
Time-multiplexed light field synthesis via
factored Wigner distribution function
STEPHEN HAMANN,1,† LIANG SHI,1,2,† OLAV SOLGAARD,1 AND GORDON WETZSTEIN1,*
1Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*Corresponding author: gordon.wetzstein@stanford.edu

Received 6 November 2017; revised 27 December 2017; accepted 4 January 2018; posted 4 January 2018 (Doc. ID 312874);
published 31 January 2018

An optimization algorithm for preparing display-ready holo-
graphic elements (hogels) to synthesize a light field is out-
lined, and proof of concept is experimentally demonstrated.
This method allows for higher-rank factorization, which
can be used for time-multiplexing multiple frames for im-
proved image quality, using phase-only and fully complex
modulation with a single spatial light modulator. © 2018
Optical Society of America
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holography; (100.6890) Three-dimensional image processing.
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The relationship between the Wigner distribution function
(WDF) and the light field has been discussed by Zhang and
Levoy in 2009 [1] and by Goodman in 2013 [2]. The
WDF, like the light field, provides a joint representation of
space and spatial frequency (phase space), but additionally
models the wave effects of diffraction and interference. These
discussions reveal a compelling path for converting between
light field recordings and complex wavefronts which com-
pletely describe the scene. In this Letter, we provide an algo-
rithm to find an arbitrary-rank phase-only, amplitude-only
or complex 2D pattern whose WDF best replicates a desired
real-valued input light field, such as a white-light camera re-
cording, through an alternating direction method of multipliers
(ADMM) optimization. This method allows for higher-rank
factorization; time-multiplexing multiple frames per image
result in a better simulated peak signal-to-noise ratio (PSNR)
on the reconstructed angular distribution and is beneficial to
speckle reduction [3]. Explicit optimization of the WDF pro-
vides an alternative path to the holographic element (“hogel”)
[4] generation using the Gerchberg–Saxton algorithm [5] or
simulated annealing [6].

This algorithm is demonstrated experimentally for a number
of chosen distributions using a display prototype with off-the-
shelf optical components and a Holoeye Pluto VIS LCoS phase
modulator. Both phase-only and combined phase and ampli-
tude (complex) modulation are tested. Complex modulation
is achieved by using phase grating “super-pixels” [7].

For simplicity, we limit our discussion to a 1D signal and its
2D WDF throughout the Letter, but extension to the higher-
dimensional cases is straightforward. The WDF of a plane wave
is defined as

W plane�x; u� � δ�u − u0�; (1)

where u0 characterizes the unique propagation angle θ �
sin−1�u0λ� at a wavelength of light λ.

A layer of microstructures modulates the complex amplitude
of incident light multiplicatively and is generally modeled
as a complex transmittance function t�x� � a�x� exp�iϕ�x��,
where a�x� denotes the amplitude attenuation and ϕ�x� de-
notes the phase delay at spatial location x. The mutual corre-
lation between any two points on the layer is given by the
mutual intensity function [8]:

J�x; f u� �
�
t
�
x � f u

2

�
t�
�
x −

f u

2

��
; (2)

where the spatial offset f u is the Fourier conjugate variable of
spatial frequency u. In the far field, spatial frequency relates to
angle as θ ≈ uλ under the small angle approximation. The h·i is
a time-averaged ensemble and can be removed for coherent
illumination. The WDF of the layer is defined as the Fourier
transform of its mutual intensity along f u:

W Layer�x; u� �
Z

J�x; f u� exp�−2πif uu�df u: (3)

The modulation between the incident light and the layer
can be modeled as a convolution of their WDFs along the an-
gular axis. For an incident plane wave, the output WDF is
given by

W out�x; u� � W Layer�x; u� ⊗ W plane�x; u�; (4)

where ⊗ is a convolution operator along the spatial frequency
axis: W 1 ⊗ W 2 �

R
W 1�x; u − u 0�W 2�x; u 0�du 0. Assuming

normal incidence, the output WDF is equivalent to the
WDF of the layer:

W out�x; u� � W Layer�x; u� ⊗ δ�u� � W Layer�x; u�: (5)

Therefore, synthesizing a target light field using a single
modulation layer under normally incident plane wave illu-
mination is equivalent to optimizing the layer’s complex
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transmittance function such that the resulting WDF best
resembles the target.

