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Abstract— Our motivation is to create a robotic creature,
Mertz, that ’lives’ among us daily and incrementally learns
from and about people through long-term social interaction.
One of Mertz’s main tasks is to learn to recognize a set of
individuals who are relevant to the robot through ongoing
human-robot interaction. We present an integrated framework,
combining an object-based perceptual system, an adaptive multi-
modal attention system and spatiotemporal perceptual learning,
to allow the robot to interact while collecting relevant data
seamlessly in an unsupervised way. Our approach is inspired by
the coupling between the human infants’ attention and learning
process. We implemented a multi-modal attention system for the
robot that is coupled with a spatiotemporal perceptual learning
mechanism, which incrementally adapts the attention system’s
saliency parameters for different types and locations of stimuli
based on the robot’s past sensory experiences. We conducted and
described results from a six-hour experiment where the robot
interacted with over 70 people while collecting various data in a
public space.

I. INTRODUCTION

Our motivation is to create a robotic creature, Mertz, that
’lives’ among us daily and incrementally learns from and about
people through long-term social interaction. One of Mertz’s
main tasks is to learn to recognize a set of individuals who are
relevant to the robot through ongoing human-robot interaction.
This life-long developmental approach and social interaction
in robotics have been widely explored[1], [2].

In this paper, we present an integrated framework, com-
bining an object-based perceptual system, an adaptive multi-
modal attention system and spatiotemporal perceptual learn-
ing, to allow the robot to perform the following tasks auto-
matically and seamlessly in an unsupervised way:

1) operate for long periods of time in public spaces
2) interact visually and verbally with multiple passersby at

a time
3) filter and collect relevant audiovisual sensory data
4) generate clusters of face and voice data for each indi-

vidual
5) generate clusters of color histograms for a set of objects
6) generate clusters of frequently heard words and learn a

simple bigram language model
7) learn spatiotemporal patterns of various audiovisual sen-

sory events
In this setup, where there is no boundary between testing

and training stages, the robot has to perform the parallel task

of interacting with while collecting data and learning from the
environment. This task is difficult for a number of reasons.
Firstly, the robot’s attention system faces conflicting tasks, as
it has to be reactive to find learning targets in the environment
but also persistent to observe targets once they are found.
In the human’s visual attention system, this dichotomy is
reflected in two separate components: the bottom-up (exoge-
nous) and top-down (endogenous) control [3].

The importance of an attention system for learning has
been discovered in many research areas [4], [5]. Incorporating
top-down control of attention has also been explored in [6],
[7], [8]. However, the top-down attention control was mostly
simulated manually in most of these systems. Many properties
of the robot’s attention system that we implemented were
inspired by the Sensory Ego-sphere [7].

Secondly, attending to learn in an unconstrained social envi-
ronment is a difficult task due to noisy perceptual sensors, tar-
get disappearing and reappearing, presence of multiple targets,
and the target’s or robot’s own motion. Same person tracking
in subsequent frames is an easy task for the human’s visual
system since we are very good in maintaining spatiotemporal
continuity. Even when our heads and eyes move, we can easily
determine what have moved around us. Unfortunately, for an
active vision system, this is not the case. The robot essentially
has to process each visual frame from scratch in order to re-
discover the learning target from the previous frame. Tracking
a person’s face in order to learn to recognize the person is a
somewhat convoluted problem. The robot has to follow and
record the same person’s face in subsequent frames, which
requires some knowledge about how this person looks like,
but this is exactly what the robot is trying to gather in the first
place.

An additional complexity is introduced by the trade-off be-
tween timing and accuracy requirement of the interaction and
learning process. The interaction process needs fast processing
to allow for timely responses. The data collection process
needs higher accuracy in terms of ensuring that the robot
is collecting the correct data for the right person or object.
Interestingly, this dichotomy is also reflected in the separate
dorsal ’where’ and ventral ’what’ pathways in the human’s
visual system, for locating and identifying objects.

