we go around the circular work pool,
the workers may have already gained enough credibility by passing spot-checks
to make their results acceptable. In these cases, we do not need to do voting
and we can reach our desired error rates with only 1/(1 — ¢) redundancy due
to the spotter works. If 9 is high, then spot-checking would not be enough, so
we start reassigning work, collecting redundant results, and voting.

If we did not use spot-checking, we would eventually reach the threshold after
a slowdown proportional to roughly log(1 — ¥)/log(1 — Crp(P)) = log; €acc-
Spot-checking, however, effectively reduces the base of this logarithm, 1 —
Crp(P), linearly in time, and thus allows us to reach the desired threshold
in much less time than with voting alone. In Sect. 5.2, for example, we show
that at f = 20% and ¢ = 10%, N = 10000, and P = 200, we can reach an
error rate of 1 x 1075 with an average slowdown of only around 3 compared
to m-first voting’s 32.

Another advantage of using credibility is that it works well even if we cannot
enforce blacklisting. By using the credibility metric from Eq. 6, we effectively
neutralize the effect of saboteurs who only do a few pieces of work and then
rejoin under a new identity. As shown in Sect. 5.2, there is now no advantage to
doing so, and in fact, it seems that there is now more incentive for a saboteur
to stay on for longer periods.

13



4.8.2  Using Voting for Spot-checking

Although using credibility with voting and spot-checking already works quite
well, we can gain even more performance by using voting for spot-checking.

So far, we have assumed that a master spot-checks a worker by giving it a
piece of work whose correct result is already known. Since this implies that
either the master itself, or one of a few fully-trusted workers, must do the
work to determine the correct result, we generally assume that ¢ needs to be
small (i.e., less than 10%). Since k is roughly ¢n, this limits the rate at which
credibilities increase and thus limits performance.

Fortunately, we can attain much better performance by using credibility-based
voting as a spot-checking mechanism. That is, whenever one of a work entry’s
result groups reaches the threshold (such that the work entry can be considered
done), we increment the &k value of the solvers of the results in the winning
group, while we treat those in the losing groups as if they had failed a spot-
check (i.e., we remove them from the system and invalidate their other results).

If we assume that we have to do all the work at least twice, which implies
that all results returned by a worker would have to participate in a vote, then
using these votes to spot-check a worker implies that a worker will get spot-
checked at least k& = n times — i.e., 1/¢ times more than before. This implies
a corresponding decrease in the error rate and a corresponding increase in the
credibility of good workers, which in turn allows the voting to go even faster.

Note that this technique is only made possible by using credibility-based voting
to begin with. Naively using traditional majority voting to spot-check workers
would be dangerous because the chance of saboteurs outvoting good workers
and thus getting them blacklisted would be significant, especially if f is not
small. Credibility-based voting works because it guarantees that we do not vote
until the probability that the vote will be right is high enough. Thus, it limits
the probability of good workers being outvoted to a very small value. Note,
however, that some “bootstrapping” is required here. That is, we cannot start
using voting for spot-checking until the result groups actually start reaching
the threshold and voting. This implies that: (1) spot-checking by voting is
only beneficial when the redundancy is already at least 2, and (2) we need to
maintain normal spot-checking (at least for the first few batches) to allow the
workers to gain enough credibility to reach the threshold early enough.
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5 Simulation Results

5.1 The Simulator

To verify our theoretical results, we have developed a Monte Carlo simulator
that simulates the behavior of an eager scheduling work pool in the presence of
saboteurs and various fault-tolerance mechanisms [8]. To simulate the workers
and saboteurs, we create a list of P worker entries and randomly select fP of
them to be saboteurs. We then simulate a computation done by these workers
by going through the list in round-robin manner, each time simulating the
action of the current worker contacting the master to return a result (for
the work object it received in its previous turn) and to get new work. This
assumes, as in Sect. 2, that all workers have exactly the same speed, so that
the work is equally distributed among the workers, and each worker gets to
take a turn before any other worker is allowed to take a second turn.

For our experiments, we ran 100 runs of simulated computation, each con-
sisting of a sequence of 10 batches of N = 10000 work objects each, done
by P = 200 workers. These numbers were chosen to be small enough to be
simulatable in a reasonable amount of time, but large enough to provide good
precision (i.e., the smallest measurable error rate is 1 x 1077) and to prevent
blacklisting from killing all the saboteurs too early. In addition, the work-per-
worker ratio, N/P = 50, was chosen to be large enough to show the effects
of spot-checking, while still being representative of potential real applications.
Also, having the computation go through 10 batches allows us to see the ben-
efits of letting good workers gain higher credibility over time. When doing
blacklisting, we only do batch-limited blacklisting, which means that we allow
blacklisted nodes to return at the start of the next batch. However, these re-
turn with a different worker ID and a clear record. Specifically, a returning
saboteur’s k is set back to 0 and its credibility is correspondingly reset.

5.2 Results

Figures 4 to 9 show the experimental results we get from running our Monte
Carlo simulator.

Figure4 plots the resulting slowdown and error rate from majority voting
given different values of the initial faulty fraction f (assuming a sabotage rate
of 1). (This graph is like Fig. 2 turned on its side, except that m is replaced
by slowdown, and the values of f are different.) As shown, when f is large,
majority voting requires a lot of redundancy to achieve even relatively large
error rates. Extending the line for f = 0.2 theoretically, we find that it would
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Fig. 4. Majority voting. Slowdown vs. maximum final error rate at various values
of f and m = {2,3,4}.