Solving this problem globally for a high-resolution modu-
lation layer requires storing and processing trillions of angular
samples and, thus, is computationally intractable. Similar to
Ye et al. [6] and Shi et al. [9], we employ a “holographic
element” (hogel) model to limit the problem into a local area.
Specifically, the entire layer is partitioned into non-overlapping
local patches so that each is treated and optimized independ-
ently for a local light distribution. Though each hogel consists
of multiple pixels, we treat one hogel as the minimally observ-
able feature and are only interested in the average angular
variation over its surface area.

Conceptually, a hogel functions as a lenslet in a light field
camera. Computationally, this model splits the global problem
into sub-problems that can be solved in parallel. The hogel size
imposes a trade-off: a larger hogel yields higher angular
resolution, but a lower spatial resolution.

We introduce the algorithm in the discrete case to allow for
numerical optimization. Let t ∈ CN be the discrete complex
transmittance function of a hogel and h ∈ RN

≥0 be a target
1D light field. With coherent illumination across the hogel,
the discrete mutual intensity function Jt ∈ CN×N is

Jt�x; f u� � t
�
x � f u

2

�
t�
�
x −

f u

2

�
; (6)

where x and f u are indices considered for the discrete case. The
discrete WDF Wt ∈ RN×N is followed by

Wt�x; u� � F u�Jt�x; f u��; (7)

where F u is the discrete 1D Fourier transform operator
along f u.

Due to the limitations of visual acuity, the human eye “aver-
ages” the variation over a hogel’s surface area. Mathematically,
we define a projection matrix P ∈ RN×N 2

which sums each fre-
quency component u of W t �x; u� over all spatial locations x:

�P vec�Wt���u� �
XN
x�1

Wt�x; u�; (8)

where vec�·� is a linear operator that reshapes a matrix into a
column vector by stacking up all the matrix columns. The light
field synthesis problem is subsequently converted to the follow-
ing optimization problem:

minimize
t

kh − P vec�Wt�k22: (9)

We solve this problem using ADMM [10], and Eq. (9) is
reformulated as

minimize
t

kvec�Wt� − Ik22; (10)

subject to PI � h; (11)

where I ∈ RN 2
is an intermediate WDF (vectorized) which

connects the new objective and the constraint, known as the
splitting variable. Following the general ADMM strategy, we
formulate the augmented Lagrangian of Eq. (10):

Lρ�t; I; y� � kvec�Wt� − Ik22 � yT �PI − h� � ρ

2
kPI − hk22;

(12)

where y is the Lagrange multiplier (dual variable) and ρ is the
penalty term for violation of the constraint. Using the scaled

form of the augmented Lagrangian, the following iterative
updates rules can be derived:

I ← argmin
I

kvec�Wt� − Ik22 �
ρ

2
kPI − h� uk22; (13)

t ← argmin
t

kvec�Wt� − Ik22; (14)

u ← u� �PI − h�; (15)

where u � �1∕ρ�y is used to simplify the notation of Eq. (12).
The I-update is quadratic, thus convex, and can be itera-

tively solved by gradient-based methods. The t-update seeks
the choice of transmittance function t whose WDF best ap-
proximates the updated intermediate WDF I. Let ivec�·� be
a linear operator that reshapes the vector back to its matrix
form. Assuming a transmittance function t̂ exists whose WDF
exactly equals ivec�I�, its mutual intensity will be given by

Jt̂�x; f u� � F −1
u �ivec�I��; (16)

whereF −1
u is the 1D discrete inverse Fourier transform operator

along u. Though t̂may not physically exist because I only serves
as a minimizer of Eq. (13), we can still advance the t-update by
finding t whose mutual intensity best resembles Jt̂. To solve
this new problem, we partially reconstruct the outer product
Ot̂ ∈ CN×N of t̂ by filling its entries using Jt̂, which consists
of a subset of entries in Ot̂. We define a binary weight matrix
M ∈ BN×N which equals 1 at indices where Ot̂ finds a corre-
spondence in Jt̂ and 0 otherwise. This transforms the t-update
into a weighted complex-valued low-rank matrix factorization
problem:

t ← argmin
t

kM ∘ �Ot̂ − ttH �k2F ; (17)

where H is the conjugate transpose operator, ∘ denotes the
Hadamard product for element-wise multiplication, and the
Frobenius norm k · k2F measures the sum of squared differences
of all matrix elements. Equation (17) is minimized iteratively
using gradient descent:

t�q� � t�q−1� � αtM ∘ �Ot̂ �OH
t̂ − 2ttH �t; (18)

where αt is the step length at a typical scale of 1e−3.
The reformulated t-subproblem allows for an arbitrary-rank

factorization without the necessity to alter the update formula.
By replacing t ∈ CN to t ∈ CN×K for a given rank K , a par-
tially coherent light field can be synthesized by time-multiplex-
ing K frames. On the other hand, expanding t � jtj exp�iθ�
allows for phase-only or amplitude-only optimization and,
thus, facilitates the generation of an amplitude-only or phase-
only modulation layer. As an example, we provide the update
formula for phase-only factorization in the following:

θ�q� � θ�q−1� �αθ���M ∘Ot̂ − ttH �t� ∘ t − �M ∘ �:Ot̂ − ttH �t� ∘ t�;
(19)

where αθ is the phase step length at a typical scale of 1e−3 and
– is

the conjugate operator. The amplitude update formula can be
derived similarly.

We implemented the proposed algorithm in MATLAB
and sped up the WDF calculation and t-update by implement-
ing it as a mex module. On an Intel i7-6800K 3.4 GHz
processor with 16GB RAM, one ADMM iteration on a 13 ×
13 hogel takes 0.1 s. GPU implementation may provide
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orders-of-magnitude speed improvement over our current
implementation.

To assess the proposed algorithm, we simulate the phase-
only results for a set of chosen angular profiles (13 × 13)
and demonstrate proof-of-concept experimental results on a
liquid crystal on silicon (LCoS) device.

Figure 1 shows the convergence of the proposed algorithm
for an “S” shaped angular profile and intermediate results over
the iterations, where the “S” distribution is gradually ap-
proached. We observe that for an arbitrary angular profile,
1000 iterations typically suffice to reach the convergence.
Figure 2(a) visualizes the reconstruction of four different angu-
lar distributions. The visual quality consistently improves as the
rank increases. The artifacts seen in the rank-1 results are barely
visible in most of the rank-3 results. Figure 2(b) plots the PSNR
versus the rank. The PSNR asymptotically improves for all the
chosen angular profiles as a function of the rank, with little
improvement seen past rank 5.

The optical setup in Fig. 3 is designed to view the light field
angular response of calculated phase patterns in a focal conju-
gate plane. The lightwave emitted from a 532 nm laser diode is
expanded by two lenses and followed by a nonpolarizing beam
splitter to enable normal incidence on the spatial light modu-
lator. A pulsed laser with appropriate coherence length across
the hogel could also be used. The LCoS phase-only modulator
displays the patterns. A 4F system of two lenses with a Fourier
filter is used to pass the zeroth order for phase-only modulation
or the first order for phase and amplitude complex modulation.
Two more lenses are used to image the conjugate plane of the

4F system onto a CMOS camera sensor, and the last lens aper-
ture is restricted to allow for desired angular discrimination
by moving the camera. Alternatively, infinite conjugated
projection optics can be used for far-field viewing.

For phase and amplitude modulation, we define a super-
pixel of three repetitions of high and low phase lines that
are six LCoS pixels wide, using the double phase method
[11,12]. The difference between the high and low phase creates
phase gratings that diffract light into the	1st and higher-order
diffraction modes, enabling amplitude modulation [13]. The
difference in phases controls the effective amplitude of the
super-pixel. The mean of the high and low phases is the effec-
tive phase of the super-pixel. Thus, this super-pixel modulates
the effective phase and amplitude of a single hogel entry. Given
a desired amplitude A and phase θsp for the mth entry of a
complex hogel, high and low phases θ1 and θ2 are found by
using the following formula:

θ1�m� � θsp�m� � arcsin�A�m�∕2�; (20)

θ2�m� � θsp�m� − arcsin�A�m�∕2�: (21)

For full amplitude modulation combined with 2π phase
modulation, the LCoS must be calibrated for a 0 to 2.5π
phase stroke, as illustrated in Fig. 4.