We have designed the robot’s attention system to address
some of the issues mentioned above, by incorporating object-



based tracking and an egocentric multi-modal attentional map
based on the world coordinate system [9], [7]. The attention
system receives each instance of object-based sensory events
(face, color segment, and sound) and employs space-time-
varying saliency functions, designed to provide some spa-
tiotemporal short-term memory capacity in order to better deal
with detection errors and having multiple targets that come in
and out of the field of view. We also implemented two separate
face trackers in order to cater to the needs of both interaction
and data collection. One actively affects the attention system
in real time, while the other runs independently to collect face
data at a slower speed.

In addition, inspired by the coupling between the human
infants’ attention and learning process, we implemented a
spatiotemporal perceptual learning mechanism, which incre-
mentally adapts the attention system’s saliency parameters
for different types and locations of stimuli based on the
robot’s past sensory experiences. In the case of human infants,
the attention system directs cognitive resources to significant
stimuli in the environment and largely determines what infants
can learn. Conversely, the infants’ learning experience in the
world also incrementally adapts the attention system to incor-
porate knowledge acquired from the environment. Coupling
the robot’s attention system with spatiotemporal perceptual
learning allows the robot to exploit the large amount of
regularities in the human environment. For example, in an
indoor environment, we would typically expect tables and
chairs to be on the floor, light fixtures to be on the ceiling,
and people’s faces to be at the average human height.

We conducted a six-hour experiment where the robot inter-
acted with over 70 people in a public space. We evaluated how
the robot directed its attention among competing stimuli and
collected face, color, and speech data for future recognition
during this experiment. At this time, the adaptation feedback
from the spatiotemporal learning module to the attention sys-
tem has been implemented in a minimal way. We present some
preliminary results on how the robot’s past experiences, which
suggest where faces, color segments, and sound tend to appear
allowed the attention system to favor certain spatial regions.
In the last section, we discuss some future implementation
plans to extend this framework to explore various behavioral
adaptations based on the robot’s past sensory experiences.

II. IMPLEMENTATION

A. Robotic Platform

MERTZ is an active-vision head robot with thirteen degrees
of freedom (see Figure 1). Mertz has been designed with
the goal of continuous long-term operation in various human
spaces, as reported in [10]. The robot perceives visual input
using a Point Grey Dragonfly digital camera per eye. The
robot uses an Acoustic Magic array desk microphone to allow
multiple people to speak to the robot. The robot is mounted
on a portable wheeled platform to allow for experiments in
different locations.

Fig. 1. Left: MERTZ, an active vision humanoid head robot with 13 degrees
of freedom. Right: The robot’s overall system architecture.

B. System Architecture

Figure 1 illustrates the robot’s system architecture. The
robot’s visual system is equipped with detectors and trackers
for relevant stimuli, i.e. people and colored objects. A large
part of the robot’s visual system was implemented using the
YARP library [11]. The auditory system detects, localizes, and
performs various processing on sound input. Each instance of
face, color segment, and sound event is projected onto the
world coordinates system using the robot’s forward kinematic
model and entered into both the egocentric attention and
spatio-temporal learning map. The spatio-temporal learning
process incrementally updates the attention’s saliency param-
eters, which is then fed back into the attention map. The
egocentric attention map’s target output is passed onto the
robot’s behavior system to calculate the appropriate next step.
In parallel, each perceptual event is also processed to generate
clusters of individual’s faces, color segments, and words for
future recognition.

C. Face Processing

The robot is using a frontal face detector [12], comple-
mented by feature tracking. We are combining a KLT tracker
[13] for faster attentional processing with a SIFT tracker for
slower but more accurate generation of clusters of individual’s
faces.

D. Color Processing

The robot detects colored objects by looking for moving
color segments within some distance. First, the robot detects
motion using [14], where a KLT tracker is used to estimate
displacement of background pixels due to robot’s own motion.
Detected motion patch is then used to activate a color-
histogram based tracker. A color histogram model is built
using color segments tracked in each continuous sequence and
stored into a color cluster database.