1.E-01

T T T T |
06 07 08 09 1

1E-02
1E-03
S1.E-04

A

s .
b \\
F{@.\J

‘+0.99 ——0.999 —A—0.9999 0.99999 —— 0.999999 ‘

1.E-05

1.E-06

1.E-07

s

Fig. 5. Credibility-based voting with spot-checking and blacklisting. Error rate vs.
sat f=4{0.2,0.1, 0.05}.

take a slowdown of more than 32 to achieve a final error rate of 1 x 10¢. Note,
however, that the slope becomes less steep as f becomes smaller. (Only one
point for f = 0.01 is shown because the other points resulted in no errors in
our experiments.)

Figure 5 shows the results of using credibility-based voting and spot-checking
with blacklisting, using the credibility metric Crp(P)sp from Eq. 5. Here, each
group of points corresponding to a credibility level is divided into three curves
corresponding to f = 0.2, 0.1 and 0.05, respectively. Most significantly, this
plot shows that, as intended, the average error rate never goes above 1 — 1,
regardless of s and f.

One thing that is not shown in Fig.5 is that while the maximum error rate
remains roughly the same (as limited by 1 — ), more and more redundancy
is being needed to guarantee the bounds on the error rate. Figure 6 shows the
slowdown incurred in achieving the maximum error rate for a particular value
of f and 9. Note how the slopes of the lines here are much better than those
in simple majority voting, thus allowing us to achieve lower error rates in less
time. For example, whereas majority voting would have required a slowdown
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Fig. 6. Credibility-based voting with spot-checking and blacklisting. Slowdown vs.
maximum final error rate at 9 = 0.99,...,0.99999 at various values of f.

of more than 32 to achieve an error rate of 1 x 107¢ for f = 0.2, here we only
need around 3. Also note that in some cases, spot-checking can be enough to
reduce f down to the threshold 1 — ¢ without requiring voting, as shown by
the points with slowdown less than 2.

Figure 7 shows how credibility-based fault-tolerance works even in cases with-
out blacklisting, wherein saboteurs come back under a new identity after they
are caught, or after doing [ work objects without being caught.? In this case,
we use the credibility metric Crp(P)senp from Eq. 6, and measure the error
rate at various values of s for f = 0.2 and ¥ = 0.9999. As shown, even with-
out blacklisting, we successfully guarantee that the error rate never exceeds
1 -9 =1x107% regardless of I. Interestingly, although error rates start high
at [ = 1 and decrease with [ as predicted in Sect. 3.2.2, at some point above
[ = 120, the error rates get dramatically larger, and stay roughly constant. It
is not clear why this happens, but we suspect that it is because saboteurs who
stay until the next batch gain are able to carry over their credibility record
and cause more errors in succeeding batches.

Finally, Figs. 8 and 9 show the results of using credibility-based voting to spot-
check workers. Figure 8 shows how it guarantees that the error rate threshold
is reached (in fact, it seems that error rates from this scheme tend to be smaller
overall), and Fig. 9 shows the slowdown. As shown, the slope here is even better
than that of the case with blacklisting. Here, we can now achieve an error rate
of less than 1 x 107% from f = 0.2, with just a little over 2.5 redundancy.
Comparing this with majority voting as shown in Fig. 4, this shows that for
the same slowdown, we get an error rate which is almost 10° times better.

4 We assume pessimistically that a saboteur knows when it is caught. If a master
does not tell a saboteur that it has been caught but simply ignores its results, then
we expect to get better error rates.
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6 Conclusion

In this paper, we have proposed new mechanisms for addressing the largely un-
studied problem of sabotage-tolerance, and have demonstrated the potential
effectivity of these mechanisms through mathematical analysis and simulation.
A logical next step for research at this point, is then to implement and apply
these techniques to real systems, and start benefitting from them. This should
not be too difficult because the master-worker model to which these mecha-
nisms apply is widely used today not only in volunteer computing systems but
in other metacomputing and grid computing systems as well.

In the process of applying these mechanisms, questions may arise with respect
to assumptions or implementation details. Some variations that we can explore
in further research, for example, include:

e Handling cases where saboteurs can collude on when to vote to-
gether. This would imply a change in P(G, bad) in Eq. 7.

e Incorporating the use of checksums. A worker which submits a result
that fails a checksum would be treated as if it had been spot-checked and
caught submitting a bad result.

e Incorporating the use of encrypted computation, obfuscation, and
other techniques. This would decrease the probability that a saboteur
can successfully make a bad answer look good. This would thus increase the
credibility of workers and results. By using a different key for each worker,
we can also make it harder for colluding saboteurs to produce matching bad
results. This would change P(G, bad) accordingly, since the probability that
groups would be formed by bad results would now be very small.

e Handling saboteurs that are not Bernoulli processes. These include
saboteurs who might start with giving good answers, but then start giving
bad answers when their credibility has become high enough. One possibility
here is to increase the spot-check rate when necesary. Another possibility
is to compute the credibility of a worker based only on its more recent
spot-checks.

In the light of these and other questions, one of the most significant contri-
butions of this paper is the generality of the idea of credibility-based fault
tolerance. That is, we can apply this technique with other mechanisms or
under other assumptions as long as we can derive the net effect of the new
mechanisms or assumptions on the conditional probabilities of results being
correct. Thus, through this paper, we not only present concrete mechanisms
which can already be applied today, but also open up the field for the devel-
opment of other mechanisms as well.
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