For experimental verification, we design a pattern of three
regions: an “S”, a “U,” and a background, bounded by colors in
Fig. 5. Each region consists of a repeated 13 × 13 target hogel,
enlarged on the right side of Fig. 5 and highlighted by the
corresponding region’s color. Three color dots on each hogel
represent three different angular perspectives that are experi-
mentally captured, as shown in Fig. 6. Starting from the brown
dot perspective, the “U” and the background is dark, and only
the “S” is visible. When the camera is moved to the blue dot
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Fig. 1. (a) Convergence of the mean square error between
synthesized “S” (phase-only) and target “S” in log10 space.
(b) Synthesized “S” at iterations marked by the red lines.
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Fig. 2. (a) Synthesized (phase-only) “Uniform,” “Step,” “Gradient,”
and “S” angular distributions over different ranks. (b) PSNR of syn-
thesized results versus rank for “Uniform,” “Step,” “Gradient,” and “S”
angular distributions.
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Fig. 3. Optical setup for synthesizing the light field.
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perspective, all of the elements become visible. At the purple
dot perspective, the “S” and the background disappear, leaving
only the “U” visible. The right two columns in Fig. 6 are ob-
tained with time-multiplexing. Compared to the rank 1 phase-
only result, there is a marked improvement in the brown dot
view for time-multiplexing and complex modulation. The con-
trast between the average grayscale value of the “S” pixels to the
“U” pixels is 1.3 for rank 1 phase-only, 1.9 for rank 3 phase-
only, and 5.4 for rank 3 complex modulation. However, we
note that the complex modulation has a different resolution
than the phase-only due to the use of super-pixels. In addition,
as the phase of the super-pixel is averaged, complex modulation
benefits from the simplicity of the test patterns.

To further confirm that the captured light field is equivalent
to the calculated one, we photograph the Fourier planes for
rank 1 and rank 3 “S” patterns and compare them to the
calculated Fourier response of the optimized layer, as shown
in Fig. 7. Note that the expected Fourier response, calculated
here as a 2D FFT of the phase pattern generated by the algo-
rithm, is not the same as the synthesized hogels generated by
Eq. (9). When using the reflective phase-only LCoS, the
Fourier response of a single “S” hogel will be overwhelmed
by the Fourier response of the passive pixels. To address that,
we repeat the “S” hogel to fill the entire display. This repetition

causes the Fourier response to narrow into peaks. The response
is photographed by removing the camera lens from the conju-
gate setup (Fig. 3) and moving the sensor forward to the
marked Fourier plane. As shown, the photographed results
match the expected responses, most noticeably with darkened
pixels in the S shape itself, validating that we are indeed observ-
ing the calculated light field. We have demonstrated that
ADMM optimization of the WDF is capable of generating
phase-only and complex hogels for displaying real-valued light
fields. The simulation shows considerable improvement in
PSNR under higher rank factorization, though the amount
of improvement is highly dependent on the input target angular
distribution. The simulation is experimentally verified on an
SLM-based display prototype, where complex modulation is
achieved by using the double phase method based “super-
pixel.” Rank 3 time-multiplexing is prohibitive for the
60 Hz Pluto SLM, but may be an inexpensive trade-off on
faster modulators. The described algorithm is directly appli-
cable to coherent illumination displays for computer-generated
or white-light camera recorded light fields.

†The indicated authors acknowledge equal contributions by
sharing first authorship.
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Fig. 6. Photographed angular views. Each row is color coded to
match the angular view indicated on the angular patterns in Fig. 5.
Rank 3 time-multiplexed images are constructed by averaging the
results of three component frames.

Fig. 5. Target light field for hogel calculation. Three regions con-
sisting of hogels with different angular responses are highlighted in red,
yellow, and green. The top right is the enlarged elementary hogel for
the “S” (red), the middle right is for the “U” (yellow), and the bottom
right is for the background (green).
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Fig. 7. Rank 1 and Rank 3 expected and measured the Fourier re-
sponse of the repeated phase pattern for the “S” hogel from the last row
of Fig. 2(a). The missing darkened pixels seen in the “S” shape from
the calculated Fourier responses are seen in corresponding locations
in the measured responses.
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