E. Auditory Processing

The robot’s auditory system was implemented using CMU
Sphinx 2 [15]. An energy-based sound detection module
determines the presence of sound events above a threshold.
We also use the five indicator LEDs on the microphone to
obtain the horizontal direction the sound source. Each recorded
segment is then processed for word recognition. One or two



Fig. 2. The attention’s system’s saliency function for varying growth and
decay rates

consecutive words are then selected to construct a simple
bigram model, which generate a one or two-word response.

F. Egocentric Object-based Attention System

The robot’s attentional map is a 2D rectangular plane, which
is an approximated projection of the front half of the geodesic
sphere centered at a robots origin (a simplified version of the
Sensory Ego-Sphere implementation [7]). This plane consists
of 280x210 pixels, indexed by the azimuth and elevation
angles of the robot’s gaze direction. The retinal location of
each perceptual event is projected onto the attentional map’s
world coordinates using the robot’s forward kinematic model.
Each object is represented spatially in the attentional map by
a 2D unnormalized gaussian, centered at the object’s center,
sized at 3 ∗ σ = object’s diameter, and initially scaled with
magnitude of 100. The magnitude of this spatial 2D gaussian
represents the saliency value of the corresponding object. If
the same object is successfully tracked during the subsequent
frame, the location of the corresponding gaussian is updated
accordingly and the magnitude is modified using a time-
varying saliency function:
f(t, x, y, fov, ptype) = Mmax

−(t−t0)2/2R(x,y,fov,ptype)2

e ,
t=time, x, y=location, fov= 1 if inside, 0 if outside field of
view, ptype=percept type, Mmax=200, t0=start time.
R = Rg (growth rate) for t < tpeak , tpeak = t0 +
√

−2R2
glog(Minit/Mmax), Minit=100. R = Rd (decay rate)

for t > tpeak . If the target object is outside the field of view
(fov=0), f(t, x, y, fov, ptype)=the last saliency value at time
t-1, i.e. does not grow or decay.

The function R(x, y, fov, ptype) essentially determines the
growth or decay rate parameter for a particular sensory
input of type ptype and located at x, y. Initially, both
Rg(x, y, fov, ptype) and Rd(x, y, fov, ptype) are set to 30
for all x, y, and ptype. As the robot gains experience in the
environment, the spatio-temporal learning system incremen-
tally updates both Rg and Rd for each type of perceptual
input and its location in the egocentric map. If an object
has not been tracked for some period, it is considered lost
and its corresponding gaussian is then deactivated by setting
Rd = 0.2.

Figure 2 illustrates the saliency function for varying values
of saliency growth rate (Rg) and decay rate (Rd). The idea is
that if a face or color segment is detected and subsequently
tracked, its saliency value will initially grow and start decaying

Fig. 3. Two sample image sequences and the corresponding attentional map,
illustrating the attention system’s output while interacting with two people
simultaneously.

after a while. The saliency growth rate determines how good
a particular stimuli is in capturing the robot’s attention and
the decay rate specifies how well it can maintain the robot’s
attention. The time-varying saliency functions and interaction
among these functions for multiple sensory events generate a
number of advantages. Firstly, since each object has to be
tracked for some time to achieve a higher saliency value,
the system is more robust against short-lived false positive
detection errors. It also deals better with false negative de-
tection gaps. The combination of decay rates and egocentric
map’s short-term memory provides some short-term memory
capabilities to allow the robot to remember objects even if they
have moved outside the robot’s field of view. Moreover, the
emergent interaction among various saliency functions allows
the attention system to integrate top-down and bottom-up
control and also to naturally alternate among multiple learning
targets. Lastly, the system architecture provides natural op-
portunities to detect various spatio-temporal and multi-modal
correlation in the sensory data. The incremental adaptation
of the saliency parameters based on these observed patterns
allows the attention system to be more sensitive to a set of
previously encountered learning target types and locations.

Figure 3 shows two sample sequences of the attentional map
output. On each attention map (left column), the two vertical
lines represent the robot’s current field of view. Two people
were interacting with the robot. The blue box superimposed on
the image indicates detected faces. The red cross indicates the
current attention target. Once a person’s face is detected, it is
represented by a white blob in the attentional map, with time-
varying intensity level determined by the saliency function
described above. Thus, the blob often remains in the map even
if the face is no longer detected for some time, allowing the
robot to still be aware of a person despite failure in detecting
his or her face. In the upper sequence, the female’s face was
detected only in frame 2, but was still present in the map in
frame 3-6. Similarly, in the lower sequence, the infant’s face
was detected in frame 2-4 and remains in the map for the rest
of the frames. Moreover, as shown in both sequences, after
attending to the first person, the attention system switches
to the second person after some time due to the temporal



Fig. 4. Left: An example of the spatio-temporal learning system’s activity
function when an object is entered at time t=3,5,7,10,18,20,22,30 ms. Right:
Sample dormant and joint occurence of face and sound map, constructed by
the spatiotemporal learning module.

interaction among each blob’s saliency function. In both upper
and lower sequences, this attention switch from the first person
to the second person in frame 4 and 5 respectively.

G. Spatio-temporal Sensory Learning

The spatio-temporal sensory learning map is very similar
to the egocentric attention map, i.e. a 2D rectangular plane
with 280x210 pixels, indexed by the azimuth and elevation
angles of the robot’s gaze direction. Each map pixel is a
storage space containing up to three cells, one for each
perceptual type (face, color, and sound). Each cell Cx,y,ptype

is associated with a time-varying activity function A(t) =
Me−D∗(t−tstart),t=time, M=200, D=0.3. Initially, all cells
are empty ( A(t)=-1). The spatio-temporal learning system
receives the same sensory input as the egocentric attention
system, plus the object’s velocity. Whenever an object of type
ptype at time T ′ and location L is entered, cell Cx,y,ptype

is activated by setting tstart = T ′ which inserts a spike of
magnitude M . Figure 4 Left illustrates a sample sequence
of a cell’s activity level when an object is entered at time
t=3,5,7,10,18,20,22,30 ms. If a cell has not been activated for
about 2 seconds, its activity level decays to 0 and the cell
becomes dormant until activated again.

Using this simple mechanism, the map can be used to record
various spatiotemporal pattern in the sensory input. Dormant
cells provide spatial history of each perceptual type, which
allows the robot to learn where faces typically occur, etc.
We also collect joint occurrence statistics among different
perceptual types within each cell. Figure 4 Right illustrates
maps of all dormant face and sound cells and a sample
joint occurence map showing regions in the robot’s entire
observable space, where face and sound events have frequently
occurred together in the past. This joint occurence information
is also used to generate clusters of concurrent pairs of audio-
visual input, containing a set of face or color segment images
and a number of temporally correlated sound files. The map
also computes a measure of the average dynamic and presence
duration for various input types and locations. At this time,
for each input type and attentional map location, Rg and Rd

are updated based on a simple function of the accumulated
history of the corresponding input’s occurence frequency, joint
occurrence frequency, dynamic, and presence duration. We
plan to explore more complex feedback strategies in the near
future.

Fig. 5. The robot’s behavior-based controller.

H. Behavior System

We have implemented the robot’s behavior based control
system in CREAL (CREAture Language) [16], designed to im-
plement behavior based programs (see Figure 5. The emergent
interaction among these modules generates the following high-
level behaviors: random exploration when nothing seems inter-
esting, orient gaze to interesting stimuli (faces, color segments,
and sound), maintain interaction distance by approaching or
pulling back, display facial expression and posture based on a
simple stimuli-based emotion system, and utter a single or pair
of words generated by a simple bigram language model, that
is learned from the word sequence input. We have shown in
[10] that with these perceptual and behavior mechanisms, the
robot was able to engage in interaction with a large number
of passersby in a set of public locations.

I. Face and Voice Clustering for Recognition

One of the robot’s main goals is to recognize individuals
in an unsupervised way through natural social interaction.
Face recognition, especially when unsupervised, is still a very
difficult problem. We are utilizing accurate face tracking and
multi-modal sensory binding to simplify this task. As men-
tioned above, we are using a SIFT-based [17] same-person face
tracking which provides automatic generation of face clusters
from each continuous tracking session. Since the tracking
process terminates as soon as the robot loses track of the face,
we are using the same tracking technique to perform furthering
offline clustering to merge face clusters that belong to the
same individual. The spatio-temporal binding process between
faces and sounds, as described above, complements these
face clusters with speech samples from the corresponding
individuals. This will essentially allow us to rely on existing
supervised face and speaker recognition technology.

III. EXPERIMENTAL RESULTS

We conducted an experiment to evaluate the system as the
robot interacts with passersby for 6 continuous hours. The
robot was placed at the MIT Stata Center building lobby, with
a poster requesting for people to interact with the robot. A set
of colored toys were placed next to the robot. People were
free to approach the robot at anytime and we observed from
a distance to minimize interaction constraints.

Figure 6 Left illustrates various detection and attention
output obtained during the experiment. We recorded data in
55097 frames which span a total of 17351.5 seconds. In order



Fig. 6. Left: Detection and attention output of each perceptual type during
the experiment. Right: The same output collected during a shorter interaction
session inside the laboratory where the robot is developed

to evaluate what the robot perceived, we counted the number
of times each input type (face, color, sound) was detected and
subsequently tracked. We then counted the attention system’s
output to evaluate how it selected from the perceived sensory
input. The label Att indicates that a particular input was
attended, i.e. the attention system selected this object as the
next target for that particular frame. The label Det represents
objects that have been detected and subsequently tracked.

As mentioned above, we are using two separate face track-
ers, one for the attention system and the other for more
accurate generation of face clusters. We will first report results
of the KLT-based tracker which is actively affecting the robot’s
attention system and gaze direction. Manual count of this face
tracker’s output indicates that the robot detected and tracked
77 individuals during the experiment. The face tracker erro-
neously merged two individuals in a tracking sequence twice.
Of the entire recorded sequence, faces were detected/tracked
for 10230 frames and attended for 7754 frames. Faces were
both detected and attended simultaneously (Att-Det) for 6016
frames. In 37.4% of these frames, the corresponding face was
attended because it was the only possible target. In 38.2%,
17 %, and 7.4 % of these frames, the face was selected by
the attention system among two, three, and more than four
possible targets respectively. Of all faces that were selected as
the attention’s next target, roughly 1738 frames (22.4%) were
not actually detected during the same frame. This is made
possible because the attention system has been implemented
with some capacity for short-term spatiotemporal memory.
Conversely, of all the detected ones, faces were not selected
as the next attention target in 4214 frames (41.2%). From this
NotAtt-Det set, the attention system instead selected nothing
for 17.7% of the time, a color segment for 6.1% of the time,
and sound for 76.2% of the time.

The SIFT-based face tracker passively processed each in-
coming image frame, as determined by the robot’s attention
system. This tracker generated face clusters, each of which
was obtained from each same-person tracking sequence. Due
to the large amount of data, we have so far manually counted
a part of the entire set (1082 clusters from 60 individuals).
Despite having to deal with simultaneous interaction with
multiple people, the tracker never merged two individuals

Fig. 7. Some examples of the automatically generated individual’s face (Left)
and color (Right) clusters.

Fig. 8. Various spatio-temporal patterns acquired during the experiment for
each perceptual type.

in a cluster. In 9 clusters, the tracker made a mistake by
mixing faces with background or other non-face objects. In
247 clusters, the entire sequence contains only background or
other non-face objects. Figure 7 Left shows some examples
of these generated clusters. Each cluster contains quite a
high variability in orientation and facial expression, which is
desirable for future face recognition purposes.

As shown in figure 6, color segments were seg-
mented/tracked for 10849 frames and selected as the next
attention target for 10428 frames. Color segments were both
detected and attended for 6280 frames. From these Att-Det
occurences, the corresponding color segment was the only
available target for 68.6% of the time and was selected as
a target among two, three, and more than four possible targets
for 24%, 5.1%, and 2.4% of the time respectively. About
4148 frames (39.8%) of all attended color segments had not
been tracked during the same frame. From all color segments
that were segmented and tracked, they were not subsequently
selected as the next attention target in roughly 4569 frames
(42.1%). Instead, the attention system selected nothing for
29% of the time, a face for 10.2% of the time, and a sound
segment for 60.8% of the time.

During the entire experiment, the robot collected over 210
clusters of color segments. Some of the color clusters are very
large, containing a few hundred images, while many are small

Fig. 9. The progression of saliency decay and growth rates during phase I
of the experiment.



with only a few images. These clusters capture a range objects,
i.e. toys, walls, ceilings, clothing, faces, etc. Figure 7 Right
shows some examples of these color clusters.

Sound sequences were detected for 13745 frames and at-
tended for 31761 frames. Sound segments were both detected
and selected as the next attention target for 5462 frames. From
these frames, the sound segment was the only possible target
for 51.2% of the time and was selected from two, three, and
more than four available targets for 33.9%, 10.3%, and 4.7%
of the time respectively. From all sound sequences that were
selected as the next attention target, 26299 frames had not
been detected during the same frame. About 8283 frames of
all detected sound sequences were not subsequently attended.
The attention system instead selected nothing for 63.4% of the
time, a face for 22.2% of the time, and a color segment for
14.5% of the time.

As mentioned above, the robot segmented one or two words
from each speech utterance. Each word is then stored in a
dictionary and the word sequences are used to learn a bigram
language model. Unfortunately, due to human errors, we lost
the data acquired during the first half of the experiment. In
the second half, the robot stored 59 words in the dictionary.
Some of the most frequently heard words are: you, are, he,
good, eight, I, it, no, the, good, name, hey. Some of the words
(single and pair) collected are: good boy, no, hello, am robot,
you yes, four I, wrong, no eight, my name, and bye robot.

Figure 8 and 9 describe various results generated by the
spatio-temporal learning mechanisms. We recorded these data
in two phases. Phase I covers roughly the first 9700 seconds
and phase II covers the rest. The spatio-temporal learning
system was reset in between the two phases. We recorded
a set of spatio-temporal patterns observed in the sensory input
sequence (shown in figure 8), which were used to adaptively
alter the attention’s saliency growth and decay rate as the
robot experienced the world. The dormant cells show all
regions where each perceptual input has ever occured in the
past. Sound cells are dormant everywhere because the sound
localization module only provides five different horizontal
direction around the robot. The different face maps indicate
that faces tend to occur and move around in the middle front
area. Color cells cover a larger area, as the robot actually
segmented many color segments from the wall, ceiling, and
floor. This causes the learning period of some regions of
the color map to be very high, as color segments from the
ceiling and floor tend to stay fixed for long periods of time.
Figure 9 shows the adaptation progress of both the growth and
decay rates during Phase I. We can see that as time passed
and the robot gathered more experience in the world, the
attention system’s saliency decay and growth rates adapted to
more sensitive to face, sound, and color segments from certain
regions where they have frequently appeared in the past.

IV. CONCLUSION AND FUTURE WORK

We present an integrated framework, combining an object-
based perceptual system, and adaptive multimodal attention
system, and spatiotemporal perceptual learning, for a sociable

robot. The robot interacted with over 70 people during a
six-hour experiment and collected various face, color, and
speech data for future recognition. In the near future, we
plan to extend the framework to explore various behavioral
adaptation opportunities based on the robot’s past sensory
experiences. For example, we are interested in utilizing the
coupling between attention and spatiotemporal learning to
discover various multimodal co-occurence patterns and im-
prove the robot’s perceptual system. Figure 6 Right illustrates
the equivalent data shown in figure 6 Left for a shorter
session inside the laboratory. One can immediately observe
the acoustical differences between the two locations. The
laboratory is much more quiet and the building lobby is
very noisy, thus the typical threshold-based sound detection
cannot work well in both locations. We plan to implement
hebbian learning within each spatiotemporal map location to
learn various properties of sound and face (e.g. sound energy),
whenever they occur together. This would essentially allow the
robot’s sound detector to adapt incrementally according to the
current environment.
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